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1 Motivation

The goal of this paper is to understand the nature of capital adjustment
costs. This topic is central to the understanding of investment, one of the
most important and volatile components of aggregate activity. Moreover,
understanding of the nature of adjustment costs is vital for the evaluation
of policies, such as tax credits, that attempt to influence investment and
thus aggregate activity. Despite the obvious importance of investment to
macroeconomics, it remains an enigma.
Costs of adjusting the stock of capital reflect a variety of interrelated

factors that are difficult to measure directly or precisely.1 Changing the level
of capital services at a business generates disruption costs during installation
of any new or replacement capital and costly learning must be incurred as the
structure of production may have been changed. Installing new equipment
or structures often involves delivery lags and time to install and/or build.
The irreversibility of many projects caused by a lack of secondary markets
for capital goods acts as another form of adjustment cost.

Some industry case studies (e.g., Holt et al. [1960], Peck [1974], Ito,
Bresnahan and Greenstein [1998]) provide a detailed characterization of the
nature of the adjustment costs for specific technologies. A reading of these
industry case studies suggest that there are indeed many different facets of
adjustment costs and that, in terms of modeling these adjustment costs, both
convex and nonconvex elements are likely to be present.2

Despite this perspective from the industry case studies, the workhorse
model of the investment literature has been a standard neoclassical model

1As direct measurement of these many factors is difficult, for the most part the study
of capital adjustment costs has been indirect through studying the dynamics of investment
itself.

2Holt et. al. [1960] found a quadratic specification of adjustment costs to be a good
approximation of hiring and layoff costs, overtime costs, inventory costs and machine
setup costs in the selected manufacturing industries. These components of adjustment
costs for changing the level of production are relevant here but are by no means the only
relevant costs. In terms of changes in the level of capital services, Peck [1974] studies
investment in turbogenerator sets for a panel of 15 electric utility firms and found that
”The investments in turbogenerator sets undertaken by any firm took place at discrete and
often widely dispersed points of time.”In their study of investment in large scale computer
systems, Ito, Bresnahan and Greenstein [1998] also find evidence of lumpy investment.
Their analysis of the costs of adjusting the stock of computer capital include items which
they term ”... intangible organization capital such as production knowledge and tacit work
routines.”
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with convex costs (often approximated to be quadratic) of adjustment.3 This
model has not performed that well even at the aggregate level (see Caballero
[1999]) but the recent development of longitudinal establishment databases
has raised even more questions about the standard convex cost model.
An alternative approach, highlighted in the work of Doms-Dunne [1994],

Cooper, Haltiwanger and Power [1999], Abel-Eberly [1994, 1996], and Ca-
ballero, Engel and Haltiwanger [1995], argues that nonconvexities and irre-
versibilities play a central role in the investment process. The primary basis
for this view, reviewed in detail below, is plant-level evidence of a nonlinear
relationship between investment and measures of fundamentals, including
investment bursts (spikes) as well as periods of inaction.
One limitation of this recent empirical literature is that it has focused

primarily on reduced form implications of nonconvex vs. convex models.
The results that emerge reject the reduced form implications of a pure convex
model and are consistent with the presence of nonconvexities. The reduced
form nature of the results have left us with several important, unresolved
questions: what is the nature of the capital adjustment process at the micro
level? Does the micro evidence support the presence of both convex and
nonconvex components of adjustment costs as might be expected based upon
the limited number of industry case studies? More specifically, what are the
structural estimates of the convex and nonconvex components of adjustment
costs that are consistent with the micro evidence? Finally, what are the
aggregate and policy implications of the estimated investment model?
To address these questions, this paper considers a rich model of capital

adjustment which nests alternative specifications. To do so, we specify a dy-
namic optimizing problem at the plant-level which incorporates both convex
and nonconvex costs of adjustment as well as irreversible investment. The
model’s implications are matched with plant-level observations from the Lon-
gitudinal Research Database (LRD) as part of an estimation routine based
upon the indirect inference procedure advanced by Gourieroux, Monfort and
Renault [1993] and Smith [1993]. We recover structural estimates of the
convex and nonconvex components of adjustment costs.
The key link between the theory and the plant-level data is the estimated

relationship between investment rates and fundamentals, measured as prof-
itability shocks that we infer from plant-level observations. This relationship

3Hamermesh and Pfann [1996] provide a detailed review of convex adjustment cost
models and numerous references to the motivation and results of that lengthy literature.
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is highly nonlinear: investment is relatively insensitive to small variations of
profitability but responds quite strongly to large shocks. Further, there is an
empirically important asymmetry present in this estimated relationship: the
response to large positive shocks is much more pronounced than is the re-
sponse to negative shocks. These key features of the data have been pointed
out in the recent empirical literature. Our value added is that we take these
prominent features of the data and, through the indirect inference procedure,
recover the underlying structural parameters.
Our results can be summarized by reference to extreme models with only

one form of adjustment cost. The convex cost of adjustment model can
not match the periods of inactivity in capital adjustment. Further, that
model cannot reproduce the observed nonlinear relationship between invest-
ment and profitability. Both the nonconvex and the irreversibility models
are able to produce nonlinear relationships between investment and funda-
mentals which are much closer to the data. Further both of these models
imply inactivity and investment bursts. Interestingly, irreversibility creates
an asymmetry as well since the loss from capital sales is more relevant when
profitability shocks are below their mean. Combinations of these types of ad-
justment fit the data best. A general theme that emerges from our analysis
is that the investment dynamics are much better described with models that
have convex and nonconvex costs rather than either convex or nonconvex
costs of adjustment alone.
In terms of macroeconomic implications, the natural question is whether

these nonconvexities ”matter” for aggregate investment. Our findings indi-
cate that at the plant-level, the nonconvexities identified in our estimation
are important: a model with only convex adjustment does poorly at the
plant level. However, a model with only convex adjustment costs fits the
aggregate data created by our estimated model reasonably well though, as
reported independently by Cooper, Haltiwanger and Power [1999], hereafter
CHP, the convex models tend not to track investment well at turning points.
We also find, not surprisingly, that the nonconvexities are less important at
the aggregate level than they are for understanding plant level observations.
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2 Facts

2.1 Data Set

Our data are a balanced panel from the Longitudinal Research Database
consisting of approximately 7,000 large, manufacturing plants that were con-
tinually in operation between 1972 and 1988.4 This particular sample period
and set of plants is drawn from the dataset used by Caballero, Engel and
Haltiwanger [1995], hereafter CEH. The unique feature of this data relative to
other studies that have used the LRD to study investment is that information
on both gross expenditures and gross retirements (including sales of capital)
are available for these plants for these years (Census stopped collecting data
on retirements in the late 1980s in its Annual Survey of Manufactures which
is why our sample ends in 1988). Incorporating retirements (and in turn
sales of capital) is especially important in this exploration of adjustment
costs and frictions in adjusting capital at the micro level. Investigating the
role of transactions costs and irreversibilities is quite difficult with the use of
expenditures data alone.
The use of the retirements data requires a somewhat modified definition

of investment. The definition of investment and capital accumulation that
we use follows that of CEH and satisfies:

It = EXPt −RETt (1)

Kt+1 = (1− δt)Kt + It (2)

where It is our investment measure, EXPt is real gross expenditures on capi-
tal equipment, RETt is real gross retirements of capital equipment, Kt is our
measure of the real capital stock (generated via a perpetual inventory method
at the plant level), and δt is the in-use depreciation rate. This measurement
specification differs from the usual one that uses only gross expenditures
data and the depreciation rate captures both in-use and retirements. Fol-
lowing the methodology used in CEH, we use the data on expenditures and
retirements along with investment deflators and BEA depreciation rates to
construct real measures of these series and also an estimate of the in-use

4While the balanced panel enables us to avoid modelling the entry/exit process there
is undoubtedly a selection bias induced.
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depreciation rate.5 In what follows, we focus on the investment rate, It/Kt,
which can be positive or negative.

2.2 Moments of the Data

The histogram of investment rates that emerges from this measurement ex-
ercise are reported in Figure 1. It is transparent that the investment rate
distribution is non-normal having a considerable mass around zero, fat tails,
and is highly skewed to the right (standard tests for non-normality yield
strong evidence of skewness and kurtosis). Some of the main features of the
distribution (and its underlying components in terms of gross expenditures
and retirements) are summarized in Table 1. First, note that about 8% of
the (plant, year) observations entail an investment rate near zero (investment
rate less than 1% in absolute value). Of this inaction, about 6% of the ob-
servations indicate gross expenditures less than 1% of the plant capital stock
and the retirement rate is less than 1% in 42.3% of our observations. Thus
the data exhibit significant inaction in terms of capital adjustment. This is
one of the driving observations for our analysis.6

These observations of inaction are complemented by periods of rather
intensive adjustment of the capital stock. In the analysis that follows we
term episodes of investment rates in excess of 20% spikes.7 Investment

5A relevant measurement point here is that the retirement data are based upon
sales/retirements of capital that yield a change in the book value of capital. Using a
FIFO structure and the history of investment and retirements, CEH develop a method
to convert this to a real measure of retirements. The methodology yields a measure of
the real changes in the plant-level capital stock induced by retirements. In what follows,
it is important to note that it does not already capture the difference between buying
and selling prices of capital that may influence the adjustment process. We recover that
difference as an estimate in our estimation.

6Observations of inaction and investment bursts are found in data from other countries
as well. For example, Nilsen and Schiantarelli [1998] study investment in Norwegian manu-
facturing plants for the period 1978-91. For production units, they report that 21% of the
units have zero investment expenditures over a given year. Further they find that invest-
ment rates exceeding 20% arise in about 10% of their observations and account for about
38% of total equipment investment. Related evidence on the lumpy nature of investment
for Colombia is provided by Huggett and Ospina [1998].

7Of course, one strength of this approach relative to Cooper, Haltiwanger and Power
is that we do not need to reduce our analysis to a dynamic discrete choice problem.
Nonetheless looking at these extreme episodes is informative about both the data and the
models.
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rates exceed 20% in about 18% of our sample observations. On average
these large bursts of investment account for about 50% of total investment
activity. Decomposing the investment rate in terms of gross expenditures
and retirements, there are gross expenditure rate spikes in approximately
23% of the plants while negative investment spikes occur in about 1.4% of
the observations.8

A third related feature of our data is that investment rates are highly
asymmetric. It is important to emphasize that our measurement of negative
investment here is through a direct measurement of retirements reflecting
purposeful selling or destruction of capital. We find a negative investment
rate in roughly 10 percent of our observations, zero investment in almost
10 percent and positive investment rates in the remaining 80 percent of our
observations. This striking asymmetry between positive and negative invest-
ment is an important feature of the data that our analysis seeks to match.

Variable LRD
Average Investment Rate 12.2%
Inaction Rate: Investment 8.1%

Fraction of Observations with Negative Investment 10.4%
Spike Rate: Positive Investment 18%
Spike Rate: Negative Investment 1.4%

Table 1: Summary Statistics

2.3 Non-Linearities in the Relationship Between In-
vestment and Fundamentals

A closely related aspect of recent empirical findings from micro data is the
nonlinear relationship between investment and fundamentals.9 This evi-
dence, along with the observed periods of inactivity and investment bursts, is
certainly suggestive of nonconvex costs of adjustment. However, one must be
careful since these observations, particularly the investment bursts, may be

8Interestingly, there are retirement spikes in about 3% of our plants so that apparently
some plants are ordering new capital when they are retiring capital.

9For example, CHP find that the probability of having a large investment episode is
increasing in the time since the last episode and CEH find a highly nonlinear relationship
between the rate of investment and a measure of the gap between desired and actual
capital.
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indicative of large shocks as well. Hence a key to our analysis is understand-
ing the mapping from exogenous shocks to the profitability of enterprises to
their capital adjustment. As explained below, by identifying shocks we can
infer the nature of adjustment costs from observed investment behavior.
In our analysis, we seek a simple reduced form characterization of the

mapping between shocks and investment behavior. We use this relationship
in our structural analysis via indirect inference techniques.

2.3.1 Investment Profitability Relationship

Our indirect inference techniques rely heavily on exploiting a simple reduced
form empirical relationship between investment and a measure of fundamen-
tals. In our case, we specify a simple nonlinear reduced form relationship
between investment and measures of shocks to shocks to plant level prof-
itability. We first describe how profitability is measured at the plant level
and then provide an empirical characterization of this relationship.

Estimation of Profit Functions Current profits, for given capital, are
given by Π(A,K), where the variable inputs (L) have been optimally chosen,
a shock to profitability is indicated by A and K is the current stock of capital.
That is,

Π(A,K) = max
L
R(Â,K, L)− Lw(L)

where R(Â,K, L) denotes revenues given the inputs of capital (K) and labor
(L) and a shock to revenues, denoted Â . Here Lw(L) is total labor cost.
Clearly this formulation implies that there are no costs of adjusting labor.
Once we specify a revenue function, we can use this optimization problem to
determine the labor input and to derive the profit function Π(A,K),where
A reflects both the shocks to the revenue function and variations in costs of
labor.
Throughout the analysis, the plant level profit function is specified as

Π(Ait,Kit) = AitK
θ
it. (3)

A key parameter is thus θ, the curvature of the profit function. This profit
function can be derived from a model in which the production function is
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Cobb-Douglas (CRS) and the plant sells a product in an imperfectly competi-
tive market. If αL denotes labor’s coefficient in the Cobb-Douglas technology
and ξ is the elasticity of the demand curve, then

θ = ((1− αL)(1 + ξ))/(1− αL(1 + ξ)) (4)

This parameter was estimated from the our panel of plants from the LRD.
To do so, we assume that there are both aggregate (At) and plant specific
profitability shocks (εit), with Ait=Atεit. Real profits and capital stocks were
calculated at the plant level as explained above. We then estimated θ from
(3) using nonlinear least squares.10

From the plant-level data, θ is estimated at .51 (standard error is 0.01).
Using the LRD plant-level data, we estimate αL = .72 using cost shares.
This, in turn implies a demand elasticity of -4.8 and a markup of about 27
percent.
Based upon this estimate of θ, we can, in principle, use the profit and

capital measures along with (3) to backout the profit shocks Ait. In practice,
we generate the profit shock series in an indirect fashion. The reason is
that we suspect that there is considerable measurement error in measured
profits with a nontrivial number of outliers so that the implied distribution
of profit shocks has an enormously large variance. To avoid this problem
with measurement error in profit rates, we obtain Ait indirectly by using
the first order condition for employment which depends upon Ait, capital
and parameters such as those underlying θ for which we have estimates.
Employment is measured with much less measurement error and accordingly
we find a substantially lower variance of the profit shocks using this indirect
method. Even with this indirect method, we remove fixed effects from the
distribution of profit shocks. As discussed below, if there are some underlying
structural differences across businesses (which there undoubtedly are) that
yield permanent differences in profitability across businesses, then we need to
remove them from impacting our analysis since such structural, permanent
heterogeneity is outside the scope of our model.11

10We used plant level fixed effects in this specification and estimated θ using the method-
ology proposed by Kiviet [1995].

11If instead one used the direct measure of profit shocks from the residual profit/capital
relationship, removing fixed effects still leaves an enormous variance with incredible out-
liers — again suggesting the presence of substantial measurement error in our direct mea-
sures of profit rates.
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With the estimate of the profit shocks at the plant level, we decompose
these shocks into aggregate and idiosyncratic components. The aggregate
component is simply the yearly mean of the profit shocks; the idiosyncratic
component is the deviation from that mean. These series provide the nec-
essary information for the solution of the plant level optimization problem
which requires the calculation of a conditional expectation of future prof-
itability.12

The Investment Profitability Relationship Letting ait=ln(Ait), we
study the following relationship between investment and profitability:

iit = αi + ψ0 + ψ1ait + ψ2(ait)
2 + uit (5)

where iit is the investment rate at plant i in period t. Given our interest
in understanding nonconvexities in the adjustment process, we allow the
investment rate to be a nonlinear of profitability shocks.13 The specification
removes unobserved heterogeneity through the inclusion of fixed effects.
This very simple specification is motivated in a number of ways. First, the

prior literature and our analysis of basic moments above suggests a nonlinear
relationship between investment and fundamentals. In particular, we know
from Table 1 that the investment distribution exhibits a relatively small
share of negative rates, a mode at zero investment and then a distribution
of positive rates which is very skewed to the right. Moreover, we know
from Figure 8 of CEH that there is a highly nonlinear relationship between
investment and a measure of the gap between desired and actual investment
with modest negative rates even for large negative gaps and increasingly
large investment rates for positive gaps. The above simple regression has the
potential to capture key features of the asymmetric distribution of investment
and the related nonlinear relationship between investment and fundamentals
found in the prior literature. It is true that the above specification puts much
less structure on this relationship than in the prior literature — but this is

12Clearly these series as well as those obtained from production function estimation at
the plant level are of independent interest in terms of evaluating competing models of
business cycles.

13In a previous version of this paper, we allowed cubic terms as well. We prefer the
quadratic specification for a number of reasons although the resulting estimates of the
structural parameters reported below are very close to those obtained with the cubic func-
tion. For reasons of parsimony, we do not split the shock into aggregate and idiosycratic
components for this estimation.
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intentional as our methodology seeks to identify basic features of the data
that we can measure/estimate relatively precisely and then in turn relate
that to the underlying structural model via indirect inference techniques.
A second related motivation for the above specification is that we are

relatively confident of our ability to measure the investment rate and the
profit rate shocks that are used in the above specification. Moreover, in our
subsequent analysis using numerical value function iteration we can specify
the underlying shock process in the simulated environment to mimic closely
the distribution of the shocks in the actual data. Put differently, this re-
duced form specification has a great advantage in yielding a tight relationship
between estimating this reduced form regression in the actual data and the
simulated data.
Estimation of (5) at the plant level yields parameter estimates reported

in Table 2. The relationship between the investment rate and profitability
is shown in Figure 2. The domain of ait reflects the underlying distribu-
tion of idiosyncratic profit shocks estimated above. It is not uncommon for
profitability to be 50% above or below its average value.

Reduced Form Regression Results
Coefficients
ψ0 -.013 (0.001)
ψ1 .265 (0.008)
ψ2 .20 (0.022)
R-squared 0.071
No. observations 96097
(Standard Errors in Parentheses)

Table 2

There is a statistically significant and economically important nonlinear-
ity in the relationship between investment rates and profitability. For values
of the profitability shock near its mean, the investment rate is near zero. It
rises rapidly at an increasing rate as the profitability shock increases. Thus,
for positive values of ait, the relationship is increasing and convex. In con-
trast, the response to reductions in profitability is not nearly as large. Thus
there is an asymmetry between the response to positive and negative prof-
itability shocks which mimics the basic features of the data emphasized in
Table 1 and in the existing literature.
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This nonlinear relationship will be used in our estimation as a means
of discriminating across competing specifications of the capital adjustment
process. To motivate that approach, we first turn to a characterization of
leading specifications of the adjustment process.

3 Models and Quantitative Implications

Our most general specification of the dynamic optimization problem at the
plant-level is assumed to have both components of convex and nonconvex
adjustment costs. Formally, we consider variations of the following stationary
dynamic programming problem:

V (A,K) = max
I
Π(A,K)− C(I, A,K) + βEA0|AV (A0, K 0) (6)

where Π(A,K) represents the (reduced form) profits attained by a plant with
capital K, a profitability shock given by A, I is the level of investment and
K 0 = K(1− δ) + I. Here unprimed variables are current values and primed
variables refer to future values. In this problem, the manager chooses the level
of investment, denoted I, which becomes productive with a one period lag.
The costs of adjustment are given by the function C(I, A,K). This function
is general enough to have components of both convex and nonconvex costs
of adjustment as well as a variety of transactions costs.
This section of the paper provides an overview of the competing models

of adjustment. The parameterizations are summarized in Table 3, at the end
of this section. For each, we describe the associated dynamic programming
problem and display some of the quantitative predictions of the models in
Table 4. At this stage these quantitative properties are meant to facilitate
an understanding of the competing models. The next section of the paper
discusses estimation of underlying parameters.

3.1 Common Elements of the Specification

For the numerical analysis and subsequent estimation, we specify processes
for the simulated shocks based upon the actual distributions uncovered from
the estimation of the profit function. In the simulations, the aggregate shocks
are represented by a first-order, two-state Markov process with At ∈ {Ah, Al}
with a transition matrix given by T. For this analysis we set Ah 10% above
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steady state and Al 10% below and estimate the diagonal elements in T at
.8. The variance of the shocks as well as the degree of serial correlation are
based upon the empirical analogues of At in the LRD (that is, we compute
the empirical analogue of At by taking the yearly mean of the Ait series
computed from the LRD). The idiosyncratic shocks take 11 possible values
and are also serially correlated. The transition matrix for these shocks is
computed directly from the empirical transitions observed at the plant-level
and thus reproduces statistics from the idiosyncratic profitability shock series.
For the remaining parameters, we set the annual discount factor (β) at

.95 and the annual rate of depreciation at 6.9%. This depreciation rate is
consistent with the one used to create the capital stock series at the plant
level less a retirement rate of 3.2%.

3.2 Convex Costs of Adjustment

The traditional investment model assumes that costs of adjustment are con-
vex. Here we adopt a quadratic cost specification and consider the following
specification of the adjustment function,

C(I, A,K) = pI +
γ

2
[I/K]2K

where γ is a parameter. The first-order condition for the plant level opti-
mization problem relates the investment rate to the derivative of the value
function with respect to capital and the cost of capital (p). That is, the
solution to (6) implies

i = (1/γ)[βEVk(A
0, K 0)− p] (7)

where i is the investment rate and EVk is the expectation of the derivative
of the value function in the subsequent period. In practice, this derivative is
not observable.
If profits are proportional to the capital stock, θ =1, the model reduces

to the familiar ”Q theory” of investment in which the value function is pro-
portional to the stock of capital. Hence, the derivative of the value function
can be inferred from the average value of a firm, Vk(A,K) = V (A,K)/K.

14

14This point is made by Hayashi [1982]. Of course, given that the estimate of the
curvature of the profitability function is significantly less than 1, any Q theory based
investment regressions are misspecified. Cooper-Ejarque [2000] investigate the implications
of this for the statistical significance of profits in investment regressions.
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As suggested by (7), the investment policy has a partial adjustment struc-
ture. There is a gap between the value of a marginal increment to the capital
stock and the price of capital. The optimal policy is to partially close this
gap where the speed of adjustment is parameterized by γ.Clearly, this model
implies continuous investment activity and thus will be unable to match ob-
servations of inactivity. Note though that large bursts of investment are
possible within this framework as long as the shocks are sufficiently volatile
and persistent.
We also study the special case of no adjustment costs, C(I, A,K) ≡ 0. In

this case, the optimal capital stock for the plant satisfies:

βEVk(A
0, K 0) = p

which comes directly from (6). In this specification, the future capital stock
and thus investment are extremely responsive to variations in persistent
movements in profitability.

3.3 Nonconvex costs of Adjustment

Building upon the analysis of Abel and Eberly [1999] and Cooper, Halti-
wanger and Power [1999], during periods of investment plants incur a fixed
cost which is proportional to their stock of capital.15 These fixed adjustment
costs represent the need for plant restructuring, worker retraining and orga-
nizational restructuring during periods of intensive investment. Generally,
these nonconvex costs of adjustment are intended to capture indivisibilities
in capital, increasing returns to the installation of new capital and increasing
returns to retraining and restructuring of production activity.
For this formulation of adjustment costs, the dynamic programming prob-

lem is specified as:

V (A,K) = max{V i(A,K), V a(A,K)}
where the superscripts refer to active investment ”a” and inactivity ”i”.
These options, in turn, are defined by:

V i(A,K) = Π(A,K) + βEA0|AV (A0, K(1− δ))
15That analysis also allowed for a loss proportional to current profits due to shutdowns

and so forth. Here we do not allow that form of adjustment cost as it is impossible to
separate it from the idiosyncratic profitability shocks we have estimated.
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and

V a(A,K) = max
I
Π(A,K)− FK − I + βEA0|AV (A0, K 0)

In this second optimization problem, the cost of adjustment is independent
of the investment activity of agent as described above. Here the cost of new
investment goods is normalized at 1.
The intuition for optimal investment policy in this setting comes from

CHP. In the absence of profitability shocks, the plant would follow an opti-
mal stopping policy: replace capital iff it has depreciated to a critical level.
Adding the shocks creates a state dependent optimal replacement policy but
the essential characteristics of the replacement cycle remain: there is frequent
investment inactivity punctuated by large bursts of capital purchases/sales.
Relative to the partial adjustment of the convex model, the model with non-
convex adjustment costs provides an incentive for the firm to ”overshoot its
target” and then to allow physical depreciation to reduce the capital stock
over time.

3.4 Transactions Costs

Finally, as emphasized most recently by Abel and Eberly [1994,1996], it is
reasonable to consider the possibility that there is a gap between the buying
and selling price of capital, reflecting, inter alia, capital specificity and a
lemons problem.16 This is incorporated in the model by assuming that

C(I,A,K) = pI where p=pb if I>0 and p=ps if I<0

where 1 = pb ≥ ps. In this case, the gap between the price of new and old
capital will create a region of inaction.
The value function for this specification is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)}

where the superscripts refer to the act of buying capital ”b”, selling capital
”s” and inaction ”i”. These options, in turn, are defined by:

16In fact, Abel and Eberly [1994] include other forms of nonconvex adjustment in their
model. Part of the point of looking at retirements (i.e. sales of capital) is to better evaluate
this model.
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V b(A,K) = max
I
Π(A,K)− I + βEA0|AV (A0,K(1− δ) + I),

V s(A,K) = max
R
Π(A,K) + psR+ βEA0|AV (A0, K(1− δ)−R)

and

V i(A,K) = Π(A,K) + βEA0|AV (A0, K(1− δ))
Here we distinguish between the purchase of new capital (I) and retirements
of existing capital (R). As there are no vintage effects in the model, a plant
would never simultaneously purchase and retire capital.
The presence of irreversibility will have a couple of implications for in-

vestment behavior. First, there is a sense of caution: in periods of high
profitability, the firm will not build its capital stock as quickly since there is
a cost of selling capital. Second, the firm will respond to an adverse shock by
holding on to capital instead of selling it in order to avoid the loss associated
with ps < 1.

3.5 Evaluation of Competing Models

As indicated by Table 3, we explore the quantitative implications of four
models. While these parameterizations are not directly estimated from the
data, they provide some interesting benchmark cases that highlight the key
issues arising between models with convex and nonconvex costs of adjust-
ment. The first, denoted ”No AC” is the extreme model in which there are
no adjustment costs. The second row, denoted CON, corresponds to a speci-
fication in which there are only convex costs of adjustment. The case labeled
”NC” assumes that there are only nonconvex costs of adjustment with F>0.
Finally, the case labeled ”TRAN” imposes a gap of 25% between the buying
and selling price of capital.

Model γ F ps pb
No AC 0 0 1 1
CON 2 0 1 1
NC 0 0.05 1 1
TRAN 0 0 .75 1
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Table 3

Our quantitative findings for the specifications in Table 3 along with data
from the LRD are summarized in Table 4. Figure 3 shows the estimated
relationships between investment rates and profitability for these models.
The associated regression coefficients are reported in Table 4 as well.

Moment LRD No AC CON NC TRAN
investment inaction .081 0.001 0 .917 .511
investment bursts .18 .308 0 .081 .153
Corr(iit,iit−1) .007 -.167 .479 -.083 .002
Corr(iit, ait) .245 .442 .858 .246 .499
Coefficients

ψ0 -.013 -.028 -.002 -.022 -.016
ψ1 .265 .542 .053 .339 .246
ψ2 .20 .377 .023 .303 .212

Table 4

As noted earlier, there is evidence of lumpiness and inaction in the LRD.
In addition, there is essentially no autocorrelation in plant-level investment
and a nontrivial positive correlation between investment and profitability.
The lack of autocorrelation is noteworthy given that idiosyncratic shocks to
profitability exhibit a correlation of 0.14.
Comparing the columns of Table 4 pertaining to the extreme models with

the column labeled LRD, none of the models alone fits these key moments
from the LRD. The extreme case of no adjustment costs (labelled No AC) is
given in the second column. This model produces no inaction but is capable
of producing bursts in response to variations in the idiosyncratic profitability
shocks. Note that this model actually creates negative serial correlation in
investment rates reflecting the lack of a motivation for smoothing investment
expenditures.
The quadratic adjustment cost model (labeled CON) adds convex adjust-

ment costs to the No AC model. This specification cannot capture either the
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inactivity or investment bursts. Further, it yields much higher autocorrela-
tions and investment/profit correlations than are observed in the data. In
fact, the convex cost of adjustment model, through the smoothing of invest-
ment, creates serial correlation in investment relative to the shock process.
Non-convex costs of adjustment (NC) and/or the model with irreversibil-

ity (TRAN) are able to create investment inactivity at the plant level. How-
ever, the pure non-convex model creates modest negative serial correlation in
investment data and a lower correlation between investment rates and prof-
itability. The negative serial correlation of the NC model is analogous to the
upward sloping hazards characterized by CHP.
Looking at Figure 3, note that at γ = 2, the convex model produces a

very flat relationship between the investment rates and profitability shocks.
However, nonlinearities are certainly apparent for the other models, even that
without any adjustment costs whatsoever. Again, these nonlinear responses
reflect the curvature in the profit function, the adjustment costs and the
nonlinearities induced by our specification which uses the investment rate as
a dependent variable.17

In particular, both the NC and TRAN models create relationships be-
tween investment rates and profitability shocks that mimic important aspects
of the data: an increasing, convex response to shocks above average and a
more muted response to adverse profitability shocks. For the TRAN spec-
ification, this dampened response to adverse shocks seems warranted since
selling off capital when profitability falls is ”expensive”. For the NC specifi-
cation, the bunching of investment activity, reflected in the frequent periods
of inactivity followed by bursts of investment, implies that the investment
rate will rise quickly as profitability differs from its mean but investment
rates will generally be near zero when profitability is near its mean.18

4 Estimation

None of these extreme models is rich enough to match key simple properties
of the data. Our approach is to consider a hybrid model with all forms of

17So, for example, if there are no adjustment costs then there is a log-linear relationship
between the future capital stock and the current profitability shock but this implies a
nonlinear relationship between the log of this shock and the investment rate.

18Of course, even in the absence of any shocks, there will be infrequent bursts of invest-
ment followed by periods of inaction.
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adjustment costs and, in turn, to estimate the key parameters of this hybrid
model by matching the implications of the structural model with key features
of the data.

4.1 Indirect Inference

The methodology that we use for this purpose is the indirect inference method
of Gourieroux et al. [1993] and Smith [1993]. There are two key elements in
the implementation of this methodology. First, there is the question of select-
ing a reduced form regression for the indirect inference procedure. Second,
there is the issue of unobserved heterogeneity. We discuss these in turn. In
the course of this presentation, it will become clear why the indirect inference
methodology has particular advantages in this setting.
The key to this methodology is a regression (hereafter termed the re-

duced form regression) which is run on both actual and simulated data. The
simulated data set is created by solving the dynamic programming problem
given a vector of parameters. The resulting policy functions are then used to
create a panel data set comparable to the LRD. The structural parameters
are chosen so that the coefficients of the reduced form regression from the
simulated data are ”close” to the estimates from the actual data.
The choice of a reduced form regression is a crucial piece of the analysis.

For our purposes, the reduced form regression needs to satisfy two criteria.
First, the parameters of the regression should be ”informative” about the
underlying structural parameters. That is, as the structural parameters are
varied, the regression coefficients should be responsive.19 Second, the reduced
form regression should summarize relevant aspects of the investment decision.
As emphasized above, one of the basic insights of the recent theoretical and
empirical literature on nonconvexities is that they imply nonlinearities in the
relationship between investment and fundamentals.20

19More formally, a sufficient condition for identification of the parameters (as in Assump-
tion 2 of Smith [1993]) is that there exists a one-to-one mapping between the structural
parameters and the moments calculated from the data. The sensitivity of the reduced
form coefficients to variations in the structural parameters is a property of the regression
that can be evaluated in simulations and reappears in determining the magnitude of the
standard errors.

20For example, the specification and findings in CEH can be interpreted in this fashion.
More directly, Barnett and Sakellaris [1999] explicitly fit a flexible functional form allowing
for a nonlinear relationship between investment and Q and find evidence of significant
nonlinearities. In this earlier work, the precise link between the underlying structural
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This point was used to motivate our analysis of the nonlinear relation-
ship between investment rates and profitability and we continue to use that
relationship as a focus for our estimation. Thus our specification remains:

iit = αi + ψ0 + ψ1ait + ψ2(ait)
2 + uit (8)

Note that we have included a fixed effect in this regression. Clearly there
is unobserved heterogeneity in the LRD. To match our model with data thus
requires us to either build the unobserved differences across plants into our
analysis or to purge the LRD of these differences. We have chosen the latter
approach which seems quite natural within the regression oriented indirect
inference methodology.21

4.2 Structural Estimation of a Mixed Model

The model we estimate includes convex and nonconvex adjustment processes
as well as irreversible investment.22 Specifically, assume that the dynamic
programming problem for a plant is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)}

where, as above, the superscripts refer to the act of buying capital ”b”, selling
capital ”s” and inaction ”i”. These options, in turn, are defined by:

V b(A,K) = max
I
Π(A,K)−FK−I− γ

2
[I/K]2K+βEA0|AV (A0,K(1−δ)+I),

model and the nonlinear empirical specifications is not specified. In many ways, the value-
added of our approach and analysis is that we make this link explicit and in turn we can
recover the underlying structural parameters.

21The treatment of unobserved heterogeneity is an important issue. Our approach is
to extract this from this data by included fixed effects in our reduced form regressions.
It is useful to consider the implications of unobserved heterogeneity for the underlying
structural model. As shown by Gilchrist-Himmelberg, unobserved heterogeneity in the
adjustment function appears in the intercept of the standard Q regression. While our
reduced form regression has profitabilty measures rather than average Q, we demonstrated
through simulations that the reduced form coefficients (other than the intercept) were
independent of fixed effects entered into the adjustment cost function.

22This combining of adjustment cost specifications may be appropriate for a particular
type of capital (with say installation costs and some degree of irreversibility) and/or may
also reflect differences in adjustment cost processes for different types of capital. Our data
is not rich enough to study a model with heterogeneous capital.
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V s(A,K) = max
R
Π(A,K)+psR−FK−γ

2
[R/K]2K+βEA0|AV (A0, K(1−δ)−R)

and

V i(A,K) = Π(A,K) + βEA0|AV (A0, K(1− δ)).
We have specified some parameters of the model (β = .95, δ = .069) for

the functional forms discussed above. Further, we retain our specification
of the profit function, Π(A,K) = AKθ with θ=.51. For the structural esti-
mation, we focus on three parameters, Θ ≡(F, γ, ps), which characterize the
magnitude of the nonconvex and the convex components of the adjustment
process and the size of the irreversibility of investment.
These parameters are estimated using the following routine. For arbitrary

values of the vector of parameters (Θ),the dynamic programming problem is
solved and policy functions are generated. Using these policy functions, the
decision rule is simulated given arbitrary initial conditions. The simulation
creates a version of the LRD. We then estimate the reduced form investment
regression, (5), on the simulated version of the LRD. Let Ψd represent the
estimates of [ψ1,ψ2,ψ3] from (8) reported in Table 2. Further, let Ψs(Θ)
denote the vector of regression coefficients from estimation of (5) on the
simulated data set, ignoring the constant term. Note that this vector of
reduced form parameters depends on the vector of structural parameters, Θ,
in a nonlinear way.
The estimate Θ̂ minimizes the weighted distance between the actual and

simulated regression coefficients. Formally, we solve

$ = min
Θ
[Ψd −Ψs(Θ)]0W [Ψd −Ψs(Θ)]

whereW is a weighting matrix. We use the optimal weighting matrix given by
the inverse of the variance-covariance matrix of the regression coefficients.23

Of course, the Ψs(Θ) function is not analytically tractable. Thus, the
minimization is performed using numerical techniques. Given the potential
for discontinuities in the model and the discretization of the state space, we
used a simulated annealing algorithm to perform the optimization.
Table 5 reports our results for four different models along with standard

errors. The first row estimates the complete model with three structural

23See Smith [1993].
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parameters used to match three reduced form coefficients. Here we find that
we are able to come fairly close to matching the regression coefficients with
a parameter vector given by: Θ = [0.043, 0.00039, 0.967]. These parameter
estimates imply relatively modest convex and nonconvex adjustment costs
(but non-zero) and a relatively substantial transaction cost. Restricted
versions of the estimated model are also reported for purposes of comparison.
Clearly the mixed model does better than any of the restricted models. In
particular, F is significantly different from zero, ps is significantly different
from 1 and γ is significantly different from zero.

Spec. Structural Parm. Estimates (s.e.) parm. est. for (5)
γ F ps ψ0 ψ1 ψ2

LRD -.013 .265 .20
all .043 (0.00224) .00039(.0000549) .967(.00112) -.013 .255 .171
F only 0 .0333(.0000155) 1 -.02 .317 .268
γ only .125(.000105) 0 1 -.007 .241 .103
ps only 0 0 .93(.000312) -.016 .266 .223

Table 5

Figure 4 shows the empirical relationship between investment rates and
profitability for the estimated model and Figure 4 shows that relationship us-
ing the estimates of the alternative models. Clearly, the full model does cap-
ture the nonlinear relationship between investment and fundamentals found
in the data better than any of the restricted models.
Using our estimates, we can return to the moments reported in Table 4

which were not explicitly included in the our estimation procedure. With
regard to our motivating themes of inaction and bursts of investment, the
estimated model has both features reflecting both the nonconvex adjustment
and the irreversibility of investment. In particular, the estimated model ex-
hibits investment spikes (investment rates in excess of 20%) in about 13.7%
of the plant year observations compared to the 18% spike rate in the LRD.
Further, the investment inaction rate is 52.7% which is substantially higher
than that found in the data. With these estimates, the correlation between
profitability and investment is 0.586 while the serial correlation of investment
rates is 0.089. Both of these correlations are much closer to the data than
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the pure convex model and reflect the fact that the introduction of noncon-
vex adjustment costs and irreversibilities reduces both the responsiveness of
investment to shocks and its serial correlation.

4.3 Evaluation

Are these results reasonable? Of interest relative to other studies is the rel-
atively low estimated value of the convex cost of adjustment parameter, γ.
This parameter has received enormous attention in the literature since a re-
gression of investment rates on the average value of the firm (Q) will identify
this parameter when the profit function is proportional to K and the cost
of adjustment function is convex and homogenous of degree one. Using the
Q-theoretic approach, estimates of γ range from over 20 (Hayashi [1982]) to
as low as 3 (Gilchrist-Himmelberg [1995], unconstrained subsamples, bond
rating).
Relative to these results, our estimates of γ = .043 for the full model and

γ = .125 in the pure convex model appear extremely low. However, following
Cooper-Ejarque [2000], the misspecification of Q-theory based models may
explain these differences. In particular, when there is curvature in the profit
function (we estimate θ = .51), the assumptions underlying Q-theory do not
hold: i.e. the substitution of average for marginal Q produces a measurement
error. Could this explain the differences in findings about the magnitude of
γ?
To study this point, we simulated a panel data set using our estimates.

From this data set and the associated values from the dynamic programming
problem, we constructed measures of expected discounted average Q.24 We
then regressed investment rates on these measures of averageQ and used then
inferred the value of γ from the regression coefficient on average Q. When
γ = .043 is used in the simulation, the coefficient on average Q in a regression
of investment rates on a constant and average Q is very precisely estimated at
.1427 implying an estimate of γ = 7.01! Thus, the measurement error induced
by replacing marginal with average Q biases the coefficient on average Q
downwards enough to create an inferred value of the convex adjustment cost
parameter that is well within the range of conventional estimates.25

24Given the one-period time to build, the convex model relates investment to the ex-
pected discounted value of the derivative of the value function, as in (7).

25Essentially the substitution of average for marginal Q creates a negative correlation
close to unity between the ”error” and average Q. Of course, this correlation goes to 0 if
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Further, while others have considered models with nonconvex costs of
adjustment, there are no estimates comparable to our estimate of the fixed
cost.26 This estimate implies that the fixed cost of adjustment is about
0.04% of average plant level profits. Despite its modest magnitude, this
fixed cost matters for investment decisions. Forcing this parameter to zero
yields nontrivial changes in the reduced form parameter estimates.
Put differently, even though this fixed cost may seem small relative to

profits, it can nonetheless be quite influential in terms of decisions if it is
large relative to the gain from adjustment. Formally, define

∆V (A,K) = V act(A,K) + FK − V i(A,K)

where V act is the value of action (regardless of whether it involves buying or
selling capital) and V i is the value of inaction. So, ∆V (A,K) measures
the state contingent gain to action excluding the fixed cost of adjustment
(which has been added back). Figure 6 shows ∆V (A,K) and the nonconvex
adjustment cost (FK) for a particular value of A as a function of K using
the estimates of the full model. Note that ∆V (A,K) is less than FK over
a substantial range of the capital stock state space. Thus the fixed cost is
large enough to generate inaction over this region.

Our estimates of the degree of irreversibility is within reason, though it
is considerably lower (i.e. ps is close to 1) than the estimate provided by
Ramey and Shapiro [1998] for some plants in the aerospace industry. As
noted earlier, this level of transactions cost is enough to generate inactivity
instead of sales of capital. Holding the other parameter estimated fixed, if
we remove the irreversibility by setting ps = 1, the rate of inaction falls to
about 36% and the incidence of investment bursts rises to about 20%. In
this sense, the presence of even modest transactions costs creates inaction
and also dampens the responsiveness of investment to shocks.

the profit function is proportional to K. Cooper-Ejarque develop this point to argue that
the same measurement error can explain the significance of profit rates in Q regressions
in the absence of capital market imperfections.

26In particular, neither CHP nor CEH estimate adjustment costs directly. Further,
while fixed costs of adjustment are present in the Abel and Eberly [1999] model they do
not appear to be estimated either.
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5 Aggregate Implications

The estimation results reported in Table 5 indicate that a model which mixes
both convex and nonconvex adjustment processes can match moments cal-
culated from plant level data quite well. An issue for macroeconomists,
however, is whether the presence of nonconvexity at the microeconomic level
”matters” for aggregate investment. CEH find that introducing the nonlin-
earities created by nonconvex adjustment processes can improve the fit of
aggregate investment models. CHP find that the convex adjustment cost
model fits aggregate investment (across their manufacturing plants) reason-
ably well on average. However, there are years where the interaction of an
upward sloping hazard (investment probability as a function of age) and
the cross sectional distribution of capital vintages does matter for aggregate
investment.
To study the contribution of nonconvex adjustment costs to aggregate

investment (defined by aggregating across the plants in our sample), we com-
pare the aggregate implications of our estimated model, termed the best over-
all fit model, against two models with convex costs of adjustment. The first,
termed the estimated convex model, is the best fit of the pure convex model to
the properties of the micro data as reported in Table 5 (with γ = .125 ). The
second, termed the alternative convex model imposes γ = 2,which is closer to
that found in Q-based investment models, described in Gilchrist-Himmelberg
[1995] for example. We simulated all three models for 100 periods using the
same draw of aggregate and idiosyncratic shocks. The three simulated times
series are shown in Figure 7.
For this exercise, we treat the aggregate time series created by the best

overall fit model as ”truth” and consider how well the alternative convex
adjustment costs models match this time series. It is apparent that the al-
ternative convex model does very poorly in terms of its aggregate dynamics.
Aggregate investment from this specification is much smoother than that
implied by the best overall fit model. Note, however, that the aggregate in-
vestment implied by the estimated convex model does a reasonably good job
of matching the aggregate investment behavior of the best overall fit model.
For this latter comparison, there are differences at ”turning points” when
the aggregate shock changes from one state to another. In particular, when
the aggregate shock switches from below to above its mean, the resulting
burst of investment is much higher for the best overall fit model than for the
estimated convex model.
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Using these three series, we computed a pseudo R2 measure defined as
the fraction of the fluctuations in the aggregate investment rate that are
explained by the alternative convex models.27 For the series shown in Figure
7, this measure of goodness of fit for the alternative convex model is 0.22 while
it is 0.93 for the estimated convex model. These findings along with Figure 7
suggest that the alternative convex model, parameterized at ”conventional”
levels, yields aggregate dynamics that are far from those associated with
the best overall fit model. However, the estimated convex model (which has
quite weak convexity) yields aggregate patterns that are not too far from
those implied by the best fit model.28

In our simulated environment, we can explore the factors that yield in-
creases or decreases the fraction that can be accounted for by the convex
model. If we double the variance of aggregate shocks for example this
pseudo R2 measure for the best fit convex model drops to 91.7%.29 This
sensitivity to the magnitude of the aggregate shocks is intuitive as larger
aggregate shocks push the distribution of plants into different regions of the
nonlinear relationship between investment and fundamentals that are a key
feature of models with nonconvexities. This finding is important in practice
because it suggests that the micro nonconvexities that we estimate as being
important in the micro data are likely to be most important empirically for
aggregate investment at times of especially large shocks.
It is also of interest to ask the question how well does the estimated

convex model fit the overall distribution of investment rates. One way of
answering this question is to compute the pseudo R2 using the simulated
plant level data for the pure and mixed cases. Computing the pseudo R2

measure in this manner for the estimated convex model yields 0.79. Not
surprisingly, smoothing by aggregation implies that the convex model does
relatively better in matching aggregate relative to plant level data.
This analysis of the aggregate implications is potentially incomplete in

that we do not explicitly consider general equilibrium considerations. As

27Letting ε be the difference between aggregate investment from the estimated model
(est) and the convex model, we defined our goodness of fit measure as 1-var(ε)/(var(est)).

28This finding that approximately ninety percent of the aggregate fluctuations in invest-
ment can be accounted for with convex cost elements alone is roughly consistent with the
findings in CEH and CHP. For example, in CEH, a regression of aggregate investment on
the first moment of the gap between desired and actual capital yielded a R2 of roughly
.65 while adding higher moments raised the pseudo R2 measure to 0.80.

29That is, the aggregate shocks take the values {.8,1.2} instead of {.9,1.1}.
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emphasized by Veracierto [1998], Caballero [1999] and Thomas [2000], it is
likely that there is further smoothing by aggregation due to the congestion
effects that are potentially present in the capital goods supply industry. Our
focus here is more of a pure aggregation exercise considering the aggregate
implications of the alternative mixed and pure specifications of structural
models given the distributions of aggregate and idiosyncratic shocks.

6 Conclusions

The goal of this paper is to analyze capital dynamics through competing
models of the investment process: what is the nature of the capital adjust-
ment process? The methodology is to take a model of the capital adjustment
process with a rich specification of adjustment costs and solve the dynamic
optimization problem at the plant level. Using the resulting policy functions
to create a simulated data set, the procedure of indirect inference is used to
estimate the structural parameters.
Our empirical results point to the mixing of models of the adjustment

process. The LRD indicates that plants exhibit periods of inactivity as well
as large investment bursts. Further, the relationship between investment
rates and measures of profitability at the plant level is highly nonlinear. A
model which incorporates both convex and nonconvex aspects of adjustment,
including irreversibility, fits these observations best.
In terms of further consideration of these issues, we plan to continue this

line of research by introducing costs of employment adjustment. This is
partially motivated by the ongoing literature on adjustment costs for labor
as well as the fact that the model without labor adjustment costs implies
labor movements that are not consistent with observation.
Further, it would be insightful to utilize this model to study the effects

of investment tax subsidies. Here those subsidies enter quite easily through
policy induced variations in the cost of capital.
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