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1. Introduction

This paper discusses the problem of evaluating and predicting the treatment impact of a
program that is implemented at multiple sites. Many programs operate at, and are
evaluated at, multiple sites, e.g., NSW, JTPA, New Chance, and Greater Avenues for
Independence (GAIN), which is studied in this paper. Two kinds of differences can
emerge across sites: differences in the composition of participants and differences in the
treatment (or how it is administered). The former is relatively easy to address if a
sufficient number of the participants’ characteristics are observed. The latter leads to
more difficult questions: are observations on participants at other sites relevant in
determining the treatment impact at a given site? And if the program is implemented
again, how can we predict the impact at a new site? These questions are important
because they influence the interpretation of many evaluations.

One standard method of dealing with site-specific effects is to use a fixed-effects
model, or more generally to estimate separate models for each site. To the extent that
cross-site differences are administrative or qualitative, this would be a valid approach to
estimating the impact in the original implementation. However, it limits us to thinking of
subsequent implementations of the program as being identical to one of the original sites,
because there is no framework to account for predictive uncertainty regarding the value
of the fixed effect or site-specific model. Another solution would be to pool the data. This
treats units as exchangeable conditional on observable variables, ignoring site effects, and
allows us to predict the outcome in subsequent implementations. Alternatively we can

think of pooling as averaging over site effects and predicting the outcome averaged over



subsequent implementations. Neither interpretation allows us to consider how the site
effects would vary in subsequent implementations.

This paper explores the middle ground between these methods through the use of
hierarchical modeling (see Chamberlain and Imbens [1996], Geweke and Keane [1996],
and Rossi, McCulloch, and Allenby [1995] for other applications of these methods).
Hierarchical modeling is somewhat familiar in the frequentist literature through the
related concept of meta-modeling (see Cooper and Hedges [1994]). Meta-modeling
involves linking the outcomes of separate studies on the same topic through an over-
arching model. It can also be used to model site effects; for example, Card and Krueger
(1992) estimate cohort and state-of-birth specific returns to schooling and then use a
meta-model to relate these to measures of school quality. The method adopted in this
paper is a Bayesian version of meta-modeling.

There are three layers to the model. The first layer consists of separate regression
models for each site. The second layer links the coefficients of the site models through a
regression-type meta-model. The third layer consists of prior distributions for the
unknown parameters. Thus, a hierarchical model combines features of the fixed-effect
and pooled models, but also allows for intermediate models. First, compared to standard
fixed (or random) effects, it allows for site-specific estimation of all coefficients, not just
the constants. Second, participants across sites are not assumed to be exchangeable
conditional on individual characteristics, but instead are assumed to be exchangeable
within sites conditional on individual characteristics. Third, we use a prior distribution to

model the extent to which we believe that site-effects are drawn from a common



distribution; i.e., the extent to which coefficients should be “smoothed” across sites, or
observations from one site should influence our estimates in other sites.

This approach is applied to data from the Greater Avenues for Independence
(GAIN) Demonstration, a labor training program implemented in six California counties
at 24 sites (see Riccio, et al., [1996]). Much attention in the GAIN program focused on
the Riverside county implementation, which was viewed as being highly successful and
distinct from other counties (see, for example, Nelson [1997]). From the perspective of
GAIN, the interest is in discovering the extent to which a hierarchical model succeeds in
capturing these site effects which have been viewed as being primarily qualitative in
nature. We focus on three issues. First, to what extent does pooling the data across all
sites obscure site effects? Second, if we imagine re-implementing a GAIN-type program,
would we be able to predict the site effects based on the observable characteristics of
each site, and how important is predictive uncertainty? Third, how well can the model
extrapolate to sites that have not been observed? These questions will be addressed
below.

Previous papers on multi-site evaluation issues are Heckman and Smith (1996),
Hotz, Imbens, and Mortimer (1998), and Hotz, Imbens, and Klerman (2000). Heckman
and Smith analyze the sensitivity of experimental estimates to the choice of sites used in
the analysis and to different methods of weighting the pooled data. The paper establishes
that there is significant cross-site variation in the data from the JTPA evaluation. Hotz,
Imbens, and Mortimer analyze the importance of site effects in the GAIN data using the
key insight that, even if there is heterogeneity in the treatment available at each site,

control groups excluded from the program at other sites should still be comparable if



there are no site effects. They are able to control for site effects in control group
earnings, but not treatment group earnings, suggesting the existence of treatment
heterogeneity across sites. Thus, the model used in this paper allows for site effects in
both treatment and control earnings. Hotz, Imbens, and Klerman is complementary to the
current paper. Like the current paper, they use regression adjustment to control for
differences in the composition of program participants, but unlike the current paper they
do not use site characteristics. They do, however, have six additional years of post-
treatment earnings data.

The paper is organized as follows. Section 2 describes the GAIN program.
Section 3 discusses key features of the GAIN data. Section 4 outlines the hierarchical

model. Section 5 presents the results, and Section 6 concludes.

2. The Data
The GAIN program began operating in California in 1986, with the aim of “increasing
employment and fostering self-sufficiency” among AFDC recipients (see Riccio, et al.,
[1994]). In 1988, six counties -- Alameda, Butte, Los Angeles, Riverside, San Diego, and
Tulare -- were chosen for an experimental evaluation of the benefits of GAIN. A subset
of AFDC recipients (single parents with children aged six or older and unemployed heads
of two-parent households) were required to participate in the GAIN experiment (see
Table 1).

Potential participants from the mandatory group were referred to a GAIN

orientation session when they visited an Income Maintenance office (either to sign up for

" This discussion draws on Dehejia (1999).



welfare or to qualify for continued benefits).” As a result, the chronology of the data and
subsequent results are in experimental time, rather than calendar time. No sanctions were
used if individuals failed to attend the orientation sessions. However, once individuals
started in the GAIN program, sanctions were used to ensure their ongoing participation.
At the time of enrollment into the program, a variety of background characteristics were
recorded for both treatment and control units including: demographic characteristics;
results of a reading and mathematics proficiency test; and data on ten quarters of pre-
treatment earnings, AFDC, and food stamp receipts.3

Of those who attended the orientation session, a fraction was randomly assigned
to the GAIN program,* and the others were prohibited from participating in GAIN.” Each
of the counties randomized a different proportion of its participants into treatment,
ranging from a 50-50 split in Alameda to an 85-15 split in San Diego (see Table 1).
Because assignment to treatment was random, the distribution of pre-treatment covariates
is balanced across the treatment and control groups. In terms of the chronology of data
gathering, “experimental” time (which I also refer to as “post-experimental” or “post-
treatment” time) begins when individuals attend the GAIN orientation session. The early
stages of experimental time thus coincide with the education and training of GAIN

participants.’®

? In some counties AFDC recipients were allowed to volunteer into the GAIN program, but these units are
not included in the public use sample.

? Data on AFDC and Food Stamp receipts were taken from each county’s welfare records. Data on
earnings were taken from the California State Unemployment Insurance Earnings and Benefits Records.
Other background characteristics were taken from California’s client information (“GAIN-26") form. See
Riccio, et al., (1994).

* The randomization was (as far as we know) independent of pre-treatment covariates. This is confirmed by
the data. A different fraction was randomized into treatment in each county. See Table 1.

> Of course, these individuals could participate in non-GAIN employment-creating activities.

% More precisely, individuals were registered in the first quarter of experimental time. This means that in
some cases the first quarter of experimental time in fact includes information one or two months prior to



In the GAIN experiment, the treatment is participating in the GAIN program; the
control is receiving standard AFDC benefits. The GAIN program works as follows:
based on test results and an interview with a case manager, participants were assigned to
one of two activities. Those deemed not to be in need of basic education were referred to
a job search activity (which lasts about three weeks); those who did not find work were
placed in job training (which included vocational or on-the-job training and paid or
unpaid work experience, lasting about three to four months). Those deemed to be in need
of basic education could choose to enter job search immediately, but if they failed to find
a job they were required to register for preparation toward the General Educational
Development certificate, Adult Basic Education, or English as a Second Language
programs (lasting three to four months).” Participants were exempted from the
requirement to participate in GAIN activities if they found work on their own.®

The counties in the GAIN experiment varied along two important dimensions.
First, the composition of program participants varied, because counties chose to focus on
particular subsets of their welfare populations and the populations differed. For example,

Alameda and Los Angeles counties confined themselves to the subset of long-term

the commencement of the experiment. So for example, for an individual who attended an orientation
session in February 1989, the first quarter of experimental time is from January to March 1989. Of course,
some part of the first and second quarters could be spent participating in treatment activities. Pre-treatment
data would cover the ten quarters from July 1986 to December 1988.

" The public use data do not contain information on each individual’s participation in the various
components of the program. At the same time, individuals in the control group can participate in non-GAIN
activities. Thus, the treatment effect measures the increase in earnings, employment, etc., from the
availability of and encouragement (or requirement) to use GAIN-related activities compared to pre-existing
employment services.

¥ Note that only about eight-five per cent of the treated units actively participated in any GAIN activities
(though by virtue of being in the GAIN sample they did attend an orientation meeting); the balance
satisfied the requirements of the GAIN program on their own (in most cases finding employment within the
first two or three quarters of experimental time). Thus, as observed earlier, this is important in interpreting
the treatment effect as a comparison between earnings, employment, etc., when individuals are required to
find a job or to participate in GAIN-related activities and when they are not obliged to find jobs and only
pre-existing employment-related services are available.



welfare recipients (individuals having already received welfare for two years or more).
The second difference is that the sub-treatment offered within each county varied due to
differences in administrative philosophy. The approach followed by Riverside, which has
received much attention, was to focus on job, rather than skills, acquisition. Both are part
of the program, but Riverside’s emphasis was the former. Instead counties like Alameda
focused more on skill acquisition. The model will allow for differences in composition by
conditioning on pre-treatment covariates and differences in the treatment by allowing for

site effects.

3. The GAIN Data
Table 1 presents the six counties that participated in the GAIN experiment, broken down
in terms of their 24 administrative sites. The counties vary from one-site counties such as
Alameda to multi-site counties such as Los Angeles and San Diego. This paper will
analyze the results at the site level because with six counties there is minimal scope for
modeling site effects. Table 2 presents the background characteristics of each site in
greater detail. We note that the average number of children varies from over four in some
sites (site 21) to slightly over two in others (site 6). The proportion of Hispanics in the
sample varies from a low of 6 per cent (site 1) to over 50 per cent in other sites (sites 14
and 24).

Table 2 shows that there is significant variation in the treatment impact across
sites. The second to last column presents the average quarterly post-treatment earnings
for the treatment and control groups. The treatment impact ranges from a high of $212 for

Site 5 (in Riverside county) to a low of —=$132 for Site 17 (in Tulare). In the last column



the treatment effect is estimated conditioning on pre-treatment covariates through an OLS
regression. The estimates are similar, ranging from —$90 to $292. The sites consistently
showing the highest and most significant impacts are those from Riverside county (sites 2
to 5). Their treatment impacts range from $149 to $292, and are significantly different
from zero. The worst performing county is Tulare, for which some of the impacts are

negative and all are statistically insignificant.

4. The Econometric Model

A feature of the data which influences the modeling strategy is the large proportion of
zeros in the outcome, earnings. With as many as 75 per cent of the outcomes being zero,
the model must explicitly account for the mass point in the earnings distribution. The
model has two components. The first is a probit model that determines the probability of
positive earnings. The second, conditional on positive earnings, uses a hierarchical

model, which is outlined below (see Dehejia [1999], which uses a similar model).

4.1 The Probit Model
Let Y; denote earnings, for i=1,...,N, and =1,...,T. Yi =0 if Y:~0, and =1 if ¥;>0. The
probit model defines a latent variable such that Y,-t*ZO if Yit**<0, =1if Yit**>0. The latent

variable 1s assumed to follow a normal likelihood:

vl = v b X, =X b B~ N B (1)

where x;=[e; Tireir Sir ], T; 1s a treatment indicator (=1 if treated, =0 otherwise), e;=[Y; 1
cil, cir 1s a vector of exogenous pre-treatment variables, and S;; is a set of site-level

characteristics. Rather than using maximum likelihood to obtain a point estimate, we use



a Gibbs sampling procedure to obtain the posterior distribution of the parameters (see
Appendix A; also Albert and Chib [1993], Gelfland and Smith [1990], and Tanner and
Wong [1987]). Though this is not a fully hierarchical model, it does allow for a restrictive

form of site effects through the site characteristics.

4.2 The Hierarchical Model
The hierarchical model (see Gelman, Carlin, Stern, and Rubin [1996]) is a generalization

of the regression model that allows each site to have its own value for the coefficients:

Y

2 [ 2
{X,-,j }Vi,t,j 0" ~N(B,"x;;,07), )
where x;; is defined as in the previous section, except that we index the site as well,

Jj=1,....J. Let B,'=(B,, --- B,),), where m=1,...,M indexes the regressors. The model

assumes a constant variance across sites. The key feature of the model is that the §’s are

linked through a further model:

B

T~ N, 2,3, 3)
where z; are a set of site characteristics used to model the site coefficients. The model for
B serves as a prior distribution with respect to the base model for earnings. The model is
completed by defining priors for the parameters:

1/o? ~W,(r. 0™,

=~ W(p,KT),
and

vec(y) ~ N(d,2® D).
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The prior on X' determines the degree of smoothing the model performs. The estimate

of the [3’s for each site are a precision-weighted average of the OLS estimates within

each site and the 3 ’s predicted by the model in (3). The weight, in turn, is influenced by

the prior for ™' . The Wishart prior can be interpreted as p previous observations with
variance K. When K reflects high variance, this will pull up the estimate of X, and lead to
a greater weight being placed on the common prior for ’s and a lower weight on the
estimated within each site. Estimation is again undertaken using a Gibbs sampler

(outlined in Appendix B).

4.3 The Predictive Distribution

Since the object of interest for the policy question is earnings, and only indirectly the
parameters, we generate the predictive distribution, the distribution in the space of
outcomes that captures all of the uncertainty from the model, both intrinsic uncertainty
and parameter uncertainty. This distribution is simulated by repeatedly drawing for
parameter values from their posterior distribution and then drawing from the outcome

distribution conditional on observed data and parameters.

5. The Results

The model outlined in the previous section is implemented on the GAIN data, using age,
education, number and age of children, previous participation in a training program,
reading and writing test scores, ethnicity, and pre-treatment earnings as pre-treatment
individual characteristics. These are interacted with the treatment indicator, so that the

model allows for the site effect for treatment in control earnings to be different. The mean
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characteristics of participants (including the mean number of children, mean reading
score, mean level of education, mean age, and mean pre-treatment earnings) are used as
the site characteristics. The Gibbs samplers outlined in the appendices produce estimates
of the posterior distribution of the parameters. These are then used to produce a
predictive distribution of earnings (under treatment and control) for each individual. The
predictive distributions are then averaged over the individuals at a site to produce an
estimate of the site impact.

Tables 3 to 5 present the treatment impact for the 24 sites in the GAIN data with a
pooled regression model, correlated random effects, and a range of hierarchical models.

Note that the same probit model is used as we vary the model for positive earnings.

5.1 Are site effects important in this data?

The first three sets of estimates in Table 3 allow us to consider to what extent site effects
are obscured by pooling all observations. The pooled model (columns (1) and (2)) is a
regression of positive earnings on a constant, pre-treatment covariates, and a treatment
indicator (which is interacted with the covariates). Instead, the correlated random effects
model (columns (3) and (4)) allows for a site-specific constant which depends on the
mean characteristics of the participants within each site. The third set of estimates
(columns (5) and (6)) is derived from the hierarchical framework, but ignores the meta-

model that predicts site effects, focusing on the [ ; within each site. The prior variance on
the f8’s, K, is specified to be very low (diagonal elements of 107), which
means that the model engages in very minimal smoothing across sites. Each 3 is

virtually identical to the estimate that would be obtained within each site.
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In comparing the pooled estimates with those from the site-specific estimates
(Figures 1 to 3), we observe that the results are broadly similar. For some sites (sites 1, 5,
18, and 23) the pooled estimates of earnings are within $20 of the site-specific estimates.
Many estimates are within $50, and all sites (except 6 and 19) are within $100 for both
treatment and control earnings. In terms of the treatment impact, we note that the
estimates are closer, with the biggest difference being $87 for site 11 (in San Diego). The
estimated treatment impact from the correlated random effects models is even closer to
the treatment impacts estimated within each site. The comparison suggests that pooling
the data is not especially misleading in estimating the treatment impact for each site, and
that most of the differences across sites in treatment impacts are accounted for by
differences in the composition of participants (see also Hotz, Imbens, and Klerman
2000).

A more direct way to examine the importance of site effects is to vary the
smoothing parameter in the hierarchical model The previous comparisons suggest that
pooling the data (hence including out-of-site observations in the regression) does not
significantly alter the estimated treatment effect. This is seen directly in Table 3, columns
(7) and (8) (and Figure 4), in which the estimates of the hierarchical model with an
extremely high degree of smoothing are presented; the elements of K are set to 10° along
its diagonal. In the table and figure we note that the estimates are extremely similar when
a high or low degree of smoothing is used, with all differences less than $20. In principle,
by choosing an intermediate value for the smoothing prior we could achieve an
intermediate degree of smoothing, but in this case clearly the results would not differ

substantially. Thus for these data the question of how much smoothing to use is not a
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central one. Of course for other data sets the question could more substantial, and the

ability to control the degree of smoothing would be more valuable.

5.2 Could site effects be important in other settings? Is there predictive uncertainty?
In the previous results, average earnings at each site are estimated using different
individuals at the different sites. Instead, in Table 4, columns (1) and (2), we examine the
average earnings of the same individuals (participants from site 19, Alameda) when
assigned to the different sites. The other sites’ characteristics and the site coefficients are
predicted using the characteristics of the individuals who originally participated in the
program at that site. The thought experiment is to determine earnings for Alameda
participants if, for example, they had entered the program in the environment of
Riverside. As we vary the characteristics of the site we can see that there is variation in
both estimated earnings and the treatment impact for these individuals (see Figure 5). The
level of treatment (control) earnings varies from $158 ($122) in site 2 (site 2) to $948
($787) in site 14 (site 14). The treatment effect varies from $52 in sites 2 and 13 to $293
in site 6. Even though the pooled model yields an accurate prediction for the treatment
impact of site 19 participants when they are assigned to site 19, when we imagine re-
assigning the same individuals to other sites, the site effect becomes important.
Depending on which Riverside site the Alameda participants were assigned to, their
treatment impact could be substantially higher or substantially lower.

Site effects can also be important for their predictive uncertainty. If we were to re-
implement the GAIN program, how accurately could we predict what would happen at a

given site? The second set of estimates in Table 4 (columns (3) and (4)) predict the site-
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specific parameters based on each site’s characteristics. These are then used to predict the
outcome for participants at each site. The relevant comparison is to the estimates in Table
3, columns (5) and (6), which ignore uncertainty in the site effects. The immediate
observation is that the results are quite similar, always within $100 and typically within
$40. At one level this may seem trivial: since the data for a given site are included in the
estimation, it may not seem surprising that we are able to predict its outcome with
accuracy. The result is not trivial because for each site we draw new site parameters
based on the hierarchical model and base predictions on these. So, for example, when we
predict the outcome for site 6, the characteristics of the program participants in site 6
imply a set of site characteristics, which in turn produce a set of site parameters that lead
to the average earnings we estimate.

However, we note that the range of uncertainty increases significantly (see
Figures 6 and 7). Though the 95 percent posterior probability intervals of the estimates in
Table 4, columns (3) and (4) (depicted in Figure 6) rarely fully overlap with the intervals
in Table 3, columns (5) and (6), they are substantially wider. The increased uncertainty is
meaningful in the sense that the treatment impact for many sites ceases to be significant.
In the context of Table 3, in columns (5) and (6), we note that for 8 of the sites the 95
percent probability intervals for treatment and control earnings do not overlap, indicating
a significant treatment impact, whereas this is true for only 4 sites in Table 4, columns (3)
and (4). For example, for sites 2, 3, and 4 (the Riverside sites) in Table 3, columns (5)
and (6), the posterior 95 percent probability intervals do not overlap, but they do in Table
4, columns (7) and (8). Overall the comparison of the two sets of estimates suggests that

when the site-specific parameters are re-estimated for each site, we succeed in replicating
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a profile of outcomes similar to those that are obtained for each site in isolation.

However, uncertainty increases, and in some cases significantly.

5.3 Predicting site effects

The next question relating to site effects is whether we would be able to predict the
outcomes at a site if we had not observed it in our data. To explore this issue the
estimates in Table 5, columns (1) and (2), drop each site successively and use the
remaining sites to predict its outcome. The results are close to those in Table 3, columns
(5) and (6), where the site data is included, within $30 for most site, except sites 3 to 5
(Riverside) and site 24 which are within $75. An important qualification to this result is
that, even though we are excluding the site for which we are predicting the outcome, we
include other sites from the county. Would it be possible to estimate the profile of
treatment effects across sites if we exclude all of these observations from a county when
estimating the model? The answer is presented in Table 5, columns (3) and (4) (and
Figure 8). For most sites the predictions are worse than when other sites within the
county are included, though with some exceptions the model is still able to predict the
overall profile of treatment effects. The exceptions are the Riverside and Los Angeles
sites.

The failure accurately to predict the treatment effects for these sites illustrates the
limitation of any model in extrapolating or predicting the treatment impact at a site that is
significantly different from the sites observed in the sample. The Los Angeles sites differ
substantially in terms of the number of children, which is higher than at other sites, and

pre-treatment earnings, which are lower than at other sites. An estimator or a functional
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form that is more flexible in terms of pre-treatment covariates should yield a more
reliable prediction of the treatment impact. For example, propensity score estimates (see
Dehejia and Wahba [1999] and Heckman, Ichimura, and Todd [1998]) of the treatment
impact for sites 20 to 24 (see Figure 8), range from $121 to $217, which are closer to the
actual impacts than the estimates from the simple linear hierarchical model.” In contrast,
the Riverside sites do not stand out in terms of their pre-treatment site characteristics. The
differences with other sites seem to be along other, presumably qualitative, dimensions of
the treatment applied. When the propensity score estimator is applied to the Riverside
sites (see Figure 8), the estimated treatment impacts still underestimate the true treatment
effects, confirming that differences in observable characteristics do not account for the
underprediction. This inability to predict the Riverside treatment effects supports the
view that Riverside differed from other counties in the approach it took to administering
the treatment. Predictions based on other sites consistently under-estimate the treatment

impacts in Riverside.

6. Conclusions

This paper has addressed three questions: (1) To what extent do site-specific effects
matter in predicting the outcome for a given site? (2) Does predictive uncertainty
regarding site effects influence the interpretation of the treatment effect? and (3) Would
we be able to predict the outcome for a site, if its data were not observed. The answer to
the first question is that, once we have accounted for differences in the composition of

program participants across sites, site-specific effects are not especially important in

® This estimator controls for pre-treatment covariates through the estimated propensity score. Since the
estimated propensity score is a single variable we can allow for a flexible functional form more easily. The
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predicting the outcome a given site for the GAIN data. By pooling data together, we only
minimally distort the outcome for a particular site. Different degrees of smoothing across
sites were explicitly considered and were found to have little impact on the estimated
treatment effect, which reinforced this conclusion. The second and third questions are
different because they deal with predictive uncertainty for subsequent implementations of
the program. When making in-sample predictions, the model is able to predict the profile
of site effects with reasonable accuracy. This amounts to saying that even the simple set
of site-level characteristics that are used in the hierarchical model are sufficient to
identify the distinct profile of site impacts in the GAIN data. However, we also find that
the predictive uncertainty is significant: the treatment effect for many sites ceases to be
significant when predictive uncertainty is incorporated into the estimate. Finally, when
making out-of-sample predictions, the quality of the prediction was found to depend upon
observing a sufficient number of sites similar to the site for which predictions are being
made. For example, when dropping even some of the Riverside sites, the quality of the
predictions for Riverside sites declines. This is not true for the Los Angeles sites when
dropped singly, but is also becomes true when all of the observations from Los Angeles
are excluded.

Was there a Riverside miracle? The received wisdom regarding the GAIN
program is that qualitative site-specific factors played an important role. Indeed the
MDRC reports its findings separately for each county. The results presented here suggest
that a simple set of site characteristics are sufficient to distinguish the various site-level
effects. To this extent, there was nothing miraculous about Riverside. However the

results also suggest that substantial extrapolation from the existing sites that are observed

estimates presented use stratification on the propensity score, as discussed in Dehejia and Wahba (1999).
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to new sites can potentially be misleading. For example, the Riverside treatment effects
are consistently under-predicted when excluding data from all Riverside sites. Thus, more
precisely, there is nothing miraculous about Riverside if one observes similar sites in the
data. However, in the absence of data on similar sites, Riverside is difficult to predict and
is a miracle to that extent.

There are a number of possible extensions to this work. First, the set of site
characteristics used were rudimentary, and could in principle be extended to include
features of the local labor market or perhaps even characteristics of the program
administrators. It would be interesting to discover how much additional precision could
be obtained. Second, the true economic significance of the different predictions from the
range of models can only be assessed if they are linked to a decision problem. Would the
added uncertainty when predicting site-level effects be sufficient to alter the policy-
maker’s decision regarding which program to choose? These are questions for on-going

research.
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Appendix A: Probit Model
Given diffuse priors for B and an arbitrary starting value ﬁw), the Gibbs sampling scheme
is:

(1) Conditional on B, draw values for y,t . for {it : yi =0}, from the negative
portion of a normal distribution with mean x, BgY and variance 1, and for {it : y; =1},

from the positive portion of the same distribution. Denote the filled-in dependent
(j+1) J+l) (Jj+1)

variable y{;", so that y!7" = (y50... p 7).
(2) Conditional on ¥/ = (y'2™ | ¥y draw for B/ from
N(BU™.(x X)),
where BV = (X' X)" X'V with X, = (x,,'...x,.")’, and X=(X’,... X/ .
From an arbitrary starting value, this is iterated 2000 times, producing (YZ(’ ), BY )) .

The first 500 iterations are discarded, leaving 1500 draws from posterior distribution of
the parameters, which will be indexed j=1,...,1500.

Appendix B: The Hierarchical Model

(1 B,(-l) N(ﬁ,aV(l "), where B =(X,'X; G(z 1 +Z(711—1))71(Xj'Xj6(712—1)ﬁ +Z(71171)Bp) )
B=(X,"X)"X'y,, B" =71,z and Vy =[ X' X 0, + 2],

(2) 107y ~ Koy [(Q7 +57) , where [s,,1= y,, = Byx,; and s=s's,

BT ~W(I =M +p,(S+K™)"), where §=3" ¢ ¢ and e, =, -7,z (the Mx]
vector of residuals for each site observation),

@ 7YV ~ N, Z, ®(Z'Z+D7)"), wherey = (¥, - 7,,), ¥ = vee(¥),
7=(Z2'2)+D"Y(2'Zy+D"'d),and 7, =(z,'z,)"'z,' B,.

This procedure produces a sequence of draws from the parameters, the first 500 of which
we discard, leaving us with draws from the posterior distribution of the parameters.
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Table 1: The Sample

Alameda Butte Los Riverside San Tulare
Angeles Diego
GAIN:
Treated Group 685 1717 3730 5808 8711 2693
Control Group 682 458 2124 1706 1810 1146
Total 1367 2175 5854 7514 10521 3839
Number of Sites 1 1 5 4 8 5

Notes: The GAIN sample sizes are from the public use file of the GAIN data. The
AFDC total represents the number of AFDC cases (both single-parent and two-parent
households) in the six evaluation counties in December 1990 (see Riccio, ef al. (1994),
Table 1.1).



23

Table 2: Site Characteristics and Outcomes from the GAIN Experiment

Site Number Reading  Grade Previ- His- Black  Lagged Lagged Average Quarterly
(T=treat- of test score ous panic earnings,  earnings, post- treatment
ment children train- 1 quarter 2 quarters treatment impact
C=con- ing before before earnings condition-
trol) treatment  treatment (quarterly)  al on cov-
ariates
Butte Site 1
(n= T 2.49 232 10.99 0.22 0.06 0.03 457 616 657
2165) C 2.54 227 10.83 024 007 0.3 432 551 478 145
_______________ (2165) . (0.09) __ (4356) __ (0.14)  (0.02) (0.01) (0.0D) (4 .67 G750
River- Site2
side T 2.69 231 10.80 0.23 0.24 0.18 388 498 642
(n= C 2.69 228 10.68 0.24 0.24 0.17 380 500 501 149
7480) (0.08) (2.67) (0.10) (0.02)  (0.02) (0.02) (44) (51) (42) (39)
Site3
T 2.81 232 10.66 0.28 0.18 0.10 329 442 642
C 2.91 227 10.65 0.25 0.20 0.07 359 491 445 216
(0.10) (4.28) (0.14) (0.02)  (0.02) (0.02) (53) (63) (5%) (48)
Site4
T 2.87 231 9.59 0.14 0.56 0.09 478 592 693
C 2.77 227 9.57 0.14 0.58 0.07 548 718 532 190
(0.13) (3.55) (0.21) (0.02)  (0.03) (0.02) (74) (83) (66) (56)
Site5
T 2.65 231 10.96 0.22 0.18 0.20 332 471 560
C 2.44 226 11.02 0.22 0.19 0.15 381 489 348 292
_____________________________ (0.14) (489 (0.17) _ (0.04) _ (0.03) (0.03) (93 (0L &2 (72
San Site6
Diego T 2.19 230 11.75 0.10 0.13 0.12 487 627 811
(n= C 2.27 229 11.98 0.09 0.17 0.10 449 684 617 213
10485) (0.15) (1.73) (0.24) (0.03)  (0.03) (0.03) (110) (131) (117) (109)
Site7
T 2.80 231 10.56 0.12 0.30 0.53 333 409 562
C 2.74 229 10.40 0.11 0.32 0.44 447 513 603 21
(0.13) (2.02) (0.20) (0.02)  (0.03) (0.03) (59) (70) (70) (64)
Site8
T 2.50 231 11.43 0.04 0.17 0.09 514 647 730
C 2.53 227 11.29 0.06 0.14 0.06 666 779 690 49
(0.13) (3.84) (0.18) (0.02)  (0.03) (0.02) 97 (110) 94) (90)
Site9
T 2.34 232 11.56 0.03 0.20 0.27 536 644 703
C 2.42 227 11.45 0.04 0.14 0.27 470 524 531 116
(0.15) (4.63) 0.21) (0.02) (0.04) (0.04) (116) (124) (112) (104)
Site10
T 2.34 231 11.34 0.08 0.17 0.33 456 533 689
C 2.40 228 11.63 0.11 0.17 0.34 382 493 496 195
(0.10) (2.81) (0.15) (0.02)  (0.02) (0.03) (70) (81) (72) (65)
Sitel1
T 2.57 231 10.39 0.11 0.55 0.12 493 557 696
C 2.77 229 10.31 0.10 0.51 0.15 531 729 715 39
(0.10) (2.59) (0.18) (0.02)  (0.03) (0.02) (70) (74) (71) (62)
Site12
T 2.34 231 11.35 0.13 0.09 0.08 498 608 744
C 2.39 228 11.15 0.16 0.12 0.06 558 721 676 104

(0.09) (335  (0.12)  (0.02) (0.02) (0.02)  (66) (77) (70) (65)
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Table 2: Site Characteristics and Outcomes from the GAIN Experiment (continued)

County Site Number Reading  Grade Previ- His-  Black Lagged Lagged Average  Quarterly
(T=treat- of tests core ous panic earnings,  earnings, post- treatment
ment children train- 1 period 2 periods treatment impact
C=con- ing before before earnings  condition-
trol) treatment  treatment (quarter]  al on cov-

y) ariates

San Sitel3

Diego T 3.92 231 6.45 0.12 0 0.00 298 321 414

(cont’d) C 4.44 228 7.03 0.12 0 0 234 205 455 -90

_____________________________ (0.25) __261)  (0.44) _(0.03) (0 (00 (3 .60 @ T ___.

Tulare Site14

(n= T 2.87 230 9.63 0.06 0.62 0.01 476 603 610

3835) C 3.02 227 9.50 0.08 0.63 0.01 527 513 641 -15

(0.19) 2.7) (0.32) (0.03) (0.05) (0.01) (103) (104) (96) 87)

Sitel5

T 3.03 232 9.45 0.25 0.43 0 573 665 612

C 3.33 226 9.21 0.22 0.49 0.01 366 435 515 25
(0.20) (5.47) (0.33) (0.04)  (0.05) (0.01) (103) (112) 87) 77

Site16

T 3.04 231 9.47 0.25 0.34 0.01 439 521 530

C 3.05 228 9.38 0.20 0.29 0.01 440 530 444 80
(0.14) (3.23) (0.22) (0.03) (0.03) (0.01) (67) (74) (61) (53)

Sitel7

T 2.98 232 10.08 0.26 0.40 0.11 403 504 558

C 3.05 226 10.36 0.19 0.38 0.09 597 716 691 -18
(0.15) (6.29) (0.20) (0.03) (0.04) (0.02) (74) (92) (75) (68)

Sitel8

T 3.04 231 9.91 0.12 0.36 0.02 544 598 578

C 3.06 228 9.77 0.11 0.38 0.03 475 518 590 -2

_____________________________ O0.14) (3.8  (0.26) _ (0.02) (0.04) (0.01)  (100) __ (104) (79 (©62)
Alamed  Sitel9
a T 2.38 231 10.78 0.23 0.09 0.63 139 118 377
(n= C 2.39 228 10.80 0.25 0.06 0.65 145 141 301 84
1360) (0.09) (3.01) (0.16) (0.02)  (0.01) (0.03) (33) (30) (46) 41
Los Site20
Angeles T 3.54 232 9.36 0.20 0.40 0.11 136 145 381
(n= C 3.44 223 9.55 0.14 0.30 0.13 160 157 301 108
5850) (0.16) (8.63) (0.25) (0.03) (0.03) (0.02) (34) (36) (52) (49)
Site21
T 4.20 230 7.84 0.11 0.28 0.09 178 193 340
C 4.45 228 7.38 0.12 0.24 0.07 199 178 253 80
(0.18) (2.32) (0.27) (0.02)  (0.03) (0.02) 3D (34) (40) 37

Site22

T 3.21 230 9.54 0.05 0.22 0.47 175 179 301

C 3.25 227 9.17 0.05 0.18 0.41 173 162 311 -6
(0.12) (3.68) (0.20) (0.01)  (0.02) (0.03) (33) (32) (43) 39)

Site23

T 3.72 231 9.69 0.17 0.15 0.64 165 139 309

C 4.07 229 9.49 0.15 0.16 0.56 146 121 299 -7
(0.11) (1.5) (0.17) (0.02)  (0.02) (0.02) (30) (26) (36) (32)

Site24

T 3.73 231 7.61 0.16 0.78 0.06 62 67 210

C 3.84 228 7.39 0.17 0.73 0.06 137 152 269 -50

(0.17)  (3.13)  (0.29)  (0.03) (0.03) (0.02) (33) (37) (46) (44)
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Table 3: Estimated Site Earnings (Quarterly)

Coun- Pooled Correlated Random Hierarchical Model, No Hierarchical Model,

ty Effects smoothing Maximum smoothing

(1) (2) 3) “4) (5) (6) (7) (8)

Treatment Control Treatment Control Treatment Control Treatment Control

Butte  Site 668 541 659 541 651 521 650 522
R [641,696] __ [512,571] _[631,686] _ [513,572] __[609,691] _ [483,566] _ [615,690] __[487,563]

River  Site2 623 495 609 492 569 491 568 495
sside [599,645]_ _[472,518] _ [586,630] _[469,515] _ [536,599] _ [458,524] _ [539,595] _ _[467,523]_

Site3 587 463 570 457 620 503 603 486
___________ [562,615] _ [437,489] _[545,598] _ [432,484] _ [580,664] _ [458,551] _ [568,641] _ _[447,527]

Site 622 519 619 526 678 514 648 507
A [587,657]_ _[487,551]__[584,654] _[493,557] _ [626,727] _ [466,565] _ [606,693]  _[467,550]

Site 629 492 658 523 633 496 578 461
. S . [581,678] _[449,533] __ [608,709] _[477,568] _ [566,702] _ [428,575] __ [525,637] __[411,517]

San Site 724 575 761 614 824 697 770 616
Diego 6 | (674,774]_ _[536,624] _[708,813] _ [573,068] _ [746,904] _ [593,809] _ [702,840] _ _[541,698]

Site 555 444 524 428 504 451 495 431
] [523,586]  _ [414,478]_ _[495,553] _ [399,461] _[463,543] _ [404,499] _ [458,534] _ [389.475]_

Site 714 576 724 594 651 531 675 549
8 [677,756]_ _[538,614] _[687,768] _ [554,633] _ [599,709] _ [474,594] _ [630,723] _ _[501,602]

Site 692 554 681 554 663 507 642 492
9 (640,748] _ [508,603]_  _[628,735] _ [508,603] _ [589,738] _ [424,592] _ [578,707] _ _[429,565]_

Site 641 507 672 540 624 453 605 437
A0 (610,673]  _ [478,535] _[639,705] _ [509,570] _ [580,667] _ [408,498] _ [568,642] _ _[405,475]_

Site 645 528 673 560 694 664 690 636
A [614,676] _ [502,553] _[640,704] _ [532,586] _ [650,743] _ [612,722] _ [652,730] _ _[591,681]_

Site 704 564 735 598 723 576 719 572
A2 (671,735]_ _[534,594]__[700,767]__ [566,631] _[673,774] _[529,628] _ [679,762] _ _[530,619]_

Site 404 319 339 274 465 442 497 430
13 [367,442] _ [286,353] __ [308,371] _[246,304] __[406,529] _ [369,533] __ [445,558] __ [363,501]

Tu- Site 646 549 631 546 584 575 581 545
lare 14 _ [585,710]_ _[498,599] _[572,692] _[496,597] _[512,661] _ [494.670] _ [523,644] __[487,607]

Site 642 527 653 545 573 489 607 515
S ] [589,697]_ _[477,579]__[599,708] _[494,601] _ [501,657] _ [416,566] _ [548,670] ___[453,585]

Site 602 497 596 500 573 491 588 504
A6 ] [564,639]_ _[463,534] _[559,633] _[406,537] _ [515,627] _ [436,545] _ [542,635] _ _[457.557]_

Site 652 537 652 545 592 538 614 550
A7 [610,699]_ _[497,576]__[610,698] _[505,586] _ [533,651] _ [484.597] _ [563,664] _ _[501,602]

Site 644 524 686 569 607 522 605 526
18 [599,695] __ [485,568] _[638,741] __ [526,617] _[539,678] _ [460,590] __ [557,657] __[473,584]

Ala- Site 457 328 412 302 304 211 335 233
_meda 19 [427,491] __[301,356] __ [384.,442] _[277,327] _[269,341] _[183,239] __[303,371] _ [209,261]

LosAn  Site 410 322 355 287 347 230 361 254
geles 20 | (373,447]_ _[290,354]_ _[324,386] _ [258,315] _ [301,394] _ [196,266] _ [324,401] _  [219,289]

Site 386 317 287 243 303 259 302 265
20 (352,421]_ _[284,348] _[263,313] _ [218,267] _ [266,343] _ [221,301] _ [268,334] _ [233,300]

Site 395 308 341 273 333 285 332 281
22 [369,424]  _[282,334] _[318,366] _ [250,296] _ [297.371] _ [251,321] _ [301,365] _ _[251,315]_

Site 380 282 337 257 344 286 345 283
23 [356,403]_ _ [260,306]_ _[317,357] _[237,279] _[315,377] _[256,318] _ [317,376] _ _[254,316]_

Site 321 254 274 223 349 343 314 311

24 [288,357]  [224,286] [246,305] [196,251] [293,405] [287,398]  [274,358]  [265,362]



Table 4: Estimated Site Earnings (Quarterly)

Coun- Alameda Participants in Hierarchical Model,
ty Other Sites Predicting Site Effect
(1) (2) 3) 4)
Treatment Control Treatment Control
Butte  Site 254 187 646 522
e | (233,277). [169,209] ___[594,701] ___[477,578] _
River  Site2 158 122 585 489
oside [143,172] _ | [109,135] _ [531,637] | _[440,543]
Site3 283 206 549 467
B [258,308] | [184,229]  [490,604] __[414,526]
Site 415 297 593 529
A [378,455] _ ___| [261,331]  [536,649] _ _[478,584]
Site 763 518 598 503
- TR [693.841] (450,587] ___[529,672] __[438,573]
San Site 853 615 702 536
Diego 6 _ | [778,937] _ ___| [540,699] _ [619,799] _ _[4066,618]
Site 365 274 535 456
B [334,401] _ | [241,308]  [496,579]  _[418,494]
Site 529 369 696 568
BRI [480,579] _._._] [329,415] _ [634,769] _ _[499,634]
Site 850 556 672 526
B [773,933] _._._] [491,630] _ [595,757] _ _[460,603]
Site 312 201 616 475
A0 ] (284,340] _ | [181,224]  [560,672]  _[429,529]
Site 297 240 625 529
A (270,322] _ | [215,266] _ [581,675]  _[491,570]
Site 336 240 677 536
A2 [305,367] _ ] [215,266] _ [620,737] _ _[483,594]
Site 807 801 473 388
s 13 [726,897] | (682,933] [392,561] _ [318,478]
Tu- Site 948 787 638 583
lare 14 _[850,1053]  [691,893]  [564,724] _[505,667]
Site 934 743 646 575
(15 [837,1038] [651.851] _ [577,723] _ _[510,643]
Site 520 397 614 539
16 ] [471,574] _ ___| [351,445] _ [554,681] _ _[481,596]
Site 587 479 664 575
A7 [528,647] _ ___| [423,537]__ [596,735] | _[508,642]
Site 588 445 656 559
o 18 ... (533.648] [390,502] ____[600,722] __[508,618]
Ala- Site 335 234 393 273
meda 19 (303,372) (209,262] __[333,463] __[229,329]
LosAn  Site 643 442 342 277
-geles 20 | [583,718] _ | [389,503] _ [296,388] _ _[234,319]
Site 549 448 321 290
2 [495,608] _ | [388,507]  [262,392]  _[236,358]
Site 343 284 332 277
22 [309,378] __._] [251,319] _ [290,376] _ _[243,317]
Site 279 226 375 291
23] (254,307] _ ] [203,254]  [321,435] _ _[241,352]
Site 590 507 309 304

24 [523,658] [439,594]  [249,375]  [229,395]



Table 5: Estimated Site Earnings (Quarterly)

Coun- Predicting site effect, Dropping all sites for that
ty dropping that site county
(M 2 3) 4
Treatment Control Treatment Control
Butte  Site 660 533 660 533
o L] [605,718]  [475,598] _ [605,718]  [475,598]
River  Site2 578 486 532 492
side | [523,640] [429,542] [456,617]  [407,590]
Site3 511 439 488 460
R [456,566] _[388,497] _[411,571]  [380,566]
Site 574 524 545 534
A4 [514,642] [463,596] _ [480,620] _ [459,623]
Site 606 524 558 522
I S [538,685] ~ [458,602]  [469,659]  [429,645]
San Site 689 531 652 511
Diego 6_ | [610.784] [452,626] [487.876]  [369,697]
Site 534 458 584 495
U [494,577] _[418,505] [505,685] _ [426,576]
Site 707 580 710 583
3] [633,783]  [517,650] [566,875]  [466,736]
Site 676 539 688 549
RN [599,765] _[464,628] [529,891]  [410,725]
Site 615 485 603 475
10 [563,665]  [435,535] [488,757]  [375,597]
Site 623 522 647 539
AL ] [576,679] _[473,575] [550,751] [462,629]
Site 696 549 669 535
12 [641,767]  [501,601] [541,821]  [427,665]
Site 380 312 479 411
e 13 | [293.476] __[234,404] _ [313,708]  [236,598]
Tu- Site 649 585 717 664
lare 14 | [575,729]  _[511,663] [612,823]  [536,808]
Site 649 592 731 666
As [576,724]  _[520,670] [631,846]  [563,783]
Site 640 561 710 629
16 | [567.715] _[497.631] [617,809]  [516,746]
Site 673 580 764 672
A7 [605,747]  _[501,663] [665.870]  [5S1.811]
Site 658 556 708 607
o 18 [597,722]  [497.621] [635,787]  [529,700]
Ala- Site 499 344 499 344
_meda 19 [380,621] [250.451]  [380,621] _ [250.451]
LosAn  Site 343 282 486 501
geles 20 [296,394]  _[237,331] _[319,714] _ _[287.787] _
Site 280 254 501 812
20 ] [222,355] [183,350] [253,875]  [310,1559]
Site 361 289 460 469
22 [306.417]  [241,338] [299,645]  [270,720]
Site 552 408 592 576
23] [454,676]  [313,508] [386,856]  [316,933]
Site 336 272 383 417

24 [245,436] [187,380] [218,618] [207,752]
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Figure 1: Treatment Eamings
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Figure 2: Control Eamings
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Figure 3: Treatment Effect
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Figure 4: Treatment Effect
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- Figure 5: Alameda Participants In Other Sites
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Figure 6: Treatment and Control Eamings, Given Site Effects
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Figure 7: Treatment and Control Eamings, Predicting Site Effects
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Figure 8: Predicting Site Effects
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