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show how to use investment to control for correlation between input levels and the unobserved firm-
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1. Introduction

Economists have been relating output to inputs since at least the early 1800's. Much of the

early applied work exploring this relationship was pioneered by agricultural economists like Von

Thuenen (a colleague of Cournot), who collected data at his farm in the 1820's to measure the

marginal product of inputs and the substitutability between inputs.' Flux (1913), using one of

the first available manufacturing censuses, painstakingly details relationships between inputs and

output for manufacturing firms in England. Since then, economists have developed a large litera-

ture on production function estimation, in part because much of economic theory yields testable

implications that are directly related to the production technology and optimizing behavior. In

addition to estimating the marginal productivity of an input (such as fertilizer or skilled labor)

and/or the elasticity of substitution between inputs, this literature has also focussed on obtaining

measures of returns to scale and of productivity (as the residuals to production functions are often

interpreted.) In fact, it is plausible that the production function has been and continues to be one

of the most common objects of empirical interest to economists.

Whatever the economic question at hand, it will always be important to obtain consistent esti-

mates of the parameters of the production function. This has frequently proven to be challenging,

usually because important inputs are not observed (and thus are omitted.) Indeed, since at least as

1 See Chambers (1997) for a brief summary of the history of production function estimation.
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early as MarschaJ and Andrews (1944), applied researchers have worried about the potential cone-

lation between input levels and the unobserved firm-specific shocks in the estimation of production

function parameters. The economics underlying this concern are intuitive. Firms that have a large

positive productivity shock may respond by using more inputs. To the extent that this is true,

Ordinary Least Squares estimates of production functions will yield biased parameter estimates,

and, by implication, biased estimates of productivity. The fixed effects solution has the unappeal-

ing feature of requiring a component of the productivity shock to be fixed over time. Instrumental

variables is another alternative, but vaiid instruments need to be correlated with firm-level input

choices and orthogonal to the productivity shock. In many cases, there simply are no valid instru-

ments. Olley and Fakes (1996) developed a new approach to addressing this problem— one which

did not require instruments, and we take their approach (reviewed below) as our starting point.

We introduce a new method for conditioning out serially correlated unobserved shocks to the

production technology by building ideas first developed in Olley and Pakes (1996). Olley and

Fakes show how to use investment to control for correlation between input levels and the unob-

served firm-specific productivity process. We prove that like investment, intermediate inputs (those

inputs which are typically subtracted out in a value-added production function) can also solve this

simultaneity problem. We highlight three potential advantages to using an intermediate inputs

approach relative to investment.

The first advantage is that intermediate inputs will generally respond to the entire productivity

term. while investment may respond only to the "news" in the unobserved term. This can happen

for two reasons. If the capital input has already adjusted to the "forecastable" component of the

productivity process, the investment proxy will only account for the "non-forecastable" component

of productivity. Also, productivity may be characterized by two components, a serially correlated

component to which investment responds, and a separate firm-time shock that is independent over

time, to which investment will not respond, but to which the choice of variable factors will respond.

In both cases, the investment proxy will only account for the part of the productivity term to which

capital responds, and some correlation between the regressors and the error term will still remain.

Intermediate inputs, on the other hand, will generally respond to the entire shock, and will hence

restore consistency.

A second advantage is that intermediate inputs provide a simpler link between the estimation

strategy and the economic theory, primarily because intermediate inputs are not typically state

variables. We develop this simpler link and discuss the conditions that must hold if intermediate

inputs are to be a valid proxy for the productivity shock.
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The third advantage is strictly data-driven. It turns out that the investment proxy is only

valid for firms reporting non-zero investment. (This is due to an invertibility condition described

below.) Pronounced adjustment costs, which do not invalidate the use of investment as a proxy,

are the likely reason that over one-half of our sample reports zero investment. We are concerned

about the possible truncation bias the exclusion of "zero investment" firms might introduce. Using

intermediate input proxies avoids the potential truncation of a large number of firms in industries

with pronounced adjustment costs of capital. This is because, in general, firms always report

positive use intermediate inputs like electricity or materials.

In an effort to ascertain whether the intermediate inputs approach addresses the simultaneity

problem in practice, we compare estimates across OLS, fixed effects, instrumental variables, the

Olley-Pakes investment proxy estimator, and our intermediate input proxy estimator. Using data

on eight different Chilean manufacturing industries, we demonstrate that the intermediate inputs

proxy is important for obtaining consistent estimates of the parameters of the production function.

The remainder of the paper is organized as follows. Section 2 provides a very brief review of

the simultaneity problem. hi Section 3, we introduce our intermediate input proxy, and develop

the conditions under which it will be a valid estimator. Section 4 describes our data, and Section 5

includes the details of the estimation approach. In section 6 we present our results, while Section

7 concludes. An appendix includes a "recipe" for our estimation routine.

2. Estimation in the Presence of Simultaneity

In this section, we briefly review the simultaneity problem described by Marschak and Andrews

(1944), including its consequences for some commonly used estimators for production function

parameters.2 We then describe the Olley and Pakes (1996) simultaneity correction. Finally, we

discuss when the investment proxy might fail to adequately address the simultaneity problem.

The Simultaneity Problem

We begin our discussion of the simultaneity problem by placing it in the context of a profit-

maximizing firm. In a discrete time model, the expected total discounted profits for firm i can be

written as

lli(Y1, X1, q1; 9) + cit; 9)], (1)

2 Some of this discussion parallels that found in Griliches and Mairesse (1995) See that paper for a more extensive
discussion of the issues discussed in this section.

3



where llt(-) is the profit function for period t, and 3 is the discount rate. is a measure of

output and Xil is a vector of inputs for period t. includes inputs that are easily adjusted (e.g.

materials or labor, in many cases.) Xj also includes inputs with adjustments costs, that is, whose

stock evolves over time in response to both today's and future beliefs (e.g. capital.) A sequence

of errors, indexed both by firm and time, accounts for differences between the model's

predictions and observed outcomes. These shocks will include components that are transmitted

over time (and hence taken into account by managers) and those that are not.

A simultaneity problem arises when there is contemporaneous correlation both within firm i

and across time t between q and in the firm-specific sequences Given the natural

dependence of the firm's discounted future profits on both X and in (1), this correlation seems

plausible. For over 50 years, the potential correlation has been pointed out, and applied researchers

have spent much effort addressing the econometric problem it confers.

Marschak and Andrews (1944) argue that the problem arises when variable input demands are

correlated with unobserved shocks. They suggest that this simultaneity can be particularly acute

for inputs that adjust most rapidly to the shocks. There is also reason to believe that firms with

better sequences of shocks will, over time, respond to these "good" realizations by investing and

accumulating assets that are costly to adjust rapidly. Alternatively, simultaneity may occur in the

time dimension when input decisions are based on serially correlated errors and there are costs to

making large immediate adjustments to inputs.

Econometrically, with simultaneity it is generally impossible to sign the biases of the production

function coefficients when there are many inputs, all of which may be (to differing degrees)correlated

with the error. However, some intuition can be derived from an analysis of the OLS estimates for

a two input production function, with output Yt one freely variable input lj (call it labor) and

one quasi-fixed input (call it capital):

Yit = /o + /Jl1it + 13kkt + €j.

One can show that the OLS estimates for the inputs are

=
—

—

and, symmetrically, - - -
- —

- - 2—

where &a,b denotes the sample covariance between a and b.
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We consider three different cases and the biases that arise in each case. Before discussing the

numerator in each expression, we note that the denominator is (by the Cauchy-Schwarz ineqnality)

always positive. Hence the sign of the bias will always be determined by the sign of the numerator.

First, if capital is not correlated with labor, so t,k = 0, (which is not true generally in a cross-

section of firms), and if only labor is positively correlated with productivity (oj, > 0), then j is

biased up but $k is unbiased. Second, in the case where capital and labor are positively correlated,

the positive correlation between labor and capital can result in a negative bias on the capital

coefficient. Finally, in the case where capital and labor are positively correlated, and both capital

and labor are also correlated with the productivity shock, but labor's correlation is significantly

stronger, the formulas above show that 5j will again tend to be overestimated and /3k will tend to

be underestimated. Given what we know about our data, our prior is that this last case is most

likely to be true.

OLS and the within estimators are the most common methods for estimating production func-

tion parameters. However, they impose very strict restrictions on the sequences by

ruling out, a priori, important forms of firm-level heterogeneity across establishments and over

time. OLS assumes that c it is uncorrelated with input choices across both firms and time. Within

estimators protect against firm-specific effects, but assume that there is no transmitted component

to the firm-level error. Within estimators also dispense with all between variation, which can be

particularly critical for obtaining precise estimates of output elasticities associated with state vari-

ables. In this sense, within estimators offer more protection against firm-specific effects than OLS.

but they can exacerbate other problems (like measurement error in capital) by dispensing with

much of the "signal". This has led people to the instrumental variables approach.

The instrumental variable estimator starts from the premise that and q may be correlated.

The approach is to find variables that are correlated with X but uncorrelated Unfortunately,

It is also possible to directly specify the parametric process that the productivity term follows. However, even if
we are willing to characterize the dynamic sequence {Xj,qt}. as a parametric process and want only to estimate
the parameters of this process, we still have a significant problem. By itself, knowledge of the process (up to
the parameters) is not enough to control for the simultaneity between and X1 over time because the process

€}21 follows a path that depends upon its starting values (X11 This is an initial conditions problem
(see Heckman (1981) and Pakes (1996)), where estimation of parameters for a stochastic process that depends upon
time-ordered outcomes is impossible unless the process is "initialized." One solution is to initialize the observed
process by assuming the history is exogenous, i.e. that c}1' is independent of cit}T, where T is
the first date a firm is observed. A second solution splits the sample into two parts, the first part of which is used
to estimate starting values. Roberts and Tybout (1997) take this approach with a panel from CoLombia that is 10
years in length. Using the first 3 years they estimate starting values for continuing firms, and then initialize their
assumed stochastic process accordingly. The second half of the data set is then used to look for determinants of
firms' decisions to enter the export market in Columbia.
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it can be difficult to locate instruments for inputs.4 Input prices that vary across firms and/or over

time might qualify. Lagged values of inputs will not generally be valid instruments because chosen

input levels may depend UOll past values of the (potentially correlated) shock. Frequently, instru-

mental variables suffers from the same drawback as that of the within estimator; valid instruments

are usually weak instruments - that's generally what makes the exclusion restriction believable -

and weak instruments significantly weaken the signal, exacerbating other imperfections in the data.

The Investment Proxy

Olley and Pakes (1996) suggest a novel approach to addressing the simultaneity problem as it arises

in the estimation of production functions. They abandon the traditional "solutions" of instrumental

variables or within estimators. Instead, they include in the estimation equation a proxy for the

productivity term with motivation for the chosen proxy derived from a structural model of the

optimizing firm. The proxy controls for the part of the error correlated with inputs. That is, it

dispenses with all variation in output and inputs that is related to the productivity term; hence,

identification relies only on variation in output and inputs unrelated to productivity.

We simplify (slightly) their model, writing the production function in logs as

= j3o +ltPi +/3kkt+wt + 'it, (2)

where lower case letters will always denote log-levels (the firm index is suppressed in what follows.)

Inputs are divided into a freely variable one (Ii), and the state variable capital (k).5 Additionally,

(the growth rate of) Et is assumed to be additively separable in two components, a transmitted

component (w), and an i.i.d. component ('ii). The key difference between and 'i is that the

former is a state variable, and hence impacts the firm's decision rules, while the latter has no impact

on the firm's decisions.

In a perfectly competitive environment where input and output prices are common across firms,

the capital control investment can be written as just a function of the two state variables, k and

Wt. or

= i(w, ks).

' This difficulty is especially acute when using plant-level data. In macroeconomics, there is a practice of estimating
what are called production functions using industry level data and in this case, there are plausible industry-level
instruments.

For simplicity, we assume (as they do) that capital is the only state variable over which the firm has control. In
principal, the Olley-Pakes approach extends to frameworks with many state variables.
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Fakes (1996) proves (under certain conditions) that optimizing firms choosing to invest have invest-

ment functions that are strictly increasing in the mnobserved productivity shock.6 Hence, it(wt, k)

can be inverted to yield Wt as a function of investment and capitaJ, or wt = (it, kg). Given this

"monotonicity" condition, one can rewrite (2) as

= + k) + (3)

where

= Po + I3kkt +

A first-stage semi-parametric estimator (non-parametric in ') can then be used to obtain consistent

estimates of the coefficients on the freely variable inputs.7 Again, the idea is to identify the variable

input coefficients using only the "qualified variation," that is, the variation unrelated to it and k.

Olley and Pakes achieve this goal by including a polynomial in t and k in the regression of output

on the variable inputs; as long as there are "enough" terms in the expansion, this approach will

achieve the aforementioned goal.

A different and perhaps slightly more transparent way to see that this goal is achieved is to

follow the exposition in Robinson (1988). His discussion has the added advantage of illustrating

how one might implement alternative non-parametric estimators (in addition to the polynomial ap-

proximation used by Olley and Pakes) to check the robustness of the results to different approaches.

Robinson (1988) proceeds by constructing the expectation of equation (3) conditional on i and k.

This expectation is given by

E[ytlit, k] = E[ltlit, k]/3j + t(it, k) (4)

because: 1) q is mean independent of i and k; and ii) E[th@, kt)Iit,k} = t(it, k2). Subtracting

equation (4) from equation (3) (i.e. netting out the variation in output and inputsassociated with

variation in t and k ) yields

lit — E[ytlit,kt] = (It — E[ItIit,k])/3i + 1lt (5)

6 If the distribution of next period's productivity is stochastically increasing in this period's productivity, the
economic story that makes investment a valid proxy is straightforward; a firm that realizes large productivitythis
period will invest more than an identical firm with smaller productivity this period because the more productive
firm anticipates doing better than the less productive firm both in the current period and in future periods.

We will always use () when discussing the non-parametric part of this first stage; it's arguments will change,

but it will always include capital and the proxy variable. More generally, g()will always have as arguments all of
the endogenous state variables and the proxy variable.
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Since the Øt differences out, the error in this new equation (m instead of c + q from (2)) is mean

independent of the transformed regressor / — E[1li, ks]. Hence no-intercept OLS can be used to

obtain consistent estimates of the coefficient on the freely variable input by regressing y—E{yt it,k]
on — E[ltlit, kt].

A second stage is required to obtain an estimate of the capital coefficient, and we briefly discuss

this now. Olley and Pakes assume wt follows a first-order Markov process, so the expected value

(or best guess) of Wt conditional on knowing Wt_1 is the same as the expected value given Wt_1,

Wt_2, etc..8 One can decompose into two components,

Wt = E[wtjwt_i] + et,

the expected value of Wt given Wt...1, and the mean zero innovation or "surprise" in w, or Ct-

While the first stage of the estimation routine allows the variable inputs to respond to both and

E[ww1], identification of /3k will obtain from the assumption that capital slowly adjusts to wt.

In period t, capital is assumed to only respond to E[wtkJt_i], and thus is mean independent of &-

The second stage begins by netting from output the contribution of I, or lt/3i, obtaining a new

dependent variable y, or

Yt* = Yt —1t9i =flo+flkkt+wt +Th- (6)

If one collects the intercept and E[wtlwt_iJ into one function g(wt_1), or

g(w_i) = + E[wt(wt_i],

then (6) becomes

= iikkt + g(wt_i) + ij, (7)

where ij. = + )t-9 (7) closely resembles (3), so the same approach and intuition for estimating

(3) is applicable to (7); only variation in y unrelated to g(wt_i) can be used to estimate 13k. And

since a by-product of the first stage is an estimator for w4, estimation conditional on g(wt_1) is

possible. (In practice, estimation of /3k is more involved than OLS on transformed variables since

g(w_j) will itself depend on /3k.) Again, identification obtains from assuming that capital is slow

to adjust to the innovations in the transmitted component of the error, so (conditional on wt_1,)

k is mean independent of the new error

This approach immediately generalizes to higher-order Markov processes.

/3o and the intercept from E[wtlwg_i] are not separately identified without some additional assumption.
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When this approach works, it has a number of advantages over OLS, within, and traditional

instrumental variable estimators. Griliches and Mairesse (1995) document these advantages (we

change the variable references so as to be consistent with our notation):

The major innovation of Olley and Pakes is to bring in a new equation, the investment
equation, as a proxy for w, the unobserved transmitted component of €. Trying to proxy
for the unobserved w (if it can be done right) has several advantages over the usual within
estimators (or the more general Chamberlain and GMM type estimators): it does not assume
that w reduces to a "fixed" (over time) firm effect; it leaves more identifying variance in x and
k, and hence is a less costly solution to the omitted variable and/or simultaneity problem;
and it should also be substantively more informative.

However, this approach will not always work, and we now turn to some examples where the

simultaneity problem is not solved by the investment proxy.

When The investment Proxy Might Fail

Our motivation for introducing the intermediate input proxy arises primarily from the concern

that investment may not respond to the entire transmitted shock. The problem arises principally

because investment is a control on a state variable, and a state variable is by definition costly to

adjust, These costs of adjustment take different forms. Our concern is that the adjustment cost

may affect the responsiveness of investment to the transmitted shock in a manner which would

violate the monotonicity condition. We describe two such scenarios.

First, the transmitted component of the error (or productivity, if you like) may have a fore-

castable component and a non-forecastable component. 11 part of the transmitted shock is pre-

dictable, the adjustment process will accommodate itself in an optimal manner to this predictable

part. For example, better firms may know that they are better, and may adjust their capital

stocks accordingly: If capital has already adjusted to this component of the shock, investment will

only respond to the "news" in the shock. Hence, the proxy will only control for this "news". Of

course, the freely variable inputs respond to both the news and the forecastable component, so the

simultaneity problem still exists.

A second scenario might also lead to the failure of the investment proxy. If there is an i.i.d.

(non-transmitted) component to each period's shock that enhances productivity, it will not change

expectations about the future. However, it will affect input levels for the freely variable factors,

inducing a correlation between this component of the error and variable inputs. Since the investment

proxy fails to capture this component of the "productivity" shock, the parameter estimates will

again not be consistent. We next turn to a proxy that will be robust to these and other more

general processes.
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3. Intermediate Inputs as Proxies

In this section we introduce the intermediate input proxy. We develop the conditions under

which an intermediate input can solve the simultaneity problem. We show that an intermediate

input, when valid as a proxy, will be robust to the problems associated with the investment proxy

discussed above. We also find that establishing the validity of an intermediate input proxy can be

significantly easier than establishing this fact for investment.

Two key conditions must be met if intermediate inputs are to be a valid proxy. The first

condition, Condition 1, is a ruonotonicity condition; conditional on capital, intermediate input use

must increase in w. Condition 2 is that the market environment is competitive. We also discuss a

Condition 3— separability of the production technology in the intermediate input used as the proxy.

\AThile this condition need not necessarily hold, we develop the idea because it is often assumed to

hold in practice, e.g. it must hold whenever a value-added production function is estimated. In

fact, estimating a value-added production function requires stronger conditions than our Condition

3; separability must hold for all inputs excluded from the value-added production function. Since

this stronger condition is frequently assumed to hold, we show how it allows for an alternative

solution to the simultaneity problem if the revenue share of the intermediate input is observed.'0

In the next section, we discuss each of these conditions in turn. We proceed by positing the

first two conditions and deriving the resulting estimating equations. We then show how the third

condition can be useful. Finally, we return to examine in more detail each of the three conditions

and the economics underlying the estimating equations.

Using Intermediate input Proxies

Here we provide an overview of the estimation approach, describing where each of the different

conditions play their role. Before we begin, we note that our estimation approach applies to quite

general production technologies, including those with many freely variable inputs and many state

variables, and with higher order and interaction terms. However, for ease of exposition and because

nothing from a methodological standpoint is gained from using a more general representation of

the technology, we stick to a first-order Taylor series approximation with three inputs."

As before, we write the freely variable input, labor, as 1, the state variable capital as k, the

"productivity" shock as w, and the shock to which all inputs do not respond as ij. We introduce

10 This is almost always observed in current firm-level data sets.

Exact details of the estimation routine for a trans-log production function with three variable inputs and two
state variables are available from the authors by request.
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the second freely variable input, t, which we call the intermediate input. Writing the log of output

as a function of the log of inputs and the shocks we have

1k (8)

We start with the intermediate input's demand function, which we write as

= tt(wt, kr).

By writing the intermediate input demand function as only a function w and k, we have implicitly

invoked Condition 2, or perfect competition, where input and output prices are identical across

firms. if firms faced different input prices or charged different output prices, the function would

also have to be indexed by these prices. By indexing the input demand function by 1, we do however

allow these prices to change over time.

Next, we invoke Condition 1, or the monotonicity condition, which must hold for the interme-

diate input t so we can invert the intermediate input demand function and write

= w2(t1, ks).

Substituting the proxy into (8) yields:

(9)

Expressing (9) in a manner similar to (3), we get

1k = Pitt + + rJt, (10)

where

(tt, k) = /3 + /3kkt + Pttt + t(Lt, k).

The coefficient on the variable input can then be estimated using the semi-parametric estimator of

Robinson (1988) described earlier in the Investment Proxy section, where no-intercept OIAS is used

to estimate the equation

— E[ytltt, k] = (it — E[1tIt, k])/3i + rn• (11)

Comparing (11) with (5) illustrates exactly how our approach is robust to changes in produc-

tivity to which the investment proxy may not respond; the only "qualified" variation in output

11



and inputs that is used to identify the coefficient on the variable input is variation unrelated to

movements in the intermediate input and capital (instead of variation unrelated to movements in

investment and capital.)

In summary, the first stage identifies the coefficients on the variable inputs (except the coefficient

on the proxy input.) Hence, if the economic question at hand requires no more than an estimate

of the elasticity of output with respect to any (or all) of these inputs, we would be done. However,

in general one also wants estimates of /Jk and th, either as parameters of interest themselves, or

because one is estimating productivity and/or returns to scale. A second stage of estimation is

necessary to obtain these estimates.

The theory for the second stage begins with one netting from output the contribution of l to

output, obtaining a new dependent variable y, or

= — = + I3kk + /3LLt + + t. (12)

As described ear]ier, one can decompose wt into two components, wj = E[wtlwt_i]+&, the expected

value given Wt_1 and the "surprise" in Wt, or If one then collects the intercept and E[wtfrt_i]

into one function g(wjj, or

g(w_i) = /3 + E[wIw_i],

then (6) becomes

= iikkt + i3ttt + g(wt_!) + i, (13)

where q = et + m. (13) closely resembles (7), except for the inclusion of the term related to the

intermediate input. While the same approach and intuition for estimating (7) is again applicable

for (13) when considering capital, it does not hold for the intermediate input; the intermediate

input is correlated with i because it responds to the innovation in Wt. Thus neither coefficient

is identified without some further restriction.

We suggest two ways to identify /3k and fl. The first approach, which we call the unrestricted

approach, uses the fact that tf_1 is uncorrelated with q = & + 17t, and hence qualifies as a valid

instrument. That is, c and may be correlated within a firm, but last period's intermediate

input use will be orthogonal to the unexpected part of this period's productivity shock. When this

observation is combined with the assumption that capital does not respond to the innovation in

productivity, we then have two moment conditions that we can use to identify the two coefficients

13k and J3.

12 The 'surprise" interpretation of j follows from the assumption that wt follows a first-order Markov process
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A second approach is available if the revenue share of an input is observable and the production

technology is separable in this input.13 Under perfect competition, cost minimization implies that

firms set the revenue share of the intermediate input equal to the elasticity of output with respect

to that input, or

i31=st. (14)

ilence Condition 2 and Condition 3 together allow the intermediate input contribution to output

to be expressed as = 3tt. One can then net out from equation (13) an estimate of /3t and

proceed with estimation in exactly the same way as with equation (7). We refer to this second

approach as the restricted approach. We now describe in more detail each of these three conditions.

The Monotonicity Condition

We require a monotonicity condition in order to be able to invert the intermediate demand function

and express the transmitted productivity shock as a function of the intermediate input and capital.

The monotonicity condition for intermediate inputs is identical to that for investment; condi-

tional on capital, profit maximizing behavior must lead more productive firms to use more interme-

diate inputs. The story we imagine behind valid intermediate input proxies is straightforward. 11

an increase in productivity leads to higher marginal revenue product(s) for one (or more) input, an

optimizing firm in a competitive environment will want to produce more output, doing so until the

marginal revenue product(s) fall to the point of equality with the input price(s), if the shock makes

the intermediate input more productive (in the sense of increasing its marginal revenue product)

then its use will typically increase. If the shock increases another input's (or inputs') marginal

revenue product, and the intermediate input is complementary to these other inputs (in the sense

that the c:ross-partial derivative is positive), then the firm will increase the use of the intermediate

input. Under these general conditions, positive shocks lead to increases in the intermediate input

use. Finally, if larger shocks lead to bigger increases in the marginal revenue products (relative to

smaller shocks), then, conditional on capital, more "productive" firms will demand more interme-

diate inputs relative to less productive firms. This result is the monotonicity result. In summary,

as long as (conditional on capital) more productive firms find it more profitable to produce more

output than less productive firms, and the more productive firms use more intermediate inputs to

achieve this higher level of output, and the monotonicity condition will hold.

13 Revenue share is defined as the amount spent on the intermediate input divided by the total firm revenue from
output.
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We now turn to the condition that must hold on the production technology for the monotonicity

result to obtain when input and output prices are fixed (that is, when firms can supply as much

output as they wish at a given price.)'4 Let

Y = f(L,K.t,w)

represent the production technology, where output is determined by labor (L), capital (K), interme-

diate inputs (t), and productivity (). Aside from some regularity conditions on f(), conditional

on K, intermediate input use will be increasing in w if

LLfL > ILL ftw (15)

holds at all input combinations relevant for production (where ILL is the second derivative of f(.)

with respect to L, etc.) The result obtains because

Ut
sign(—) = s1gn(fLfL — fLLf);

when (15) holds, small increases in w lead to small increases in intermediate input use. The

fundamental theorem of calculus then establishes the result for large discrete changes, or

t(w2,Ki) > t(wi,Ki)

whenever w2 > w1.

Economic theory is useful for determining when (15) is likely to hold. Optimizing behavior

implies the marginal product of labor declines as labor increases, so fLL will be negative. Addi-

tionally, if increases in productivity always weakly increase the marginal product of inputs, then

fLw and f are non-negative (one must be positive.) The result is then driven by the cross-partial

of output with respect to the intermediate input and labor. If fL � 0, so the marginal product of

the intermediate input weakly increases as labor use increases, then the monotonicity result holds.

However, if the marginal product of the intermediate input fails rapidly with increases in labor,

then (ILILw — fLLf1w) may be negative; in this case, the monotonicity result could (but does not

have to) fail.

Before turning to the estimation, we point out another potential advantage of using an inter-

mediate input proxy; the condition on the production technology is easy to verify, and is satisfied

14 Appendix A contains the full derivation.
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by many technologies used by economists. This result contrasts with the proof that investment

is monotonic in productivity (see Fakes (1996).) 11 one wishes to use a model that differs, even

slightly, from that of Olley and Pakes, it becomes necessary to re-investigate the appropriateness

of the investment proxy. The fact that investment is a control on a state variable forces one to

consider the firm's dynamic problem when showing the monotonicity condition for investment. In

his original monotonicity proof, Pakes (1996) demonstrates that this can be tricky business.

The Perfect Competition Condition

The need for competition relates to the fact that input and output prices are not observed at

the plant level. However, if the environment is competitive, then we know that plants face the

same input and output prices, and this information can be used to address a number of estimation

problems, which we now discuss.

First, as is true with almost all available plant-level data, we do not observe output. Instead,

we observe total revenue, and we deflate this total revenue by an industry price deflator to account

for variation in prices over time. This price deflator is common across plants, and thus plants must

face a common price for this deflation to be technically correct.

Second, when we write the intermediate input demand function tt(ct, k), we implicitly assume

that firms face the same output and input prices; these prices affect the input demand functions,

but we don't index the function by them. The competitive environment ensures these prices are

common across firms, thus allowing us to estimate this function with just the two state variables

as explanatory variables. Of course, if input and output prices were observed (and they differed

across firms), we could just index this function with these prices. As noted before, we do index this

function by time, which allows input and output price ratios to differ in an arbitrary way across

the time periods.

A third reason perfect competition is useful relates to the monotouicity condition. It is straight-

forward to show monotonicity under perfect competition, because when firms face common inpnt

and output prices, they will generally want to produce more output if they are more productive,

and hence will use more intermediate inputs. If the underlying market structure is not perfectly

competitive, it is no longer obvious that a firm that enjoys a larger productivity shock will necessar-

ily produce more (and hence drive down marginal productivities.) This is because the oligopolistic

firm realizes that by producing more, price too is driven down. In many, but not all, market

structures, the monotonicity condition may generally hold. (It is true, for example, in the simple

homogeneous products Cournot case with linear demands.) However, it is clear that one must make
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sure it holds for underlying imperfectly competitive market structure under consideration. While

addressing these issues and relaxing the perfect competition assumption is the subject of ongoing

work, the point here is simply to highlight why perfect competition is assumed.

The Separability Condition

We now discuss Condition 3, which requires the production function to be weakly separable in the

particular input that is used as a proxy. We show that if the input used as a proxy is separable and

the market environment is competitive, it is possible to net from the output variable the contribution

of the input. We remind the reader we do not need this condition; we simply provide it as a possible

alternative because conditions stronger than this condition are so frequently invoked, e.g. whenever

a value added production function is estimated, all of the inputs that are subtracted from output

before estimation proceeds must technically enter the production technology in a separable way;

otherwise, they cannot simply be subtracted out.15

Here we follow the lead of Solow (1957), and Griliches and Ringstad (1971), who both suggest

(for different reasons) netting the contribution of inputs from output. In particular, Griliches

and Ringstad (1971), who are primarily interested in estimating the capital coefficient, address

the simultaneity problem by netting from output the contribution of labor. They compute this

contribution by: i) assuming the output function is separable in labor; and ii) invoking profit

maximization to obtain the labor input contribution to output - the product of the revenue share

of the variable input with the (log) level of this same input. Later we present results that do

not directly estimate the coefficient on the intermediate input in the second stage. Instead, we

use the revenue share as the estiamte, and we multiply this estimate of the coefficient times the

intermediate input level to yield a measure of the intermediate input's contribution to output.16

In our data, we find that this restricted approach yields very similar results to the unrestricted

approach that only uses the first two conditions.

We would like to note again that our general approach does not require that the production

technology be separable in all of the intermediate inputs (the standard assumption when a value

added function in labor and capital is estimated.) All we need is for one input to be separable.

For example, if both raw materials and electricity satisfied the monotonicity condition, we could

15 See Bruno (1978) and Basu and Fernald (1995) for careful discussions of estimation using value addedproduction
functions.

16 ThJs contribution is then net from output when estimating the capital coefficient on our second stage.
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choose the one that we think is most likely to satisfy the separability condition if we want to use

Condition 3. We now turn to the data.

4. Data

In order to implement the intermediate input proxy, we need data. We choose as our test ground an

eight year panel from Chile that has been used elsewhere.17 This Chilean data has many firm-level

variables, is not censored for entry and exit, and has a reasonable time-series dimension to it. We

hope these characteristics are representative of many firm-level panels.'8

1iVe first provide a description of the variables used in the analysis. We then present some

summary statistics on each of the eight industries we examine. Next, we report the number of

observations which would be lost using any particular input as a proxy, and we explain why we

choose electricity as our primary proxy.

The data set is comprised of plant-level data of 6665 plants in Chile from 1979 to 1986. The

data are a manufacturing census covering all plants with at least ten employees. The data were

originaliy provided by Chile's Instituto Nacional de Estadistica (INE). A very detailed description

of how the eight longitudinal samples were combined into a pauel is found in Lui (1991). There

is information tracking plants over time, including plants that enter over the course of the sample

period (births) as well as plants that exit (deaths.)19

In an attempt to keep the analysis managable, we focus on eight of the largest industries

(excluding petroleum and refining.) We work with industries at the 3-digit level. The industries

(along with their ISIC codes) are Metals (381), Textiles (321), Food Products (311), Beverages

(313), Other Chemicals (352), Wood Products (331), and Printing and Publishing (342), and

Apparel (322). The data are observed annually and they include an index of output, indices of

labor and capital inputs, and a measure of the intermediate inputs electricity, materials, and fuels.

Labor is the number of man-years hired for production, and firms distinguish between their blue-

and white- collar workers. Gross output, capital, materials, electricity, and fuels each have their

17 See, for example, Liii (1993), Liii and Tybout (1996), Tybout, de Melo, and Corbo (1991), Levinsolm (1998),
and Pavcnik (1999).

Unlike the LRD used by Olley and Pakes, the Chilean data is easily accessed so others can readily replicate and
extend our analysis.

19 Due to the way that the data are reported, we treat plants as firms, although there are certainly multi-plant
firms in the sample. We will not capture the extent to which multi-plant firms experience scale or scope economies
due to their multi-plant nature. Neither are we able to investigate whether 'entry" is a new firm, a new plant from
an existing firm, or simply diversification of an existing plant or firm as discussed in Dunne, Roberts, and Samuelson
(1988)
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own price deflator and are each measured in real 1980 Chilean pesos. We provide more details on

the variables in Appendix B.

Table 1 provides some macroeconomic background as well as some summary statistics for the

industries we examine. The first year of the data is 1979. By 1979, most of Pinochet's economic

policies were already in place. The Latin American debt crisis led to a recession in 1982-83 during

which industrial output and employment fell. Industrial output rose again in 1984, stalled in 1985,

and then continued to rise throughout the decade. These macroeconomic cycles are apparent in

the first column of Table 1 where real GDF is reported for 1979-86. When we address estimation

issues in the next section, we will take these macroeconomic cycles into account by allowing the

wt(tt, k) function to be different for each of these different time periods (i.e. t=1,2,3.)

It is also evident from Table 1 that this period is characterized by major consolidation and

shake oat; the number of plants falls in every industry from the beginning to the end of the sample.

There is, though, both entry and exit in our sample. Although the original work by Olley and

Fakes devoted significant effort to highlighting the importance of not using an artificially balanced

sample (and the selection issues that arise with the balanced sample), we simply note that our

sample is not balanced, and we do not focus on selection issues.20

Table 2 reports the percentage of firm-level observations reporting non-zero levels of investment.

fuels, materials, and electricity. In industries with adjustment costs, many firms may not invest

every period. However, the methods of Olley and Pakes revolve quite centrally around observing

non-zero investment decisions because no proxy is available for firm/year observations with zero

investment. Instead, these firms are truncated from the estimation routine.21 They use data from

the U.S. Census of Manufacturers, and they find that 8% of firm/year observations are reported to

be zero; accordingly, they truncate these observations.

In our data, the investment problem is much more severe; in seven of the eight industries, we

would have to truncate over 50% of the firm-level observations.22 In contrast, almost no firm in all

eight industries reports zero for materials or electricity usage; if we can justify using either one of

these intermediate inputs, we will not need to truncate observations.

20 Technically speaking, there is still a selection issue even with unbalanced data, but it is unlikely to be very
important from an empirical viewpoint. We have experimented with dual index selection corrections of Olley and
Fakes and found that they made little difference. In order to focus on the intermediate inputs issue, we do not
include those methods or results in this paper.

21 See Olley and Pakes (1996) for a detailed explanation of this problem. Briefly, it arises because productivity is
not a smooth function of investment at zero investment levels.

22 A similar result obtains for two recently collected and detailed manufacturing censuses in Columbia and Ghana.
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We choose electricity as our primary proxy for productivity, although we also experiment with

using materials and fuels. One reason for choosing electricity is that it is an input that all firms need;

we observe positive use of electricity in every year for almost every firm in the Census. Additionally,

almost no firm in all eight industries reports that it generates electricity, or that it sells electricity,

and we interpret this observation (together with some common sense) as an inability of firms to

store electricity. The inability to store electricity means that its use should be highly correlated

with the year-to-year productivity terms and hence be a good proxy. Materials and fuels, on the

other hand, are probably easy to store over time, and hence new purchases of these inputs (which

is what we observe in the data) may not exactly track the amount of these inputs used in the

production process in a particular year.

Another reason for choosing electricity (relative to materials) relates to using Condition 3; if one

chooses to invoke the separability assumption in the second stage, we feel it seems less restrictive

when it is imposed on an input that accounts for about one percent of output value as opposed to

an input that accounts for about half of the value of output. (The revenue shares of the various

inputs are given in Table 3.) Alternatively, it seems more intuitive that electricity (or fuels) might

actually be separable whereas materials could represent a lot of possible inputs— some of which

may interact with other inputs in a manner that violates separability. We next turn to estimation

issues, where we explicitly treat electricity as the proxy, although we later experiment with other

inputs.

5. Estimation

Estimation proceeds in two stages, each of which is comprised of several steps. In the first stage,

we use a partially linear model to estimate the coefficients on the freely variable factors: skilled

and unskilled labor, materials, and fuels. Electricity is our primary proxy variable and hence is not

included in this list; the estimate for electricity wili come from the second stage.

We develop two approaches to the second stage. The first approach, which we call the unre-

stricted approach, combines the consistent estimates of the coefficients on the variable factors from

the first stage with two assumptions: i) the non-forecastable component (or innovation in) pro-

ductivity is uncorrelated with capital; and ii) the productivity process is first order Markov. The

second approach, which we call the restricted approach, can be used when one observes revenue

shares and one believes the production technology is separable in the proxy input.

The unrestricted case has the obvious appeal that it does not impose a constraint that may be

false in the data. Were we to estimate just a few production functions, the computational costs
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associated with our 11 step procedure that includes a two dimensional grid search (because the

objective function is not globally concave) would not be significant. However, in the results sec-

tion of this paper we will estimate production functions for each of eight different industries using

eight different estimators. In addition, we are going to bootstrap our standard errors, drawing

from the empirical distribution function 30 times, each time estimating these same 64 production

technologies. Hence we wish to run our estimation routine almost 2000 times. The computa-

tional cost of doing so with the unrestricted approach is currently too high to undertake. The

restricted approach has the advantage of significantly reducing the computational costs associated

with estimation. Thus, we begin our discussion of the results by exploring the plausibility of this

restriction.

In this section, we cover only the specifics and intuition of how our estimation routine is imple-

mented and why it "works." Consistency proofs for our estimators would use results from Pakes

and OHey (1995). Since we bootstrap our standard errors, we can remain somewhat agnostic about

the specific functional form assumptions that would be necessary to proceed with estimating the

asymptotic standard errors. We begin with a discussion of each stage of the estimation routine

in turn. We then describe the bootstrap approach that we use in order to estimate the standard

errors. Readers interested in implementing our estimation routine are also directed toward the

Estimation Recipe in Appendix C. That appendix provides a detailed step-by-step guide to the

entire estimation routine.

The First Stage

To keep the exposition straightforward, we approximate the production technology with a first

order Taylor series (i.e. Cobb-Douglas,) or

= Pa + Pkkt + Psl + Pu1 + /3mmt + !jh + Peat + Wt+ 77t, (16)

where Yt is the log of gross output in year t, k is the log of the plant's capital stock, 1 is the log

of skilled labor input, 1 is the log of the unskilled labor input, and mt , f and et denote log-levels

of materials, fuels and electricity. (As discussed earlier, our approach generalizes to more flexible

functional forms.)

We rewrite (16) as

= p31; + 3 + 13&nt + 13f ft + (et, k) + m (17)

where
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t(et. k) = $ + ,@k/ct + w(e, Act).

Equation (17) is partially linear; it is linear in variable inputs, and non-linear in electricity and

capital. The goal in this first stage is to obtain estimates on the coefficients of the inputs that enter

(17) linearly (i.e. j3, and Here we follow the general approach for semiparametric

estimation outlined in Robinson (1988).23

This approach requires us to construct estimates of the conditional moments E(ytlkt, et),E(l'Ikt, et),

E(lflkt. Ct). E(rntlkt, Ct), and E(ftkt, Ct). We do this by projecting 11t (for example) on k and Ct

using a locally weighted quadratic least squares approximation. Readers not familiar with local

regression smoothing might find it helpful to think of this step as using weighted least squares to

construct predictions of Vt given (kr, et) using a second order approximation in (k, Ct) (a quadratic

in (k,e)). For any particular point (k,e) for which an estimate of the expected value of lit is

necessary, the regression weights the observations closest to the point (k', efl most heavily. A con-

sistent estimator of E(yIk = k, Ct = e) is then the intercept from this local quadratic regression.

We can write the expectation of (17) conditional on (kr, Ct) as:

E(ytlkt, Ct) = j3 + P&E(lIkt, Ct)+ $E(Iflkt, Ct)+ I3mE(mtlkt, Ct) + $1E(ftlkt, Ct) + ø(et, k) (18)

where we have made use of the fact that E(1)tlkt, e) = 0 and E((e, kj)Iet, k) is itself. We subtract

(18) from (17) to obtain:

lit — E(yk, Ct) = — E(lflkt, Ct)) + $(1 — E(1k, Ct))
(19)

+/Jm(mt — E(mtl k, Ct)) + Pi(ft — E(ftlkt, er)) + 'It

This differences () out of the estimating equation. And since m is, by assumption, conditionally

mean independent of the variable inputs, no-intercept OrdInary Least Squares can be used to obtain

estimates of the parameters on all of the variable coefficients. Note that both the dependent and

explanatory variables are constructed variables that depend upon the local least squares estimates,

making the OLS standard errors incorrect for our application. Our standard errors will account

for all of these sources of variance, but we defer dIscussion of their computation until later in thIs

section.

23 See section 5.2, and especially the first few pages of 5.2,1 of Pagan and Ullah (1999), for a (relatively) un-
derstandable and (very) helpful discussion of kernel-based estimates of the coefficients on the linear terms of the
estimating equation.
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This completes the first stage of the estimation routine. Although there are several steps, no

single step is more complicated than a locally weighted least squares regression.24 If we were only

concerned with the marginal productivities of the variable inputs (except the coefficient on the

proxy variable), we could stop here. In general, one may want to recover a plant-level measure

of productivity or an estimate of returns to scale, and for this exercise we need a second stage to

which we next turn.

The Second Stage (Not Assuming Separability)

The estimation routine requires a second stage in order to identify an estimate of ,3 and 13kbecause

electricity and capital enter (.) twice, i.e. j(et, k) = 13c + /3et + /3kkt —I— w(et, 1r), and hence are

not identified without further restrictions. In this section we outline the unrestricted approach. In

the next section, we briefly describe how one could proceed if separability in the proxy input holds

(the restricted approach.)

Identification of these coefficients obtains in part from assuming that capital, a state variable,

is slow to adjust to the productivity shock. While capital might adjust to the expected part of

a productivity shock, the identifying assumption maintains that capital does not instantaneously

adjust to the unexpected part of the productivity shock. To operationalize this notion, we must

impose some structure on the stochastic process of the transmitted productivity shock, w. We

assume that W follows a first order Markov process.25 In particular, we can write

= E(wIt_i) + &, (20)

where et is the "news" in the transmitted shock.

The two moment conditions that identify the coefficients are then given by:

E(et + iidk) = E(Etlk) + E(qtlkt) = 0, (21)

and

E(et + qje_) = E(&et_i) + E(qtet_i) = 0. (22)

24 An alternative approach to this stage is to use a polynomial approximation for Ø(et, kg). We have done this
(allowing for different sub-periods of the sample according to macroeconomic cycles) and we find in most cases that
a third order polynomial approximation gives very similar estimates of the parameters and of k).

25 The estimation routine easily generalizes to allow for a higher order Markov process.
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The first moment condition states that capital does not respond to the innovation in productivity.

The second moment condition states that last period's electricity choice is uncorrelated with the

innovation in productivity this period. We employ a Generalized Method of Moments estimator

to find the parameter estimates that most closely match our samples to these population moment

analogs. The steps we take to do so now follow.

The estimation algorithm begins by choosing a starting value for (/3e,/3ic). We denote these

candidate values by (/3, j3). For any candidate values, we can re-write (16) to yield:

7k — — — I3mmt — /1ft — $;et — = at + m (23).

Substitution using (20) yields:

— — i3l Pmmt — — — — E(wtjwt_i) = Et + qt (24)

Everything on the left-hand-side of (24) is either data or was estimated in the first stage except for

the term E(wtlwt_j). Put another way, if we "knew" the conditional expectation E(wtlwt_i), we

could compute the residual that enters the moment condition (22), i.e. et + q.

The next step is to obtain an estimate of E(wtlwt_i). We begin by noting that,

E(wtlwj_i) = E(wt + ijtlwt_i).

Conditional on our candidate values (Ø,/3), (23) implies that:

Wt + ft = 7k
- - - mmt - $ift - -

This gives us an estimate of wt -1- i. From the first stage of estimation, we have

wi_i = t_i — /3;et_1 —

where _i is estimated for each of the three time periods 1979-81, 1982-83, and 1984-86, effectively

allowing the wt(et, k) function to differ in arbitrary ways across the periods. We then use local

quadratic least squares with our dependent variable as wt I m and our explantory variable wf_1 to

estimate Et(wt Iwt_i).

With an estimate of E(wtlwt_i) computed, we can now compute an estimate of the residual

Et + tjt using (24). We then use a grid search to minimize the GMM criterion function

/ Tii \2 / T
rump (e,t -

Tht)kt)
+ (111 (e I

fit)et_i)
(25)

i t=T0 i t=T,0
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where T10 and T1 index the second and last period a firm is observed.26

It is perhaps helpful to note in a slightly different manner *hat the moment condition represents.

The expectation of output less the contribution of inputs equals the error, or the transmitted shock

plus another additive independent error, Wt + q. This error cannot be used in a moment condition

because neither k nor ct_i (nor Ct) is mean independent of the error term. However, once we

condition out the expected part of this error term (conditional on last period's productivity shock),

the new error term is mean independent of k and Our estimator exploits this condition.

We now turn to the case when separability is assumed.

The Second Stage (Assuming Separability)

The procedure when separability is assumed is very similar to that outlined above. The two primary

changes are: i) SeCt = fie is net out of yt when the other variable inputs are net out prior to the

second stage, and ii) minimization is done just with respect to the capital coefficient. Thus, only

the moment condition related to capital is used (although in principal you could use both moments

above to improve the efficiency of the estimator, or to test the overidentifying condition.) In short,

conditional on a candidate value 3, (23) now implies that:

Wt + Tlt = Yt — j3l — Pl — Prnmt — jft — SeCt — j3k.

With an estimate of E(wjIwt_i) computed as described above, we can again compute an estimate

of the residual, & + m• We then use a grid search to minimize the GMM criterion function

/ T
min > (E + , (26)

i t=T10

where T0 and T1 index the second and last period a firm is observed. We now turn to the standard

errors.

Computation of Standard Errors

While the previous sections explain how the parameters are estimated using intermediate inputs

as a proxy, we did not discuss the estimation of the standard errors. Estimation of these standard

errors requires us to account for every source of variance in every estimator that enters our routine.

We now summarize them. In the first stage, five preliminary local quadratic least squares estimates

26 'We experimented with the optimal weighting matrix and found it had little effect on either our estimates or the
standard errors.

-
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are used in a no-intercept OLS estimator to obtain estimates of coefficients on the freely variable

inputs. In the second stage, these estimated coefficients feed into each of four preliminary local

quadratic least squares estimators, and both the estimated first-stage coefficients and estimates from

these four local least squares estimators are combined to yield the final estimating equation for the

capital coefficient. This coefficient is then obtained by using a Method of Moments estimator. In

total, there are 11 estimating equations, and all of the preliminary estimators get used somewhere

(not always just once) in the process of obtaining the final set of production function estimates.

These many intermediate steps introduce "noise" into the estimation routine. Each separate

source of noise must be accounted for at each step that it is introduced into the estimation routine.

If one wants an estimate of the asymptotic standard errors, Pakes and Olley (1995) provide the

theoretical details of how one would compute the asymptotic standard errors for such an estimation

routine as ours; it essentially has a correction for the potential noise from every source of variance

that feeds into the last estimating equation (equation (26).)

Instead of undertaking this difficult (and somewhat arbitrary) task, we choose to use the boot-

strap, a simpler approach that is made feasible by the low cost of computing power. The bootstrap

has an intuitive appeal to it; use the observed data as an approximation to the true underlying

distribution of data, sample from it repeatedly, and compare the variability of estimates across

these different samples. In cases where the data are i.i.d., sampling with replacement can be used

to generate a "new" sample drawn from the actual observed sample. A collection of new samples

can then be used to observe the variability in the estimator across samples, i.e. variance in the

estimates due to sampling variabiJlty.27

The standard deviation from this sample of estimates is the sampling variability, and there is

no need to appeal to asymptotic normality; as long as the observed sample is a close approximation

to the true underlying distribution function, all of the theory works. Sampling from the observed

distribution of the (Outpnt, Inpnt) vector has the advantage of allowing for arbitrary covariance

between the errors and the regressors when the data are not i.i.d., as is certainly true with the

unbalanced plant-level data we see. However, when the data are not i.i.d. one must alter the

sampling procedure in a way that allows the generated samples to reflect the likely true underlying

distribution.

We now summarize our sampling approach, providing the details in the recipe section. We

tailor our approach in a manner designed to accomodate the non-i.i.d. nature of our data. We

27 See 1-Jail (1997) for the theoretical justification of this approach.
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employ a technique known as the block bootstrap, treating the entire "block" of observations on a

firm (i.e. (Output, Inputj across t) as one observation. We choose a sampling procedure that is

characterized (in part) by two parameters, and we calibrate these paratheters until our bootstrapped

samples are similar to our observed samples on two dimensions. First, we require the bootstrapped

sample to have approximately the same number of firm/year observations for each year 1979-1986

(and thus approximately the same number of firm/year observations in total as the realized sample.)

Second, we require the bootstrapped sample to have approximately the same annual industry value-

added for 1979-86 as the realized sample. After the industry-specific parameters are set, we draw

30 samples for each industry, and we compute the OLS, fixed effects, instrumental variables, Olley-

Pakes, and LP estimates for each sample. The variance of the estimated parameters across these

samples (for each estimator) is an estimate of the variance of the estimator. We also construct the

differences between our estimator and each of OLS, fixed effects, and Olley-Pakes estimates across

the bootstrapped samples; this gives us a direct estimate of the bias when the estimation routine

is nested in our routine, as are the OLS, fixed effects, and instrumental variable estimators.

6. Results

In this section, we present several sets of results with several objectives in mind. Our goal is not

just to show that one obtains statistically significant estimates of the parameters of the production

function (although this is nice.) Rather, we wish to highlight how the estimators using intermediate

inputs to control for unobservables differ in predictable and informative ways from other existing

and commonly used estimators. We also show that these differences are remarkably robust across

the eight industries we examine.

We begin by comparing production function estimates across the eight industries asing the un-

restricted and restricted approach with electricity as the proxy. Since the results are very similar

across these two approaches, we then use the less computationally intensive approach (the restricted

approach) for the rest of our results. We then compare our estimator to OLS, fixed effects, instru-

mental variables, and Olley-Pakes estimators. Finally, while the bulk of our results are obtained

using electricity as the proxy for the transmitted productivity shock, our last table compares results

across proxies.

Table 4 presents parameter estimates of the restricted and unrestricted cases. In the unrestricted

case, we estimate the coefficient on electricity. In the restricted case, this parameter is set equal

to electricity's industry-level average revenue share.28 The coefficients on the variable factors

28 We experimented with the median and an approach suggested in Griliches and Ringstad (1971) and found that
(for the subset of results on which we compared) the different approaches yielded very similar results.
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(excepting the proxy) are presented in the first four rows. These parameter estimates are obtained

in the first stage of the estimation procedure. Because the first stage is the same for both the

restricted and unrestricted cases, the parameter estimates (and standard errors) are identical. We

have ordered the industries, represented by columns, in order of decreasing observations. That is,

ISIC 311 has the most observations while 313 has the fewest. We find that almost all the coefficients

are precisely estimated at conventional levels with the exception of the coefficient on fuels for some

of the smaller industries.

Because we want to estimate almost 2000 production functions (due to the bootstrapping and

sensitivity analyses,) we are especially interested in whether imposing the restricted approach (the

cost-minimization condition) for electricity significantly changes the estimated coefficients on capital

and electricity. We first consider the coefficient on capital. When our null hypothesis is that the

capital coefficient from the restricted case equals that from the unrestricted case, we accept this null

in seven of the eight industries. Only in ISIC 331 are the capital coefficients significantly different.

For the case of the coefficient on electricity, in all eight industries the coefficient from the restricted

case lies within two standard deviations of the revenue share. (The revenue share for electricity is

listed in the row labeled "restricted.") We conclude that we are not doing violence to the data by

simply imposing that the coefficient on electricity equals its revenue share. As noted above, this

greatly simplifies computation of the estimates. For the remainder of the results, we focus only on

the restricted case.

We are especially interested in investigating whether our results are consistent with the story of

a proxy controffing for a unobserved transmitted productivity shock. We begin this investigation by

comparing our estimates to Orthnary Least Squares (OLS) estimates on the same data. Marschak

and Andrews were concerned that the transmitted productivity shock would be positively correlated

with variable inputs. In this case, OLS estimates of the coefficients on the variable inputs are llkely

to be biased upward. To the extent that capital also responds to the transmitted productivity shock,

its estimated coefficient would also be upwardly biased. However, if capital is not correlated with

this period's transmitted shock (but variable inputs are), or capital is much less weakly correlated

with the productivity shock than the variable inputs are, it is straightforward to show that the

OLS estimate on capital will be biased downward (see Section 2.)

Figure 1 provides six histograms pertaining to industry ISIC 311. We initially focus our attention

on the first histogram (top left corner.) This graph gives the empirical distribution of the difference

between the OLS estimate and our (LP) restricted estimate of the coefficient on unskilled labor,

P. This histogram is constructed in the following manner. The production function is estimated
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31 times (once using the full sample and then with 30 blocked sub-samples.) With each of these

31 samples, we also estimate the OLS coefficients. To generate the histogram, we simply count

(across the samples) the number of times the difference between the OLS and LP estimate fails

within a given range. If on average there were no difference between the OLS and LP estimates,

we would expect to see the histograms for the variable factors centered symmetrically around zero;

approximately 50% of the samples should yield differences to the right (and the left) of zero. The

histogram for unskilled labor shows that for the sample and for every subsample used in the block

bootstrap, the OLS estimate exceeded the LP estimate. (All realizations are to the right of zero.)

The histograms for the other variable inputs show similar patterns. Indeed, in this industry, the

OLS estimate is never less than the LP estimate for any variable factor for any of the subsamples

on which the production function was estimated.

At the bottom left corner of Figure 1, we present the histogram of the differences between

the OLS and LP estimates for the capital coefficient. This histogram shows that for all 31 times

we estimated the production function, the OLS estimate of /3k was smaller than the LP estimate.

Taken together with the histograms for the variable factors, the evidence substantiates Marschak

and Andrews' concern and suggests that our input proxy is doing what it is intended to do— control

for an unobservable transmitted shock that appears to be highly correlated with freely variable

inputs.
The histogram in the lower right corner gives the empirical distribution of the difference in

estimated returns to scale between the OLS and LP estimates. Because OLS overestimates the

coefficients on the variable factors and underestimates the coefficient on capital, it is, in general,

not obvious whether OLS will over or under-estimate returns to scale. It's conceivable the over-

estimated variable input coefficients and underestimated capital coefficient would just cancel each

other out. In ISIC 311, this is not the case. Rather, OLS consistently overestimates returns to

scale.

The pattern of biases in Figure 1 is the same as that found by Olley and Pakes in the single

industry they examined (and using investment as their proxy.) We wish to examine whetherthis

pattern holds consistently across all eight industries. To summarize the 48 histograms that this

exercise yields, we report two summary statistics of each (of the 48) histograms in Table 5. The first

row for each industry gives the mean difference (/3oLs — /3tp) between the OLS and LP estimates

of each coefficient in the production function as well as the difference in estimated returns to scale.

The second row reports the percent of the 31 samples where realized differences were greater than

zero.
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These industries are again ordered by the number of observations. ISIC 311 has the most

observations and ISIC 313 has the fewest. In all industries, we draw 30 blocked sub-samples on

which we then estimate both OLS and LP estimates. For example, in ISIC 381, the mean difference

between the OLS and LP estimates is positive for all the variable factors. For the case of skilled

labor, only 58 percent of our samples yielded OLS estimates that were greater than the LP estimates.

For unskilled labor, materials, and fuels, the OLS estimates were greater in 100, 100, and 84 percent

(respectively) of the sub-samples over which we estimated the production function. The coefficient

on capital was smaller with LP than with OLS in 97 percent of the samples (30 of the 31.) While

none of the industries yields results as stark as those for ISIC 311, several general patterns emerge in

the OLS versus LP comparison. In general, we find that OLS usually overestimates the coefficients

on variable factors, and OLS always underestimates the coefficient on capital. The magnitude and

statistical precision of these difference varies by factor and by industry, but the flavor of the results

tend to be most convincing in the industries with the most observations (which have the smallest

sampling error.)

Ordinary Least Squares is but one alternative to our approach. Other alternatives that are used

include Fixed Effects, Instrumental Variables, and the Olley Pakes estimators. We compare our

estimates to those obtained with all of these alternatives. In order to keep the quantity of results

manageable, we present a handful of summary comparisons.29 The first of these comparisons is

given in Table 6.

In Table 6, we test the null hypothesis that the results from the LP estimator and an alternative

estimator are (overall) consistent with one another. The test asks whether any of the five estimated

parameters is significantly different across the two approaches, and thus has a similar flavor to that

of the standard F-test in a regression framework, where the null is that all of the coefficients are zero

(here it is differences) against the alternative that at least one is different from zero. Hence, if the

difference between the LP estimate and the alternative estimate of one or more coefficients in the

production function is statistically significantly different from zero, we reject the null hypothesis.

The cell entries in Table 6 give the percent of industries for which we reject this null hypothesis.

To fix ideas, consider the first column of Table 6. At the 5% significance level, we reject this null

hypothesis in 6 of the 8 (or 75%) industries. At the 20 percent level of significance, we reject the

itull hypothesis in all eight industries. (It is important to keep in mind that the standard errors of

the estimates account for the "noise" introduced by every step of the estimation routine and for

29 Complete results for all the alternative estimators are available on request.
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the fact that rates of convergence for nonparametric regressions are typically slower than that of

their parametric ones. In the testing sense, "significant"results are thus harder to obtain when less

structure is placed on the problem.)

Just as we compared the LP estimates to the OLS estimates, we also compare the LP estimates

to Fixed Effects estimates. These results, for the null hypothesis that all coefficients are the same

with fixed effects as with LP, are given in the second column of Table 6. There we note that at

all three reported significance levels, we reject the null hypothesis in all of the industries. One way

to interpret the results in the first two columns of Table 6 is to think of OLS and Fixed Effects as

nested restrictions on the stochastic process of productivity. In particular, OLS imposes that jt

be i.i.d. whereas the fixed effects estimator forces w to be constant across time and allows it to

vary only across firms. Both the OLS and Fixed Effects assumptions are nested restrictions of our

more general first order Markov assumption. We soundly reject both nested restrictions.

The third column considers an instrumental variables (IV) estimator as the alternative to LP.

The "instruments" we use to construct this estimator are last period's inputs. These are, at best,

very questionable instruments given the strong serial correlation in input usage and productivity.

Nonetheless, these instruments are frequently employed, and thus we investigate whether these IV

estimates are significantly different from the LP estimates. We reject that the difference between

the IV estimates and the LP estimates is zero for half the industries at the 5 percent significance

level and for 6 and S of the industries at the 10 and 20 percent significance levels respectively.

One cannot determine from Table 6 how the OLS, FE, and IV estimates differ from the LP

estimates. Table 5 addressed this exact issue for the case of OLS. Tables analogous to Table 5

but for FE and IV estimates are available in the Appendix. The general pattern with OLS and

IV is that displayed in Table 5 and is exactly that predicted by the theory; coefficients on the

variable inputs are usually overestimated while the coefficient on capital is underestimated relative

to the LP estimates. With fixed effects, there is no clear theoretical prediction, but the results are

significantly (and strikingly) different.
'We also investigate whether the Olley Pakes (OP) estimates are the same as the LP estimates.

Doing so is somewhat subtle. Recall, the OP approach can only be estimated on the set of firms

reporting strictly positive investment. The last three columns of Table 6 address aspects of the OP

versus LP comparison. Column 4 reports the OP versus LP comparison when we restrict the sample

to those firms that report strictly positive investment. Column 5 addresses the issue of selection

bias when one truncates on firms that report positive investment. In that column, we compare the

thfference between the LP estimates when the entire sample is used and the LP estimates when we
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only use those firms that invested. If there were no selection bias and plants that reported positive

investment were a random draw from the population of plants, then the LP estimates from the full

sample and those from the positive investment subsample should be the same. In the last column,

we compare the estimates from OP versus LP— estimates which are based on different samples.

Each of these columns is discussed in turn.

Column 4 is a comparison of OP versus LP when we restrict the sample to positive investment

plants. Even if there were truncation bias, it is not obvious whether such truncation bias would

impact the OP versus LP comparison in any particular direction. At the 5 percent level, we reject

that OP and LP give the same parameter estimates in 3 of the 8 industries. At the 10 and 20

percent levels, we reject the null for 5 and 7 of the 8 industries respectively. We return to a more

in-depth discussion of how the OP and LP estimates in this column differ below.

Column 5 directly addresses the issue of truncation bias. There we ask whether we obtain the

same parameter estimates when we truncate the sample based on only positive investment plants.

In half the industries (at the 5 and 10 percent significance levels) we reject the null hypothesis of

no difference in the estimated coefficients. At the 20 percent level, we reject the mill in 7 of the

8 industries. We take this to suggest that there probably is some truncation bias in our sample,

but the evidence is not overwhelming. The sign of the difference between the estimates with the

full sample and the estimates with the truncated sample does not seem particularly salient to the

issues we are investigating.

Column 6 simply compares the OP and LP estimates and asks whether they are the same. We

reject the miii in 4, 5 and 8 of the 8 industries at the 5, 10, and 20 percent significance levels.

Clearly, OP and LP estimators give different results, but we are unable to identify why these

estimates differ. Truncation bias matters (column 5), but even absent truncation bias (column 4),

the OP and LP estimates are different.

Table 7 revisits all of the comparisons across different estimators but does the accounting differ.

ently. Instead of asking whether any coefficient in the production function is different with different

estimators, here we simply count how many of the five estimated parameters are different across all

eight industries. To fix ideas, consider the OLS versus OP comparison. With eight industries, there

are 40 pairs of estimated parameters. The first column of Table 7 reports the percentageof these

40 pairs for which we can reject that the OLS and LP estimates are the same. In other words, at

the 5% significance level, the difference between the OLS and LP estimates is significantly different

from zero in 32.5 percent of the 40 cases. The general message from the first three columns of

Table 7 is that the LP estimates differ from the more traditional estimates (OLS, FE, and IV) in
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about 40 to 60 percent of the cases depending on the level of statistical significance adopted. This

corresponds to 2 to 3 of the 5 coefficients in the production function differing when one uses LP

instead of the more traditional estimates. The message is similar but less pronounced in the last

three columns of Table 7 where aspects of the OP versus LP comparison are explored.

Table 8 addresses the comparison of estimated returns to scale across the various estimators. We

find that OLS. Fixed Effects, and IV estimators give different estimated returns to scale than does

the LP approach. Although it is not apparent in the table, all these alternatives to LP give inflated

returns to scale relative to LP. The comparisons of OP versus LP suggest that both approaches

give about the same estimated returns to scale. There is weak evidence that what differences do

appear may be due to the truncation bias of selecting on positive investment plants.

Recall our motivation for introducing the intermediate input proxy in the first place. We

were concerned that the transmitted component of the productivity shock may have a forecastable

component and that if capital has already adjusted to this component of the shock, investment

will only respond to the "news" in the shock. The freely variable inputs, on the other hand, will

respond to both the news and the forecastable component. To the extent that this might be true in

the data, the OP estimates of the coefficients on some variable factors might be biased upward and

the OP estimates of the capital coefficient might be biased downward. We investigate the extent

to which this is true in Table 9.

In Table 9, we examine the difference between the OP estimates and the LP estimates when

we only use data from plants reporting positive investment. We continue to order the industries

in decreasing order based on the number of observations. Especially for the industries that have

more observations, we find that the differences between the OP estimates and the LP estimates

are broadly consistent with the concern that motivated the use of the intermediate input proxy.

Consider, for example, ISIC's 311 and 381. Tn •these industries, the mean difference between the

OP estimate and the LP estimate on the variable factors is positive (i.e. the OP estimate is higher)

for 7 of these 8 coefficients. The percentage of the bootstrapped samples for which this is true is

large— usually between 70 and 100 percent. Overall, the mean difference between the OPand LP

estimates (with the truncated sample) is non-negative for 24 of the 32 estimated coefficients on the

variable factors. (The difference is zero for 3 coefficients.)

For the case of the coefficient on capital, if the OP and LP estimates of 13k were really about the

same, we would expect the difference between them to be positive in 50 percent of the bootstrapped

subsamples. This is not the case. Rather, in 7 of the 8 industries, the difference is positive less

than 50 percent of the time. That is, in 7 of the 8 industries, the OP estimate is lower than the LP
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estimate in more than half the sub-samples. However, the mean difference between the OP and LF

estimate is positive in half the industries and negative in half. Thus the evidence appears mixed

on the capital coefficient.

In our last table, Table 10, we explore the extent to which other inputs also proxy for the

transmitted productivity shock. In all the results reported above, we used electricity as the proxy.

lit Table 10, we report the resulting coefficients on skilled and unskilled labor and on capital when

we use either materials or fuels as the proxy. We report results for the largest four industries in an

effort to keep the quantity of results manageable. Also, in order to be able to compare estimates

across different proxies, we estimate the production functions only ott the set of observations for

which data are available for all the proxies. (This is the reason the results for electricity differ

sllghtly from those in Table 4.) In all four industries, the coefficients on the variable factors are

quite stable across the different proxies. In one of the four industries (ISIC 381), the coefficient

on capital increases dramatically when materials is the proxy. In the other three industries, the

coefficient on capital is relatively stable across proxies.

7. Conclusions and Caveats

Marschak and Andrews were right. The correlation between the unobservables and the included

regressors biases OLS estimates of production functions. Olley and Fakes were also right. An esti-

mation strategy using investment to proxy for the transmitted productivity shock is a creative and

useful way to address the simultaneity problem. In this paper, we have shown that an intermediate

input proxy approach also works and extends the insights of Olley and Fakes as well as making

them simpler.

Summarizing our results, we soundly reject that the intermediate input proxy approach gives

the same results as the more traditional OLS, IV, or Fixed Effects estimators. Further, the ways

in which these traditional estimators and our estimator differ are predictable and consistent with

the economics underlying our approach. The estimates from our approach and that of Olley and

Fakes also differ, but the comparison is not as dramatic as that between our estimator and the

more traditional estimators. This is not surprising. The Olley and Pakes approach is itself a

dramatic improvement over the traditional approaches, while our approach is a more subtle change

in implementation vis-a-vis Olley and Pakes. Nonetheless, the intermediate input proxy approach

seems to work well. Furthermore, it is easy to implement, allows the researcher to use more of the

existing data, and appears to address some situations in which the OP approach may not work

well.
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This paper has not explored any of the implications of the production function estimates.

Rather, we have focused on documenting how our estimates of the production function parameters

differ in substantive and predictable ways from estimates obtained with other estimators. More

interestingly, perhaps, is that the biases associated with the traditional OLS approach appear to

carry over to most of the other estimators when the intermediate input proxy is not used. Thus it

is very likely that different estimates of the coefficients in the production function will give rise to

different estimates of plant-level productivity. In a separate paper, Levinsohn and Petrin (1999), we

explore the implications of our estimation strategy for productivity dynamics. There we show that

OLS consistently overestimates positive productivity gains and also consistently predicts larger falls

in productivity when productivity is negative. To the extent that this bias is not corrected for in

the other estimators, we should expect similar mistakes when computing producitivity estimates.

Alternatively, the results presented there suggest that properly accounting for the endogeneity of

variable inputs may well matter when it comes to analyzing the implications of our estimates for

productivity and (perhaps) for returns to scale.

There are many remaining issues that remain to be addressed. Extending the proxy approach

to the case of imperfect competition and the estimation of price-marginal cost markups is but one

pressing but open question. The fact that some issues remain unanswered, though, should not deter

researchers from implementing what we believe is a pretty simple and straightforward approach to

addressing the simultaneity issue. (Hence the recipe included in the appendix.) One never knows

whether doing the job right really makes a difference compared to easier but incorrect methods

until one does it both ways and compares. AU the evidence in this paper suggests that when it

comes to estimating production functions, addressing the simultaneity issue really does matter.
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Appendix A

In this appendix we consider the use of intermediate inputs as proxies for productivity when firms
operate in a competitive environment. We show the general conditions on the production technology
which yield an intermediate input demand function t(w;pL,p1, K) that is strictly increasing in
productivity (w) (the price of output is normalized to 1.) This result permits the use of w(t, K) as
an index for productivity.

Definition. An industry is competitive if firms take input prices and the output price for the
homogeneous good as given.

Intermediate inputs are available as proxies in some imperfectly competitive environments,
although the proof depends on the specifics of the competition. Proofs in an imperfectly competitive
environment wili likely rely on arguments from the literature on monotone methods.

Assumption The firm production technology Y = f(K, L, t, w): R4 —* R is twice continuously
differentiable in labor (L) and the intermediate input (t), and fLw, ft, and exist for all values
(K, L, t, w) E R. The industry is competitive, and either a) this period's investment does not
respond to this period's productivity, or b) it does not enter this period's capital. Productivity is
observed before the choice of labor and the intermediate input are made.

The differentiability of f() can be relaxed with the appropriate appeal to monotone methods.
We treat capital as fixed, and assume both labor and the intermediate input respond to the pro-
ductivity. With some additional complexity, it is possible to show the following result when capital
also responds tow, and when more than one type of labor exists.

Result. Under the Assumption, if fLfL > ILL f1 everywhere, then t(w; Pt, Pt, K), the inter-
mediate input demand function, is strictly increasing in w.

Proof. Given the assumption, a profit-maximizing firm has an intermediate input demand
function that satisfies

sign(—) = slgn(f1LfLW — fLLfw)

(see Varian (1992), pp. 494.495.) Under mild regularity conditions on f(-) that insure the Funda-
mental Theorem of Calculus holds for t(),

2 at
p,, Pt, K) — t(wi; p1, m,K) = f (w; pe, p', K)P(thIK).

Since f1f > ftf everywhere, it follows that

rt at flu2

J —(w;pz,p1, K)P(dwIK) > J 0 P(dwlK) =
WI Wi

so

4w2; K) > 4w1; Pi,P, K)ifw2 > wi..
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of plants, capital stock is not reported in any year. We estimated a projected initial capital stock
based on other reported plant observables for these plants. We then used the investment data to
fill out the capital stock data.
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Appendix C
The purpose of this appendix is to provide a step-by-step guide on how to estimate production

functions using intermediate inputs to control for unobservables. Here we document our approach
for the unrestricted case. The recipe below is not written with any particular software package
in mind. In practice, we began with a combination of Stata and Gauss, but switched to SPlus in
the end because of the ease with which one can compute and view the results from the local least
squares estimators.

Estimation Recipe

Stage One:

1. Run locally weighted least squares regression of y on Ct and k to obtain an estimate of the
function E(yt]et,k).

2. Run locally weighted least squares regression of / on e and k2 to obtain an estimate of the
function E( fle. k).

3. Run locally weighted least squares regression of 1 on e and k to obtain an estimate of the
function E('Ie,k).

4. Run locally weighted least squares regression of mt on e and k to obtain an estimate of the
function E(mt]et, k).

5. Run locally weighted least squares regression of f on t and k to obtain an estimate of the
function E(fIet, kfl.

6. Construct k) = — E(yet, k) using the estimate of the conditional expectation from
the local weighted least squares from step 1. This is the dependent variable in step 7. Similarly,
difference out the predicted mean for each of the explanatory variables, and call these new regressors
that are net of electricity and capital variation (Xi(e, kr), X2(e, kr), X3(e, kg), X4(c, k)).

7. Run no-intercept OLS regressing the constructed dependent variable Y on the vector of
constructed independent variables (X1, X2, X3, X4).

This completes the first stage of the estimation routine. Key estimated parameters from this
stage are the production function parameters on all the variable inputs— 31,and /3m.

Stage Two:

Here we discuss the unrestricted restricted esimator; the restricted estimator proceeds in a
similar fashion, but without estimating /3e; instead the average revenue share is used as an estimate
of this parameter, and electricity's contribution stCt is net out in step 1 and step 3 along with the
other variable inputs.

1. Compute estimate of t(et,k) for each of the three different time periods 1979-81, 1982-
3, and 1984-6 using local regression to predict y — — — j3rn — I3jft using (Ct, k) as

explanatory variables. Save the estimate, ç().

2. Choose a candidate value for ($e.k), say A good starting value might be the OLS
value from a Cobb-Douglas production function. (We use the robust but computationally expensive
grid search, so a "good" starting value is not critical for us.)
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3. Compute w -- m = — /3S17 — — /3rnmt —
13fft — 13;et

— For notation's sake, call
the variable just computed "A".

4. Compute w[_1 = 4' —i3k_1 —p;et_i. Call this variable "B".

5. Regress "A" on "B" using locally weighted least squares. This generates a new variable.
This new variable is constructed from the constant from the regression as it is evaluated at each
observation. Call this new variable "C". "C" is E(welwt..i).

6. Using (24), and substituting "C" in for E(wtlwt_i), compute (& + ifl). This is the residual
that is used in the moment equation. This residual is mean zero conditional on k and Ct. at

the "truth," and thus can be used to construct the sample analogs to the population moment
conditions.

7. Using your favorite minimization routine, choose (& /ik) to minimize the objective function
from (26) (i.e. distance between the observed moments and zero.) This will entail iterations over
the previous six steps.

Estimation of Standard Errors
Our approach is based on the block bootstrap, where all firm-specific observations are considered

en bloc (as one i.i.d. observation.) We call the two parameters of our bootstrapmethod ai and a2.
As described in the text, we choose values for these two parameters so that the bootstrapped samples
produce similar numbers of firm/year observations and annual industry value-added relative to our

actual observed sample.

1. Sample with replacement from the blocks of firms that existed in either 1980 or 1981. Draw
a1* (number of firms in existence in 1980) times from this distribution. If a firm is selected, the
entire block of observations related to that firm is included in the bootstrap sample.

2. Sample with replacement from the blocks of firm-level observations for those firms that
entered in 1981. Sample a2* (number of entrants in 1981) firms.

3. Repeat step two for each year 1982-1985, and pool all the observations from steps 1-3 into

one sample. This is the bootstrapped sample.

4. Estimate the parameters using this bootstrap sample for OLS, fixed effects, instrumental
variables, Olley-Pakes, and our estimator.

5. Repeat 1-4 30 times, and use the standard deviation of the estimates as the estimate of the

variability of the estimator.
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TABLE 1

Some Descriptive Statistics on Chilean Manufacturing

Metals Thxtiles Food Products Beverages

Year GDP

Value

Plants Added
Value

Plants Added Plants
Value

Added

Value

Plants Added

1979 997.6 459 10.0 503 12.4 1,537 39.0 211 14.1

1980 1,075.3 447 11.0 445 12.9 1,439 43.4 188 14.7

1981 1,134.7 413 11.5 403 11.3 1,351 42.7 158 10.4

1982 974.9 365 8.1 350 8.7 1,319 47.0 151 11.7

1983 968.0 322 8.3 327 9.7 1,297 42.9 148 13.1

1984 1,029.4 358 11.4 336 10.4 1,340 46.8 138 13.2

1985 1,054.6 351 9.6 337 10.8 1,338 49.1 127 11.5

1986 1,114.3 347 9.6 331 12.9 1,288 61.4 111 12.8

Year GUP

Other
Chemicals

Printing &

Publishing Wood Products Apparel

Value

Plants Added
Value

Plants Added Plauts
Value

Added

Value

Plants Added

1979 997.6 171 15.1 242 11.4 524 10.4 442 6.6

1980 1,075.3 166 16.9 227 10.5 449 8.7 398 6.7

1981 1,134.7 159 17.5 206 12.8 406 6.8 346 6.6

1982 974.9 148 14.8 196 8.9 358 6.5 305 5.3

1983 968.0 145 12.6 177 5.8 335 8.1 265 4.1

1984 1,029.4 151 12.9 167 5.8 339 10.3 294 6.4

1985 1,054.6 149 11.2 164 4.7 342 10.1 275 8.5

1986 1,114.3 153 9.1 163 4.5 313 5.3 280 11.3

Notes: GDP figures from the International Financial Statistics Yearbook. GDP and value added

in miffions of 1980 pesos.



TABLE 2

Percent of Usable Observations, 1979- 85

Industry Investment Fuels Materials Electricity
Metals 44.8 63.1 99.9 96.5

Textiles 41.2 51.2 99.9 97.0

Food Products 42.7 78.0 99.8 88.3

Beverages 44.0 73.9 99.8 94.1

Other Chemicals 65.3 78.4 100 96.5

Printing & Pub. 39.0 46.4 99.9 96.8

Wood Products 35.9 59.3 99.7 93.8

Apparel 35.2 34.5 99.9 97.2



TABLE 3

Nominal Revenue Shares (Percentage) L197985Average

Industry Unskilled Skified Materials Fuels Electricity

Metals 15.2 8.3 44.9 1.6 1.7

Textiles 13.8 6.0 48.2 1.0 1.6

Food Products 12.1 3.5 60.3 2.1 1.3

Beverages 11.3 6.8 45.6 1.8 1.5

Other Chemicals 18.9 10.1 37.8 1.7 0.7

Printing & Pub. 19.8 10.7 40.1 0.5 1.3

Wood Products 20.6 5.3 47.0 3.0 2.4

Apparel 14.0 4.9 52.4 0.9 0.3



TABLE 4
Unrestricted and Restricted Parameter Estimates for 8 Industries

(Bootstrapped Standard Errors in Parentheses)

Industry (ISIC Code)

Input 311 381 321 331 352 322 342 313

Unskilled labor
0.138 0.164 0.138 0.206 0.137 0.163 0.192 0.087

(0.010) (0.032) (0.027) (0.035) (0.039) (0.044) (0.048) (0.082)
Skilled labor

0.053 0.185 0.139 0.136 0.254 0.125 0.161 0.164

(0.008) (0.017) (0.030) (0.032) (0.036) (0.038) (0.036) (0.087)
Materials

0.703 0.587 0.679 0.617 0.567 0.621 0.483 0.626

(0.013) (0.017) (0.019) (0.022) (0.045) (0.020) (0.028) (0.075)
Fuels

0.023 0.024 0.041 0.018 0.004 0.0162 0.053 0.087

(0.004) (0.008) (0.012) (0.018) (0.020) (0.016) (0.014) (0.027)
Capital

unrestricted 0.13 0.09 0.08 0.18 0.17 0.10 0.21 0.08

(0.032) (0.027) (0.054) (0.029) (0.034) (0.024) (0.042) (0.050)
restricted 0.14 0.09 0.06 0.11 0.15 0.09 0.21 0.07

(0.011) (0.02) (0.019) (0.025) (0.034) (0.039) (0.045) (0.11)

Electricity
unrestricted 0.038 0.020 0.017 0.032 0.017 0.022 0.020 0.012

(0.021) (0.010) (0.024) (0.028) (0.032) (0.014) (0.024) (0.022)
restricted 0.011 0.015 0.014 0,021 0.005 0.008 0.011 0.012

No. Obs. 6051 1394 1129 1032 758 674 507 465

Notes: This table contains estimates from the unrestricted and restricted models.



TABLE 5

The OLS estimate minus the LP estimate

Unskilled Skilled Returns

ISIC Labor Labor Materials Fuels Capital to Scale

311

Mean Duff. 0.01 0.032 0.044 0.007 -0.064 0.029

100% 100% 100% 100% 0% 100%

381

Mean Duff. 0.024 0.003 0.022 0.006 -0.034 0.021

100% 58.06% 100% 83.87% 3.23% 96.77%

321

Mean Duff. -0.004 0.014 0.013 0.002 -0.008 0.017

2903% 83.87% 100% 67.74% 32.26% 93.55%

331

Mean Duff. 0.126 0.08 -0.059 0.011 -0.084 0.073

100% 100% 3.23% 93.55% 0% 100%

352
Mean Duff. -0.012 0.018 0.029 -0 -0.023 0.012

% > 0 29.03% 93.55% 100% 35.48% 16.13% 64.52%

322

Mean Duff. 0.003 0.007 0.018 0.001 -0.037 -0.008

58.06% 54.84% 87.1% 54.84% 6.45% 38.71%

342
Mean Duff. -0.003 0.028 0.004 -0.003 -0.03 -0.003

48.39% 93.55% 93.55% 25.81% 19.35% 83.87%

313

Mean Duff. 0.083 0.001 0.042 -0.008 -0.085 0.034

100% 64.52% 93.55% 29.03% 6.45% 77.42%

Notes: This table contains the differences between OLS and LP estimates for each coefficient

across 30 bootstrapped samples. The top entry in each cell is the average difference between the
OLS and LP estimate across the samples, i.e. the average across I3OLS —/3LP The bottom entry

in each cell is the percentage of samples that yielded estimates which /30L5 — I3LP > 0.



TABLE 6

Comparison of Estimators Across All 8 Industries: Testing Coefficients as a Group

Estimate of:

Significantly
Different At: /JOLS — I3LP /3FE — flLP Iiv — /3LP I3or — flLP(>C) I3LP — PLP(i>O) /30P — PLP

5% 75.0% 100% 50.0% 37.5% 50.0% 50.0%

10% 75.0% 100% 75.0% 62.5% 50.0% 62.5%

20% 100% 100% 100% 87.5% 87.5% 100%

Notes: This table provides the percent of 8 industries for which the null hypothesis that none
of the 5 coefficient pairs in an industry are different is rejected in favor of the alternative that at
least one of the coefficient pairs in the industry is different.



Significantly

TABLE 7

Comparison of Estimators Across All 8 Industries: Individual Coefficients

Estimate of:

Different At: I3OLS — /3LP r@FE — I3LP /3w — I3LP 130P — /3LP(i>O) PLP — /3LP(i>O) 130P — PLP

5% 32.5% 47.5% 17.5% 12.5% 15.0% 15.0%

10% 37.5% 55.0% 32.5% 20.0% 20.0% 22.5%

20% 55.0% 67.5% 55.0% 40.0% 27.5% 40.0%

Notes: This table contains the percent of significantly different coefficients between two esti-
mators. For each pair of estimators, there are 5 coefficients which are compared at the 5%, 10%,
and 20% significance levels across 8 industries, for a total of 40 coefficients; the table presents the
percentage of these 40 coefficients that are significantly different for each of the three levels.



TABLE S

Comparison of Estimators Across All 8 Industries: Returns to Scale

Estimate of:

Significantly
Different At: /30L5 — $LP /3FE — !3LP Pry — /9LP POP — PLP(i>o) /3LP — PLP(i)O) POP — PLP

5% 25.0% 37.5% 50.0% 12.5% 0.0% 0.0%

10% 37.5% 75.0% 50.0% 12.5% 25.0% 0.0%

20% 50.0% 75.0% 62.5% 12.5% 25.0% 12.5%

Notes: This table contains the percent of significantly different estimates of returns to scale
between two estimators. For each pair of estimators, there are 8 industries which are compared at
the 5%, 10%, and 20% significance; the table presents the percentage of these 8 observations on
returns to scale that are significantly different for each of the three levels.



TABLE 9

The OP estimate using minus the LP estimate using

only firms with positive investment

Unskilled Skilled Returns

ISIC Labor Labor Materials Fuels Capital to Scale

311

Mean Duff. -0.005 0.024 0.035 0.005 -0.042 0.017

% > 0 9.68% 100% 100% 93.55% 0% 100%

381

Mean Duff. 0.021 0.006 0.018 0.003 -0.029 0.019

90.32% 83.87% 100% 70.97% 9.68% 87.1%

321

Mean Duff. -0.006 0.02 -0.003 -0.005 0.017 0.024

% > 0 29.03% 96.77% 38.71% 22.58% 35.48% 61.29%

331

Mean Duff. 0.08 0.067 -0.019 0.017 -0.09 0.055

% > 0 96.77% 100% 22.58% 83.87% 12.9% 77.42%

352

Mean Duff. -0.022 0.028 0.031 0.01 0.029 0.078

% > 0 19.35% 93.55% 96.77% 90.32% 25.81% 74.19%

322

Mean Duff. -0.034 0.003 0.009 -0 0.03 0.007

% > 0 19.35% 64.52% 61.29% 48.39% 61.29% 48.39%

342

Mean Duff. -0.029 0.007 0 -0.018 0.009 -0.03

% > 0 16.13% 51.61% 45.16% 9.68% 38.71% 22.58%

313

Mean Duff. 0.057 0.025 0.055 -0 -0.028 0.108

% > 0 83.87% 77.42% 90.32% 48.39% 32.26% 64.52%

Notes: This table contains the differences between OP coefficient estimates and the LP coef-
ficient estimates from firms just reporting positive investment. The top entry in each cell is the
average difference between the estimates across 30 bootstrapped samples. The bottom entry in
each cell is the percentage of samples that yielded estimates which Pop — I3LP@ > 0) > 0.



TABLE 10

Comparison of Estimates Across the Electricity, Materials, and Fuels Proxies

Standard Errors in Parentheses

ISIC 311

Materials

ISIC 381

Materials

Notes: This table compares the point estimates and standard errors
variables: electricity, materials, and fuels.

across three different proxy

Coefficient Electricity Fuels Electricity Fuels

Unskilled Labor 0.140

(0.014)

0.137

(0.014)

0.136

(0.014)

0.177

(0.031)

0.176

(0.031)

0.173

(0.031)
Skilled Labor 0.055

(0.003)

0.052

(0.003)

0.057

(0.004)

0.180

(0.02)

0.182

(0.021)

0.187

(0.022)

Capital 0.15

(0.014)

0.15

(0.008)

ISIC 321

0.16

(0.013)

0.12

(0.018)

0.21

(0.023)

ISIC 331

0.09

(0.018)

Coefficient Electricity Materials Fuels Electricity Materials Fuels

Unskilled Labor 0.152

(0.028)

0.159

(0.029)

0.146

(0.028)

0.216

(0.036)

0.207

(0.033)

0.198

(0.030)

Skilled Labor 0.135

(0.024)

0.150

(0.024)

0.148

(0.027)

0.134

(0.035)

0.136

(0.035)

0.134

(0.034)

Capital 0.18

(0.261)

0.17

(0.027)

0.16

(0.311)

0.10

(0.017)

0.09

(0.035)

0.06

(0.023)
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TABLE Al

The FE estimate minus the LP estimate

Skilled Unskilled Returns
ISIC Labor Labor Materials Fuels Capital to Scale
311

Mean Duff. 0.045 -0.036 -0.063 0.008 -0.116 -0.162

% > 0 100% 0% 0% 93.55% 0% 0%

381

Mean Duff. 0.078 -0.099 -0.087 0.013 -0.035 -0.131

% > 0 96.77% 0% 0% 74.19% 12.9% 3.23%

321

Mean Duff. 0.05 -0.11 -0.107 0.045 0.039 -0.082

% > 0 87.1% 3.23% 0% 100% 90.32% 3.23%

331

Mean Duff. 0.083 0.02 -0.205 0.007 -0.08 -0.177

% > 0 83.87% 61.29% 0% 61.29% 6.45% 0%

352

Mean Duff. 0.169 -0.086 -0.145 0.023 -0.027 -0.066

% > 0 100% 3.23% 0% 87.1% 29.03% 16.13%

322

Mean Duff. 0.047 -0.11 -0.129 0.028 -0,04 -0.203

% > 0 80.65% 0% 0% 87.1% 35.48% 3.23%

342

Mean Duff. 0.208 -0.093 -0.283 0.021 -0.093 -0.24

% > 0 100% 6.45% 0% 80.65% 0% 0%

313

Mean Duff. 0.261 -0.088 -0.14 -0.076 -0.105 -0.148

% > 0 100% 12.9% 0% 0% 9.68% 19.35%

\otes: This table contains the differences between FE and LP estimates for each coefficient
across 30 bootstrapped samples. The top entry in each cell is the average difference between the
FE and LP estimate across the samples, i.e. the average across /3FE —/3LP. The bottom entry in
each cell is the percentage of samples that yielded estimates which I3FE —13LF' > 0.



TABLE A2

The IV estimate minus the LP estimate

Unskilled Skilled Returns
ISIC Labor Labor Materials Fuels Capital to Scale

311

Mean Duff. -0.005 0.023 0.078 0.012 -0.077 0.03

% > 0 19.35% 100% 100% 93.55% 0% 100%

381

Mean Duff. -0.003 0.016 0.045 -0.001 -0.039 0.018

% > 0 51.61% 67.74% 96.77% 41.94% 6.45% 90.32%

321

Mean Duff. -0.04 0.046 0.04 -0.013 -0.007 0.026

% > 0 6.45% 96.77% 96.77% 3.23% 29.03% 100%

331

Mean Duff. 0.127 0.073 -0.051 0.021 -0.082 0.087

% > 0 93.55% 93.55% 9.68% 83.87% 0% 100%

352

Mean Duff. -0.054 -0.003 0.097 -0.025 -0.014 -0.001

% > 0 3.23% 41.94% 100% 3.23% 22.58% 45.16%

322

Mean Duff. •0.186 0.026 0.064 0.045 -0.006 -0.057

% > 0 0% 83.87% 93.55% 100% 51.61% 0%

342

Mean Duff. -0.028 0.027 0.072 -0.013 -0.029 0.028

% > 0 16.13% 80.65% 90,32% 22.58% 16.13% 80.65%

313

Mean Duff. 0.052 -0.039 0.139 -0.039 -0.098 0.015

% > 0 67.74% 35.48% 83.87% 22.58% 9.68% 61.29%

Notes: This table contains the differences between IV and LP estimates for each coefficient
across 30 bootstrapped samples. The top entry in each cell is the average difference between the
IV and LP estimate across the samples, i.e. the average across )3rv — /3LP- The bottom entry in
each cell is the percentage of samples that yielded estimates which /ijv — !3LP > 0.


