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1. Introduction

There are several stylized facts in macroeconomics that cannot easily be explained
by rational expectations models with standard time-additive preferences. Promi-
nent examples are the excess volatility of asset prices, the predictability of excess
returns, and the equity premium and risk-free rate puzzles.

In order to rationalize these anomalies researchers have extended the bench-
mark model in different directions. One strategy has been to keep rational ex-
pectations, but to consider more complex preferences that generate time-varying
risk premia, or to introduce imperfections in credit markets.! Another strategy
has been to consider alternative expectation formation mechanisms. A growing
behavioral literature postulates small misperceptions on the part of otherwise op-
timizing agents. Specifically, if agents use Bayes law to form expectations but
misperceive shocks to be more persistent than what they actually are, then fore-
casts will be more sensitive to news than rational expectations (RF) forecasts.
As a result, asset prices will exhibit the previously mentioned macroeconomic
anomalies.?

This paper considers an alternative expectation formation mechanism that
departs from the assumptions implicit in RF models. The updating formulas
derived under this alternative mechanism generate the same excess sensitivity
to news as the behavioral forecasting formulas. However, they are derived by a
rigorous optimizing algorithm, without postulating the existence of misperception
or irrationality. The main departure from RE is the elimination of the assumption
that all uncertainty can be parametrized by a stochastic process whose properties
are known, or can be learned.

In the robust-H,, approach considered in this paper, optimizing agents take
seriously into account that it is impossible to eliminate all misspecifications from
their description of the economy, and so design ‘robust’ filters and policies. We
will see that, in an otherwise standard asset pricing model with time-additive pref-
erences, robust agents behave as +f they misperceive shocks to be more persistent
than what they actually are. As a result, robust forecasts are more sensitive

'Barberis, et. al. (1999), and Campbell and Cochrane {1999) consider more complex pref-
erences. Constantinides and Duffie (1996), and Heaton and Lucas (1996} consider incomplete
markets.

*See Barberis, et. al. (1998), Cecchetti, et. al. (1997), Daniel, et al. (1998), Gourin-
chas and Tornell {2000), and Mullainathan (1999). An attractive feature of this literature is
that the missperceptions which are considered reflect stylized facts established by psychological
experiments (e.g. Kahneman and Tversky (1972)).




to news than the RE forecasts associated with the same ‘nominal’ model of the
economy. This in turn implies that equilibrium prices exhibit the macroeconomic
anomalies mentioned above.

We consider the familiar setup in which an agent must filter the persistent
and transitory compornents of a sequence of observations in order to estimate the
unobservable state of the economy and make forecasts and portfolio decisions.?
The point of departure of the robust approach is the recognition by agents that
although they may know the model that generates payoffs with a high degree of
accuracy, they are not perfectly sure about this. There might be misspecifications
in the process followed by disturbances, or in the formulation of the model.* Fur-
thermore, these misspecifications might follow complicated dynamic patterns that
cannot be parametrized with a probability distribution. The robust agent designs
forecasting and decision rules that will work well in the face of all misspecifica-
tions that satisfy a certain norm bound. H.,-control operationalizes this idea by
modeling uncertainty as totally unknown disturbance sequences with a bounded
ly-norm (i.e., the disturbances are square summable). An attractive feature of
Ho.o-control is that it leads to closed-form solutions.

Several approaches to robust control were developed during the 1980s. Its
use In economics has been pioneered by Tom Sargent and Lars Hansen. In a
series of papers they have shown that significant insight can be gained by relaxing
some assumptions made in R¥ models.> This paper is most closely related to
Hansen, et. al. (1999), who rationalize macroeconomic anomalies by considering
‘risk-sensitive’ preferences. There are two main differences. First, they model
uncertainty in terms of normally distributed shocks, while a major feature of our
setup is that uncertainty cannot be parametrized. Second, in their model the state
is perfectly observed, so there is no signal-extraction problem. In the literature
review below, we expand on these issues and describe other work on robust control
and filtering.

When applying H.-control to economic problems one must take into con-
sideration that, in equilibrium, prices and agents’ decisions are interdependent.
Thus the existing Hoo formulae are not applicable. A contribution of this paper
1s to construct a competitive equilibrium of an exchange economy, and provide
closed-form filtering and forecasting formulae, as well as asset pricing equations.

3This is the same setup as the one considered by Lucas {1973) and Muth (1960).
1For instance, there are unmodelled nonlinearities, the distribution of disturbances changes

cantinuously in mnpredictable ways, etc.
3See Anderson, et. al. (1999), Hansen and Sargent (1998}, and Hansen, et.al. (1999).




Although the formulas we derive are specific to the asset pricing problem we con-
sider, the framework and the method to construct equilibria can be applied to
other economic problems in which agents must solve a signal extraction problem
in order to make forecasts and decisions.

The results in this paper are also of interest from a estimation perspective. If
one forecasts a noisy observation (say, dividends}, and the performance index is a
function of the forecast’s mean square error, then the H.-forecasts do not exhibit
excess sensitivity to news relative to AF. In this paper we consider a different
problem. Dividend forecasts and portfolio policies are jointly determined in a
problem whose performance index is induced by a quadratic discounted utility
and the agent’s budget constraints. As we shall see, the H -forecasts associated
with this problem do exhibit excess sensitivity to news. In other words, in our
simple exchange economy being robust to misspecification entails putting more
weight on cwrrent innovations relative to RE. That is, if two agents have the
same ‘nominal’ model of the economy, the robust agent will put less weight on
his prior, when updating beliefs, than the agent that uses RE. It is interesting
to note that in the behavioral literature excess sensitivity to news arises from
misperception about the importance of transitory and persistent shocks, while in
the Ho, approach it arises from a robustness concern against misspecification.

We perform some simulations to illustrate how, if the degree of robustness is
high, H., prices are more volatile than dividends, excess returns are predictable
by past dividend yields, and the equity premium is high while maintaining a low
risk-free interest rate. We also feed the H,, and RE price formulas with actual US
dividend data for the period 1871-1996 and find that H., prices track US. stock
prices better than RE prices. As we mentioned earlier; H,, prices can generate
these anomalies because in our model K, forecasts are more sensitive to news
than R# forecasts.

The trade-off between H., and rational expectations strategies is the following,.
Hoo strategies are designed to perform well under any norm-bounded misspecifica-
tion, while K FE strategies are designed to attain the best performance conditional
on no misspecification. That is, in the special case in which there is no misspecifi-
cation, and the data is generated by a known stochastic process, the RE approach
generates the best performance. However, in the presence of misspecification, the
Heo approach may provide better results. Figire 1 makes this point clear.

A departure from the solution method commonly used in economics is that
forecasts of exogenous variables are not formed independently of agents’ policies
by applying Bayes law to a prior distribution. Instead, forecasts and portfolio




policies are jointly determined in a problem that can be analyzed as a dynamic
game between the agent and nature. Interestingly, although the problems solved
by agents in a RE and an H, sctups are different, the forecasting formulas are
quite similar. Furthermore, in the limiting case in which agents do not care about
robustness, forecasting formulas are identical. The H.. approach is not so wild
after all!

An important property of the approach we use is that the degree of robustness
that agents can attain is closely related to the existence of equilibria. Robustness
cannot be increased arbitrarily. There is a point beyond which an increase in the
degree of robustness implies that a solution to the dynamic game between the
agent and nature ceases to have a solution. Thus, beyond the breakdown point
equilibria do not exist.

We decompose the original H,.-control problem into several sub-problems that
are solved using methods familiar to economists, and we explain in detail every
step mvolved in deriving the equilibrium. This means that the paper can be
followed without any prior exposure to the robust control literature. Furthermore,
to make clear what are the differences and similarities between RE and H.,
formulae, we also present a rational expectations version of the problem.

The structure of the paper is as follows. In the next two subsections we present
a brief review of the literature, and an overview of the model. In Section 2 we
formulate the problems solved by agents in RE and in H,, setups, and provide
the formulas for equilibrium asset prices and dividend’s forecasts. In section 3
we derive the equilibrinm in an H,, economy. In Section 4 we present simulation
exercises. In section 5 we present the conclusions. Finally, in the Appendix we
present some proofs and the methodology used in the simulations.

1.1. Related Literature

The development of the rational expectations approach is related to the develop-
ment of optimal control. By the late 1970s there was widespread dissatisfaction
among practitioners with the robustness properties of optimal control. Although
minimizing an expected cost function leads to the best performance in the case
of no misspecification, it leads to bad results and even instabilities in the face of
small misspecifications. And when you plan to launch a missile, you would rather
be sure this does not occur.®

8This point is nicely made by Peter Huber in an influential book on classical robust statistes.
Referring to the assumptions one makes when using probability distributions he says (Huber




Robust control was developed in the 1980s in response to these shortcomings.
This approach directly addressed the issue of how accurate the model and the
description of uncertainty should be, and how the performance index should be
defined to guarantee the robustness of the controlled system against misspecifi-
cations. Various approaches to robust control have developed. In this paper we
consider the M, specification pioneered by Zames (1981). Important develop-
ments can be found in Basar and Bernhard (1991), and Zhou, Doyle, and Glover
(1996). Hansen and Sargent (1998) show how to treat robust control problems
when there is discounting.

Hoo-control was developed to address engineering problems, and the existing
control and forecasting formulas cannot be applied directly to economic problems.
First, the performance indexes are different. In economics they are induced by
the underlying utility function and budget constraints. Second, in economics one
is typically interested in characterizing equilibria where prices clear markets. A
contribution of this paper is to construct a competitive equilibrium for a sim-
ple exchange economy, and to provide closed-form forecasting and asset pricing
formulae. :

In the Hy-filtering literature the performance index includes the mean square
error of the ‘unobservable state.’ In contrast, in economics, payoffs are gener-
ally functions of the ‘noisy observation’ (e.g., dividends, consumption).” It turns
out that the H, filter of the state exhibits excess sensitivity to news relative to
RE. However, this is not true for the H,, dividend’s forecasts associated with a
standard performance index that includes the forecast's MSE. As we mentioned
earlier, an attractive property of our model is that the associated dividend’s fore-
casts exhibit excess sensitivity to news.

Independent of H,,-control, risk sensitive control was developed in the 1970s
{see Whitle (1990)). This approach considers a standard Gaussian setup, with
no misspecification. The twist is that the utility index is %log By (oury) instead
of Ey(ueyq). It has been found that in some cases risk sensitive control yields the
same formulas as the ones obtained with H.o-control (Doyle, Glover, Khargonekar

(1981), pg. 1): “The assumptions are not supposed to be exactly true —they are mathematically
convenient rationalizations of an often fuzzy knowledge... one justifies their use by appealing to
a vague continuity or stability principle: a minor error in the mathematical model should cause
only a small error in the final conclusions. Unfortunately, this does not always hold. During
the past decade one has become increasingly aware that some of the most common statistical
procedures are excessively sensitive to seemingly minor deviations from the assumptions...”

"Here we ate referring to the familiar setup in which the noisy observation equals the unob-
servable state plus some noise.




and Francis (1989)). Hansen, et. al. {1999) use this fact in a very interesting way.
They consider a risk-sensitive version of the permanent income model with habit
persistence and quadratic utility. In their model uncertainty takes the form of
endowment and preference shocks. These shocks are i.i.d. normally distributed,
with known mean and variance. Each period, agents observe the ‘state’ (past con-
sumption, capital stock and the shocks), and choose consumption and investment.
They then consider the asset pricing implications, and show that a sufficiently high
preference for robustness generates a market price of risk that is compatible with
US. data. Anderson, et. al. (1999) consider more general utility functions and
a larger class of perturbations. Manehout (1999) applies the model of Anderson,
et. al. to a portfolio choice problem.

One difference between our work and these papers resides in the existence of
a filtering problem. In our model agents need to filter the transitory and persis-
tent components from sequences of past observations in order to make forecasts.
Furthermore, these forecasts must be made jointly with the portfolio decision. In
the papers just mentioned, filtering plays no role as agents observe perfectly the
state of the economy. Ancther difference is that we consider an ‘H., approach,
while they consider a risk-sensitive approach. Onatski and Stock (2000) also use
the robust approach to tackle an economics problem.

In a robust setup, even if agents were to update their model of the economy
they would still fear misspecification. Thus, their estimators will not converge to
the RE estimators associated with the same nominal model of the economy. In
this sense the present model is different from learning models, such as Marcet and
Sargent {1989) and Timmerman (1996).

Finally, we would like to make two comments about the use of the word ‘robust’
in the literature. First, in the robust control literature, robust refers to guaran-
teed performance for any disturbance sequence that satisfies a certain norm bound.
In the statistical literature it generally signifies insensitivity to small deviations
from the assumptions.® Second, we would like to note that robust control pro-
cedures have little overlap with non-parametric, distribution-free, and adaptive
procedures.

8In classical statistics researchers are mainly concerned with distributional robustness {see
Huber (1981)). In Bayesian statistics the main concern is with possible misspecification of the
prior or of the likelihood function, and with the so called Bayes risk robustness (see Berger
{1983)}.




1.2. Overview

We consider an exchange economy with one consumption good and two one-period
assets: a safe asset that pays one unit of the consumption good, and a risky asset
whose future dividend is uncertain. Dividends (y;) have a persistent component
(z¢) and a transitory component () : y, = x;+o,v;. The key is that the persistent
component is unobservable and it is autocorrelated: z; = ax;_q + Tpwe_1.

We compute the equilibria in an RE setup as well as in an H, setup in order
to make comparisons. In both setups agents filter the transitory and persistent
components from dividend observations {ys}zzl (i.e., estimate z;), and then make
forecasts of future payofts. In the RE setup agents use Bayes law to generate the
distribution of future dividends. The important point to note is that in the RE
setup we derive forecasts of future dividends without taking into consideration the
consumption and portfolio strategies. This ‘separation’ does not exist in an H.
setup because one cannot speak of a probability distribution of the disturbances
that captures all that is unknown about the environment. Disturbances are simply
unknown square-summable sequences. This implies that forecasts and portfolio
policies must be determined jointly. Tt turns out that this problem can be analyzed
as a dynamic game between the representative agent and nature. A significant
part of the paper is devoted to solve this game.

Theorem 3.1 characterizes the solution of this game and establishes the con-
ditions for existence of an equilibrium. The equilibrium is constructed using the
“Ho certainty equivalence principle’ (Basar and Bernhard (1991)). This princi-
ple breaks the original problem into three simple sub-problems. The first is a
familiar backwaord dynamic programing problem that characterizes consumption
and portfolio strategies for a given value of the state z; ., = . The second sub-
problem is a forward DP problem that allows the agent to extract the persistent
component from past dividend’s observations, conditional on x;; = x. The third
sub-problem derives the H., estimates of z;,; and y;y1, as well as equilibrium as-
set prices. This i1s done by using the value functions associated with the forward
and backward DP problems ((3.14) and (3.19), respectively).

Proposition 2.2 uses Theorem 3.1 to characterize a Markov perfect equilibrium,
and exhibits the H,, forecasting formulas and equilibrium asset prices that are
used in the simulations (formulas (2.10)-(2.11)). Surprisingly, these formulas turn
out to be very similar to the familiar RE formulas (2.8)-(2.9). Furthermore, in
the limiting case in which agents do not care about robustness, the H., and RE
forecasts are equal.

A key parameter throughout the paper is <, which measures the degree of
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disturbance attenuation (i.e., the lower -y, the greater the desree of robustness).
It will turn out that the dynamic game between the agent and nature has a
solution if and only if v is greater than a certain threshold ~. This implies that
the degree of robustness that can be attained in equilibrium cannot be arbitrarily
large.

It is interesting to note that in the exchange economy we are considering,
the lower <, the greater the sensitivity to news. This property is what allows
our model to generate excess volatility, predictability of excess returns, and the
equity premium puzzle for a high degree of robustness. In future research we plan
to consider a setup in which « varies through time in order to generate other
anomalies that have been identified in the finance literature.

2. Model

In order to concentrate on the essential features of the H,, approach, and to
highlight its differences with standard rational expectations (RE) models, we will
consider a streamlined Lucas (1978) exchange economy. As we shall see, in both
setups agents optimize an induced objective using all available information. The
main difference resides in the way uncertainty is modeled.

The model is an overlapping generations economy with one perishable con-
sumption good and two one-period assets: a safe and a risky. A time-t safe asset
pays one unit of the consumption good at ¢ + 1, while a time-t risky asset pays 1,
units of the consumption good at ¢, and y:y: at ¢ + 1. The economy is populated
by a sequence of representative agents that live two periods. A t—young agent is
endowed with one unit of the risky asset. At time ¢, taking prices as given, he
chooses consumption ¢;, and the amount of risky and safe assets (¢f, ¢) he wishes
to hold. It follows that his budget constraint is

ce +Phq +Pia <P+ (2.1)
At t+ 1, when old, the t—agent consumes all his wealth
Crp = Yes1qf + G; (2.2)
We will use a state-space representation for dividends:

yj:$j+dj+0'ﬁjvj, _72 1 (23)
Tl = A&y + O'wj’w:,;, Ip = a




Deviations of dividends from trend (y; — d;) have a transitory component &.;v;,
as well as a persistent component x;. The persistent component, which we will
call ‘the state,” follows an autoregressive process.”

At time ¢ a young agent observes the history of dividends { yj.} _,» but does
not observe the transitory and persistent components of dlwdends dewatlons
from trend. We will assume that the parameters {a;}_,, {ow;}i_g, {ou;}i1] and
{d;};5} are known, while the disturbances {v;}:1], {w;}\_, are unknown. We will
also assume that the initial value of the unobservable state z; is unknown. We
represent this uncertainty by setting zy = 0, so that z, is proportional to the first
element of the disturbance sequence: @, = o0uyp.

A key difference between the RE and the H., approaches is the way in which
uncertainty s modeled. Under RF it is assumed that uncertainty can be summa-
rized by a stochastic process, and that an agent has a unique prior probability dis-
tribution over all possible distributions that might govern the stochastic process.
In contrast, the H., approach models uncertainty as totally unknown disturbance
sequences with a bounded /5 norm. Below we will be more specific.

Agents have time-additive utility: w(c:) + Bulcey1), where u{c) = —[m — ¢
and m is a constant. An instantaneous quadratic utility function will allow us
to obtain closed-form solutions for the H,, problem that are comparable to the
solution of the RE problem. As will become clear latter, this utility function
induces an objective for the H,, problem which is an indefinite-quadratic form in
the disturbances. Ensuring the positivity of such an indefinite form is the key to
the existence of equilibria.

In what follows we formulate the problems solved in a Rational Expectations
economy, and in an H., economy. Then in the following subsections we charac-
terize the equilibria.

In a RE economy a young agent at time ¢ solves the following problem.

Problem RE. Suppose that the disturbances {v;}i1], {w;}o_y are i.i.d. N(0,1)
random variables. Given prices (pf,ps), choose (Cﬁ7Qt,Qt) to maximize

E(=lm—cf - Bim -, ] | L) (2.4)

subject to budget constraints (2.1), (2.2}, to the process followed by dividends
(2.83), and to the information set I, = {y1, ..., 4. 2, 05 } .

’In the special case that the state is a constant {x; = =) and d; = 0, {2.3) collaspses to
the familiar setup in which agents try to estimate an unchservable from a noisy observation:

Yi =T+ Tuvj.




In the robust approach the representative agent takes seriously into account the
fact that his dividend model might be misspecified, and he has no way to eliminate
this misspecification. For instance, either the value of the autoregressive coefficient
in (2.3) is slightly off, the variances of the disturbances may change constantly in
unpredictable ways, there might be some unmodelled non-linearities, etc. In the
standard H.,, setup misspecification patterns are modeled as unknown disturbance
sequences that are square summable (i.e., {v;, wj};-i}] € lyp+17). In other words,
‘not anything goes.” We will denote by Q the set of all such sequences whose
elements are not all zero™

Q= {{ouhth 20 | 3 24 f] < oo} (25)

This description of uncertainty is quite different from the probabilistic one used
in standard rational expectations models. We will take a brief detour to comment
on 1t. In RE models, and in optimal control problems in general, one describes
uncertainty in terms of probability distributions, and optimizes the expected value
of certain objective function. During the 1970s researchers noted that, when the
state must be estimated, the resulting optimal controllers do not posses good ro-
bustness properties, and might induce instabilities in the controlled system. In
the 1980s H.c-control was developed in order to be able to tackle problems in
which one cannot model via a probability distribution all that is unknown about
the system in question. The issue then became what would be an appropriate
objective and description of uncertainty that would generate a tractable problem,
and would allow the designer to attain robustness? In a seminal paper George
Zames (1981) proposed to describe uncertainty in terms of disturbances that sat-
isfy a condition such as (2.5), and to consider as the objective the H,, norm of
the dynamic system that maps disturbances to output. Since then, H..-control
has become a very active area of research and has found several applications.

Let us return to owr exchange economy. In order to keep the presentation
simple we will not make reference to the term H., norm.'' The problem of an
agent In an H., economy is to device a consumption and portfolio strategy that

will perform well in the face of all possible disturbance sequences {v;, w; f;%, with

UNote that since the first dividend ohservation is g, it follows that v = 0. Note also that
the norm considered in {2.3) corresponds to the specification m (2.3), in which we have set
xp = 0 and wy belongs to the disturbance sequence. Alternatively, we could specificy x; as

unknown and set wy = 0. In this case the l;—norm of the disturbances would be: || w “5,[1,t+1]:
: 141 :

e+ U o 4]
1T Section 3 we will define this term, and make clear its link with Problem H stated below.
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bounded /; norm. Now the issue becomes, how should the induced objective be
defined to guarantee robustness? Since in an H,, setup disturbances are not
restricted to have any specific probability distribution, we cannot postulate that
the agent maximizes an expected ulility as in the RE Problem. Instead, we will
consider a ‘normalized’ utility: the ratio of discounted utility to the ly-norm of
disturbances. That is, the induced objective is — { [m_gt]if"[fg;a“]g } Clearly,
g=0 |5ty
the smaller the ratio in braces, the better the performance of the consumption
and portfolio strategies.

As we shall see, although the induced objectives and the descriptions of uncer-
tainty under an RF and an H., economy are different, the forecasting formulas
that agents use in equilibrium will turn out to be very similar. The problem solved
at time ¢ by an agent in an H, economy is the following.

Problem H. Given asset prices (p},p) and dividends’ history {y;}i-
1. Choose (¢, q7,q7) to ensure
[n—al® +Bm -, _

ST

(2.6)

for all nonzero disturbances {vj,wj}?;% € lai+1) that are consistent
with dividend history {y; — d;}._, # 0. The triplet (e, qf,q¢) must
satisfy budget constraints (2.1) and (2.2).

2. Find the lowest value of the disturbance attenuation parameter Vo1 >
0, such that (2.6) holds for all v, > A
In an H., setup the induced objective of an agent is to design consumption

and portfolio strategies that will attenuate the effects of all disturbance sequences,

with bounded /; norm, on the Iy gain (2.6). Loosely speaking, when there is little
noise (i.e., the denominator is small), one would like to attain high discounted
utility (i.e., the numerator should be small). When there is a lot noise one cannot
expect to attain high discounted utility. However, one would like to bound the
rate at which utility deteriorates as the !y norm of the disturbances increases.

"This rate is measured by the so called ‘disturbance attenuation parameter’ 7, ,,

which will play a key role in what follows. Note that it would not make sense to

simply consider the numerator in (2.6) as the objective because it is dependent,
through the budget constraint, on the I; norm of the disturbances.
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Note that v,,, is an index of robustness. The greater «,.,, the smaller the
degree of robustness. We will show that in the limit, when agents do not care
at all about robustness (i.e., v,,, — ©0), the H, forecasting formulas coincide
with the RE formulas. We will also show that in equilibrium v, ; cannot be arhi-
trarily small. In fact, part 2 of Problem H consists in determining the maximum
disturbance attenuation rate that can be attained.'?

In order to close the model we assume that the supply of the risky asset is
one, and that of the safe asset is zero. An equilibrium is defined as follows.

Definition 2.1. An equilibrium of an RE (respectively, Ho,) economy is a col-
lection {¢, 47, G5, 75, D5 } such that: (i)given dividend history and prices, the rep-
resentative agent solves Problem RE (respectively, H); and (#i)assets and goods
markets clear: ¢, =1y, ¢, =1, ¢ = 0.

In the remainder of this section we will characterize equilibria in an RE and
an Ho economy. Then we will compare the properties of the forecasting formulas.

2.1. Equilibrium in an RE Economy

The solution to Problem RE is well known (e.g. Lucas (1978)). Here we will
simply emphasize some aspects of the solution where the key differences between
rational expectations and H, lie. This subsection can be skipped without loss of
continuity.

In order to solve Problem RFE a young agent computes the distribution of
next period’s dividends using Bayes law. Since at time ¢ the sequence of past
dividends {y;}%_, belongs to the information set, a young agent forecasts that
Yir1 18 Normally distributed with mean and variance given by

EQyall) = $e1 + dy var(yeall) = Ze + 05y (2.7)

where 2,1 and Z;, are the mean and variance of the unobservable state =,
conditional on information {y;}t_,. They are given by the t"-clements of the

2In a classical statistical setup one could introduce distributional robustness by assuming
that certain parameters of the probability distribution are unknown, and can be drawn from a
large class (e.g. Huber (1981)). In a Bayesian setup one ensures posterior robustness through
sensitivity analysis or with more formal methods, sucl as the use of ‘inherently robust priors,’
or by considering different priors that bhelong to either a class of a given functional form, or
belong to the so called e— contamination class of priors (e.g. Berger (1985)). Note that these
procedures do not guarantee robust stability to ‘any norm-hounded misspecification’ because
the designer is still making strong assumptions about the nature of uncertainty.
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familiar recursion

Tipr = 0+ hyly; — dj — 2]
2
[ 58 a‘.Z.
Ziy = ngg‘*‘gfu'; hj=J—j2
£ = Ji,o: z; = 0. (28)

The intuition is as follows: since transitory disturbances have zero mean, pre-
dicted dividends equal the trend component d;,, plus the expected value of the
unobservable state, conditional on {y;}%_;: #:41. Formula (2.8) shows that #44
is obtained recursively by adding to Z; the innovation [y; — d; — %;] multiplied
by the ‘gain’ ;. Note that h; is decreasing in the variance of the transitory dis-
turbance. In the limit, as cr%j — oo, h; converges to zero. Since all disturbances
are transitory, dividends’ observations convey no information about the persistent
component z;. Thus, they are useless in predicting future dividends.*?

The recursion that generates Iy 1s derived using Bayesian updating in the
following way. Conditional on z;, the observation y; — d; is normally distributed
with mean z; and variance o;. Let the prior distribution of z; be Normal with
mean zj;-1 and variance (;;—1. Using the familiar Bayesian updating formula
we see that the posterior distribution of x; is Normal with mean z;; = z;;_1+
kily; — d;— j;—1], and variance QJL,, = [Q3;_, +0,7]7". The gain is given by the

J J—1
QJ\J 1+0
persistent disturbances have zero mean the prlor of z;1, is Normal with mean

Ty1)j = G550 and variance Q;11); = a;Q,; + o.,;. To obtain the recursion in
(28) Slmply let Tyy1 1= $j+1[j and Zj+] = QJJ,_”J

As is well known, the price of asset 7 satisfies: pi = F, (M e 1) , where

m—cy

familiar ratio of variances %; . 'To derive the next prior note that since

the pricing kernel ﬁ ‘*1 1s the intertemporal marginal rate of substitution, and
mi., is the payoff of asset i at time ¢ 4 1. In equilibrium, asset prices must induce
the representative agent to hold the Supply of each asset and to consume all the
dividends. That is, ¢f = 1, ¢/ = 0, ¢t = y¢ and ¢}, ; = y11. Since the risky asset
pavs y:41 at £+ 1, and the safe asset pays one unit of the consumption good, their

1¥The recursion (2.8) is also the celebrated Kalman filter, which minimizes the mean square

error of the state estimation error among all causal estimators (e.g. Kwakernaak and Sivan
(1972)).
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equilibrinm prices are

Bry1 + diyyr — m] [T Fdepa] + Zop + 02,

o ¢ — m
py) = E [ﬁ—y’“ Yo m} -3 {[
Yo —m

ﬁf‘(yt) = K l@ytﬂ—_Jm ift} = |ii't+1 + dpq — m}
B h—m

Yo —

The second equality in the first row of (2.9) follows from (2.7) and Ei(yf, ) =
Ey(yes1)” + vary(ye1).

2.2. Equilibrium in an H,, Economy

In this subsection we will present the equilibrium of an H,, economy, and discuss
the intuition behind it. To facilitate reading we will present the derivation of the
results in Section 3.

In order to solve Problem H an agent must come up with a forecast of future
dividends (we will denote it by Fi{y.q)). As we shall see, he uses all available
information ({, = {1, ..., 5, 2}, p{}) to derive such an estimate. However, he does
not use the procedure of the previous subsection, in which dividends’ forecasts are
constructed using the underlying probability distributions, and without consider-
ing the portfolio strategy. Since in an H,. economy the agent has no information
about the disturbances, other than they have a bounded I3 norm, his forecasts
and portfolio choices are jointly determined.

As we shall see, equilibrium dividends’ forecasts and portfolio strategies solve
problem (3.2). Interestingly, this problem can be analyzed as a dynamic game
between the agent and nature. In this game the agent forecasts dividends, and

chooses his consumption and portfolio, while nature chooses disturbance sequences.

The solution of this game is the subject of Section 3. The next Proposition sum-
marizes the results.

Proposition 2.2, Let V1 = »\/ﬁ [Zz+1 + 63t+1], where Z,,, is the t*' element
of recursion (2.8). Then

o Ify,,, < Y., there exists no equilibrium.

o ffy,, > Y,. . there exists an equilibrium in which the H,, one-period-ahead
forecast of dividends is

2:‘?4—1 + dt+l —m

fv2 -1 -2 . !
rt+1f8 Oppr1 — 1

FelYer1) = Zypq + dea + (2.10)
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and the estimate of the unobservable state is:

. Zepr + Zyaldig —m] (Vi 670 — UEtH]il

L1 = -1 1
1= Zoyy [vEa 87" — 02

, (2.11)

where &, and Z,.q are the " elements of recursion (2.8). The equilibrium

prices of the risky and safe assets are:

Felver1) —m F —m
Pl 7 gy, ) - gl
e — T Ye — M

Py =8 212)

The proof is in Section 3. Here we simply make some remarks. First, in
an Hoo setup agents arrive at an estimate of the unobservable state x7,; using
a recursion that has the same ‘observer’ form as the one we used in the RE
economy. To see this note that z},, is a linear function of #,,,, which is obtained
recursively by adding to £; a term proportional to the innovation (i.e., &, =
a;jz; + hily; — d; — £5]). The forecast of dividends (Fy{y;.1)) is then obtained by
adding to zf,, the trend coeflicient d,,, and the forecast of the disturbance v;.;.
A non-zero estimate of v, reflects the fact that robust agents take into account
that the disturbance might be highly correlated with the state.

Recall that the parameter v, , is an index of robustness. The lower v, ,, the
greater the degree of robustness (see (2.6)). Note that when agents in an H,,
economy do not care about robustness, their forecasts are equal to the rational
expectations forecasts. That is, if v, , — oo, the H.. one-period-ahead dividend
forecast Fi(y41) coincides with the expected value of dividends in an RFE economy
By (yeq1). To see this take the limit of (2.10) and (2.11) as v,,; — oo to get

lim Fi(ypq1) —diyr = lim z), =4,
g Y1 O
A comparison with (2.7) reveals that lim,, 0o Fi(¥111) = Fi(yee1). This similar-
ity is noteworthy and surprising, given that the problems and induced objectives
are quite different.

The second point we would like to emphasize is that the degree of robustness
that can be attained in equilibrinm cannot be arbitrarily large. Proposition 2.2
says that an equilibrium exists only if v7., > 1?+ .- Since 1§+ =0 [Ze41 + 0244]
it follows that ceteris paribus, the maximum degree of robustness that can be
attained is inversely related to the ‘intensities’ of the transitory disturbance o1,
and of the persistent disturbance o,: (recall that y.; = dip1+ i1t Furivey,
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and Z;11 = ﬁ% + o2,). As it will become clear in Section 3, the reason for
the existence of this lower bound on ;.1 follows from the fact that the value of
the game between the agent and nature is bounded only if v, > Yoir-

Finally, we would like to emphasize that the formal similarities we have noted
hide important differences in the way solutions are derived. In the RF economy
we made forecasts of uncertain variables without reference to the agents’ control
policies. That is, we derived the probability distribution of .., without taking
imnto consideration the agents’ portfolio and consumption policies. This ‘sepa-
ration’ does not hold in an H,, setup. Since disturbance sequences are totally
unknown, forecasts and agents’ control policies must be jointly determined. In

Section 3 we will make clear the nature of this interdependency.

2.3. Trade-off: Robustness vs. Conditional Optimality

In order to illustrate the trade-off involved in using the RE and H,., forecast-
ing formulas, we will do some simulations and compare their performance under
a familiar metric: the mean square error (MSE) of one-period-ahead dividend
forecasts. We will see that if there is no-misspecification, RE forecasting formu-
las generate the lowest MSE, as expected. However, in the presence of a large
misspecification H., formulas generate a lower MSE.

Consider the following counterfactual experiment in which disturbances are
drawn from a specific white noise process. Clearly, if the parameters {denote
them by #) used in the forecasting formulas were equal to the parameters that
characterize the data generating process {denote them by #*¢), then the MSE
of the RF forecasts would be lower than the MSE of the H,, forecasts. This is
because the RE forecasting formulas (2.8) correspond to the Kalman filter, which
in this case minimizes the MSE of the state estimation error. Suppose instead
that M and RE forecasts are constructed using f in the forecasting formulas,
but that the data generating process is characterized by #7*¢ = 8 + Abue The
simulations we perform show that if the misspecification |A*™#| is large, then H.,
forecasts have a lower MSE than RE forecasts.

Panel {a) in Figure 1 considers the case in which the intensity of the persistent
disturbance might be misspecified (o7 = &, + A*™), but RE and H., dividend
forecasts are constructed setting o, = 7, in forecasting formulas (2.8) and (2.10).
As we can see, when there is no misspecification (i.e. A" =0, so that oi7*¢ =
&), the RE forecasts produce a lower MSE than the H,, forecasts. However, if
|A'¢| is big, the MSE of the H.. forecasts is lower that, the MSE of RE forecasts.
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Panels (b) and (¢} show that the same holds true in the case where the intensity
of the observation noise is misspecified (c77*¢ = &,, 4+ A€}, or the autoregressive
parameter is misspecified (a'™¢ = & + A“¢), respectively.

[t is interesting to note that although the M, forecasting formula (2.10) has
been designed to solve Problem H, it has good robustness properties under the
MSE metric.
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Figure 1: Mean Square Error of Dividends’ Forecasts in the Presence of Misspecification

Airue

{a) oltve = 7, + AP
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Note: In panel (a) forecasts are made setting the intensity of persistent shocks equal to &,
while the ‘true’ intensity is e5%¢ = #,,4 A, For each value of A% we generate 100 artificial
dividend sequences. Then for each dividend sequence h we compute the mean square error
of the forecast: MSE,(#,, + A7) =33 (y;1) — F;(y;11))?/100. The H, curve plots the
average MSE for different values of A% : MSE(F,, + A=) =100 MSEL (7, + AT™)/100.
The RE curve is constructed in the same way. In panel (b} we let ai*® = 7, 4 A" and set
olrue = . Lastly in panel {c) we let a’™® = @ 4+ A®™**. For details see the Appendix.




3. Derivation of Equilibrium in an H,, Economy

In this section we convert Problem H into a dynamic game between the agent
and nature, and show how to solve it. We also determine necessary and suffi-
clent conditions for an equilibrium to exist, and derive the equilibrium defined
in Proposition 2.2. On a first pass the reader might wish to skip ahead to the
simulations of Section 4. However, to fully appreciate the intuition behind the
Hoe approach the reader should come back to this section.

In order to simplify notation we will express disturbances, prices and assets’
demands as follows:

wi = (wp,v)  p=0]p)  g=(g.q)

Also, for any sequence {z;}/_ we will often use the following notation: z :=
{27}y and 2" = {z}]; for any n < {. Admissible portfolio strategies can
depend only on available information Iy = {y1, ..., ¥, o[, 2 }. Furthermore, the
quantity demanded of each asset must lie in [0,1]. That is,

q= X(ylw 7yt:lp::p‘fs)

where x : R'"? — [0, 1]%. We will denote by Q the space of such portfolio policies.

In equilibrium the representative agent solves Problem H taking prices as
given, and asset and goods markets clear. Using budget constraints (2.1) and
(2.2) to substitute out ¢, and f, 4, it follows that (2.6) in Problem H is equivalent
to:

1
J(qywip) == L{g, a5 p) + Zj:o g5(w;) <0 (3.1)
where
g e @ =m—y—pl— ¢l +p¢) + 8lm — ¢y — @)
9i(ws) o = =i [wi 40

Since the denominator in (2.6) is positive, for given prices, a portfolio policy
g = x(I;) € Q solves Problem H if and only if J{(g,w;p) < 0 for all nonzero
disturbance sequences w € () that are consistent with information set 7;. Clearly,
this holds if and only if I'(p), defined below, is bounded above by zero:

[(p) = infyco sup,eq J (q,tii;p) <0 (3.2)
subject to  v; = u, 3=1..,1
Tj
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Note that the constraint imposed by dividends’ observations {yj}zzl on dis-

. . _d_ .
turbance sequences is given by the sequence {v; = 33—(;&1 t_1 To see the
vy

ciose link between the existence of a solution to Problem ‘H and the existence of
a saddle-point solution to (3.2), denote by {x*(I;),w*(I})) a stationary point of
J(g,w;p). Then it is straightforward that ['(p) < 0 is necessary for Problem H to
have a solution because J (x(I1),w*(Li);p) > U'(p) for any x(I,) # x*(I;). Thus,
if for ¢* = x*(I;) the supremum in (3.2) is unbounded, there exists a disturbance
sequence for which the ratio in (2.6) is greater than v,,,. Next, I'(p) < 0 is suf-
ficient for Problem H to have a solution becanse ¢ = x*(I) is a portfolio policy
that ensures the ratio in (2.6) is less or equal than v, for all square summable
disturbance sequences (i.e., [(p} = J (x* (L), w*(L);p) < J(x*(L),w;p)).

It follows that an equilibrium exists if and only if there is a price vector
P*(y1, .-, ¥:) that induces the representative agent to demand the available net
supply of assets (i.e., x*(%) = (1,0)), and T'{(p*(y1, ..., 4:)) is bounded. As we
shall see, since J(g,w;p) is an indeterminate quadratic form in w, the value of
the disturbance attenuation parameter v, is the key to whether I'(p* (11, ..., 1))
is bounded. This observation should make clear the convenience of a quadratic
utility.

Note that problem (3.2) can be analyzed as a dynamic game between the
representative agent and nature. In this game the agent chooses his portfolio,
while nature chooses disturbance sequences. Clearly, this is simply an analogy, as
not many of us believe that nature actually cares about our portfolio strategies.
However, this observation has been useful because it has allowed researchers to
solve complicated Ho-control problems using dynamic game theory.

As it stands, problem (3.2) seems quite complicated. First, portfolio strate-
gles can be selected from a very large class of functions (g = x (w1, ..., ¥, 25, 5 ))-
Second, disturbance sequences ({v; }jlé , {w; }jjj) are not restricted to follow any
specific process, and can be highly correlated. Theorem 3.1 below says that we
can break Problem (3.2) into three simple sub-problems. This insight, which we
might call the “H, certainty equivalence principle,” is due to Basar and Bernhard
(1991).

The key point is to assume temporarily that players are acting as if they
knew the state x;.; equals a certain value z. The first sub—problemm find
the maximally malevolent sequence of past disturbances (from the perspective of
objective {3.2)) that are consistent with dividend history {y;}i_; and that bring
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the unobservable state from zq = 0 to a certain value z at time ¢ + 1. The second
sub-problem determines the consumption and portfolio strategies, as well as the
disturbance wyyy under the assumption that the unobservable state x, ., takes the
value z. Lastly, the third sub-problem generates the estimate of the state (x},,)
and the price vector that clears asset markets p*(z; ).

This decomposition can be carried out because the dynamic system we are
considering is Markovian. Recall that the unobservable state satisfies z; 1 = azz;+
owety, and that dividends are 4,1 = diy1 + 211 + Guer1vs11. Loosely speaking,
conditional on ;1) = z, past disturbances {w;}i_, do not affect L{g, y11;p) +
gry1{wigy) in (3.2). Similarly, conditional on z;, = z, the choice of (g,w1)
does not affect Z;zﬂ g;{w;). Therefore, conditional on zy; = #, the first two
subproblems can be solved independently of each other. The third subproblem
uses the value functions associated with the first two sub-problems to generate
the estimate of z,,,.

We proceed by formally stating the three subproblems. In order to define the
first sub-problem we will denote the state’s and dividends’ trajectories generated
by the disturbance subsequence w® := {w;}3_, as follows:

Ts = XS(ws_l)r ys = Ys(w®), s2>1 (3.3)
We can then define the following subsets of €2 {see {2.5))

Qo ={{w} e Y; (W) =y, forallj<s} (3.4)

That is, Q; is the set of disturbance sequences {w;}{"} that are compatible with
observed dividends {y; };_,. Using this notation and (3.2) we can express the first
sub-problem in terms of the following ‘cost-to-come function’

Wiale) = sup vy D00 [w? +od]
{3} —o 6 (3.5)
subject to =z ==z

The only information an agent has about the disturbances {w;}}_, is that they
are square summable sequences, and that they have generated a dividend his-
tory {y;}%_, according to the dynamic system (2.3). Solving problem (3.5) is an
intermediate step that allows the agent to estimate z,,,. It characterizes the dis-
turbance sequences that make (3.1) less likely to hold, given that they bring the
state from zq = 0 to z;,; = 2, and are consistent with dividend history.
Consider now the second sub-problem. In an H,, setup even if an agent knew
the value of the unobservable state z;,7, he would not forecast that dividends
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(y441) will be 2,11 + dyyq. This is because there is no reason to expect that the
disturbance v, will be identically zero. In fact the agent forecasts v,,; jointly
with the choice of his portfolio and consumption. This is formalized by the fol-
lowing problem in which the unobservable state x;.; is again assumed to take the
value z.
Vip(w:p) = inf sup {L(q, m4150) — V2qvia}
T My
subject to Ty = (3.6)

Yop1 = Tel + dip1 + Tprp1tea1

The set of admissible portfolio strategies @, consists of the ‘Markov strategies’
that are conditional on the state z,; being equal to z. That is, ¢ = ¥(z, p) with
% : R? — [0,1]%. The set of admissible strategies for the disturbance V, consists
of the Markov strategies v,y = #(z, ¢) with 7 : R*%[0,1]? — R

Four observations are in order. First, a major simplification relative to the
original problem (3.2) is that strategies are functions of (z,p), not of the entire
history of observations ({y;}_,,p). The name ‘H,, certainty equivalence principle’
derives from the fact that in this sub-problem agents make forecasts, as well as
consumption and portfolio decisions, acting as if the state z,,, takes the value
of z. Second, note that the disturbance v, has access to the realization of g in
order to ensure that the portfolio policy is robust. Third, no hard bound has been
imposed on the disturbance v;1;. As we shall see, if problem {3.6) has a solution,
the disturbance will be bounded in equilibrium. Finally, note that w1 does not
appear in (3.6). Recall that throughout the paper we have set w1 = (0 because
it affects neither ;1 nor 4.

The third sub-problem is to determine the H,, forecast of zyy (call it 2}, ,),
and of dividends g} ;. To solve this sub-problem we will denote the price vector
that clears assets and goods markets’ when .. = z by p*(z) = (pj" (), pi*(z)),
and the value of the “cost-to-go” value function (3.6) evaluated at these prices by
Viii(z). That is,

Vi1 (z) == Vi (z; p* () (3.7)

As the next Theorem states, if it exists, the Ho, estimate of the state is

zi,, € argmax { Vi (z) + Wiy ()} (3.8)

Y Markov strategies are also known as feedback strategies. These strategies are closed-loop
strategies in which history matters only through its effect on the current state. See Basar and
Olsder {1995).
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Replacing 7}, in the policies that solve (3.6) we will obtain the price vector that
clears assets and goods markets, and the H,, forecasts of dividends

}}(?JH-l) = ‘r:-f-l + dig1 + U‘ut+1v*(3’3:+1)~ (3-9)

The following Theorem provides necessary and sufficient conditions for an equi-
librium to exist, and states that if an equilibrium exists, it can be constructed
using the algorithm we have just described.

Theorem 3.1. Consider an economy in which disturbances satisfy (2.5), the rep-
resentative agent observes (y1,..., 4, 05, pf), and his objective is (2.6). Then, for
a given degree of robustness v, :

i.  There exists an equilibrium if and only if there are bounded functions Vi1 (z)
and W1 (z), given by (3.6) and (3.5), which satisfy

sup A(z) = sup {Vig1(z) + Wepa(z)} < (3.10)

ii. (Certainty Equivalence) If (3.10) holds and A{z) is strictly concave, there
exists a unique Markov perfect equilibrium. Consumption {c}), asset de-
mands (g7, ¢7*) and forecasted dividends F,(y,,1) are jointly determined by
the solution to problem (8.6} taking the state to be xj , = argmax A(z).
Fquilibrium asset prices are such that ¢f =y, ¢f* =1 and ¢* = 0.

This Theorem implies that one can determine whether an equilibrium exists
by considering only Markov strategies (i.e., strategies that only depend on the
estimate of the state z,.,, and prices). If a Markov perfect equilibrium (MPE)
of the game between the agent and nature does not exist, then there exists no
other closed-loop equilibrium in which portfolio and disturbance strategies are
more complicated functions of history {y;}’..,. Note, however that this Theorem
does not say that there is a unique closed-loop equilibrium. If an MPE exists,
there might exist other equilibria in which strategies have the same open-loop
representation as the Markov strategies.?

In order to verify the conditions stated in Theorem 3.1, and obtain a closed-
form formula for the dividend’s forecast and for asset prices we need to derive
in closed form the value functions Wi () and Vi 1(z). We will proceed by first
deriving these functions, and then applying part (i) of the Theorem to derive the
formulas stated in Proposition 2.2. As we shall see, existence condition (3.10)

holds if and only if the disturbance attennation parameter satisfies: v,,, > AT

151n this footnote we make a brief detour and explain why the name He. is used. Let Gy bea

linear operator that maps an input sequence {w; }H'%] to a certain ohjective under control policy

7=
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3.1. Derivation of the Cost-to-Come Value Function W, (z)

We will derive W, (z) by representing (3.5) as a recursive problem. In order to
do this let Q,(z|y*) be the set of admissible disturbance sequences that bring the

state to level z at time s+ 1, and that are consistent with dividend history {y;}3_,

Qu(zly’) ={we Q |z =X (N}, se{l,..t} (3.11)
Analogously to {3.5) we can then define the cost-to-come value function, condi-

tional on information up to time s as

k]

Weii(z) = sup —’ny Z [wjg + U?] ) seA{l,..,t} (3.12)

wseN (z|y®) =0

If (3.12) has a finite solution, it satisfies the following forward dynamic programing
equation

ax {Ws(@ - ’T%H [w? + UQ]}

(&ywyv)
Wipilz) = oot g G T s€{l,..,t} (3.13)
5SubD] O y5:€+ds+avsv
Wilz) = — 2T

Note that (£, w,v) corresponds to (x5, ws, vs) and that z corresponds to z,y ;.

Forward dynamic programing problems are solved in a similar way to standard
backward DP problems. The difference is that they are solved starting at initial
time, not terminal time. To solve problem (3.13} we need to find a closed form
solution for the value function Wy, (z). Since Ws.q(z) is the supremum of a
quadratic function subject to an affine constraint, it is quadratic in z. The next
Lemma, which is proved in the Appendix, provides the solution.

x. The H,, induced norm of the operator G, is then defined as

| Gy “2|'0,c+1
|Gy lloe= sup X0
wEls (0,0 1) w720 H w ]|2[03t+1]

where || w [lajg,¢+1) is the lz—norm of the sequence w. If we Iet the numerator be equal to the
first two terms in J(x({I;},w;p) in {3.1), we can restate Problem H as finding portfolio policies
that achieve || Gyw [loo< 7, and finding y = infy g || G |0 -
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Lemma 3.2 (Cost-to-Come Value Function). For any v,,, > 0 the solution
to (3.13) is

Weit(z) = —[2 — 3,01 P Kyp1 + lorr, sed{l,.,t}  (314)

where ls.1 is independent of z, and (K,y1,%s1) satisfy the recursion: K; =
V2 1Ous, 1 =0, and for s € {1, ..., t}

s
1 + g%shf’t_fle

ji'.sa-i—l - asis + [ys - ds - js]

2

-1
a . : _
Koy = {Fs ~+ fy;flcris} ) with P, = ’*,ff’ﬂavf + K (3.15)

Notice the similarity between recursion (3.15) and filtering formula (2.8) that
we used in the AE economy.

3.2. Derivation of the Cost-to-Go Value Function V,_ (z)

We can think of problem (3.6) as a zero-sum game between the agent and nature
in which the agent chooses ¢f and g;, while nature chooses the disturbance v, ;.
In this game the state (x:.) = x) is perfectly observed by both players, and nature
has access to g} and ¢;. In a Markov perfect equilibrium of this game the strategies
satisfy:

[m—g{der—gie—gflgfovis1  :p 2 2 2

’5;_1 (:E,q;p) = gt 8T if fory = 4 Tui+1 (3.16)
s otherwise
r YA L LE¥ 8 + m — = 8% *
g = [y +p7 —m X pf,]* g {2 X195 () (3.17)
D+ .Byt+1 (z)

. s_ +r_m_~f*r+6m_,~r*,* T

w(zp) = o5 [y + o} X;S;t], ﬁ [ Xt yt+1( )} (3.18)
t T

For any given value of x4 (say z), equilibrivm prices p*(z) induce the rep-
resentative agent to set ¥7"{z,p*(x)) = 1 and %{*(z,p*(z)) = 0. Tt follows from
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(3.16) that at equilibrium prices the disturbance is v}, , (z) — [mrdsi-gowe e

”3:+1_571'ﬁ.+1
placing this in (3.6) we have that at equilibrium prices the cost-to-go value function

Vira{z; p" (), pi*(z)) is equal to
—dt —z|? 2.
Vi1 () = { {mf+] +[m—y]” if '}’t2+1 > ﬁo’it-}-l

Gt —T:+1“12;t+1.
o0 otherwise

(3.19)

A key point to notice is that the kernel in (3.6) is an indefinite gquadratic
form in v,;. Depending on the value of v, ,, it might or might not be concave
in v¢y3. This indefiniteness is key in pinning down the best performance AT If
the condition on +,,, specified in (3.16) is not satisfied, then in equilibrium the
kernel of (3.6) is not concave in v;,1, and Problem H has no solution. Since at
equilibrium prices ¢;* = 1 and ¢;* = 0, it follows from (3.16) that a necessary
condition for the H., disturbance v}, and the value function Viii(z) to be
bounded in equilibrium is that 73, > Fo?,_ ..

3.3. Derivation of z},, and Proof of Proposition 2.2

The first two sub-problems were solved under the assumption that the state z,.,
had a particular value z. The value functions associated with these sub-problems
are Viyi(z) and Wy 1(z). The third sub-problem is to obtain an estimate of x, 4.
Theorem (3.1) says that z}f , = argmax {Vi11(z) + Wip1(z)} . Using (3.14) and
(3.19} we have that

1.2 -
m*dt-&-l_‘[ﬁ "'?H_]_U—%t_kl]Kt-l-lzt«}-l lf "';"2 -~ 72 R g%til
; 1.2 ¢ = T oo
33:+1 = 1—[f3 1_’Tt+1"it+1]Kf-+1 7L B K (3.20)

: 2
. it <22,

Note that [Viyy(z) + Wii(x)] is concave in z if and only if Kepq > [37! —
Y024l Recall that the function Viyi(z) is bounded if and only if 2., >
fo?, 1. Since this last condition is implied by the concavity of [V, (z) + Wiy (z)],
it follows that 27, , is finite if and only if 72.; > 77, ..

Note that the expression for z7 , in (3.20) has different terms than (2.11)
in Proposition 2.2. The former contains (K1, %;,1), while the latter contains

(Zey1,Ze+1). In order to show that (3.20} and (2.11) are indeed identical simply

make the substitution Z; := +{ K in recursion (3.13) and in (3.20). It is
02

straightforward to verify that £, = &, for all s € {1,...,t} and that v2_, > #

141

is equivalent to v#,, > O[Zi1 + 02y, 4]
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Next, we verify that vZ,; > 1;24-1 ensures that the value functions Vi, ()
and Wii(2) are bounded. We show in the proof of Lemma 3.2 that for all
Vi1 > 0 the value function Wiyq{x) is bounded and that K, > 0. To show that
Vie1{z) is bounded if ~7,, > l-irz note that Z,; = ~+7,, K, > 0. Thus, 1$+1 =
8 Zis1 + 0%yy| > Bo?,,,. Since Viry () is bounded if and only if 42, > 802,
the result follows.

Equilibrium prices are determined by substituting zf,; in (3.17) and (3.18)
and imposing asset market clearing. That is, equilibrium prices are such that
Xe (@i, pt(2) ) = 1 and x* (27, p*(zf 1)) = 0. This system of equations has
a unique solution given by (2.12) in Proposition 2.2. Dividends’ forecast in (2.10)
are obtained by replacing {3.20) and v ,(z) = Im_dior _slavs jy (2.3).

Tor— BT Ve
Summing up, we have shown that for every ~#, > ﬁﬂ there is a unique
Markov price vector p*(x;, ), such that ¥{"(z;, ), p* (27, 1)) = Land ¥{* (271, p*(214)) =

0 solve Problem H. Furthermore, given market clearing, the condition v7,, > zf+ )

is necessary and sufficient for the disturbance sequence {w;, 'UJ};;(L) to be square
summable. This completes the proof of Proposition 2.2.

4. Asset Pricing Puzzles

In this Section we simulate dividend data by drawing shocks from a random
number generator, and constructing artificial RE and ., price sequences. We
then verify whether these price sequences exhibit predictability of excess returns,
excess volatility, and a high equity premium while maintaining a low risk-free
interest rate. Lastly, instead of using simulated dividends, we feed the RFE and
M price formulae with historical US dividend data, and analyze how well they
track the actual US stock market.1®

Throughout this section we will assume that the data gemerating process is
given by (2.3), that the disturbances {v;};t, {v;}}E) are i.i.d. N(0,1), and that
the parameters of the data generating process (a,d,o,,0,) are constant. We

% As we mentioned in the Introduction, these anomalies can be rationalized without invoking
H o forecasting. For instance, Campbell and Cochrane (1999) reproduce the above-mentioned
puzzles by adding an external time-varying habit to the standard power utility function. Bar-
beris, et. al. (1999} consider preferences that are dependent on prior cutcomes, and that are
more sensitive to reductions in wealth than to increases. Constantimides and Duffie (1996), and
Heaton and Lucas (1996) consider the case of market incompletness, while Timmerman (1996)
considers a lerning setup.
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set them equal to their maximum likelihood estimates associated with US stock
market data for the period 1871-1997 (see (6.6)). We then construct sequences
of forecasts and prices using formulas (2.9) and (2.12} setting the discount factor
& = 0.95, and the disturbance attenuation parameter equal to a constant v > Y.

Lastly, we choose the value of the utility function’s parameter m so that the
average simulated risk-free rate in our RE economy equals the average 4-6 month
commercial paper rate over the period 1871-1997. The details are in the Appendix.

4.1. Predictability of Excess Returns

A finding in the empirical macroeconomics literature is that stock returns can
be predicted using past information. Several researchers have regressed excess
returns, over various horizons, onto past ratios of dividends or earnings to prices.
They have found that the estimates of the coeflicients corresponding to these
ratlos are significantly different from zero at the usual significance levels (see, for
instance Fama and French (1988)). In our simulations we consider the following
regression equation

Pry1 = Cp + aly‘f? + U1 (4.1)
t

where excess retwrns (p,,,) and the safe return (1 + ) are given by

_ Y — [+ rlpt
Py = . t: 1+Tf:_s

j oA o

(42)

Using the simulated dividend sequences we construct 100 sequences of prices and
excess returns. We then regress excess returns onto the past ratio of dividends
to prices. The regressions that correspond to rational expectations are based on
price formulas (2.9), while those that correspond to H., are based on (2.12).

Table 1 reports the simulation results. We find that using the RE price se-
quences the estimated coefficient ¢&; is different from zero, at the 1% significance
level, in only 6% of the regressions. The average t—statistic across the 100 regres-
sions is only 0.77, while the ¢{—statistic of the regression that uses actual US data
is 3.71.

The regression results using M., forecasts with a disturbance attenuation pa-
rameter v = oo are similar to those reported for the rational expectations case.
"This should come as no surprise, given the equivalence of the RFE and the H, fore-
casting formulae when v = oo. Note, however, that when -y is set at a sufliciently
low level (say v = 0.5), the proportion of cases in which ¢ is significant increases
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to 80%, and the average R? is 40%. Recall that « cannot be set arbitrarily small.
Proposition 2.2 states that its infimum is given by Yorq = [Zera + o2]3 = 0.32. If
7<7 (o A0 equilibrium does not exist.
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Table 1
Predictability of Excess Returns
Regression: pppq = g + 01% + e g1

=033 | ~v=035 v =108 y=17 ¥=o0
% of | 98 80 43 22 6
cages
is  signif-
icant at
the 1%
level
average 59.48 32,71 3.29 0.89 0.77
t{d)
average 0.78 0.40 0.15 0.05 0.04
R2

Note: All variables are in levels. Excess returns are defined as ppyq = (’i‘“"#;]—“) where

1

7§ = ;7 — 1. We generate 100 dividend series of 100 periods each. The parameters of the data

Py

generating process {a,d,oy,0,) are set equal to their maximum likelihood estimate given in the
Appendix. For each -~y in the table, we constrict sequences of prices and excess returns setting
A =10.95 and m = 0.944877. Thig value of m makes the RE risk free rate equal to the average
risk free rate in the US data (2.4%). We then perform 100 regressions. In each regression, we
discarded the first 20 observations to minimize the effect of initial values. The first row in the
table reports the percentage of cases in which the estimated o is different from 0 at the 1%
significance level. The second row reports the average t statistic across regressions. The third
row reports the average R?. For the RE case, we follow the same procedure using the RE price
formulae. In the last column, we report the results of a regression that uses US data for the
period 1871 — 1997. Data sources are in the Appendix.
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4.2. Excess Volatility

LeRoy and Porter (1981) and Shiller (1981) have shown that stock prices are
too volatile to be generated by rational expectations forecasts with a constant
discount factor. They compare the variance of actual prices with the variance
of the price sequences that would prevail if the discount factor were constant
and agents had perfect knowledge of future dividends {denote it by 5,). Since a
rational expectations forecast cannot have a greater variance than the quantity it
is forecasting, var(p[®) < var(p,).

Several researchers have found that the variance of actual stock prices in the
U.S. has been several times greater than var(g,). This violation of variance bounds,
18 not a rejection of the hypothesis of efficient markets, as it can be caused by the
existence of time varying discount factors, learning, etc. The simulations of this
subsection show that, if the disturbance attenuation parameter v is low enough,
H. prices violate the variance bounds (i.e., var(p!) > var(p:)).

Table 2 reports the results of our simulations. The data generating process is
the same as the one in the previous subsection. Again, we generate 100 dividend
sequences. Then, for each value of 4 shown in the table, we construct 100 price
sequences using formula (2.12), and compute the mean variance o%(p?). We also
compute 100 sequences of ‘Shiller prices,” under the assumption that agents have
perfect knowledge of next period’s dividends, by substituting w4 for Fi{1p.1) in
(2.12). The mean variance of these price sequences is denoted by ¢*(p) in the

table. For the rational expectations column we use price formula (2.9).
o* (p"%)
a2{pe)
smaller than the ratio generated by US data: 1.15 versus 3.26. Furthermore,
in all simulations ¢*(p"™®) < ¢*(f;) as found by Shiller (1981) and several other
researchers. Similar results obtain when we use the H. pricing formula with

v = oo (L.e., agents do nat care about robustness). However, as yis reduced, the
ratio Z (p ! increases monotonically. For v = 0.5, the average variance ratio equals

2.24. Furthermore for v+ = 0.33 this ratio is 8. 87 and the proportion of cases in
which o?(p") > 402(p;) equals 90%.

As expected, under rational expectations, the variance ratio ( ) 1s much

31




Table 2
Excess Volatility of Stock Prices

v=033 | y=036|~+=05|vy=08| y=0c0! RE | U.S. data
a(p) /o (D) 8.87 3.32 2.24 1.47 115 | 115 326
% of cases o (p) > o*(P) 98 76 52 28 5 5 N/A
% of cases o%(p) > 202 (P) 96 39 14 5 4 4 N/A
% of cases o2(p) > 37°(P) 93 23 7 4 4 4 N/A
% of cases o2(p) > 407 (f) a0 15 5 4 3 3 N/A
% of cases o (p) > b (p) 89 12 4 3 0 | 0 N/A

Note: For each y shown in the Table we construct 100 price sequences following the same proce-
100 Y _5rya
dure as in Table 1. For each price sequence, we compute the variance as 62(p?) = &‘(gpsi.

100
For each ~, we report the mean variance: o%(pY) = ZE# We compute the variance of
“Shiller’s prices® %(7") using the same procedure, but substituting .1 for Fi(p+1) in the
price formula. For the RE case, we follow the same procedure using the RE price formula.
The first row reports the ratio of the mean variance of prices to the mean variance of “Shiller's
prices”. The second row reports the percentage of cases that the mean variance of prices ex-
ceed 2 times the mean variance of “Shiller’s prices”, and so on. The last column is constructed
using actual US data; o2(p**!) is the variance of US stock prices for the period 1871 — 1997;
o2(F) is the variance of the series §, = 3 '—:%{:‘::Iyﬁtf“l. We discard the first 20 observations

to minimize the effect of initial values.
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4.3. The Equity Premium Puzzle

Historically, the average excess return on US stocks over short-term debt has been
around 6% per year. The ‘equity premium puzzle’ of Mehra and Prescott (1985)
is that, in a standard time-additive power utility model, an equity premium of
6% is consistent with the highly smooth U.S. consumption sequences only if the
coeflicient of relative risk aversion is unreasonably large. The associated ‘risk-free
rate puzzle’ is that, in the standard model, the risk-free rate has to be very large
in order to generate observed equity premia.

Table 3 reports the results of our simulations. The data generating process
is the same as the one in previous subsections. Again, we generate 100 dividend
sequences. For each value of v shown in Table 3, we construct 100 price sequences
using formula (2.12). Then, we compute 100 sequences of risk free rates ¥ = 131? —1,

R 2
ry
rational expectations case we follow the same procedure using (2.9) instead of

(2.12).

In Table 3 we report, for each v, the average equity premium (v — 7*) and the
average risk free rate ¥. As we explained before, we chose m so that, in the rational
expectations case, the simulated average risk-free interest rate equals the average
interest rate on commercial paper over the period 1871-1997. As expected, in the
RE case the equity premium is much smaller than the one observed in the data:
1.17% versus 5.75%. In the H., case the average equity premium is also very
small if agents do not care about robustness (i.e.,, v = oo). However, the equity
premium Increases as v falls. For the case v = 0.5 it attains a value of 5.9%, while
maintaining a low risk-free interest rate.

of rates of return on equity r, = , and of equity premia (r; — rf). In the
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Table 3
Equity Premium and Risk Free Interest Rate
J 4=033 | y=05]y=08[~v=17]y=0c| RE | US.data
| (r—r*) *100% 6.17 5.90 3.29 2.83 117 | 1.17 5.75
| r* = 100% 0.16 1.49 2.06 2.34 2.40 2.40 2.40

Note: For each -« shown in the table we construct 100 price sequences using the same procedure
as in Table 1, Then, for each value of -y shown in the table, we construct 100 sequences of risk
free rates rf = (z%; ~-1) and 100 sequences of rates of return on equity (¥2-P2). For each -y, we
report in the first row the average equity premium (r — ) * 100%. For the RE case, we follow
the same procedure using the RE price formulae. For the last column, we use actual TS data
for the period 1871-1997, and we use the following formuta; rgctual = (Bt1dDelt PO PGy
where PC, is the consumption deflator series and rf is the real interest rate on 4 — 6 month
commercial paper.
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4.4. Tracking the US Stock Market

In this subsection we feed the RE and H. price formulae with historical US
dividend data, and analyze how well they track the actual US stock market over
the period 1871-1996.

The solid line in Figure 2 plots the actual US stock price. The dotted line corre-
sponds to the price sequence that would have been observed if prices were obtained
using the H,, formula (2.12) setting v = 0.33. The broken line corresponds to the
rational expectations price formula (2.9). We construct the RE and H,, price
sequences by feeding formulas (2.9) and (2.12), respectively, with past observed
dividends in the U.S. stock market. We set the parameters (¢, d, 0,0, 53, m)
equal to the values they take in Tables 1-3.

Panel (a} in Figure 2 plots the price sequences for the period 1871-1996, while
panel (b) plots prices for the sub-period 1975-1996. As can be seen, the H,, price
sequence tracks the actual S&P500 index better than the RFE price sequence.
Figure 3 makes this point clear. It plots the mean square difference between the
S&P 500 index and H,. prices for different values of v > v = 0.32 over the period
1871-1996. The MSE is minimized at v = 0.33, which is the value used in Figure
2.
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Figure 2: Tracking the US Stock Market
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Note: The H™ prices and RE prices are generated using actual real US dividends. The initial
point of the forecast is 1872. We set the initial simulated price for RE and H™ equal to the
actual stock price in 1871. The parameters used in producing the forecasts are the same we
used in Table 1, 2 and 3. See the Appendix for details.
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Figure 3: How Well do #™ Prices Track the US Stock Market(1871 — 1996)7
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Note: For each value of +, we produce H™ prices for the period 1871 — 1996 with actual US

real dividends using the same methodology as in the previous Figure. Then we plot, for each
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for each 7.
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4.5. Sensitivity of Forecasts to News and the Behavioral Literature

The ability of H,, prices to generate anomalies exhibited by U.S. macroeconomic
data reflects the fact that, in our exchange economy, H.., forecasts are more sensi-
tive to dividend news than RE forecasts. Furthermore, this sensitivity is greater,
the greater is the degree of robustness (i.e., the smaller is the disturbance atten-
uation parameter ).

The link between sensitivity to news and the degree of robustness can be
appreciated in the impulse response functions of Figure 4. This Figure depicts,
for different values of -+, the evolution of the one-period-ahead dividend forecast
Fe—1(y:) in response to a persistent shock at time 0. As can be seen, at all time
horizons the forecasts’ response corresponding to v = 0.7 are greater than those
for v = 0.9, which in turn are greater than the RFE forecasts (i.e., v = o).

In what follows we would like to link the excess sensitivity of H,, forecasts
to the behavioral literature. This literature has rationalized a number of anoma-
lies by postulating that agents are boundedly rational. That is, although agents
optimize an objective function and filter information using Bayes law, they mis-
percewe the true model of the economy. An appealing feature of this literature
1s that it considers misperceptions that reflect regularities established by psycho-
logical experiments (e. g. Kahneman and Tversky (1972).17

For instance, in order to rationalize excess volatility and long-term reversals,
researchers have assumed that agents misperceive shocks as being more persis-
tent than what they actually are. As a result, their forecasts are more sensitive
to news than rational expectations’ forecasts (i.e., they overreact). This behav-
loral assumption captures psychological regularities such as overconfidence and
assoctativeness.'®

The point we want to make is that, in a simple asset pricing model, excess
sensitivity to news can result from either: (a)misperception of the duration of
shocks in a behavioral setup, or (b)from a desire for robustness in an Ho, setup. To
illustrate this point consider the model of Daniel, Hirshleifer and Subrahmanyam
(1998, henceforth DHS). In DHS agents are overconfident about the precision of
their private signals. After observing a signal agents estimate, using Bayes law,

17See Barberis, et.al. (1998), Cecchetti, et. al. (1997), Daniel, et al. (1998), and Mullainathan
(1999).

¥ Overconfident agents view themselves as more able to value assets than what they actually
are, so that they underestimate their forecast error variane. Associativeness implies that a signal
affects beliefs not only through the information it conveys, but also through the memories it
evokes.
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the unobservable state that will determine the payoff of the asset at terminal time
(call it ). The price at time ¢ is the estimate of z at time ¢.1

To see the link between our setup and that of DHS note that in their setup
agents observe a sequence of signals and estimate the unobservable state, which is
a constant. Using our notation this is equivalent to 4 = =+ o,v; (see (2.3)), where
x ~ N(0,0,) and v, ~ N(0,1). It follows that their overconfidence assumption is
equivalent to a situation in which agents perceive the noise-to-signal ratio {7 = 362%‘)

to be lower than what it actually is (1.e., i < n := g—.f) Consider now an economy
like the one of subsection 2.1, but where agents are ‘overconfident (le, A <n) It
then follows from the RE forecasting formulae {(2.8) that the gain will be greater
(i.e., h{f1) > h(n)), and there will be excess sensitivity to news.” To complete the
analogy, recall that the H,, dividend forecasts are decreasing in the disturbance
attenuation parameter -, and that they are equal to the RE forecast if v — oc.

Consequently, we can suggest that greater sensitivity to news reflects either
greater robustness in an H., setup, or missperception in a behavioral setup. A
key difference is that in an H,, setup agents use the same ‘nominal’ model as
RE agents, while in a behavioral setup agents use a different nominal model (i.e.,
A # n).

We would like to point out that the positive relationship between the degree of
robustness and sensitivity to news is not an inherent property of H,., forecasts. It
should be clear, from the derivation in Section 3, that H.., forecasting formmlas are
jointly determined with the portfolio stratecy, and are dependent on the agent’s
preferences and budget constraints. Thus, one could obtain different response
patterns by changing the economic environment in suitable ways.

Finally, note that there are several other asset pricing anomalies that we have
not considered. Our purpose has been simply to illustrate how the robust approach
can help explain some anomalies. In this respect, a promising direction for future
research is to consider environments in which the H,, approach generates richer

YOverreaction to news occurs in other papers for similar reasons. In Mullamathan (1999)
current events evoke memories. This reduces the noise-to-signal ratio perceived by agents. In
Barberis, et. al. {1998) overconfidence comes about because, after observing several signals
pointing in the same direction, an agent beleives that earnings follow a steady trend, while they
actually follow a random walk.

M For concreteness, consider the forecast of s and assume that @ < n. In an RE economy
an agent forms his one-period ahead dividend forecast (i.e., 2) using the filter {2.8). Since the
expected value of vy 1s zero, his forecast Is: 72(ft) = #2(R) = 1151 Clearly, since the perceived
noise-to-signal ratio is smaller than the true one (%2 << n), it follows that () > Fa{n).
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price dynamics.?!

“1Daniel, et. al. (1998} present an extensive survey of asset pricing anomalies. A prominent
anomaly, present mainly in cross-sections, is the short-term momentum and long-term reversals
of returns (i.e., the underreaction-overreaction anomaly}. That is, a positive autocorrelation
of returns over horizons shorter than 12 months, and a negative autocorrelation over longer
horizons. DHS generate this pattern by assuming that overconfidence increases over time. This
generates a response of forecast to news that increases over time (i.e., undereaction relative to the
future). In our setup this corresponds to a reduction of the disturbance attenuation parameter
over time. Barberis et. al. (1998) assume that after observing several signals that point in the
same direction that agents switch their perception about the data generating process from mean
reverting to a steady trend. However, the true process is a random walk.
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Figure 4: Impulse Response of Dividend Forecasts
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Note: Each curve shows the change in the one-period-ahead dividend forecast in response to
a persistent shock to dividends at date 0 (i.e. 31 = gpwg = 1).
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5. Conclusions

The signal-extraction problem cuts across several fields in economics. Typically,
an agent has available a sequence of observations and tries to untangle the ‘per-
sistent’ and ‘transitory’ components (e.g., Muth (1960)), or he might want to
separate the ‘fundamental’ and ‘noisy’ components (e.g. Lucas (1973)). This
problem has been tackled by postulating that observations are generated by se-
quences of disturbances that follow a well specified stochastic process and that
agents either know this process or can learn it. Furthermore, if disturbances are
i.i.d. Normal with known variances, one applies the familiar Bayesian updating
formula that weights innovations in accordance to the variances of persistent and
transitory disturbances.

In macroeconomics there are several instances where agents seem to form ex-
pectations in ways that are not consistent with the predictions of models that
combine Bayves law with standard time-additive preferences. This has lead some
researchers to consider boundedly rational agents that act as i#f they confuse the
transitory and persistent components of a given sequence of observations. These
agents form their expectations applying Bayes law but using the wrong ‘nominal’
model. That is, they use the wrong ratio of variances when applying the famil-
iar Bayesian updating formula referred to above. This small deviation from full
rationality has proven to be quite useful in rationalizing several anomalies.

In this paper we have shown that forecasting formulas that feature excess
sensitivity to news can be obtained in a setup where agents have the same nom-
inal model as rational expectations (RE) agents, but fear misspecification. The
straightjacket of optimal estimation imposed by RE models is not loosened; it is
simply replaced by another straightjacket. Robust agents estimate unobservable
variables using all available information. However; to derive the optimal strate-
gies, instead of working with probability distributions one works with a dynamic
game between the agent and nature. This is because the assumption that uncer-
tainty can be modelled in terms of probability distributions is eliminated. Instead,
‘Hoo-control models uncertainty as totally unknown sequences of distirbances. Of
course, not anything goes, as these sequences must be square summable.

We have combined this description of uncertainty with a simple Lucas type
exchange economy. Forecasts of dividends in this economy exhibit excess sensi-
tivity to news, relative to RE forecasts. As a result, if the degree of robustness is
high, equilibrium prices are more volatile than dividends, returns are predictable,
and the equity premium is large, while keeping a low risk-free interest rate.
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There are still many open questions. What determines the degree of robustness
chosen by agents? How do agents learn through time? What are sensible ways to
extend the model in order to rationalize other anomalies? This paper is just one
example of the potential of robust control to address economic problems.

6. Appendix

Proof of Theorem 3.1. An equilibrium exists if and only if there exists a price
vector such that Problem H has a solution, and asset and goods markets clear.
We have shown that Problem H has a solution if and only if the value function
associated with {3.2) is bounded. In what follows we will determine the conditions
under which this is true at equilibrium prices. Using the definition of €2, in (3.4}
we can rewrite (3.2) as

£+1
f— < O -1
L'(p) i?gff};),{ @ Y415 D +Zgg(w3 } < (6.1)
Let p(y) be an equilibrium price vector given dividend history {y;}:_, := y. Since
the supplies of risky and safe assets are 0 and 1, respectively, it follows from (6.1)
that at equilibrium prices Problem H has a solution only if

I'(H(y)) = sup {L(laoaym;ﬁ(y)) + Zgj(wj)} < 00 (6.2)

weEy G0

The dynamic system (2.3} followed by dividends implies that past disturbances
{w;}ip affect g1 only through @, 1. Thus, conditional on @4 = @ : (1) L{g, yey1, p)+

gt+1{wis1) Is independent of {w; }_,, and (ii) p¥ =0 9ilw;) is independent of (g, wy41).
Thus, if I'(5(y)) is finite, we can carry out the following expansion of (6.2):

4
[(p(y)} = max max max {L(l, 0, Y15 P) + Grp1 (wesy) + Zgj(wj)}

T (ﬁ Ev,;) (-’.U't’ Ele.’I:H_I :ﬂ:) j*[]

i eV, wt tﬂf, Eg F1==T

- max {m (DL 0,314 8) + g0} + _max Zg;, 4 }
= mmax{ﬂﬂ(:c) + W (z)} = mf.xA(x) (6.3)

The functions Wi.1(x) and Viy1(z)} are defined in (3.14) and (3.19), respectively.
Recall that the set V., of admissible strategies for v, consists of functions of
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(z,q,p),see (3.6). The set £, defined in (3.4), consists of all disturbance sequences
that belong to the set {1 and that are consistent with dividend history {3;}"_,.

The ‘only if’” in part (i) of Theorem 3.1 follows from the fact that I'(f)<oo if
and only if V,.\(z} and Wi (x) are bounded, and A(z) is concave. Hence, if one
of these conditions does not hold, there exists no price vector such that Problem
‘H has a solution with ¢ = (1,0). Thus, an equilibrium does not exist.

To prove part (ii) and the ‘if” in part (i), it suffices to show that there is a
unique = and a unique Markov price vector (p*(z*)} that induce ¢* = (1,0).
Since I'(p*) is finite {(because part i of Theorem 3.1 holds), we can carry out the
following expansion of (6.1):

i
L(p) = max min max ~ max {L(q, Y13 ) + graa(wrar) + ; gj(wj)}

(6.4)
Fix 234, = z and recall that v, .1 = 2411 + 1t (by (2.3)). Conditional on
Tty = ¥, the problem mingeo, maxsey, { L{q, Yir1,P)+ Gro1(wir1)} can be ana-
lyzed as a standard zero-sum game in which the state is perfectly observed. To
determine whether a solution exits recall that w;.; = 0, and note that the kernel
is an indefinite quadratic form in v.y;, and that it is strictly convex in q. It fol-
lows that for a given pair (z,p) there is a solution if and only if L(q,y;,1(2), p)+
9:+1(0, v¢41) Is concave in vyq. This is the case if and only if vZ,, > B¢/%02, . If
this condition holds, the solution is unmique and given by (3.16)-(3.18).

To derive the H estimate of the terminal state (z*) denote by p*(z) the
price vector that equilibrates asset markets, conditional on x,,, = x. This price
vector is uniquely determined by ¥7*(z,p*(z)) = 1 and %{*{z,p*(z)) = 0, where
asset demands are given by (3.17) and (3.18). Substitute ¢*(p*(z)) = (0,1) and
*(z,p*(2),(1,0)) In (6.4) and use (3.14) to obtain I'{p*(z)) = max,{Viy(z)+
Wipa{z)} = max, A(z). Note that #*(z,p*(z),(1,0)) is bounded and unique if
and only if v7,, > Bo%,,,. This condition is implied by part (i) of Theorem 3.1.
To see this note that A{x) is concave if and only if 47, > ﬁ+l = Blod 1+ Zyyal,
and Ziyyq > 0 (see the proof of Lemma 3.2). The next step is to note that (6.4)
implies that z* € arg max A(z).

Lastly, if A(z) is strictly concave, there is a unique MPE because there is a
unique pair (z*, p*(z*)) that clears assets and goods markets (i.e., ¢* = (1,0) and
¢f = y:). The Markov equilibrium price vector p*{z*) is given by (2.12), and the
associated forecasted dividends are yj , = @* +dgyy Fonvy, (27, p*(27), (1,0)).0

Proof of Lemma (3.2}, Since W, (2} is the supremum of a quadratic
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function under an affine constraint, it must be quadratic in z if a maximum
exists. That is, it must be of the form W, (z) = — K, 1]z — #,41]* + ls11, where
K1, #4471 and [y, are undetermined coefficients. To derive Wj(x) note that
there is no observation yg. Since the state satisfies ;1 = a1 + oy, and Ty = 0
(by (2.3)), we have that &y = oqwq. Thus, for s = 0 Problem (3.12) becomes

Wi(z) = max—v7 [wg +v3] st 2= o
wo

The solution to this problem is w§ = zo,j, and v5 = 0. Therefore, Wi(z) =
—z?~?_ 0,5 This implies that @1 = 0 and K} = v2,,0,0.

Replacing W11 (z) = —Ks1z — $541)° + {41 1n (3.13) and regrouping terms
we have that, for s > 1, W,.1(z) is the solution to the problem

Weale) =ma{ =P + Ataoii + Kaple -l +0}
subject to a,§ +oyw =1 '

where the independent terms are included in I, and P, is given by (3.15). If
F; # 0, the maximum is finite only if the bordered Hessian of the associated
Lagrangian is non-negative: a?v7,, + 02, P, > 0. In this case W,.,(z) is given by
Lemma (3.2).

Lastly, since Ky > 0, we have that P, =+, o4 K1 > 0. This in turn implies
9 1
that Ky = [T; +ry;fla§ﬂ] > 0. Thus, P, > 0 and K, > 0 for all s € [1,#).
Since P > 0 for all s < ¢, the bordered Hessian of the Lagrangian associated with
(6.5) (i.e., a2vi, + 02, F,) is positive for all s < ¢. Hence, Problem (6.5) has a
bounded solution for all s < ¢.00

Simulations for Figures 1, 2 and 3.

To construct Figure la we generate artificial dividends’ observations using
(2.3). The disturbances {v;}:"; and {w; ‘s areiid. N(0,1), and the parameters
are set equal to: a = 0.0607, d = 0.483, a, — 0.0097, and &, — .... 2 We select
45 values of A in the interval [—0.0698,0.0687], and for each value of oiu¢ =
{5w + A, ., 6, + AP} we generate 100 dividend sequences, each consisting of
100 observations. For each value of A* we then construct RE and H.. one-
period-ahead dividend forecasts (i.e., F;(y;41) and F;(y,.1)) using formulas (2.8)
and (2.10) with A; = 0. The other parameters are set equal to the values they take

“'We draw disturbances from a Normal distribution to ensure that RE forecasting formulas
{2.8) correspond with the rational expectations forecasts in the absence of missperception.
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in data generating process, while m = 0.78 and v = 0.3. The curve corresponding
to the H, forecasts in Figure la is constructed in the following way. For each
value of A™™* we compute 100 mean square errors of the H,, forecasts using the
formula: MSE,(7. + A™) = 32 (y;11 — F(y5:1))/100. Then we compute
the average MSE as MSE(7, + A™¢) = S3,%° MSF, (5, + At™)/100. Figure
la plots MSE(F,, + AV for different values of A", The curve corresponding
to the RE forecasts is constructed in the same way using (2.8).

Figure 1b is constructed in the same way as Figure 1a. The only difference is
that o¥7*¢ = &, and ¢ = 7, + A" where 5, = 0.0097 and A, takes values on
[—0.0093,0.0095]. In Figure lc a®™® = g + A'™¢, where & = 0.0607 and A, takes
values on [—0.2187,0.15].

Figure 2 is constructed in three steps. First, we detrend real annual dividends
per share using a fourth degree polynomial. Second, we compite H,,, and R price
sequences by feeding price equations (2.9) and (2.12) with detrended dividends.
We set the disturbance attenuation parameter v = 0.33. The other parameters
are set equal to their values in Tables 1, 2 and 3. Lastly, we estimate a time trend
for the actual stock prices, and add it to the prices we generated in the second
step. To construct Figure 3 we compute H, prices for different values of . Then
we compute, for each value of -, the mean square difference between the actual
S&P500 index and the H, price sequence.

Data

Data for the period 1871-1985 is from Shiller (19%9). For the period 1986-1997
we used DataStream and the International Financial Statistics from the IMF. We
used the following series:

e The nominal stock price index (F%) is the annual average Standard and
Poor’s composite stock price index.

¢ The consnmption series corresponds to real consumption of non-durables
and services. We denote the consumption deflator by PC;.

e The real stock price index (p2“™*) is obtained by dividing P by PC;.
e 1), are the nominal annual dividends of the firms in the S&P index.

o yo“ual denotes real detrended annual dividends corresponding to the firms
in the S&P index.
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.. P )
o ri<l denotes the real return on stocks. Tt is given by rocuel — BntDe=B

£
PCt+1—PCt
PG, -
.actual . . . )
o """ denotes the real riskless interest rate. It is computed by subtracting

the inflation rate from the nominal interest rate on 4-6 months commercial
paper (I;). That is, rédtue! = R, — PC“T‘IC:P@.
Maximum Likelihood Estimates of Parameters
In the simulations we assume that the parameters (a,,, 0y, d) are constant.
We obtain the maximum likelihood estimates by assuming that the data generat-
ing process is given by (2.3), with v,"N(0,1), w;"N{0,1). We set z; equal to the
value of real dividends in 1871, which is the initial observation in our data set.
Defining the information set as I = {y_;}'=f and &1 = Bz |1], we can
write the conditional likelihood of 441 as:

l[yt—{—l —d -z
2 Zg_;_l T 0',3

log(fya+1|t(yt+1ut)) = ng ((Qﬁ)mﬂth + O’i]ﬁ%) —

2

: -3 [ep1 — d — ady — —%—(p — d — &,)]
1 (Y41 t T3\l ¢
= log ([Qﬂ}—% [a‘— + o2+ J’*E’J ) 2 42, af

71 -2 9 a? 2 2
B Z7 et - 0wt o

where & is generated by recursion (2.8). We replace {y,;}_, by actual U.S.
dividend data for the period 1871-1997 and choose (a,c,,0y,d) to maximize
Sr log(f,, e Weral 1)), using the MLE function of TSP. The initial guesses
for the unknown parameters are: a = 0.6566, o2 = 0.1409, o2 = 0.0506 and
d = 0.557. TSP maximizes the log likelihood function using the standard gradient
method. The maximum likelihood estimates and standard errors are:

o= 0.70233 de (0.50436 o2 (0.07888 o2 0.02149 (6.6)
= (00233) 0 YT (0.0328) ' v T (0.0151) 0 “¥ (0.0104) ‘
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