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ABSTRACT

We investigate the Expectations Hypotheses of the term structure of interest rates and of the

foreign exchange market using vector autoregressive methods for the U.S. dollar, Deutsche mark,

and British pound interest rates and exchange rates. In addition to standard Wald tests, we formulate

Lagrange Multiplier and Distance Metric tests which require estimation under the non-linear

constraints of the null hypotheses. Estimation under the null is achieved by iterating on approximate

solutions that require only matrix inversions. We use a bias-corrected, constrained vector

autoregression as a data generating process and construct extensive Monte Carlo simulations of the

various test statistics under the null hypotheses. Wald tests suffer from severe size distortions and

use of the asymptotic critical values results in gross over-rejection of the null. The Lagrange

Multiplier tests slightly under-reject the null, and the Distance Metric tests over-reject. Use of the

small sample distributions of the different tests leads to a common interpretation of the validity of

the Expectations Hypotheses. The evidence against the Expectations Hypotheses for these interest

rates and exchange rates is much less strong than under asymptotic inference.
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According to the Expectations Hypothesis, information in current interest rates provides the

conditional expectation of future asset prices. The Expectations Hypothesis of the term structure

of interest rates (EH-TS) states that the current term spread between a long-term interest rate

and a short-term interest rate is the expected value of a weighted average of the expected future

changes in the short-term interest rate. This theory, popularized in the writings of Fisher (1930),

Keynes (1930), and Hicks (1953), continues to be a way that many economists think about the

determination of long-term interest rates. The Expectations Hypothesis in the foreign exchange

market (EH-FX) states that the interest-rate differential between two currencies is the conditional

expected value of the rate of depreciation of the high interest-rate currency relative to the low

interest-rate currency. Again, Fisher (1930) and Keynes (1930) discussed this hypothesis. Because

of covered interest arbitrage, the interest differential equals the forward premium, which is the

percentage difference between the forward exchange rate and the spot rate. Hence, the EH-FX

is equivalent to the Unbiasedness Hypothesis, which is the proposition that the logarithm of the

forward exchange rate is an unbiased predictor of the logarithm of the future spot rate. Many

economists also currently view the EH-FX as the way that forward exchange rates are determined.

These Expectations Hypotheses (EHs) continue to have adherents because most modern asset

pricing theories imply either that expected future interest rates and exchange rates are related to

current interest rates directly through the EHs or with the addition to the EHs of risk premiums.

If these risk premiums are constant, the EHs can be said to hold because the temporal variation

in expected future asset prices drives the variability in current interest rates. If the risk premiums

are variable, the EHs will not hold, but the literature has had surprisingly little success generating

risk premiums that explain the empirical evidence.

Empirical tests of the EHs are too numerous to enumerate. For the EH-FX, the statistical

evidence surveyed by Hodrick (1987), Bekaert and Hodrick (1993), and Engel (1996) strongly

rejects the hypothesis. In particular, high interest rate currencies do not depreciate as much as is

predicted by the theory. For the EH-TS, the evidence is more mixed. The EH-TS is often strongly

rejected with U.S. dollar (USD) interest rates, but for the currencies of a number of other countries,

standard tests often fail to reject.2

2Campbell and Shiller (1991) and Bekaert, Hodrick, and Marshall (1997) examine the USD evidence. For other

currencies see Hardouvelis (1994), Gerlach and Smets (1997), Dahlquist and Jonsson (1995), and Bekaert, Hodrick,

and Marshall (1999).
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There are three main potential reasons for the rejection of the EHs. First, the EHs are based on

the assumption of rational expectations and unlimited arbitrage. It may be that irrational investors

make systematic forecast errors, and the ability of rational investors to profit from this situation

is limited by their risk aversion. Second, the presence of time-varying risk premiums means that

standard tests of the EHs omit the variables capturing the risk premium. If these variables are

correlated with interest rates, the estimated coefficients would be pulled away from those implied

by the EHs. Third, the tests themselves may lead to false rejections because of their poor properties

in finite samples, which can be caused by highly persistent variables, peso problems, or learning.3

Recently, Bekaert, Hodrick and Marshall (1997, 1999) and Valkanov (1998) have analyzed the poor

finite sample behavior of EH-TS tests, and Baillie and Bollerslev (1998), Maynard and Phillips

(1998), and Roll and Yan (1998) have argued that poor small-sample behavior may explain the

results of EH-FX tests. These papers note that if standard tests are poorly behaved in small

samples, inference based on standard asymptotic distribution theory is distorted, and alternative

methods of inference are necessary.

In this paper, we re-consider the EHs in a vector autoregressive (VAR) framework. Apart from

standard Wald tests, we also investigate Lagrange Multiplier (LM) and Distance Metric (DM) tests

that require imposition of the null hypothesis in the estimation. Because the restrictions of the

EH-TS are highly non-linear, estimating under these restrictions is generally a non-trivial exercise.

We develop an easy-to-implement procedure that extends the suggested estimator of Newey and

McFadden (1994) and that works quite well. Once we have estimated the VAR subject to the

constraints of the EHs, we can use this system as a data generating mechanism to investigate the

small-sample properties of the various tests. We find that the Wald test, the test predominantly

used in the literature, has by far the worst small-sample properties. Conducting inference with

Wald tests would therefore often be very mis-leading, since the sizes of the tests are quite poor.

The DM tests also overreject, but less strongly than the Wald tests. The LM tests, on the other

hand, are slightly conservative. Overall, the LM tests perform the best. When reconsidering the

evidence on the EHs for the USD, the Deutsche mark (DEM), and the British pound (GBP), we

find that inference with the small-sample distributions considerably weakens the case against the

EHs.
3An early reference to the small-sample problem is Mankiw and Shapiro (1986). Evans (1996) surveys the peso-

problem literature, and Lewis (1989) is an early example of the role of learning.
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The paper is organized as follows. Section I examines the conditions under which the EHs

arise in a no-arbitrage framework. Section II details several econometric approaches to testing the

EHs, developing both standard regression tests and the more novel VAR-based tests we propose.

Section III briefly describes the data on interest rates and exchange rates. Section IV examines the

small-sample properties of the various tests using bootstrap and Monte Carlo analysis. Section V

applies the tests to the data. The conclusions summarize our findings and reflect on the usefulness

of our test procedures and the technique for imposing non-linear constraints in other settings.

I. The Expectations Hypotheses

By the EH-TS for a particular currency j, we mean that the continuously compounded zero-

coupon n-period interest rate, ijt,n, equals the average of the current and expected future short

interest rates plus a maturity specific constant:

ijt,n =
1

n

n−1X
h=0

Et(i
j
t+h) + αjn, (1)

where we drop the maturity subscript for one period rates.

By the EH-FX, we mean the proposition that the conditional expectation of the continuously

compounded rate of appreciation of currency j relative to currency k equals the differential between

the continuously compounded interest rates for the two currencies plus a constant. Let St denote the

currency-k price of currency j. Then, with lower-case letters indicating either natural logarithms

of upper-case counterparts or continuously compounded interest rates, the EH-FX is

Et(st+n − st) = αk,jn + n(ikt,n − ijt,n). (2)

It is straightforward to demonstrate that these expectation hypotheses are consistent with a

class of modern financial models in which assets are priced by no arbitrage restrictions. In economies

that do not admit arbitrage, any return denominated in currency j, Rjt+1, satisfies

Et(M
j
t+1R

j
t+1) = 1, (3)

where M j
t+1 denotes the currency-j pricing kernel. When the returns and the pricing kernels are

log-normally distributed, equation (3) implies the following:

Et(m
j
t+1) + 0.5Vt(m

j
t+1) +Et(r

j
t+1) + 0.5Vt(r

j
t+1) +Ct(m

j
t+1, r

j
t+1) = 0, (4)

where the conditional variance and covariance are denoted Vt(.) and Ct(.), respectively. Because

the rate of return associated with the continuously compounded one-period interest rate is in the
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time t information set, equation (4) implies that

ijt = −
h
Et(m

j
t+1) + 0.5Vt(m

j
t+1)

i
. (5)

To derive the implications for the term structure of interest rates, consider the continuously com-

pounded, one-period rate of return on an n-period bond, rbjt+1,n ≡ ijt,n + (n − 1)(ijt,n − ijt+1,n−1).
Using equations (4) and (5) we find

Et(rb
j
t+1,n)− ijt = −

h
0.5Vt(rb

j
t+1,n) +Ct(m

j
t+1, rb

j
t+1,n)

i
. (6)

The right-hand side of equation (6) is a constant for any bond-pricing model, such as Vasicek’s

(1977), in which the logarithmic pricing kernel is conditionally homoskedastic. Let this constant

be denoted cjn. By using the definition of the rate of return on the bond and the relation between

logarithmic bond prices and yields to maturity, equation (6) implies

nijt,n = i
j
t +Et

h
(n− 1)ijt+1,n−1

i
+ cjn. (7)

Recursive application of equation (7) and use of the law of iterated expectations implies equation

(1) with αjn ≡
Pn
h=2 c

j
h.

Note that any currency-j return can be converted into a currency-k return by multiplying by

St+1/St, which recognizes that one must first purchase one unit of currency j with currency k and

then resell the currency j return for currency k. Hence, if markets are complete, and by using

equation (3) for each currency, we find that the difference of the logarithms of the pricing kernels

equals the rate of appreciation of currency j relative to currency k:

mjt+1 −mkt+1 = st+1 − st. (8)

We can derive the implications for the EH-FX by taking the conditional expectation of equation

(8) and substituting from equation (5) evaluated for each of the currencies:

Et(st+1 − st) = (ikt − ijt ) + 0.5Vt(mkt+1)− 0.5Vt(mjt+1). (9)

As with the term structure, the EH-FX is true in economies with conditionally homoskedastic

logarithmic pricing kernels. It is possible to derive general expressions for the term premiums and

foreign exchange premiums in terms of the conditional moments of the logarithm of the pricing

kernel under much weaker conditions than log-normality. The Appendix demonstrates that the
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conditions for the EHs to hold are constancy of all second and higher order conditional moments

of the log pricing kernel.

The logic that leads to equation (9) can also be used to verify that equation (2) holds for the

n-period maturity. Note that st+1−st+ikt −ijt is a one-period excess rate of return that also satisfies
equation (6). After substituting into equation (6), the right-hand side is then the one-period foreign

exchange risk premium previously indicated by αk,j1 . When both the one-period EH-FX holds and

the n-period EH-TS holds in both currencies, the n-period foreign exchange premium is constant

and equals

αk,jn = Et
h
(st+n − st)− n(ikt,n − ijt,n)

i
= nαk,j1 − n(αkn − αjn). (10)

An investment of a unit of currency k in the n-period currency-j bond earns the currency-j term

premium and n times the one-period foreign exchange premium. The opportunity cost is the

currency-k term premium.

II.Econometric Procedures

This section develops several alternative econometric approaches to testing the EHs derived in

equations (1) and (2). We begin with traditional single-equation specifications and then consider

tests based on unconstrained and constrained VARs. Since the validity of the asymptotic distribu-

tions of the various test statistics is questionable in the sample sizes we have available, we do not

present any estimation results until we have developed all of the statistics and explained how we

will assess their finite sample properties.

The derivation of the asymptotic properties of the test statistics relies on Hansen’s (1982)

Generalized Method of Moments (GMM), which uses orthogonality conditions defined by the theory

to develop tests. The orthogonality conditions are based on the assumption of rational expectations,

which implies that the realization of a random variable is equal to its conditional expectation plus

an error term that is orthogonal to the information set used to form the expectation. To represent

a vector of orthogonality conditions specified by the expectation theories, let yt be a vector of data

in the time t information set, and let xt−1 be a vector of instruments that are in the time t-1

information set. Let h(yt, xt−1, θ) be a vector-valued function of the data and the parameters to be

estimated, θ, with the property that

Et [h(yt, xt−1, θ)] = 0 (11)

when the null hypothesis is true and the function is evaluated at the parameter θ0. Let the vector
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ηt be an error process defined by the rational expectations assumption applied to equation (11),

and define the vector zt ≡ (y0t, x0t−1)0 and the vector-valued function of the data and the parameters,
g(zt, θ) ≡ ηt ⊗ xt−1. Then, the unconditional orthogonality conditions used in a GMM estimation

are

E[g(zt, θ)] = 0. (12)

Estimation uses the corresponding sample moment conditions for a sample of size T:

gT (θ) ≡ 1

T

TX
t=1

g(zt, θ). (13)

The parameters are estimated by minimizing the GMM criterion function which is a quadratic form

in the sample orthogonality conditions using a weighting matrix, W :

JT (θ) ≡ gT (θ)0WgT (θ). (14)

Hansen (1982) demonstrates that the optimal weighting matrix is a consistent estimate of the

inverse of

Ω ≡
k=∞X
k=−∞

E
£
g(zt, θ)g(zt−k, θ)0

¤
. (15)

Let the gradient of the sample orthogonality conditions be GT (θ) ≡ ∇θgT (θ), and let ΩT represent

a consistent estimate of Ω. When the weighting matrix is chosen optimally as Ω−1T , the GMM

asymptotic distribution theory implies that

√
T (bθ − θ0)→ N [0, (G0TΩ

−1
T GT )

−1] (16)

where bθ denotes the parameter estimate and the symbol → denotes convergence in distribution.

The standard errors implicit in equation (16) are autocorrelation and heteroskedasticity consistent.

Regression Tests

It is straightforward to derive ordinary least squares (OLS) regression tests of the various

expectation hypotheses. Under rational expectations, equation (2) evaluated for n = 1 becomes

st+1 − st = αk,j1 + βk,j1 (i
k
t − ijt ) + ²t+1 (17)

where ²t+1 is the rational expectations error term and the null hypothesis is that the slope coefficient

equals one. A GMM estimation based on the orthogonality of the error term to a constant and the

interest differential reduces to OLS estimation of equation (17), and setting k = 0 in equation (15)

produces heteroskedasticity consistent standard errors.
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Campbell and Shiller (1991) propose two distinct regression tests of the EH-TS based on equa-

tion (1). The first specification test can be derived directly from equation (1) under the assumption

of rational expectations:

1

n

n−1X
h=0

(ijt+h)− ijt = αjn + βjn(i
j
t,n − ijt ) + νt+n−1. (18)

The null hypothesis is again that the slope coefficient equals one, and the estimation uses the fact

that the error term, νt+n−1, is orthogonal to a constant and the term spread at time t. While

OLS provides the parameter estimates, appropriate GMM standard errors must allow for the serial

correlation of the errors induced by overlapping observations by setting k = n−1 in equation (15).
The second specification test of Campbell and Shiller (1991) is derived by rearranging equation

(7) and using rational expectations:

ijt+1,n−1 − ijt,n = δjn + γjn
1

(n− 1)(i
j
t,n − ijt) + ξt+1. (19)

The OLS specification uses the orthogonality of the error term, ξt+1, to a constant and the adjusted

term spread, and the null hypothesis is again that the slope coefficient equals one. Standard

errors can be constructed by setting k = 0 in equation (15). When only constant maturities are

available, this specification test is often performed with ijt+1,n on the left-hand side instead of

ijt+1,n−1. Bekaert, Hodrick, and Marshall (1997) note that this change of variables leads to an

upward bias in the prediction of the slope coefficient such that values greater than one are expected

under the null hypothesis, even asymptotically.

Tests from Unconstrained Vector Autoregressions

It is also possible to develop GMM-based tests of the expectation hypotheses using the orthog-

onality conditions of a VAR. With a VAR, one can test the theory directly as well as calculate

implied slope coefficients that are analogous to the directly estimated OLS slope coefficients dis-

cussed above. Below, we examine VARs that involve a two-country framework using data from

three developed economies to investigate the various EHs. For convenience of presentation, we

number the currencies and use standard currency abbreviations in the following way: one for the

USD, two for the DEM, and three for the GBP. Thus, i1t is the USD short interest rate, and sp2t

is the spread between the DEM long interest rate and the DEM short interest rate. Since all rates

of change of exchange rates are expressed versus the USD, ∆sjt is the rate of appreciation of the

USD relative to currency j, for j = 2, 3. The variables in the VAR are the rate of appreciation

of the USD relative to a currency j, the USD interest rate, the currency-j interest rate, the USD
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spread, and the currency-j spread. To develop the econometric model, stack the five variables into

the vector yt ≡ (∆sjt , i1t , ijt , sp1t , spjt)0. Then, let a K-th order VAR represent the demeaned data
generating process for yt:

yt+1 =
KX
k=1

Bkyt−k+1 + ηt+1 (20)

where the parameters Bk represent five-dimensional square matrixes of coefficients, and ηt+1 is the

vector of innovations that is orthogonal to the time t information set. The first-order companion

form of the VAR can be represented using the vector xt ≡ (y0t, y0t−1, ...y0t−K+1)0:

xt+1 = Θxt + ξt+1. (21)

The parameter matrix, Θ, is a 5K-dimensional square matrix with the Bk matrixes stacked hori-

zontally in the first five rows, a 5(K-1) identity matrix beneath these parameters on the left, and

zeroes elsewhere. The innovation vector, ξt+1 ≡ (η0t+1, 0...0), has variance matrix Σ. With this
specification there are (25K) parameters in θ0.

We use the VAR parameters and the asymptotic distribution in equation (16) to generate test

statistics that are based on implied counterparts of the OLS slope coefficients. We can also develop

tests of the full restrictions of the EHs in the VAR framework. To derive these tests we need to

consider the implications of the EHs for the coefficients of the VAR.

Although the EHs are based on the full information set of economic agents, as long as that

information set includes the information on the right-hand sides of the VAR equations, the law of

iterated expectations implies that we can use the VAR to test the theories. From the companion

form of the VAR in equation (21), we know that forecasts of xt+h, based on the information in the

VAR at time t, may be generated as

Ext (xt+h) = Θ
hxt, (22)

where the expectation is with respect to the information set of the VAR. The EHs consequently

imply highly non-linear sets of restrictions on the parameters. To derive the constraints on the

parameters, define the indicator vectors, ej , which have dimension 5K, a one in the j-th position,

and zeroes elsewhere. The vector of restrictions from the EH-FX for one-period interest rates may

be written as

e01Θ = (e
0
3 − e02). (23)
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Next, consider the derivation of the restrictions of the EH-TS for each currency. For the USD

interest rates, equation (1) implies the following restrictions on the underlying parameters of the

VAR:

e04 = e
0
2

h
(1/n)(I −Θn)(I −Θ)−1 − I

i
. (24)

The analogous restrictions associated with the EH-TS of the foreign currency interest rates are

e05 = e
0
3

h
(1/n)(I −Θn)(I −Θ)−1 − I

i
. (25)

The representations of the EHs in equations (23)-(25) allow estimation of implied slope coeffi-

cients that are analogous to the directly estimated OLS coefficients. For example, the implied slope

coefficient from the VAR that is analogous to the slope coefficient in equation (17) is

βk,j =
e01ΘΨ(e3 − e2)

(e3 − e2)0Ψ(e3 − e2) (26)

where Ψ is the unconditional variance of xt, which is computed from vec(Ψ) = (I−Θ⊗Θ0)−1vec(Σ).
The numerator of equation (26) is the covariance between the expected future rate of apprecia-

tion and the interest differential, while the denominator is the variance of the interest differential.

Similarly, the implied slope coefficient for the USD EH-TS analogous to equation (18) is the covari-

ance between the average of the expected future interest rates and the current interest rate spread

divided by the variance of the current spread:

βUSDn =
e02[(1/n)(I −Θn)(I −Θ)−1 − I]Ψe4

e40Ψe4
. (27)

The implied OLS coefficient corresponding to equation (19) for the USD which uses the substitution

of the n-period rate for the n-1 period rate is

γUSDn =
(e4 + e2)

0(Θ− I)Ψe4(n− 1)
e40Ψe4

. (28)

To develop Wald tests of the three expectation hypotheses, let the null hypotheses in equations

(23)-(25) be summarized by

H0 : a(θ0) = 0, (29)

where a(θ0) is a 15K-dimensional vector that is non-linear in the underlying parameters. Let the

sample counterpart of this vector be aT (θ), let the gradient of the constraints with respect to the

parameters be AT ≡ ∇θaT (θ), and let BT ≡ G0TΩ−1T GT . Then, it follows from a Taylor’s Series

approximation that
√
TaT (bθ)→ N(0, ATB

−1
T A0T ). (30)
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A Wald test of the null hypothesis asks how close are the constraints to being satisfied at the

unconstrained parameter values. The test statistic follows from the asymptotic distribution in

equation (30):

TaT (bθ)0(ATB−1T A0T )
−1aT (bθ)→ χ2(15K). (31)

Estimation under the null hypothesis

Both Distance Metric statistics, which are based on intuition from maximum likelihood, and

Lagrange Multiplier statistics require estimation of the parameters subject to the highly non-linear

constraints of equation (29), which is quite difficult. One approach to constrained estimation

follows Melino (1983), who corrected an error in Sargent’s (1979) maximum likelihood estimation

of the EH-TS. Melino (1983) recognizes that the EH-TS imposes significant restrictions on the

eigenvectors of Θ.

To understand these restrictions, consider a first-order VAR in which the five eigenvalues of Θ

are distinct. In this case, we can do an eigenvalue decomposition:

Θ = PΛP−1, (32)

where Λ is the diagonal matrix of eigenvalues and P is the matrix with the corresponding eigen-

vectors in its columns. Now, to derive the restrictions of the EHs, substitute from equation (32)

into equation (23) and multiply from the right-hand side by P implies

e01PΛ = (e
0
3 − e02)P. (33)

Let the diagonal elements of Λ be λj , and let the rows of P be Pi, with distinct elements Pij. Since

P1 can be normalized to a row vector of ones, this constraint implies

P3j = P2j + λj. (34)

By substituting equation (32) into equations (24) and (25) and simplifying, we find

e04P = e
0
2P [(1/n)(I − Λn)(I − Λ)−1 − I] (35)

and

e05P = e
0
3P [(1/n)(I − Λn)(I − Λ)−1 − I]. (36)

The restrictions in equations (34)-(36) imply that the ten free parameters of the constrained es-

timation of a first-order VAR are the five eigenvalues and the five parameters of the second row
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of the eigenvectors. All other parameters are functions of these fundamental parameters. Since

the eigenvalues can be complex conjugates, direct estimation of the constrained system is quite

complicated because the search must be conducted over potentially complex numbers.

To estimate the parameters, θ, subject to the constraints in equation (29), we instead follow an

indirect route that extends the estimator proposed by Newey and McFadden (1994). Define the

Lagrangian for the constrained GMM maximization problem to be.

L(θ, γ) = −(1/2)g0T (θ)Ω−1T gT (θ)− aT (θ)0γ (37)

where γ is a vector of Lagrange multipliers. Let an overbar denote estimates subject to the con-

straints. Then, the first-order conditions for this problem can be written as 0
0

 =
 −G0TΩ−1T

√
TgT (θ)−A0T

√
Tγ

−√TaT (θ)

 . (38)

While equation (38) is non-linear in the parameters, we can derive an approximate asymptotic

solution using the law of large numbers and a Taylor’s Series expansion. Recognize that

√
TgT (θ0)→ N(0,Ω), (39)

√
TgT (θ) ≈

√
TgT (θ0) +GT

√
T (θ − θ0), (40)

and
√
TaT (θ) ≈

√
TaT (θ0) +AT

√
T (θ − θ0). (41)

Under the null hypothesis, aT (θ0) = 0. Hence, when we substitute from equations (40) and (41)

into the first-order conditions, we find 0
0

 =
 −G0TΩ−1T

√
TgT (θ0)

0

−
 BT A0T

AT 0



√
T (θ − θ0)
√
Tγ

 . (42)

The formula for a partitioned inverse implies that BT A0T

AT 0


−1

=

 B
−1/2
T MTB

−1/2
T B−1T A0T (ATB

−1
T A0T )−1

(ATB
−1
T A0T )−1ATB

−1
T − (ATB−1T A0T )−1

 (43)

where MT ≡ I −B−1/2T A0T (ATB
−1
T A0T )

−1ATB
−1/2
T is an idempotent matrix. Thus, the asymptotic

distribution for the constrained estimator and the Lagrange multiplier is

√
T (θ − θ0)→ N(0, B

−1/2
T MTB

−1/2
T ) (44)
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√
Tγ → N [0, (ATB

−1
T A0T )

−1]. (45)

Although direct maximization of the Lagrangian in equation (38) is feasible, it is often compu-

tationally difficult. We instead extend the approach suggested in Newey and McFadden (1994)

who demonstrate how to derive a constrained consistent estimator starting from an initial uncon-

strained consistent estimator and using only matrix algebra. Let eθ represent an initial consistent
unconstrained estimate. Then, we have

gT (θ) ≈ gT (eθ) +GT (θ − eθ) (46)

aT (θ) ≈ aT (eθ) +AT (eθ − θ). (47)

After substituting into the first-order conditions and solving, we find

θ ≈ eθ −B−1/2T MTB
−1/2
T G0TΩ

−1
T gT (

eθ)−B−1T A0T (ATB
−1
T A0T )

−1aT (eθ) (48)

γ ≈ −(ATB−1T A0T )
−1ATB−1T G

0
TΩ

−1
T gT (

eθ) + (ATB−1T A0T )
−1aT (eθ). (49)

While Newey and McFadden (1994) note that the estimators in equations (48) and (49) are con-

sistent, they do not satisfy the constrained optimization problem exactly. In constructing our

constrained estimates, we iterated on equations (48) and (49), substituting the first constrained

estimate for the initial consistent unconstrained estimate to derive a second constrained estimate,

and so forth. We stopped the iterative process when the resulting constrained estimate satisfied

the constraints, i.e. when aT (θ) = 0.

The values of the Lagrange multipliers are not zero at the constrained parameter estimates

when imposition of the constraints significantly affects the value of the objective function. An LM

test asks whether we can reject the hypothesis that the multipliers are jointly zero. From equation

(45), the LM test for a K-th-order system is

Tγ0(ATB−1T A0T )γ → χ2(15K). (50)

A GMM-based distance metric (DM) test, analogous to a likelihood ratio test, can also be

developed. Typically, this test is constructed as the sample size times the difference between the

GMM objective function evaluated at a constrained estimate and the GMM objective function

evaluated at the unconstrained estimate using the same weighting matrix in each estimation. Since

our unconstrained problem is just identified, the value of the GMM objective function is zero in
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this case. Hence, the DM test for a K-th-order system is

TgT (θ)
0Ω−1T gT (θ)→ χ2(15K). (51)

III. The Data

Table 1 presents some summary statistics for the variables. All variables are measured in

percentage points per annum. Monthly rates of appreciation are annualized by multiplying by 1200.

While this transformation does not affect the interpretation of the mean returns, the annualized

standard deviation is not the standard deviation associated with an annual holding period. The

sample period is January 1975 to July 1997. The exchange rates and Eurocurrency interest rates

are from Datastream. The dollar-based exchange rates are calculated from the quoted sterling

exchange rates which are closing middle rates provided by Reuters.

Notice that the rates of appreciation are quite volatile and have very small autocorrelations.

The one-month interest rates are all highly autocorrelated, and the spreads between twelve-month

rates and one-month rates are persistent but not as highly autocorrelated as the short rates. Use

of interest rates and spreads as predictors of the rates of appreciation is consistent with the idea

that predictable changes in asset prices are small relative to their unpredictable changes.

IV. Econometric Analysis of Test Statistics

The goal of this section is two-fold. We first integrate our analysis with the recent evidence on

the small-sample characteristics of standard regression tests of the EH-TS and the EH-FX. Various

authors, including Bekaert, Hodrick and Marshall (1997, 1999), Schotman (1996), and Valkanov

(1998) have demonstrated that the standard regression tests of the EH-TS are ill-behaved in small

samples under a variety of data generating processes (DGPs). In particular, small-sample biases

arise for essentially the same reason that was first discussed by Kendall (1954) in the context of

estimation of the parameters of autoregressive processes. The regressors are serially correlated

lagged dependent variables. Although the parameter estimates are consistent, the absence of strict

exogeneity of the regressors implies bias in small samples.4 In EH-TS tests, the regression coeffi-

cients are upwardly biased and their small-sample distributions are very dispersed. Tauchen (1985)

and Baillie and Bollerslev (1998) have also shown that EH-FX regressions suffer from a similar

problem. Unfortunately, research about the small-sample problems of doing inference about the

validity of the EHs does not arrive at a common conclusion.

4Stambaugh (1999) provides a recent Bayesian treatment of these issues.
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Our VAR model imposes the three EHs while matching the time-series properties of the data.

Hence, we derive the small-sample distributions of the regression coefficients under the null hypoth-

esis within a model that accommodates realistic persistence in both the foreign and local interest

rates and Granger-causality of interest rates both by spreads and exchange-rate changes. Moreover,

we compare the distributions of the standard regression coefficients with the distributions of the

slope coefficients implied by the VAR. If the VAR adequately captures the dynamics of the data,

we obtain slightly more efficient estimates in some instances. For example, the long-run (12 month)

unbiasedness test and the test of Equation (18) lead to the loss of data, which is not the case in

the VAR.

A second goal of this section is to examine whether alternatives to the simple Wald test have

superior small-sample properties. By imposing the non-linear constraints on the VAR dynamics,

we are also able to examine the relative size and power properties of the Wald, LM and DM tests

described in Section III.5 Given the well-known problems with Wald tests in general (as discussed in

Burnside and Eichenbaum (1996) for example), it may well be that these other tests have superior

small-sample properties.

Alternative Data Generating Processes

We use two DGPs in the Monte Carlo analysis. Both start from an unconstrained five variable

VAR. In principle, we could then apply the iterative scheme described in Section III to find the

VAR parameters that impose the null. However, as Bekaert, Hodrick, and Marshall (1997) note, the

estimated VAR parameters are biased in small samples. Hence, these parameters do not constitute

a relevant starting point.

The bias-correction we implement proceeds as follows. We use the estimated unconstrained VAR

parameters to generate 100,000 artificial data sets of 269 observations using an i.i.d. bootstrap of

the residuals. We re-estimate the VAR parameters from these replications of the initial data. The

bias in the estimated parameters is estimated by the difference between the known parameters of the

DGP and the means of the Monte Carlo distributions based on the 100,000 replications. We then

bias-correct the original estimates by adding these biases to the original unconstrained estimates.

This yields a bias-corrected set of unconstrained parameters, µu and Au, which are also used in

5Ligeralde (1997) examines the small-sample performance of various methods of constructing Wald tests. The

differential performance across alternatives is mostly due to how one deals with the serial correlation induced by the

overlapping error structure in the data. In our VAR setting however, this overlapping data problem does not arise.

16



simulations to represent an alternative hypothesis in which there are violations of the EHs. To

determine bias-corrected parameters that satisfy the null hypothesis, we use µu and Au to simulate

a very long series (70,000 observations plus 1,000 starting values that are discarded), which is then

subjected to the iterative estimation scheme described in Section III. These parameters are our

bias-corrected constrained parameters, µc and Ac

In all cases we use a first-order VAR as that is the order chosen by the Schwarz Criterion. Table

A1 in the Appendix reports these test statistics in Panel A along with Cumby-Huizinga (1992) l-

tests for residual serial correlation in Panel B. Only for the residuals of the USD and DEM spreads

in that VAR do we find any evidence inconsistent with the first-order model. The three panels of

Table A2 report the unconstrained parameter estimates with their bias-corrected counterparts for

the three VARs. Table A3 reports the estimates of the VAR coefficients that are constrained to

satisfy the EHs.

In all of our experiments, we use the constrained coefficients that are estimated from simul-

taneously imposing the EHs. For the first DGP, we bootstrap the original residuals from the

unconstrained VAR, and reconstruct constrained and unconstrained data, using µc and Ac, and µu

and Au, respectively. Whereas the sample size for each experiment is 269, each experiment gener-

ates an initial 1,000 observations that are discarded. We also check the validity of the computer

code by letting the sample size become very large and verifying convergence to the asymptotic

distributions. We conduct this bootstrap procedure for both the DEM-USD and the GBP-USD

VARs.

Although the bootstrap procedure captures skewness and leptokurtosis in the data, it is po-

tentially unrealistic because it destroys higher-order dependence in the residuals (for example,

volatility clustering).6 To accommodate temporal heteroskedasticity and its potential effects on

small-sample distributions, we also use a Monte Carlo experiment based on a parameterized model

of the residuals. We use the same conditional mean coefficient matrices as in the bootstrap DGP,

but we draw the error terms according to a multivariate GARCH model.

The GARCH model is similar to the factor GARCH models of Engle, Ng and Rothschild (1990),

Bekaert and Harvey (1997), and Bekaert, Hodrick, and Marshall (1997). We model the innovation

6We experimented with stationary bootstrap methods, as in Politis and Romano (1994) and Politis, Romano, and

Wolf (1997), which allow for dependence, but they do not seem well-suited for problems where the data are highly

persistent but residuals ought to be uncorrelated.
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vector, ηt, as a factor structure with the innovations of the short rates in the two countries as the

factors. Thus,

ηt = Fet (52)

with

F =



1 f12 f13 0 0

0 1 0 0 0

0 f32 1 0 0

0 f42 f43 1 0

0 f52 f53 0 1


. (53)

Note that the innovation in the USD interest rate affects the innovation in the foreign interest rate,

but the foreign interest rate shock does not affect the USD interest rate innovation. In effect, f32

determines the correlation between the two fundamental shocks to the system. In equation (52), the

vector et represents the idiosyncratic innovations. Hence, Et−1 [ete0t] = Ht, where Ht is a diagonal

matrix. As a result, the conditional covariance matrix of the innovations, ηt,which is denoted Σt,

can be written as Σt = FHtF 0. We assume that elements in Ht corresponding to the two factors

and the conditional exchange rate variance follow a GARCH(1,1) process (see Bollerslev (1986)).

For the conditional variances of the interest rates, we augment the model to allow the conditional

variance to depend on the past interest rate as in the univariate model of Gray (1996). Thus, the

model for the conditional variances can be written as follows:

hjt = βjh
j
t−1 + αj(e

j
t−1)

2 + ωj(i
j
t−1), j = 2, 3. (54)

The modification to the usual GARCHmodel accommodates the dramatic shift in short-rate volatil-

ity during the monetary targeting period of 1979-1982. In this model, the conditional variances of

the twelve-month term spreads and the rate of change of the exchange rate have three components:

a component linear in the conditional variance of the USD short rate, a component linear in the

conditional variance of the foreign short rate and an idiosyncratic component. Compared to other

multivariate GARCH models, the model is very parsimonious with only 18 parameters. This parsi-

mony is achieved by restricting the covariance matrix to depend only on the conditional variances

of the two short rates.

To estimate the model in equations (52) to (54), we exploit the block-diagonal nature of the

information matrix and estimate the multivariate GARCH model from the VAR residuals, us-

ing quasi-maximum likelihood. Hence, we assume normal innovations to construct the likelihood
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function although the true distribution of the innovations may not be normal. White (1982) and

Bollerslev and Wooldridge (1992) show that the resulting estimator is consistent and asymptotically

normal.

Tables A4 and A5 contain the estimation results for the GARCH models for the DEM and

USD rates and the GBP and USD rates, respectively. We first discuss the DEM-USD system.

The conditional variances of the USD and DEM short rates are moderately persistent with large

ARCH coefficients. There is some remaining time-variation in the idiosyncratic component of the

conditional variance of the exchange rate, but it shows little persistence. The exchange rate shows

small, but statistically significantly positive factor loadings with respect to both the USD and the

DEM interest rates.7 The USD term spread residual is negatively correlated with the USD short-

rate shock, as is expected, and it only weakly depends on the DEM rate. The DEM spread residual

is also strongly negatively correlated with the DEM short rate, but it is correlated positively with

the USD short rate. This does not necessarily imply that unexpected increases in the USD short

rate steepen the German yield curve, since the USD short rate is positively related to the DEM

short rate, and increases in the DEM short rate increases flatten the yield curve.

Table A5 reports the GBP-USD system. The estimates are in many ways qualitatively similar

to the DEM-USD system although the conditional variances of both the USD and GBP short

rates show more persistence. We again find positive exchange-rate factor loadings with respect

to both the USD and GBP interest rate shocks, but the GBP interest rate effect is statistically

insignificant. The factor loadings for the spreads also have the same signs as in the DEM-USD

system. The covariance between the USD and GBP interest rate shocks is much lower than the

comparable one between the USD and DEM interest rates. The USD-GBP system does somewhat

under-predict the unconditional variances of both the USD and the GBP interest rates.

As mentioned above, the innovations in the Monte Carlo experiments are drawn either from

the bootstrap procedure or the GARCH models, and the DGP satisfies the null of the EHs using

the bias-corrected, constrained VAR parameters. The bias-corrected, unconstrained VARs serve as

natural alternative models.

Properties of Test Statistics in Finite Samples
7 In traditional theories of exchange rate determination, the correlation of exchange rate innovations with interest

rate innovations depends on whether the shock causing interest rates to move reflects a change in expected inflation

or in the expected real rate. The latter case predicts a positive correlation for the USD and a negative correlation

for the DEM. That is, if the USD (DEM) short rate unexpectedly rises, the dollar (mark) ought to appreciate.
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From the DGPs described above, we simulate 25,000 artificial samples of 269 observations. We

focus on two sets of results. First, we investigate the small-sample distributions of the various

regression coefficients in the standard regressions used to test the EHs. Second, we examine the

performance of the three test statistics (Wald, LM and DM) in terms of size and power against the

alternative hypothesis.

Tables 2 and 3 present some relevant characteristics of the small-sample distributions of the

slope coefficients in the various regression tests under the two different data generating processes,

the bootstrap in Table 2 and the GARCH model in Table 3. We report only the left-hand tail area

quantiles because the sample parameter estimates are all less than the null value. We consider both

OLS regression coefficients and regression coefficients implied by the VAR parameters.

A comparison of the means and the medians for the distributions of the OLS coefficients indicates

that they show little asymmetry. The biases, defined as the deviations of the mean values of the

empirical distributions from the values under the null hypothesis, are rather small for the EH-FX

tests and the EH-TS tests based on equation (18). The biases are considerably larger for the

tests based on equation (19), but most of this bias is due to the maturity mis-match between the

twelve-month interest rate used in the test and the eleven-month interest rate that should be used.

Hence, the bias largely remains present even in samples of 50,000. The biases in the EH-TS tests

are consistent with the results in Bekaert, Hodrick, and Marshall (1997) where biases only become

quite substantial for longer maturities.

Now consider the dispersion of the slope coefficients. The standard deviations of the empirical

distributions in Panels A and B of Table 2 are larger than their corresponding values in Table 3

except for those associated with the DEM term structure. This reflects the inability of the GARCH

models to match the fat tails in the data. The standard deviations of the FX slopes for the DEM in

Panel A are much larger than the standard deviations of the term structure slopes, but they are not

noticeably larger than the asymptotic standard errors except for the regression at the twelve-month

horizon. This is true in Panel B for the GBP as well except the standard deviations of the FX slopes

are now smaller than the asymptotic values. Notice also that the left tails of the distributions of

the FX tests in Table 2 include substantially negative values. The slope coefficients from equation

(19) also show much more dispersion than those from equation (18). Note that these results are

similar across the two currencies.

The small-sample distributions for the implied regression coefficients from the VARs are quite
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similar to the distributions of the OLS regression coefficients. Overall, the biases are slightly

smaller, but with a few exceptions for the GBP, the quantiles are remarkably alike across the

two sets of coefficients. This indicates that the VAR generally provides a good description of the

relevant dynamics of the data. Note though that the dispersion of the small-sample distributions

is sometimes larger for the EH-TS tests because there are a few extreme observations.8

Tables 4, 5, and 6 focus on the small-sample properties of the various test statistics.9 Table 4

considers properties of the small-sample distribution from the bootstrap DGP. We consider first the

EH-FX tests individually for one-month and twelve-month horizons and jointly for both horizons.

We then consider the EH-TS tests for the USD and for the DEM in Panel A and for the USD

and the GBP in Panel B. Finally, we consider joint tests of all three EHs. As noted above, with

a first-order VAR, each individual test imposes five restrictions on the VAR parameters. Hence,

the appropriate asymptotic distributions for comparison purposes are the χ2(5) for the individual

tests, χ2(10) for the joint FX test, and χ2(15) for the simultaneous test of all EHs.

Panel A of Table 4 reveals that the means of the small-sample distributions are slightly higher

than the corresponding chi-square means, in all but one case (the joint LM test). The upward bias

is most severe for the Wald tests and very small for the LM tests. A similar relation holds for

the dispersions of the test statistics. The DM tests and especially the Wald tests show much more

dispersion than their corresponding asymptotic distributions. The distributions of the Wald tests

are significantly shifted to the right, as are the distributions of the DM tests, but less dramatically so.

The LM tests actually show slightly less dispersion than the corresponding chi-square distributions.

Given these findings, it is not surprising that the empirical critical values do not correspond with

the asymptotic ones. The LM tests slightly under-reject at the asymptotic critical value in some

cases, but in general their small-sample distributions are far closer to the asymptotic distributions

than those of the other test statistics. The distortions of the Wald test appear worst for the EH-TS

tests. The distortions of the Wald test also worsen considerably when the number of restrictions

increases. For example, whereas the 99% quantile for a χ2(15) is 30.58, the 99% value in the

8Occasionally, the implied coefficients show rather extreme standard deviations which can be traced to outliers

caused by VAR nonstationarity. The removal of one outlier typically suffices to bring the standard deviation back in

line with the other results.
9These test statistics are asymptotically pivotal because their limiting distributions do not depend on any un-

known parameters in contrast to the distributions of the regression coefficients. Statisticians argue that examining

asymptotically pivotal statistics improves finite-sample inference. See Berkowitz and Kilian (1996), for example.
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small-sample distribution of the Wald test for all restrictions in the DEM-USD system is 63.66.

Panel B of Table 4 reports the same characteristics for the GBP system. All the observations

made above remain valid, but we now record a few more instances in which the empirical mean of

the LM tests is slightly below the asymptotic mean. In general, the closeness of the results between

the two panels is extremely encouraging. For example, the means of the small-sample distributions

for the EH-FX tests are at most 0.10 apart across the two tables. For the individual EH-TS tests we

have four sets of results (the USD twice, the DEM and the GBP). Across these four sets of results,

the 95% quantiles vary between 17.32 and 19.66 for the Wald test, between 10.79 and 11.24 for the

LM test (the corresponding chi-square value is 11.07), and between 14.60 and 15.21 for the DM

test. This is a clear illustration of the remarkable robustness across currencies of our distributions,

and it nicely illustrates the relative qualities of the test statistics.

Table 5 repeats all of these results for the GARCH DGP. All of the results remain robust. To

illustrate, let us focus on the joint tests, since they feature the largest distortions. The means of

the Wald tests are 27.47 in the DEM-USD system and 28.22 in the GBP-USD system, and the

95% quantiles are 54.27 and 56.33, respectively. The distortions here are somewhat larger than

for the bootstrap results where the 95% quantiles are 47.46 and 52.50, respectively. Compared

to the 95% critical value of a χ2(15) of 25, the size distortions are considerable. There is also

a significant rightward shift for the DM test. Its mean is 18.25 in the DEM-USD system and

17.76 in the GBP-USD system. The 95% quantiles are 28.50 and 27.17, respectively. Apart from

showing a much smaller distortion relative to the Wald test, the small-sample distribution of the

DM test is also more alike across currencies and DGPs. The 95% quantiles in the bootstrap case

are 27.98 for the DEM-USD system and 31.16 for the GBP-USD case. The LM test is again the

best-behaved. The mean of its distribution is 15.42 for the DEM-USD system and 14.78 for the

GBP-USD system, which is very close to the mean of the χ2(15). Since the empirical distributions

of the LM tests have smaller variances than the asymptotic distributions, it is not surprising that

the 95% quantiles are lower than the corresponding value of 25 for a χ2(15). The 95% quantiles are

23.27 in the DEM-USD system and 21.95 in the GBP-USD system. The under-coverage of the LM

test is worst for the joint test. Since the 95% critical values in the bootstrap case were 22.15 for the

DEM-USD system and 21.57 for the GBP-USD case, this test also shows remarkable robustness

across currencies and DGPs.

In Table 6 we focus on the empirical size and the empirical power of the various tests at the
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nominal 5% significance level. The empirical size of a test is the percent of the Monte Carlo

experiments conducted under the null hypothesis in which the test statistic exceeds the asymptotic

critical value associated with a 5% type one error. These values are reported in Panel A. The

empirical power of a test is the percent of Monte Carlo experiments conducted under the alternative

hypothesis in which the test statistic exceeds the empirical critical value. These critical values are

reported in Tables 4 and 5. Panel B of Table 6 reports the values for the empirical powers of the

tests where the alternative hypothesis is the unconstrained VAR.

Whereas all tests show size distortions, the Wald test has by far the worst size properties. Its

empirical size for a 5% nominal test is at least 10.50 %. The empirical size is considerably worse for

the EH-TS tests reaching 26.2% for the USD test in the DEM-USD GARCH DGP. For the joint

test of the EHs, the empirical sizes of the Wald tests vary between 44.6% and 50.6%. Since this

test has been the one used most in empirical work, these findings may potentially change inference

regarding the validity of the EHs. The DM tests also have size distortions for the EH-FX tests

with a largest empirical size of 15.4%, but the sizes of the DM tests are smaller than those of the

corresponding Wald tests, except in one case. The empirical sizes of the LM tests for a 5% nominal

size vary between 0.7% and 7.9%. In the majority of the cases, the sizes of the LM tests are smaller

than 5%, and in virtually half of the cases the empirical size is within 1% of the nominal size.

To assess the power of the tests, we use the unconstrained VAR as the alternative hypothesis.

We find that the power of the tests depends critically on which of the null hypotheses is tested and

to some extent on the DGP. For the DEM-USD system, the EH-TS tests are more powerful than

the EH-FX tests. Note that the information set considered for the EH-FX test is larger than what

is typically considered in regression tests, where changes in foreign exchange rates are regressed

on an interest differential. Here the coefficients on the interest rates are allowed to be different in

absolute magnitude and the spreads are allowed to predict changes in exchange rates. The power of

the FX tests hovers around 55%. For the test of the EH-TS in the DEM, the power is very high for

the bootstrap DGP (in excess of 95%) and between 74.3% and 85.4% for the GARCH system. For

the USD term structure, the roles are reversed, with the GARCH system yielding more powerful

tests, generally in excess of 95%. Nevertheless, even for the bootstrap system, power is still in

excess of 80%. For the joint EH-FX test, power is slightly in excess of 50% for the LM and DM

tests, but drops to 45.1% for the Wald test in the bootstrap DGP and to 12.5% for the Wald test

in the GARCH DGP.
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For the GBP system, power is always higher for the EH-FX tests than in the DEM-USD system.

We find that empirical power in these test varies between 56.5% and 99.4%. EH-TS tests for the

USD and the GBP are less powerful with the exception of the GBP tests for the GARCH system

in which they exceed 94% in every case.

For the joint tests of the EHs, there is uniformly high power. For the GARCH system, the LM

and DM tests have power over 99%, while the power is generally smaller for the bootstrap DGP, it

never falls below 91.8%.

We also checked to see that all tests are consistent in that power goes to one when the sample

is increased. Simulations of samples with 50,000 observations reveal powers very close to 1.00 for

all tests. For our small samples of 269 observations, it is important to assess which tests are most

powerful. Of course, we already know that the LM test has superior size properties and should be

the preferred test, if it has comparable power to the other tests. Across the two DGPs, the two

currencies, and the various tests, we can make a total of 20 power comparisons. In 17 cases, the

DM test is most powerful and comes in second in the three other cases. The LM test is never the

most powerful test, but comes in second in 13 cases. Moreover, whereas the Wald test is sometimes

more powerful than the LM test, when it is not, its power is substantially below that of the other

tests.

Taken together, our results strongly suggest avoiding use of the Wald test. The DM test has

reasonable size properties, but its use would lead to over-rejection of the null hypothesis. It is also

quite powerful when applied correctly. The LM test is by far the best test. It has very good size

properties, and it has good power. In some cases, it may turn out to be a slightly conservative

test, which fails to reject the null when it is false. Ironically, the LM test is arguably the least used

of all in applied work. Having established the small-sample properties of the various test statistics

allows us to revisit the evidence on the EHs in the data.

V. Statistical Analysis of the Data

This section evaluates the validity of the EHs using the small-sample distributions developed

above. Two types of evidence are interpreted. First, we consider the regression evidence corre-

sponding to equations (17), (18), and (19) for slope coefficients from ordinary least squares (OLS)

regressions and the corresponding implied coefficients (IOLS) from the VAR. Then, we consider

the test statistics from the VARs.

The Regression Evidence
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Consider first the results in Table 2. For the DEM/USD rate, the slope coefficients corresponding

to equation (17) of -0.527 (OLS) and -0.498 (IOLS) fall between the 2.5% and 5% quantiles of the

empirical distributions. After allowing for a two-sided test, this evidence is consistent with the

large-sample inference one would do based on asymptotic standard errors of 0.923 (OLS) and 0.979

(IOLS) which produces p-values of .1 for the null that the slope coefficient is one. Similarly, for

the GBP/USD rate, the coefficient estimates of -1.654 (OLS) and -1.662 (IOLS) are well below

the 0.5% quantile of the empirical distributions. Hence, the small-sample inference supports the

asymptotic inference that rejects the null at smaller than a 1% marginal level of significance. The

evidence for both of these rates at the twelve-month horizon is not quite as strong.

The situation for the term structure is in many ways the reverse of the above. We now reject

the EH-TS for the USD at the 1% level for equation (18) and at the 5% level for equation (19).

We reject very strongly in the DEM term structure, but we do not reject at all in the GBP term

structure.

Similar inference can be drawn from the distributions in Table 3 because the GARCH model

generally produces less dispersion in the slope coefficients. The p-values of the FX tests would

actually be smaller than the asymptotic p-values.

The VAR tests

Analysis of Tables 4 and 5 indicates that use of empirical critical values generally weakens

the evidence against the EHs for the Wald and DM tests. Consider a researcher who conducts

inference using Wald tests and their asymptotic critical values, which is undoubtedly the most

common approach in the literature. Such a researcher would conclude that there is strong evidence

against the EH-FX for the GBP/USD but not in the DEM/USD, that the EH-TS is rejected for

the USD and the DEM but not for the GBP. Notice, though, that a joint test of all the EHs would

reveal very strong evidence against the hypotheses in both currency markets and all three term

structures.

When empirical critical values are used, the evidence against the EHs weakens considerably. In

fact, all tests fail to reject at the 1% marginal level of significance, and most of the joint evidence

yields (marginal) 5% rejections. Given the LM test’s superior size properties, a researcher using

such a test, even with the asymptotic critical values, would typically reach the right conclusion.

Note that using the appropriate empirical critical values for the different tests generally leads

to a more common interpretation of the data across the tests than is afforded from the asymptotic
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distributions. For example, in the joint test of all the EHs’s in the DEM-USD system, which is

reported in Table 4, the Wald, DM, and LM test statistics are 47.76, 27.94, and 21.34, respectively.

Since the 5% critical value of a χ2(15) is 25, asymptotic inference is quite different depending on

the statistic chosen. The results in Table 4 indicate that each of the statistics is quite close to the

95% quantiles of the empirical distributions, which are 47.46, 27.98, and 22.15, respectively.

VI. Conclusions

The goal of this paper is to evaluate the Expectations Hypotheses of the term structure of

interest rates and of the foreign exchange market using alternative statistical techniques and ex-

tensive Monte Carlo methods. We find no evidence against the EH-FX for the DEM/USD foreign

exchange market, but we marginally reject it for the GBP/USD market at either the 5% or 10%

marginal level of significance depending on the test statistic. The lack of strong evidence against

the EH-FX for these major currencies is consistent with the findings of Huisman, Koedijk, Kool,

and Nissen (1998) and Bansal and Dahlquist (1999) who use panel data techniques with fifteen and

twenty-eight countries, respectively.

For the EH-TS, the evidence is more mixed. There is no evidence at all against the EH-TS for

the GBP, weak evidence against the EH-TS for the USD (at most 5% rejections) and somewhat

stronger evidence against the EH-TS for the DEM, where the DM test rejects at the 1% level for

both DGPs. However, the other tests reject at the 5% or 10% level depending on the DGP. The

joint tests of the EHs never reject at the 1% level and the strongest evidence against the joint

hypotheses occurs in the GBP-USD bootstrap system, where the Wald and DM tests reject at the

5% level and the LM test at the 10% level.

These rejections are much less dramatic than the asymptotic distributions imply. In general,

we find severe size distortions in the Wald tests and to a lesser extent in Distance Metric tests.

The test with the best performance for our sample size is the Lagrange Multiplier test. While

estimation of VARs subject to highly non-linear restrictions is often technically demanding, we

find that iterating on the approximate solution of Newey and McFadden (1994) easily converged

to estimators that satisfied the constraints.

This technique is not only useful in formulating alternative test statistics to the usual Wald tests,

it also delivers the dynamics of the data under the null hypothesis. This allows the straightforward

development of Monte Carlo experiments to analyze the small-sample distributions of test statistics.

There are also many environments in which contrasting constrained with unconstrained dynamics
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can yield useful insights. As one example, consider the effect of monetary policy on the aggregate

economy. Policy analysis, such as Bernanke, Gertler and Watson (1997), often uses VARs to trace

out these effects. If some of the effects occur through changes in long rates, it may be instructive

to compare the predictions of models estimated under the EH with unconstrained VAR dynamics,

especially since the EH is a working hypothesis of many policy makers.

While the distortions in the test statistics provide a partial rehabilitation to the EHs, it remains

inconsistent with the data. Moreover, our results cannot be generalized to other currencies. There

are several possible ways to go in explaining the findings. First, it is unlikely that the EHs are

literally true because of the requirement that risk premiums are constant. Indeed, Bekaert, Hodrick,

and Marshall (1999) find that allowing for a small amount of variation in term premiums in the

bond market improves the ability of the EH-TS test statistics to match the data. Second, although

we allow for a rich data generating process, it may be that the real world is more complicated than

this and that peso problems may consequently plague the statistical analysis. Once again, Baillie

and Bollerslev (1998), Bekaert, Hodrick and Marshall (1999), and others have experimented with

alternative DGPs that may provide richer and more realistic environments than our constrained

VARs.
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Appendix

This Appendix examines the implications of economies that do not admit arbitrage for the

expectations hypothesis of the term structure of interest rates. From equation (3) of the paper, the

n-period interest rate can be written as follows:

it,n = − 1
n
log [Et[exp(mt+n,n)]] (55)

where the log of the n-period pricing kernel is mt+n,n ≡Pn
i=1mt+i. A Taylor’s Series expansion of

exp(mt+n,n) around the mean yields the following expression:

exp (mt+n,n) = exp[Et (mt+n,n)]

1 + ∞X
p=1

[mt+n,n −Et(mt+n,n)]p
p!

 . (56)

Therefore,

Et[exp (mt+n,n)] = exp[Et (mt+n,n)]

1 + ∞X
p=2

νt,n(p)

p!

 (57)

where νt,n(p) is the p-th conditional central moment of mt+n,n.

By applying equation (57) repeatedly for n = 1, and replacing interest rates by conditional

expectations of pricing kernels as in equation (55), we derive the following general term premium:

αt,n =
1

n

Et
 nX
i=1

log

1 + ∞X
p=2

νt+i−1,1(p)
p!

− log
1 + ∞X

p=2

νt,n(p)

p!

 . (58)

To compute the foreign exchange risk premium, use the complete markets assumption to express

exchange rate changes in terms of conditional pricing kernels and then use the results in equations

(55) through (57) to obtain:

Et (∆st+1) = Et
³
mjt+1

´
−Et

³
mkt+1

´
= (59)

=
³
ikt − ijt

´
+ log

1 + ∞X
p=2

νkt,1(p)

p!

− log
1 + ∞X

p=2

νjt,1(p)

p!


Under log-normality, the last two terms reduce to half the difference of the conditional variances

of the two log pricing kernels, as in equation (9) in the paper.
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Table 1: Summary Statistics

The sample contains 270 monthly observations from January 1975 to July 1997.  The currencies are
numbered 1 for the USD, 2 for the DEM, 3 for the GBP.  The continously compounded rates of appreciation
of the USD versus currency j are denoted .  The short-term interest rate for currency j is .  The spread∆st

j it
j

between the twelve-month rate and the one-month rate for currency j is . spt
j

Variable Mean Stand.
 Dev.

Minimum Maximum Autocorrelations
1                   2                3

∆st
2 -1.084 40.617 -120.068 132.234 -0.019 0.105 0.03    

∆st
3 1.661 39.987 -163.297 157.455 0.083 0.036 -0.013

it
1 7.943 3.52 3.059 20.081 0.968 0.932 0.899

it
2 6.011 2.445 2.248 14.907 0.975 0.96 0.945

it
3 10.652 3.373 4.647 20.204 0.957 0.92 0.88

spt
1 0.164 0.925 -4.882 1.823 0.817 0.673 0.554

spt
2 0.071 0.683 -3.24 2.666 0.805 0.722 0.666

spt
3 -0.429 1.106 -4.273 1.898 0.817 0.707 0.638



Table 2: Empirical Distributions of the Regression Coefficients

under the EH Null with Bootstrap Innovations

The Table provides summary statistics for the empirical distributions generated from a constrained VAR with
a bootstrap of the residuals.  The summary statistics are the Mean, Median, Standard Deviation (Std. Dev.)
and the 0.5%, 2.5%, and 5% quantiles.  The statistics are the slope coefficients in regression tests.  An R
indicates the direct regression, and an I indicates an implied regression from a VAR.  FX1 and FX12 are the
one-month and twelve-month EH-FX tests as in equation (17).  CUR1 and CUR2 refer to EH-TS tests as in
equations (18) and (19), where CUR signifies either USD, DEM, or GBP interest rates.  The point estimate
is Sample Stat., and the asymptotic standard error is Asymp. S.E.

Panel A: DEM-USD VAR

Slope Mean Median Std.
Dev.

0.5% 2.5% 5% Sample
Stat.

Asymp.
s.e.

FX1-R 1.009 0.991 0.926 -1.503 -0.793 -0.470 -0.527 0.923

FX1-I 1.011 0.997 0.955 -1.543 -0.808 -0.490 -0.498 0.979

FX12-R 0.924 0.922 1.022 -1.979 -1.103 -0.737 -0.273 0.467

FX12-I 0.941 0.938 0.939 -1.447 -0.806 -0.500 -0.729 0.982

USD1-R 1.073 1.070 0.194 0.591 0.699 0.756 0.466 0.142

USD1-I 1.025 1.031 0.440 0.590 0.729 0.783 0.664 0.280

USD2-R 1.505 1.493 0.516 0.183 0.510 0.682 0.237 0.929

USD2-I 1.488 1.479 0.782 0.155 0.505 0.677 0.271 0.777

DEM1-R 1.028 1.028 0.143 0.658 0.748 0.793 0.558 0.151

DEM1-I 0.990 0.993 0.193 0.673 0.762 0.803 0.669 0.148

DEM2-R 1.507 1.513 0.361 0.488 0.774 0.903 0.146 0.368

DEM2-I 1.495 1.504 0.415 0.480 0.750 0.886 0.193 0.339



Panel B: GBP-USD VAR

Slope Mean Median Std.
Dev.

0.5% 2.5% 5% Sample
Stat.

Asymp.
s.e.

FX1-R 1.052 1.045 0.673 -0.778 -0.261 -0.035 -1.654 0.911

FX1-I 1.050 1.045 0.680 -0.801 -0.277 -0.048 -1.662 0.936

FX12-R 0.985 0.990 0.741 -1.107 -0.507 -0.231 -0.867 0.651

FX12-I 0.986 0.992 0.644 -0.784 -0.293 -0.081 -1.341 0.942

USD1-R 1.059 1.057 0.197 0.556 0.679 0.737 0.466 0.142

USD1-I 1.018 1.010 1.567 0.557 0.710 0.766 0.624 0.348

USD2-R 1.512 1.502 0.509 0.163 0.530 0.698 0.237 0.929

USD2-I 1.500 1.489 0.954 0.124 0.503 0.672 0.255 0.707

GBP1-R 1.054 1.052 0.174 0.608 0.720 0.774 0.839 0.176

GBP1-I 1.007 1.009 0.289 0.622 0.739 0.786 0.817 0.241

GBP2-R 1.546 1.536 0.425 0.462 0.730 0.859 0.938 0.483

GBP2-I 1.535 1.525 0.580 0.415 0.705 0.840 0.928 0.467



Table 3: Empirical Distributions of the Regression Coefficients

under the EH Null with GARCH Innovations

The Table provides summary statistics for the empirical distributions generated from a constrained VAR with
a GARCH model of the residuals.  The summary statistics are the Mean, Median, Standard Deviation (Std.
Dev.) and the 0.5%, 2.5%, and 5% quantiles.  The statistics are the slope coefficients in regression tests.  An
R indicates the direct regression, and an I indicates an implied regression from a VAR.  FX1 and FX12 are
the one-month and twelve-month EH-FX tests in the foreign exchange market as in equation (17).  CUR1
and CUR2 refer to EH-TS tests as in equations (18) and (19), where CUR signifies either USD, DEM, or
GBP interest rates.  The point estimate is Sample Stat., and the asymptotic standard error is Asymp. S.E.

Panel A: DEM-USD VAR

Slope Mean Median Std.
Dev.

0.5% 2.5% 5% Sample
Stat.

Asymp.
s.e.

FX1-R 0.998 0.998 0.226 0.359 0.545 0.631 -0.527 0.923

FX1-I 0.998 0.997 0.229 0.343 0.539 0.626 -0.498 0.979

FX12-R 0.962 0.971 0.259 0.173 0.416 0.522 -0.273 0.467

FX12-I 0.965 0.972 0.246 0.224 0.445 0.544 -0.729 0.982

USD1-R 1.053 1.058 0.131 0.703 0.790 0.833 0.466 0.142

USD1-I 1.047 1.068 1.991 0.679 0.807 0.855 0.664 0.280

USD2-R 1.421 1.398 0.343 0.633 0.807 0.898 0.237 0.929

USD2-I 1.405 1.397 2.440 0.585 0.796 0.888 0.271 0.777

DEM1-R 1.116 1.114 0.242 0.504 0.647 0.719 0.558 0.151

DEM1-I 1.066 1.085 1.531 0.416 0.680 0.757 0.669 0.148

DEM2-R 1.626 1.603 0.658 0.029 0.391 0.585 0.146 0.368

DEM2-I 1.589 1.589 2.548 -0.058 0.361 0.558 0.193 0.339



Panel B: GBP-USD VAR

Slope Mean Median Std.
Dev.

0.5% 2.5% 5% Sample
Stat.

Asymp.
s.e.

FX1-R 1.002 1.003 0.288 0.227 0.430 0.530 -1.654 0.911

FX1-I 1.002 1.003 0.290 0.228 0.429 0.527 -1.662 0.936

FX12-R 0.898 0.910 0.546 -0.645 -0.216 -0.018 -0.867 0.651

FX12-I 0.914 0.920 0.458 -0.320 0.005 0.151 -1.341 0.942

USD1-R 1.071 1.072 0.180 0.597 0.715 0.772 0.466 0.142

USD1-I 1.024 1.030 0.236 0.621 0.736 0.790 0.624 0.348

USD2-R 1.579 1.554 0.454 0.521 0.761 0.877 0.237 0.929

USD2-I 1.573 1.549 0.553 0.507 0.753 0.872 0.255 0.707

GBP1-R 1.021 1.024 0.083 0.798 0.851 0.879 0.839 0.176

GBP1-I 1.010 1.015 0.135 0.828 0.876 0.902 0.817 0.241

GBP2-R 1.344 1.336 0.164 0.966 1.046 1.089 0.938 0.483

GBP2-I 1.342 1.334 0.232 0.959 1.044 1.087 0.928 0.467



Table 4: Empirical Distributions of Wald, Lagrange Multiplier and Distance Metric Tests

under the EH Null with Bootstrap Innovations

The Table provides summary statistics for the empirical distributions generated from a constrained VAR with
a bootstrap of the residuals.  The summary statistics are the Mean, Median, Standard Deviation (Std. Dev.)
and the 90%, 95%, and 99% quantiles.  The statistics are the Wald (W), Lagrange Multiplier (LM), and
Distance Metric (DM) tests.  FX1 and FX12 are the one-month and twelve-month EH-FX tests.  The
asymptotic distribution is a P2(5).  FX1-12 examines the one-month and twelve-month joint EH-FX test.  The
asymptotic distribution is a P2(10).   The EH-TS tests are labelled by currency.  The asymptotic distribution
is a P2(5).    Joint-EH is a simultaneous test of the restrictions of the EH-FX and the EH-TS in each currency.
The asymptotic distribution is a P2(15).   The currencies are the USD, the DEM, and the GBP.  The sample
statistic is Sample Stat., and its asymptotic p-value is Asymp. p-value.

Panel A: DEM-USD VAR

Mean Median Std.
Dev.

90% 95% 99% Sample
Stat.

Asymp
p-value

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.23 5.30 4.23 11.67 14.35 20.18 6.953 0.224

FX1 LM 5.08 4.59 2.91 8.98 10.61 13.73 5.666 0.340

FX1 DM 6.19 5.32 4.06 11.67 14.16 19.40 8.770 0.119

FX12 W 6.20 5.23 4.35 11.66 14.37 21.57 6.740 0.241

FX12 LM 5.07 4.57 2.91 8.97 10.60 13.81 6.093 0.297

FX12 DM 6.13 5.28 4.01 11.51 13.95 18.92 9.993 0.079

P2(10) 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 11.09 9.09 9.99 18.57 23.93 41.60 8.063 0.623

FX1-12 LM 10.38 10.02 3.82 15.51 17.16 20.55 9.133 0.520

FX1-12 DM 12.82 12.11 5.51 20.14 22.53 27.69 12.110 0.278

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

USD W 7.98 6.55 5.91 15.17 18.91 29.20 14.898 0.011

USD LM 5.65 5.20 2.98 9.72 11.24 14.00 12.627 0.027

USD DM 6.80 5.99 4.10 12.31 14.60 19.52 18.134 0.003

DEM W 7.28 6.01 5.29 13.83 17.32 26.24 19.890 0.001

DEM LM 5.37 4.93 2.92 9.33 10.79 13.80 10.971 0.052

DEM DM 6.76 5.88 4.51 12.48 14.89 20.20 24.498 0.000

P2(15) 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 25.63 23.54 11.76 40.56 47.46 63.66 47.758 0.000



Joint-EH LM 14.96 14.76 4.16 20.41 22.15 25.35 21.336 0.126

Joint-EH DM 18.19 17.77 5.91 25.62 27.98 32.97 27.937 0.022

Panel B: GBP-USD VAR

Mean Median Std.
Dev.

90% 95% 99% Sample
Stat.

Asymp
p-value

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.30 5.38 4.21 11.79 14.35 20.58 17.664 0.003

FX1 LM 4.98 4.55 2.76 8.70 10.15 13.00 9.340 0.096

FX1 DM 6.18 5.37 3.94 11.45 13.76 18.71 15.678 0.005

FX12 W 6.24 5.26 4.29 11.75 14.39 20.80 16.622 0.005

FX12 LM 4.98 4.56 2.77 8.74 10.09 13.09 9.753 0.083

FX12 DM 6.15 5.35 3.92 11.39 13.62 18.58 15.050 0.010

P2(10) 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 13.08 10.48 13.64 21.74 28.16 55.84 23.728 0.008

FX1-12 LM 10.34 10.04 3.70 15.30 16.93 19.89 14.962 0.133

FX1-12 DM 12.89 12.33 5.24 19.99 22.43 27.07 26.197 0.003

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

USD W 8.00 6.61 5.85 15.07 18.87 28.51 13.247 0.021

USD LM 5.61 5.20 2.89 9.53 10.97 13.58 7.813 0.167

USD DM 6.95 6.14 4.15 12.57 14.87 19.86 13.154 0.022

GBP W 7.96 6.38 6.21 15.40 19.66 30.91 4.666 0.458

GBP LM 5.54 5.08 3.03 9.67 11.23 14.38 4.086 0.537

GBP DM 6.86 5.99 4.32 12.71 15.21 20.53 6.032 0.303

P2(15) 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 27.65 25.15 13.22 44.32 52.50 71.86 55.511 0.000

Joint-EH LM 14.81 14.64 3.93 20.01 21.57 24.43 20.109 0.168

Joint-EH DM 18.04 17.72 5.30 25.18 27.34 31.16 27.937 0.022



Table 5: Empirical Distributions of Wald, Lagrange Multiplier and Distance Metric Tests

under the EH Null with GARCH Innovations

The Table provides summary statistics for the empirical distributions generated from a constrained VAR with
a GARCH model of the residuals.  The summary statistics are the Mean, Median, Standard Deviation (Std.
Dev.) and the 90%, 95%, and 99% quantiles.  The statistics are the Wald (W), Lagrange Multiplier (LM),
and Distance Metric (DM) tests.  FX1 and FX12 are the one-month and twelve-month EH-FX tests.  The
asymptotic distribution is a P2(5).  FX1-12 examines the one-month and twelve-month joint EH-FX test.  The
asymptotic distribution is a P2(10).   The EH-TS tests are labelled by currency.  The asymptotic distribution
is a P2(5).    Joint-EH is a simultaneous test of the restrictions of the EH-FX and the EH-TS in each currency.
The asymptotic distribution is a P2(15).   The currencies are the USD, the DEM, and the GBP.  The point
estimate is Sample Stat., and its asymptotic p-value is Asymp. p-value.

Panel A: DEM-USD VAR

Mean Median Std.
Dev.

90% 95% 99% Sample
Stat.

Asymp.
p-value

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.05 5.16 4.04  11.47 13.87 19.32 6.953 0.224

FX1 LM 5.02 4.52 2.88 8.98 10.54 13.68 5.666 0.340

FX1 DM 5.94 5.12  3.83 11.11 13.39 18.25 8.770 0.119

FX12 W 6.14 5.10 4.34 11.75 14.47 21.09 6.740 0.241

FX12 LM 5.06 4.55 2.92 9.08 10.59 13.84 6.093 0.297

FX12 DM 6.00 5.17 3.89 11.32 13.60 18.40 9.993 0.079

P2(10) 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 15.87 12.36 15.81 27.75 37.03 68.33 8.063 0.623

FX1-12 LM 10.34 9.96 3.96 15.66 17.45 21.12 9.133 0.520

FX1-12 DM 12.33 11.67 5.25 19.44 21.96 27.15 12.110 0.278

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

USD W 9.05 6.79 8.26 17.93 23.98 40.39 14.898 0.011

USD LM 5.91 5.36 3.30 10.39 12.13 15.73 12.627 0.027

USD DM 7.10 6.17 4.50 13.13 15.73 21.50 18.134 0.003

DEM W 8.71 6.71 7.40 17.29 22.22 36.63 19.890 0.001

DEM LM 5.93 5.37 3.30 10.47 12.16 15.64 10.971 0.052

DEM DM 7.16 6.20 4.50 13.27 15.90 21.52 24.498 0.000

P2(15) 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 27.47 24.29 14.68 45.29 54.27 79.32 47.758 0.000



Joint-EH LM 15.42 15.17 4.45 21.36 23.24 26.62 21.336 0.126

Joint-EH DM 18.25 17.82 5.77 25.99 28.50 33.02 27.937 0.022

Panel B: GBP-USD VAR

Mean Median Std.
Dev.

90% 95% 99% Sample
Stat.

Asymp
p-value

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.25 5.30 4.22 11.78 14.32 20.31 17.664 0.003

FX1 LM 4.97 4.51 2.79 8.72 10.26 13.21 9.340 0.096

FX1 DM 6.05 5.24 3.86 11.27 13.54 18.42 15.678 0.005

FX12 W 6.42 5.30 4.60 12.31 15.29 22.57 16.622 0.005

FX12 LM 5.06 4.61 2.84 8.92 10.43 13.59 9.753 0.083

FX12 DM 6.20 5.37 3.97 11.55 13.86 18.95 15.050 0.010

P2(10) 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 16.52 13.20 14.77 28.52 37.33 70.07 23.728 0.008

FX1-12 LM 10.25 9.91 3.78 15.28 17.03 20.19 14.962 0.133

FX1-12 DM 12.57 11.96 5.17 19.61 22.04 26.68 26.197 0.003

P2(5) 5.00 4.35 3.16 9.24 11.07 15.09

USD W 8.23 6.27 7.17 16.34 21.23 36.32 13.247 0.021

USD LM 5.52 5.01 3.10 9.73 11.41 14.66 7.813 0.167

USD DM 6.73 5.86 4.28 12.50 15.05 20.40 13.154 0.022

GBP W 7.89 5.97 6.87 15.89 20.67 33.70 4.666 0.458

GBP LM 5.41 4.85 3.13 9.69 11.39 14.82 4.086 0.537

GBP DM 6.65 5.68 4.35 12.55 15.18 20.56 6.032 0.303

P2(15) 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 28.22 24.95 15.04 46.73 56.33 80.91 55.511 0.000

Joint-EH LM 14.78 14.59 4.13 20.26 21.95 25.08 20.109 0.168

Joint-EH DM 17.76 17.45 5.41 25.01 27.17 31.21 27.937 0.022



Table 6: Empirical Size and Power of 

Wald, Lagrange Multiplier and Distance Metric Tests

The Table provides empirical sizes and powers from the empirical distributions of various test statistics.  The
empirical size is the percent of the Monte Carlo experiments generated when the null hypothesis is true in
which the test statistic exceeds the 5% asymptotic critical value.  The power of the test is the percent of the
empirical distribution generated when the alternative hypothesis is true that exceeds the 5% critical value
of the empirical distribution generated when the null hypothesis is true.  The statistics are the Wald (W),
Lagrange Multiplier (LM), and Distance Metric (DM) tests.  The symbol B signifies the bootstrap DGP
distributions, and the symbol G signifies the GARCH model DGP distributions.  FX-1 and FX-12 are the
one-month and twelve-month EH-FX tests.  Joint FX is the simultaneous test of both horizons.  The EH-TS
tests are labeled by currency.  Joint is a simultaneous test of the restrictions of the EH-FX and the two EH-
TS. 

DEM-USD GBP-USD

FX-
1

FX-
12

Joint
FX

EH-
USD

EH-
DEM

Joint FX-
1

FX-
12

Joint
FX

EH-
USD

EH-
GBP

Joint

Panel A: Empirical Size

W-B 11.8 11.5 10.5 21.9 17.8 44.6 12.1 12.0 15.6 21.8 22.0 50.6

LM-B 4.1 4.0 3.0 5.4 4.4 1.2 3.2 3.1 2.5 4.8 5.3 0.7

DM-B 11.6 11.3 15.2 14.3 14.7 11.9 11.2 11.1 15.4 15.1 15.4 10.6

W-G 11.1 11.9 25.9 26.2 24.9 47.7 12.2 13.4 28.5 22.6 21.2 49.9

LM-G 3.9 4.0 3.5 7.7 7.9 2.3 3.3 3.6 2.9 5.8 5.7 1.1

DM-G 10.2 10.8 13.2 16.8 17.4 12.8 10.6 11.7 13.7 14.5 14.7 10.0

Panel B: Empirical Power

W-B 55.8 49.7 45.1 80.1 95.3 95.8 77.8 72.7 60.2 69.1 45.6 91.8

LM-B 54.1 51.1 52.0 84.4 95.5 96.1 64.0 70.9 79.5 72.5 47.6 91.8

DM-B 55.2 52.8 54.1 88.2 97.7 98.9 72.0 78.1 85.5 76.1 49.5 95.3

W-G 57.8 54.8 12.5 95.6 74.3 98.6 67.8 61.9 31.2 95.3 94.1 99.8

LM-G 56.2 57.6 53.0 97.9 83.7 99.0 56.5 59.8 99.1 96.9 95.4 99.9

DM-G 58.0 58.7 54.2 98.4 85.4 99.5 61.8 66.8 99.4 97.4 95.7 99.9



Table A1: VAR Order Tests

Panel A: Schwarz Criteria

VAR Lag 1 Lag 2 Lag 3 Lag 4

DEM-USD 1.677 1.805 2.062 2.414

GBP-USD 3.87 4.176 4.571 4.823

Panel B: Cumby-Huizinga l-tests p-values

Lag 1 Lags 1-3 Lags 1-6

VAR DEM-USD
∆st

2 0.798 0.459 0.625

it
1 0.321 0.536 0.187

it
2 0.703 0.868 0.31

spt
1 0.049 0.228 0.188

spt
2 0.024 0.082 0.107

VAR GBP-USD
∆st

3 0.443 0.637 0.377

it
1 0.306 0.598 0.217

it
3 0.805 0.987 0.148

spt
1 0.687 0.766 0.799 

spt
3 0.358 0.726 0.811



Table A2: Unconstrained VAR Dynamics with OLS and Bias-Corrected Coefficients

Panel A:
DEM-
USD

Coef. ∆st−1
2

Bias-Corrected
(s.e.)

Coef. it−1
1

Bias-Corrected
(s.e.)

Coef. it−1
2

Bias-Corrected
(s.e.)

Coef. spt
1

Bias-Corrected
(s.e.)

Coef. spt
2

Bias-Corrected
( s.e.)

  ∆st
2 -0.026

-0.011
(0.075)

1.706
1.667

(1.277) 

-0.518
-0.020
(1.692)

 3.812
3.837

(5.629) 

-6.431
-5.936
(4.459)

it
1 0.000

0.000
(0.001)

1.030
1.039

(0.036)

-0.035
-0.020
(0.024)

0.287
0.273

(0.164)

-0.175
-0.165
(0.123)

it
2 0.002

0.002
(0.001)

-0.021
-0.023
(0.011)

1.001
1.012

(0.012)

-0.209
-0.207
(0.071)

0.312
0.303

(0.073)

spt
1 0.000

0.000
(0.001)

-0.036
-0.033
(0.018)

 -0.015
-0.018
(0.015)

0.699
0.725

(0.066)

0.019
0.023

(0.056)

spt
2 -0.001

-0.001
(0.001)

0.032
0.029

(0.011)

-0.038
-0.033
(0.012)

 0.152
0.147

(0.047)

0.655
0.684

(0.063)

Panel B:
GBP-
USD

Coef. ∆st−1
3

Bias-Corrected
(s.e.)

Coef. it−1
1

Bias-Corrected
(s.e.)

Coef. it−1
3

Bias-Corrected
(s.e.)

Coef. spt
1

Bias-Corrected
(s.e.)

Coef. spt3

Bias-Corrected
(s.e.)

∆st
3 0.060

0.077
(0.080) 

1.524
1.555

(1.441)

-0.390
-0.273
(1.151)

1.405
1.486

(4.288)

4.709
4.625

(3.498)

it
1 -0.002

-0.002
(0.001)

1.023
1.042

(0.038)

-0.019
-0.019
(0.023)

0.272
0.266

(0.150)

-0.072
-0.075
(0.103)

it
3 0.001

0.001
(0.001)

0.025
0.017

(0.034)

 1.022
1.035

(0.041)

-0.078
-0.086
(0.085)

0.370
0.361

(0.106)

spt
1 0.001

0.001
(0.001)

-0.042
-0.042
(0.020)

 0.010
0.013

(0.013)

0.693
0.718

(0.059)

0.060
0.064

(0.047)

spt
3 -0.001

-0.001
(0.001)

0.027
0.028

(0.018)

-0.081
-0.075
(0.022)

0.184
0.183

(0.065)

0.602
0.630

(0.061)



Table A3: Constrained VAR Dynamics with OLS and Bias-Corrected Coefficients

Panel A: DEM-USD 

Coef. ∆st−1
2

Bias-Corrected
(s.e.)

Coef. it−1
1

Bias-Corrected
(s.e.)

Coef. it−1
2

Bias-Corrected
(s.e.)

Coef. spt
1

Bias-Corrected
(s.e.)

Coef. spt
2

Bias-Corrected
(s.e.)

  ∆st
2 0.000

0.000
(0.076)

-1.000
-1.000

(1.357) 

1.000
1.000

(1.789)

0.000
0.000

(5.986)

0.000
0.000

(4.618)

it
1 -0.001

0.000
(0.001)

1.034
1.022

(0.038)

0.007
0.020

(0.028)

0.475
0.401

(0.179)

-0.021
0.018

(0.130)

it
2 0.000

0.001
(0.001)

-0.031
-0.021
(0.011)

1.014
1.109

(0.012)

-0.152
-0.139
(0.075)

0.393
0.414

(0.072)

spt
1 0.001

0.000
(0.001)

-0.042 
-0.029
(0.019)

-0.009
-0.025
(0.017)

0.626
0.707

(0.068)

0.022
-0.025
(0.059)

spt
2 0.000

-0.001 
(0.001)

0.037
0.025

(0.011)

-0.019
-0.027
(0.011)

 0.175
0.160

(0.051)

0.720
0.692

(0.063)

GBP-USD Coef. ∆st−1
3

Bias-Corrected
(s.e.)

Coef. it−1
1

Bias-Corrected
(s.e.)

Coef. it−1
3

Bias-Corrected
(s.e.)

Coef. spt
1

Bias-Corrected
(s.e.)

Coef. spt3

Bias-Corrected
(s.e.)

∆st
3 0.000

0.000
(0.077)

-1.000
-1.000
(1.664)

1.000
1.000

(1.370)

0.000
0.000

(5.327)

0.000
0.000

(4.026)

it
1 -0.001

-0.001
(0.001)

1.026
1.026

(0.039)

-0.008
-0.006
(0.025)

0.413
0.397

(0.158)

-0.065
-0.039
(0.108)

it
3 0.001

0.000
(0.001)

-0.024
-0.032
(0.034)

1.066
1.064

(0.041)

-0.176
-0.202
(0.091)

0.486
0.478

(0.111)

spt
1 0.001

0.001
(0.001)

-0.033
-0.034
(0.019)

0.009
0.007

(0.013)

0.698
0.714

(0.059)

0.072
0.044

(0.047)

spt
3 -0.001

0.000
(0.001)

0.027
0.037

(0.018)

-0.084
-0.081
(0.022)

0.199
0.230

(0.066)

0.609
0.617

(0.061)



Table A4: DEM-USD GARCH Model

∆st
2 it

1 it
2 spt

1 spt
2

∆st
2 1.0000 0.0019

(0.0006)
0.0014

(0.0004)
0.0000 0.0000

it
1 0.0000 1.0000 0.0000 0.0000 0.0000

it
2 0.0000 0.4689

(0.0672)
1.0000 0.0000 0.0000

spt
1 0.0000 -0.6217

(0.0919)
-0.0377
(0.0494)

1.0000 0.0000

spt
2 0.0000 0.1882

(0.0847)
-0.6053
(0.0675)

0.0000 1.0000

Tj
(s.e.)

$j
(s.e.)

"j
(s.e.)

h1,t 0.1461
(0.0155)

0.00002
(0.00173)

0.0980
(0.0691)

h2,t 0.00006
(0.00002)

0.5355
(0.1182)

0.2222
(0.0761)

h3,t 0.00004
(0.00001)

0.4642
(0.0881)

0.2777
(0.0890)

h4,t 0.00003
(0.000002)

0.0 0.0

h5,t 0.000014
(0.000001)

0.0 0.0



Table A5: GBP-USD GARCH Model

∆st
3 it

1 it
3 spt

1 spt
3

∆st
3 1.0000 0.0013

(0.0006)
0.00007

(0.00087)
0.0000 0.0000

it
1 0.0000 1.0000 0.0000 0.0000 0.0000

it
3 0.0000 0.1289

(0.0376)
1.0000 0.0000 0.0000

spt
1 0.0000 -0.5175

(0.0867)
-0.0475
(0.0864)

1.0000 0.0000

spt
3 0.0000 0.1302

(0.0514)
-0.8097
(0.0795)

0.0000 1.0000

Tj
(s.e.)

$j
(s.e.)

"j
(s.e.)

h1,t 0.1243
(0.0143)

0.000000
(0.00023)

0.2004
(0.0914)

h2,t 0.000019
(0.000021)

0.6877
(0.1185)

0.2215
(0.0727)

h3,t 0.000033
(0.000014)

0.7657
(0.0662)

0.0991
(0.0355)

h4,t 0.000027
(0.000002)

0.0 0.0

h5,t 0.000035
(0.000003)

0.0 0.0


