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ABSTRACT

Convergence in per capita income across countries turns on whether technological knowledge

spifiover are global or local. This paper estimates the amount of spifiover from R&D expenditures in major

industrialized countries on a geographic basis. A new data set is used which encompasses most of the

world's innovative activity at the industry-level between the years 1970 and 1995. First, I find that

technological knowledge is to a substantial degree local, not global, as the benefits from foreign spifiover

are declining with distance: on average, a 10% higher distance to a major technology-producing country

such as the U.S. is associated with a 0.15% lower level of productivity. Second, technological knowledge

has become more global over the sample period. As a determinant of productivity, foreign R&D has

significantly gained in importance relative to domestic R&D, and the extent to which knowledge spifiover

decline with distance has fallen by 20%. The finding of a falling but still high degree of localization has

important implications for macroeconomics and growth, trade, and regional economics.
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International convergence in per capita income turns on whether the scope of technological knowl-

edge spillover is global or local. Global spillover favor convergence, while a geographically limited

scope of knowledge difftision can lead to regional clusters of countries with persistently different levels

of output per capita. Thus, whether the industrialized countries of the North and West will remain

the rich permanently, or whether less developed countries will catch up hinges on whether knowledge

spillover are global or local.

According to a widely held view, technological knowledge is truly global, because increasing

economic interdependence as well as new means of telecommunications and the internet ensure that

people in all countries have access to the same pooi of technological knowledge. Even differences in

the technology that is actually employed (as documented in Harrigan 1997, e.g.) are consistent with a

global pooi of technology if the rate of complementary human and physical capital investments or the

incentive to adopt new technology varies across countries.1 Alternatively, technological knowledge

could be to some extent local. Helsinki, for instance, is located about 1,500 miles away from Bonn,

around 6,900 miles from Washington, D.C., and 7,800 miles from Tokyo, while the distance from

Canberra to Bonn, Washington, and Tokyo is 16,500, 16,000, and 8,000 miles, respectively. If

knowledge spillover are local, then productivity in Finland should, ceteris paribus, be lower than in

Australia, because the former is closer than the latter to Germany, the U.S., and Japan, the three

countries that account for more than 75% of the world's spending on research and development

(R&D).

I will investigate whether knowledge spillover are global or local by examining whether the dis-

tance between countries affects the magnitude of productivity gains from each others' R&D spending.

Geographic distance should not matter for international technology diffusion if there is a global pool

of technological knowledge or a country's technology level depends only on idiosyncratic non-spatial

'These points are emphasized by Mankiw (1995) and Prescott (1998), respectively.
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factors. If knowledge spillover are to some extent local, however, this matters beyond its implications

for international convergence for the following questions.

First, it determines the long-run effectiveness of macroeconomic policies that aim at raising a

country's rate of technical change. With perfect international technology diffusion, one country's

R&D subsidies would have the same effect on domestic growth as everywhere else in the world.

A change in the rate of technical progress at the national level would have then no impact on a

country's position in the long-run world ranking either. Moreover, if spillover are global, the public

good nature of such policies would raise the question of how to insure that national policies will be

at the efficient level, given the incentive of all countries to free-ride on the efforts of other countries.

Second, technology differences affect the comparative advantage and trade of countries (e.g.,

Trefler 1995). If technology diffusion is influenced by geographic factors, then also production func-

tions and comparative advantage will vary systematically according to location, thereby influencing

the trade patterns of the countries. This work on the geographic scope of technology diffusion will

thus provide important information for future work on dynamic models of trade and comparative

advantage such as proposed by Grossman and Helpman (1991).

Third, it matters for regional and urban economics, where a major concern for a long time has

been to explain the agglomeration and the dispersion of economic activity across locations. By ex-

plicitly modeling transport costs, recent work on economic geography such as Krugman and Venables

(1995) and Fujita et al. (1999) has explained these phenomena through the interaction of pecuniary

externalities and increasing returns to scale. When geographic factors affect the diffusion of knowl-

edge, localized technological externalities are an alternative explanation of economic agglomeration

and dispersion.2 Both explanations rely on geographic factors that relate the costs of transporting

2See the path-dependence results by Feenstra (1996) and Grossman and Helpman (1991, Ch. 8).
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goods or transmitting knowledge to distance.3 Estimating the spatial patterns of technology diffusion

helps to assess the importance of geographic factors in explaining agglomeration and dispersion. It

will also be useful for future research that identifies the exact nature of spatial externalities.

My approach follows a substantial amount of work showing that the link between R&D expendi-

tures in one industry and productivity in another is best viewed as a process of technology diffusion

(Scherer 1984, Griliches 1995). The theoretical framework underlying my estimates—presented in Ap-

pendix A—illustrates this mechanism between countries. I relate R&D spending in France, Germany,

Japan, the U.K. and the U.S. (which I will refer to as the G-5 countries) to the productivity levels in

nine other OECD countries. The first question is whether the magnitude of the productivity effects

from G-5 country R&D depends on the bilateral geographic distance between technology sender and

recipient country. A second question is whether these effects, if they exist, have become stronger or

weaker over time.

Influential recent work in the area includes Jaffe et al. (1993) and Jaffe and Trajtenberg (1998).

These authors have studied technology diffusion by comparing the location of patent citations with

that of the cited patents, showing that U.S. patents are significantly more often cited by other

U.S. patents than by foreign patents. These papers succeed in isolating the flow of technological

knowledge by focusing on patent citations, but do not assess the economic impact of technology

diffusion in terms of output or productivity.4 Also Eaton and Kortum (1999, 1996) use data on

patenting to estimate their country-level models of technology diffusion and productivity growth.

Their diffusion parameter estimates confirm that technology diffusion is geographically localized in

the sense that there is more within- than between-country diffusion. However, what identifies the

diffusion parameters is that there is more patenting within- than across countries. In contrast, my

3The two mechanisms need not be exclusive. See, e.g., the theoretical framework in Appendix A.
4See also Bottazzi and Pen (1999) who examine patenting in European regions.
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estimates on geography effects in technology diffusion are based directly on the distance between

countries, not indirectly through a mechanism such as patenting which is known to be correlated

with distance.

Other authors have studied productivity effects from both domestic and foreign R&D in a pro-

duction function framework, typically estimating that the effect from domestic R&D is stronger than

that from foreign R&D (Coe and Helpman 1995, Keller 1999a). This is consistent with the geographic

localization of technology diffusion. However, the main focus in these papers is to evaluate the im-

portance of a particular mechanism—international trade—as a conduit of technology diffusion. Here,

I take a broader empirical approach, asking whether knowledge spillover are global or local without

testing a particular model. Moreover, by exploiting cross-sectional variation in the relative distance

of countries to their partner countries rather than distinguishing only between domestic and foreign

R&D, my estimates are the first on international technology diffusion that are based on a relatively

rich geographic structure.5

More generally, other recent work including Ciccone and Hall (1996) and Hanson (1998) has

pointed to important geographic localization effects. The former find that productivity is positively

correlated with the density of economic activity in the United States, while the latter obtains an

estimate of the geographic scope of backward and forward trade linkages by estimating a spatial

labor demand function for the United States. Neither paper is concerned with the geographic scope

of knowledge spillover. In contrast, I will analyze knowledge spillover on a geographic basis by

exploiting the variation of productivity effects from foreign R&D as the relative location of technology

sender and recipient countries varies.

5Branstetter (1998) studies international technology diffusion between the U.S. and Japan with firm-level data; see
also the related work by Bernstein and Mohnen (1998) and Nadiri and Kim (1996). Adams and Jaffe (1996) study
geographic effects for domestic technology diffusion, estimating the effects of knowledge spillover among plants of the
same firm in the U.S. chemicals industry between 1974-88. They find that the productivity-enhancing effects of parent
firm R&D are significantly smaller for plants that are relatively far away than for plants that are relatively nearby.
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In the next section, I provide an overview of the empirical setting by discussing the variation of

R&D, bilateral distance, and productivity in my sample. Based on a model of trade, transportation

costs, and growth which is described in Appendix A, section 2 presents the estimation equation

and discusses major estimation issues. All estimation results can be found in section 3. The first

set of results concerns the existence of localization effects, while the second documents whether

technological knowledge has become more or less global over time. The concluding section 4 contains

a summary and further discussion of the results. Appendix B provides some additional discussion

of estimation issues, while a description of the sources and the construction of the productivity and

R&D data can be found in Appendix C and D, respectively.

1 Empirical setting

This section takes an extended look at the data that I will employ below. Although much is already

known about these countries and industries, the context provided by this overview will throw some

important new light on how productivity, distance, and R&D expenditures in the sample vary.

1.1 Major country and industry characteristics in terms of GDP and R&D

I use data on manufacturing industries in fourteen OECD countries for the years 1970-1995. The

input, output, and price data come from the STAN database, OECD (1998a). The source for R&D

expenditure data is OECD (1998b). Manufacturing industries in the fourteen countries of my sample

have accounted for about 18% of world GDP and approximately 76% of world GDP in manufacturing

in 1980, and capture thus an important part of the world economy during this period. Moreover,

R&D expenditures by these countries constitute at least 90% of the world's total innovative activity

and almost all private R&D in the manufacturing sector for these years.

The included countries are Australia, Canada, Denmark, Finland, France, West Germany, Italy,
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Japan, the Netherlands, Norway, Spain, Sweden, the United Kingdom, and the United States. The

analysis encompasses almost all of manufacturing, subdivided into twelve industries at the two- to

three-digit ISIC level.6 These are food, beverages and tobacco (ISIC 31), textiles, apparel, and

leather (ISIC 32), wood products and furniture (ISIC 33), paper and printing (ISIC 34), chemicals

and drugs (ISIC 351+352), rubber and plastics (ISIC 355+356), non-metallic mineral products (ISIC

36), basic metals (ISIC 37), metal products (ISIC 381), non-electrical machinery and instruments

(ISIC 382+385), electrical machinery (ISIC 383), and transportation equipment (ISIC 384). Table

1 provides summary statistics on the relative size of the countries and industries in terms of GDP.

While the size of the countries varies substantially in terms of GDP, it does so even more in terms

of R&D expenditures. Table 2 reports summary statistics. The G-5 countries (France, Germany,

Japan, the U.K. and the U.S.) conduct 93% of the total R&D in the sample, while their share of

manufacturing GDP is only 74%. In the light of their dominant position, I will treat the G-5 countries

as the only sources of foreign technology. Moreover, because the effects from foreign R&D might be

very different in the G-5 and the non-G-5 countries, I will focus on the productivity effects of G-5

R&D in the other nine countries.

Also the cross-industry variation is higher for R&D than for GDP. Most of the R&D is done in

chemicals, machinery, electronics, and transportation, accounting for a total of 87% of all R&D. An

increase in R&D activity in these four industries amounts to a major change in national technological

trends, which might, through inter-industry spillover, stimul ate R&D and raise productivity in other

industries as well. In that case, the relationship between R&D and productivity in the low-R&D

industries would be jointly caused by changes in R&D investments of the high-R&D industries. This

would lead to inconsistent estimates in my empirical analysis. Below, I will provide thus two sets

6Two industries have been dropped from the sample: ISIC 353+354, Petroleum and Refineries, because of relatively
bad data, and ISIC 39, Other Manufacturing, because it includes rather different products across countries.
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of results: for all twelve industries, and for the eight low-R&D industries. If the estimation results

for both samples are similar, the estimation bias due to such simultaneity is likely to be limited.7

R&D expenditures are transformed to stocks with the perpetual inventory method (see Appendix

D). Table 3 shows that the average annual growth rates of R&D stocks vary substantially by country,

from a high of 9.8% for Italy to a low of 4.8% for Finland. Among the G-5 countries, R&D growth

has been highest in Germany (9.9%) and lowest in the U.K. (3.0%), with the U.S. in between (5.3%).

1.2 The relative location of the countries

The distance data in this paper is miles between the capital cities of the countries, as the crow flies

(from Haveman 1998). Table 4 presents the distance data from the G-5 countries to the nine other

OECD countries. Broadly speaking, three types of countries can be distinguished: (1) European

countries, which are relatively close to the U.K., France, and Germany, about 6,000 miles away from

the U.S., and around 9,000 miles away from Japan; (2) Canada, which is close to the U.S., about

5,500 miles away from the European G-5 countries, and about 10,000 miles away from Japan; and

Australia, which is around 16,500 miles away from all G-5 countries except for Japan, which is about

8,000 miles away. This means that I seek to estimate whether international technology diffusion is

geographically localized from a relatively small and non-contiguous set of countries.

1.3 Multi-lateral total factor productivity indices

I will compare industry-level total factor productivity (TFP) for the nine non-G-5 countries in my

sample. Recent work with similar comparisons for other purposes includes Bernard and Jones (1996),

Harrigan (1997) and Griffith et al. (1999). TFP calculations require real, internationally comparable

data on outputs, inputs, and intermediate goods. At the industry level, data exists only for labor

possible reasons for simultaneity exist as well. In section 2 and Appendix B I discuss how these are addressed.
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and physical capital, not for intermediate inputs. Therefore, the TFP calculations in this paper

should be viewed as approximations to the true TFP measures. I employ the multi-lateral TFP

index proposed by Caves, Christensen, and Diewert (1982). It is defined as

lnFjt = (inZit
—

inz2t)
— o,jt (lnL — lnL2t)

— (1 — öjt) (lnKi —
1nK1) ,Vc,i,t, (1)

where c = 1, ..., C; i 1, ..., I; t = 1, ...,T; c indexes country, i indexes industry, and t is the subscript

for time. The variable Z is gross output, L is labor inputs, and K denotes capital inputs. Further,

ln is average output, given by ln Z = inZt; correspondingly, in L2 = > ln and

in K2 ln Kdt. The variable 5jt is an average of labor cost shares, öjt = (at + Ot), where

aC2t, Vc, i,t, is the cost share of labor, and jt is its country average, öjt = > it• Following Hall

(1990), I use cost-based factor shares, since these are, in contrast to revenue-based factor shares,

correct even in absence of constant returns to scale.8 This TFP index is superlative in the sense that

it is exact for the flexible translog functional form. It is also transitive, so that the choice of the base

country does not matter.

1.3.1 Input-utilization adjustments

Figure 1 shows the average indices for Australia, Italy, and Sweden.9 Because these indices are

relative to the country average for a given year, they do not increase as productivity increases over

time in all countries. The upward trend in the two series for Italy, for instance, means that Italian

TFP was rising relative to the mean of the nine OECD countries over this period. There are two

series for each country, one adjusted and one unadjusted, because the OECD has not taken account

of differences in labor and capital utilization. I have adjusted the data in the following way: the

8 cost shares incorporate country-specific information on the user cost of capital based on the international
comparison project of Jorgenson and Landau (1993a); see Appendix C.

9These are unweighted industry averages. Size-weighted averages behave very similar.
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number of employees in the STAN data base is multiplied by the average annual hours worked in

each country's manufacturing sector, from OECD (1999). The actual usage of capital inputs has

been estimated by generating capital stock series which adjust for cyclical factors; see Appendix C

for details.

Figure 1 indicates that these adjustments are important. The productivity of Swedish industries

is substantially underestimated if the relatively low number of annual working hours is not taken into

account: on average between 1970 and 1995, the unadjusted value of relative TFP is -0.16, whereas

the adjusted value is -0.03. The opposite is the case for Australia, where manufacturing employees

work relatively long hours, and thus the adjusted TFP index is considerably below the unadjusted

TFP index. These differences in input usage vary also over time, making it impossible to capture

them by time-invariant fixed effects. For instance, in Italy input usage was above the mean until

1981 so that the adjusted TFP index is above the unadjusted index, while from 1981 on Italian input

usage was slightly below the sample average. The adjusted data is preferred to the unadjusted data

for the purpose of comparing productivity across countries, and I will hence use it in my benchmark

specifications. However, I will also present basic specifications using unadjusted data to examine the

robustness of my findings.

1.3.2 Average productivity by country over time

Figure 2 shows the country averages of the productivity indices for the nine sample countries plus

the U.S., which has been the productivity leader throughout the period of 1970-95 according to my

estimates.10 First, the figure clearly indicates that the constructed indices are noisy measures of

the true productivity in these countries. For instance, average productivity in Spain in the year of

10This as well as the following analysis is based on the input utilization-adjusted TFP data. Without these adjust-
ments, U.S. productivity tends to be relatively higher, due to the relatively high number of annual hours worked in the
U.S. compared with the most advanced European countries.
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1985 was substantially higher than in both 1984 and 1986 according to Figure 2. A data problem

is the most plausible explanation for that. Second, while the productivity advantage of the United

States as the leader has fallen over the twenty-six years, there is no strong tendency of productivity

convergence among the nine countries. In Figure 3, I compare the productivity rank average of

countries in 1970 and 1995. High-performing countries are close to lower left corner (Netherlands

and Canada) while low-performing countries are close to the upper right corner (Denmark, Spain,

and Finland). Countries above the 45 degree line have fallen behind in the productivity ranking

between 19'70 and 1995, while those below the 45-degree line have gained. As indicated by the

vertical distance to the 45-degree line, the largest absolute change in productivity has occurred in

Italy, which gained more than three ranks on average. Also Norway's relative productivity increased

substantially. Australia lost the highest number of ranks, with 2.58, while Canada is a close second

(-2.5 ranks). Australia is also the most-remotely located country in the sample. Thus the drop

in Australia's ranking is consistent with the idea that it has fallen back due to technology that is

geographically localized in the vicinity of the G-5 countries. At the same time, less-remotely located

Denmark has also fallen back over this period, suggesting that there are also other major factors

explaining productivity performance.

1.3.3 The industry dimension: with-in country productivity convergence

This paper analyzes productivity dynamics at the industry level, which is important because the

country average of the productivity levels masks a considerable amount of heterogeneity at the in-

dustry level. In fact, in 1970, a country is often productivity leader (rank 1) in one industry and

at the same time productivity laggard (rank 9) in another industry. The average of the countries'

TFP rank ranges in 1970 is seven (out of a maximum spread of eight). Over time, this spread has

fallen, and by 1995, the average of the TFP rank range is down to five. This trend is confirmed by
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Figure 4. The downward-sloping series is the average of the with-in country TFP standard deviation

over time. Clearly, there is a trend towards with-in country convergence of productivity over these

twenty-six years: on average, high productivity countries were able to improve productivity in their

relatively low-performing industries, while low productivity countries lost ground even in their rela-

tively high-performing industries. Correspondingly, there is cross-country divergence of productivity,

as indicated by the upward-sloping series which is the standard deviation of the TFP country aver-

ages over time. This is an important finding. In general, it suggests that country-specific components

in accounting for productivity differences have become more important over the sample period. Put

differently, an increasing share of what leads to relatively good productivity performance appears to

be associated with country- rather than with industry-characteristics. This is consistent with several

possibilities. One is that strong domestic inter-industry spillover lead to uniform productivity levels

across industries while there is no international technology diffusion at all. This might be called

the complete localization scenario. It is also consistent with an increasing importance of foreign

technology sources, where countries benefit from it to a varying degree, depending on their relative

location. I will now turn to an empirical specification to examine this further.

2 Empirical model and estimation issues

There are various reasons why international technology diffusion might be related to geographic

distance. My empirical analysis does not support or reject a particular theory. For concreteness,

though, I have laid out in Appendix A a two-country model of growth and trade with transport costs

that gives rise to the type of effect that will be considered in the following. The model implies that

domestic total factor productivity F, defined as output divided by factor-share weighted capital- and
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labor inputs, is given, at a given point in time, by

= lnA+ ln (Ni_a + N(D)), (2)

where the parameter c, 0 <c < 1, is the cost share of labor, and A is a country-specific constant. The

term N (Nt) is the existing range of domestic (foreign) intermediate products, which is proportional

to cumulative R&D and an index of the countries' level of technological knowledge, and (D) is

decreasing in the bilateral geographic distance (denoted D) between the domestic and the foreign

economy. I will focus on estimating versions of equation (2), which contains the key prediction of

interest: equation (2) says that domestic productivity is positively related to cumulative domestic

as well as distance-deflated foreign R&D.

In section 3 below, I will use industry-level data for major OECD countries to estimate this

relationship. The specification is as follows:

lnFjt st+( +et,Vc,i,t. (3)
\g€G5 J

Here, S denotes cumulative R&D spending, g is an index for the group of G-5 countries (France,

Germany, Japan, the U.K. and the U.S.), and D is the bilateral geographic distance between

country c and country g. The aj, at,/3, 'y, and 6 are parameters to be estimated, and Ejj is an error

term whose properties I discuss below. The parameters a captures differences in A across industries,

while the term eö'cg captures the distance term (D) in equation (2) above. The parameter /3 is

related to the elasticity of productivity with respect to own R&D, while 'y determines the strength

of the productivity effect from foreign R&D.

The parameter 6 is of central interest in this paper, as it captures the degree of localization of

R&D. This parameter, which I will refer to as the distance parameter, is identified from variation
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of the productivity effects of G-5 R&D in other countries conditional on bilateral distance. Denote

as effective foreign R&D from country g. Positive estimates of S mean that variation in

productivity levels can be better explained by assuming that effective R&D from countries located

relatively far away is smaller than that of other countries located relatively more closely. If foreign

R&D raises domestic productivity ('y positive), then positive estimates of 5suggest that the benefits

from foreign technology creation are decreasing with distance. This is the sense in which I will inves-

tigate whether international technology diffusion is geographically localized. In contrast, estimating

S = 0 would mean that distance does not matter, and S <0 would be consistent with the strength

of technology diffusion being inversely related to distance.

While the existence of localization effects is the first major issue I will investigate, the second issue

is whether the degree of localization of knowledge spillover has changed over time during my sample

period. A priori, the fall in communication costs and other factors might suggest that technological

knowledge has become more global during these years. To investigate whether this is the case, I will

therefore allow the distance parameter to vary from the subperiod of 1970-82 to that from 1983-95

in the second set of estimations.

Two major estimation issues need to be confronted." First, there is relatively little variation in

bilateral distance in my sample. This will make it relatively difficult to obtain precise estimates of the

parameter S. Moreover, three of the G-5 and seven out of the nine other OECD countries are located

in Europe. This could cause problems if the relations to European versus to non-European countries

are very different in nature. To partly address the concern that international technology diffusion

across different bilateral relations might be heterogeneous, I will present also distance parameters

that vary by G-5 country. In addition, I will report results for the subsample of European countries.

To the extent that these specifications lead to similar results, the relatively limited and particular

following issues are further discussed in Appendix B.
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set of bilateral relations cannot be critical for my results.

The second concern in estimating equation (3) is that the error term is not orthogonal to the

regressors, because any correlation would lead to inconsistent estimates. The disturbances capture

idiosyncratic factors that affect measured productivity. Some could be industry-specific, such as

receiving strong inter-industry spillover, and others might be common to all industries in a given

country, such as shocks affecting the national business cycle. Using instrumental-variable estimation

would be one solution to this. However, good instruments for R&D expenditures are here not

available. Instead, I try to minimize the effects of simultaneity through my choice of specification.

First, in constructing the TFP indices I have imposed a substantial amount of structure that should

reduce simultaneity problems (see Appendix C). Second, real R&D is computed using an economy-

wide deflator, whereas industry-specific deflators are used in the construction of the productivity

indices. Third, my output measure is gross production and not value added, which reduces the

likelihood of obtaining spurious regression results (see Basu and Fernald 1995).

Fourth, I focus on the productivity effects of G-5 R&D in other industrialized countries. This

relationship is not as likely subject to common shocks as the relation of R&D and productivity

in the same country. Further, by including domestic R&D expenditures in the equation I control

for an important determinant of productivity that could induce simultaneity. Fifth, the estimation

equations include time fixed effects (ct) which control for shocks that affect the entire sample in a

given year. Lastly, the country-by-industry fixed effects cj control for time-invariant factors that

generate a spurious correlation between the error terms and the regressors. These capturedifferences

in the average productivity levels which might be due to various factors other than the geographic

localization of technological knowledge, but which are omitted in my analysis. I now turn to the

estimation results.
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3 Estimation Results

I first present estimation results for equation (3). The estimation method is non-linear least squares.

The dependent variable is the log relative productivity level as defined by equation (1). The regressors

are fixed effects for each year and for each country-by-industry combination, the domestic R&D

stock, and the R&D stocks of the C-S countries interacted with the bilateral geographic distance as

described above. For the following estimations and simulations, I normalize distance so that D= 1

is equal to 235 miles, the smallest bilateral distance in my sample (between the Netherlands and

Germany). This choice of units does not affect the size of the estimated elasticities.

3.1 Basic results

The results for equation (3) are shown in Table 5, column 1. Heteroskedasticity-consistent boot-

strapped standard errors are shown in parentheses.12 The productivity effect from domestic R&D,

j3, is estimated with /3 = 0.054. The corresponding elasticity is equal to e = /3Ad, where Ad is

between zero and one and increasing in domestic R&D.'3 The average elasticity is equal to 0.018,

with a standard deviation of 0.017.14 The parameter 7 measures the average productivity effect from

distance-weighted C-S country R&D relative to domestic R&D; it is positively estimated at 1.219.

The parameter estimate of 6 is equal to 0.495. This estimate suggests that effective R&D from

12Also standard errors based on standard first-order asymptotics have been computed, but I found the bootstrapped
standard errors to be more reliable. The non-linearity in 6 seems to make the truncation of the distribution of
parameters at the second-order less reasonable. Moreover, except for the parameter y, the standard errors based on first-
order asymptotics tend to be considerably smaller (often about 30%), so I report the more conservative bootstrapped
standard errors. They are generated through block-wise resampling from the empirical error distribution, allowing
for 108 different blocks, which corresponds to a potentially different variance for each country-by-industry pair. See
Andrews (1999) for references and further results. I have also considered the possibility of spatial correlation among the
disturbances. However, the covariance of fitted residuals among European countries, e.g., is not significantly different
from the covariance of errors between European and non-European countries. This suggests that spatial correlation
effects are not very strong.

elasticity varies by country, by industry, and over time; its definition is =

Scit/ + (9€ ,Vc, i, t.

"Industry-level estimates of this elasticity have often been higher that that, but this difference is probably largely
due to the fact that in contrast to many earlier studies, I use TFP relative to the sample mean as the dependent
variable (see Griliches 1995 for a broader survey).
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G-5 countries is falling with geographic distance. The finding is consistent with the localization

hypothesis: productivity in countries that are far away from the G-5 countries is lower than in those

located more closely, because technology diffusion and its productivity effects are geographically lo-

calized. How important are these effects? Figure 5 shows the total effective R&D from the technology

sender point of view, for each G-5 country. While U.S. R&D is more than six times that of Germany,

due to its relatively close location to a number of countries in my sample, effective German R&D

is estimated to be slightly larger than effective U.S. R&D (34% versus 33%, respectively). For the

U.K. and France I obtain shares of 18% and 15%, respectively, while Japan's share is not even 1% of

the total effective R&D. Given G-5 country R&D, the effective G-5 R&D stocks are thus inversely

related to the average distance to the sample countries: from the last row in Table 4, on average,

Japan is almost three times the distance of Germany away from the sample countries.

Figure 6 shows the totals for the nine technology receiving countries. Total effective foreign

R&D for the Netherlands is estimated to be highest (33%), followed by Canada (32%) and Denmark

(12%). Among the European countries, effective foreign R&D is lowest in Finland (2%), while I

estimate the lowest effective foreign R&D for Australia (close to 0%). The results suggest that the

combined effect from three relatively small but near-by G-5 countries leads to a higher stock for the

Netherlands than for Canada, even though the latter is close to the major R&D conducting country

in the world, the United States. Another point to note is that even the difference between effective

foreign R&D in the Netherlands or Denmark, which are located at the core of Europe, and Finland,

which is on Europe's periphery, is substantial.

Figure 7 presents the full bilateral breakdown for all 9 x 5 effective foreignR&D stocks. The largest

individual effect is that of the U.S. in Canada, followed by the German, U.K., and French effects

in the Netherlands. At the other extreme, only Japanese R&D benefits Australia to a significant

amount, and even here, the effective Japanese R&D is much smaller than Australia's ownR&D stock.
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Essentially, the estimates suggest that Australia does not benefit from foreign R&D at all, which

might be too strong a result; I return to this point in section 4 below. Figure 8 is also based on these

estimates. The different levels and sources of foreign technology for the Netherlands, Australia, and

Canada are captured by the size and shape of the pentagons in the graph.

The elasticity of productivity in country c with respect to R&D in G-5 country g is closely related

to the size of the effective foreign R&D stock from that country; it is given by Ecg= i3A, where A'g

is between zero and one and increasing in effective R&D from country g.'5 The elasticity estimates

range from close to = 0.054 for U.S. R&D in Canada to almost zero for, e.g., the productivity

elasticity of German R&D in Australia. The average is 0.007, varying strongly across bilateral pairs,

with a standard deviation of 0.011. I have computed the elasticity of productivity with respect to

distance (Din F/3 in D) to illustrate the influence of distance according to these estimates. This

elasticity, denoted , is related to the elasticity with respect to foreign R&D in the following way:

= c1g X (S) X Dcg. The average (standard deviation) of the distance elasticity is equal to -0.015

(0.02). The estimates therefore suggest that doubling the distance to a G-5 country is on average

associated with 1.5% lower productivity.

In column two of Table 5 I report the results from estimating equation (3) with only the rela-

tively low-R&D industries. Any remaining simultaneity problem should be substantially reduced by

focusing on these industries. The sample size is now one third lower. Relative to the full sample,

I estimate a lower maximum domestic R&D elasticity'6 and a stronger effect from foreign R&D,

while the distance parameter is again estimated to be positive. I also estimate equation (3) with

Australia and Canada dropped from the sample, which reduces the sample size by 22%. Australia

definition is given by A9 =S9te6 / + s9i , vc, i, t, g.

16Because the industry elasticity s is related to the return to R&D, p, by e, = x , Vi, if arbitrage equalizes
the return to R&D across industries (p = p, Vi), then e varies with S. This could explain the drop of the maximum
elasticity e from 0.054 to 0.039 for the low-R&D industries in column two.
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might be a special case due to its extremely remote location relative to all G-5 countries, and Canada

might be special because of its location adjacent to the U.S. which does the majority of all R&D

in the world. Without Australia and Canada, the distance parameter is primarily identified from

the relative strength of R&D originating in European G-5 countries versus the strength of U.S. and

Japanese R&D in seven European countries. From the estimates, it is clear that the magnitude of

the domestic R&D effect /3 is sensitive to the exclusion of Australia and Canada. The localization

parameter (5 is still estimated to be positive and not very different from that in the full sample.17

The last four columns in Table 5 provide some sensitivity analysis. In columns four and five

I present results based on TFP indices that are only partially or not at all adjusted for input

utilization. The main difference is that /3 is estimated to be 40% larger. This suggests that one picks

up a substantial amount of spurious correlation when cyclical effects thataffect both input utilization

and R&D are not controlled for. Because both the foreign R&D elasticity as well as the distance

elasticity are proportional to /3, also these elasticities would be overestimated without adjusting for

input utilization. Assuming a R&D depreciation rate of 0% instead of 10% leads to a higher domestic

R&D effect estimate (see column 6 of Table 5) •18 Finally, in column 7 of Table 5 I present results

for correlating productivity in period t with R&D in period t — 1. Tn that case, the R&D stocks are

pre-determined. If these results would vary substantially from my earlier estimates, it would mean

that simultaneity might continue to play an important role. The regression results suggest that this

is not the case.

While my estimates for (5 are all consistent with the localization hypothesis, the estimates of /3

and are not fully robust across all specifications: /3depends on whether Australia and Canada are

'7Since the R&D and distance elasticities are proportional to 3, they are somewhat lower for the specifications in
column 2 and 3 of Table 5 compared to the benchmark specification of column 1. In column 2 (3, respectively), I obtain
the following average elasticities: e =0.007 (0.005), r = 0.006 (0.005), and e = —0.011 (—0.008).

'8A R&D depreciation rate of 0% is sometimes assumed to be the 'true' social rate of knowledge depreciation. Ceteris
par-i bus, a lower rate of R&D depreciation implies faster growth of the R&D stocks, which, for a given returnto R&D,

implies a higher R&D elasticity. Thus, the higher estimate of is consistent with that.

18



in the sample, and 'y appears to be at times only weakly identified. One reason for this might be that

specification (3) does not include G-5 country-specific parameters, which might be overly restrictive.

I therefore estimate in the following section a specification which allows the distance parameter to

vary by G-5 country.

3.2 Distance effects varying by G-5 country

Consider the following generalization of equation (3):

lnF = + + 1n Sj + ( + it,Vc,i,t. (4)
\g€G5 /

The distance parameter is now allowed to vary by G-5country, 6g,Vg. The results for this specification

are summarized in Table 6. While the estimate of 3 is similar to the corresponding regression in

Table 5, 'y is now higher than before. The distance parameters 8g are all larger than zero, consistent

with the localization hypothesis. Even though the 8 vary substantially, the increase in explained

variation in productivity levels due to this is very small, and a likelihood ratio test cannot reject the

null hypothesis that '5g = 8, Vg. However, according to the Akaike Information Criterion (AIC) and

other standard model selection criteria, the less restricted model (4) of Table 6 is preferred to that

with a common distance parameter.'9 As will become clear below, it is also the more robust model.

I will therefore consider specification (4) further.

The higher estimate of 'y suggests a higher elasticity with respect to foreign R&D, which I find

to be the case; in contrast, the average distance elasticity falls by a third.20 The estimates of

6, range between circa 0.2 for Germany to 0.85 for France. The standard errors suggest that all

19Akaike's Information Criterion is defined as: AIC =In() + 2, where e'e is the residual sum of squares, n is

the number of observations, and K is the number of estimated parameters. A lower value of AIC indicates a preferred
model. The AIC penalizes the loss of degrees of freedom more heavily than the adjusted R2, see Greene (1993, 244f.).

20The mean of the foreign R&D elasticity rises from 0.007 to 0.008. The average distance elasticity s' varies
strongly across bilateral pairs, ranging between zero and —8.4%, with a standard deviation of 0.017,
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distance parameters are quite precisely estimated, but some of them are more fragile than they

appear: Japan's coefficient, e.g., is solely identified from the differential effect of Japanese R&D

in Australia (where it is positive) and in the other eight countries (where it is essentially equal to

zero). This suggests that the estimate of 5j depends considerably on whether Australia is included

in the sample or not. The results reported below confirm that. Moreover, the distance parameter

for Germany, is not always the smallest of the G-5 countries, as it is here.

Column 2 in Table 6 reports the results of estimating (4) with the low-R&D industries only.

In contrast to the common-5 specification of Table 5, now the estimates of 'y and 6g remain fairly

similar. Column 3 of Table 6 shows the results for the case when Australian and Canadian industries

are dropped from the sample. As in the common-6 specification of Table 5, this leads to a substan-

tially lower estimate of,@. The relative foreign R&D effect 'y is estimated not too different from the

estimate for the full sample, but some uncertainty about the magnitude of 'y remains. The distance

parameters for the European G-5 countries are not very well identified, despite the relatively small

standard errors. This is because the bilateral distance to all seven European countries is rather

similar (especially for centrally located Germany). The estimate of 5jdrops, which is primarily due

to the exclusion of Australia from the sample. Japan, which is the most-closely located G-5 country

for Australia, generates relatively stronger R&D effects in Australia than elsewhere, but once only

European countries are left in the sample, there is not sufficient variation to identify a differential

productivity effect across countries.21 The specification with lagged R&D in column 4 gives results

similar to the benchmark specification in column 1.

Iii unreported results, I have also estimated the specification (4) with partially adjusted and

unadjusted TFP, as well as for a R&D depreciation rate of 0%. The results are qualitatively similar.

21Also note that in contrast to the specifications in columns 1 and 2, here Akaike's Criterion favors the more
constrained model of Table 5.
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As a further specification check, I have allowed the parameter 'y to vary by G-5 country (as in

')/9S9 e'-'-9), with either a common S or with the 5's varying by G-5 country. While the distance

parameters remain larger than zero, there is no evidence that 'y varies significantly by G-5 country. I

have also employed a different functional form for the distance effects, estimating 5 in the modified

effective foreign R&D expression S96C9.ForO <5 < 1, this is decreasing in distance D, whereas for

values of S > 1 it is increasing in distance. Consistent with the localization hypothesis, I estimate

5 between zero and one and usually close to the corresponding e.

3.3 Localization effects over time

In this section I report results that indicate whether the technology localization effect has become

stronger or weaker over time. The following specification will be used:

ln Fdt = ai + t + ln 8cit + ( Sgit _ög(1+Tt)Dcg + t, Vc, i, t, (5)
\gG5 J

where T is equal to zero for the years 1970-82 and equal to one for 1983-95. A positive value

of L' indicates that technology created in the G-5 countries has a geographically more localized

productivity effect over time. In the benchmark specification—see column 1 in Table 7—, I estimate

= —0.505, which suggests that the degree of localization has fallen since the 1970s. This is

consistent with the notion that technological knowledge has become more global over these twenty-

six years. Compared to the analogous specification in Table 6, the inclusion of the time dummy leads

to a higher estimate of /3 and 5G and a lower estimate of öus, with otherwise similar results. The

AIC model selection criterion indicates that the specification with time effect is marginally preferred

to that without time effect. The estimate of suggests that on average, the G-5 distancecoefficients

have fallen by about 50%. This means that effective foreign R&D, has generally been
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higher in the later subperiod, and has led to an increase in the average foreign R&D elasticity ef

relative to the domestic elasticity, e.22 Thus the relative importance of foreign sources of technology

has been substantially increasing according to these estimates.

There is a lot of heterogeneity across bilateral relations in how the relative importance of specific

G-5 country technology sources has changed over time. For instance, Canada's only major source

of technology among the G-5 countries remains the United States. In other countries, the estimates

suggest large shifts in the relative importance of individual G-5 countries as foreign sources of tech-

nology. Figure 9 shows for instance that the U.S. has overtaken Germany as the major source of

foreign technology in Finland. The decline in the distance parameters means that the distribution

of foreign technology sources approaches that of the shares of the G-5 countries in total G-5 R&D.

Once the distance parameters are all equal to zero, geographic distance has ceased to play a role in

international technology diffusion, and all countries draw from a common global pooi of technology

which is replenished according to the R&D shares given in Table 2.

However, today geographic distance seems to be a major determinant of international technology

diffusion. In Finland, for example, Germany had still 29% of the total effective foreign R&D during

1983-95 even though Germany accounted only for circa 9% of G-5 country R&D during that period.

In contrast, Japanese R&D as foreign technology source in Finland was still negligible during 1983-95

according to my estimates, even though Japan accounted for 13% of all G-5 R&D. The situation

in many other countries is similar. Figure 10 shows the standard deviation across the G-5 country

shares in total effective foreign R&D for each of the nine countries. Except for Spain, the standard

deviation has declined in every country. For the European countries, this is primarily associated

with the declining importance of being close to Germany, which is accompanied by a decrease in

the relative importance of German R&D and an increase for that of the United States. However, if

22The former rises from 0.009 to 0.011, while the latter falls from 0.013 to 0.006.
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geography loses further in importance, the distribution of foreign technology sources will become less

equal again for the European countries, because if the distance parameters approach zero in the long-

run, the distribution of R&D shares will be less equal than it is right now.23 Thus, for some countries,

the slowly declining importance of geographic factors in technology diffusion is non-monotonically

related to the degree of dispersion in their G-5 technology sources.

In the following I examine the robustness of these findings. The distance effect estimates for

the sample of low-R&D industries in column 2 of Table 7 are similar and confirm an estimate of

the parameter b that is less than zero, consistent with less localization over time. The results in

columns 3 and 4 of Table 7 are based on the sample of European countries, and that with lagged

R&D, respectively. Also here the estimate of ' confirms qualitatively the earlier results. Overall,

distance coefficients are estimated to fall (in absolute value) between circa 30% and 60% on average,

depending on the specification. One needs to be cautious though to not overinterpret the individual

parameter estimates of 6, in Table 7, because some appear to be fragile in the light of the earlier

estimates. In particular, some distance coefficients in column 1 of Table 6 do not lie in the interval

of the estimates from the two subperiods in column 1 of Table 7, suggesting that some part of the

variation in productivity levels identifies ,'y, and the 6g only jointly. Therefore, to analyze the

robustness of the less-localization result further, I have also estimated a specification where both 'y

and the distance parameters 5g may change over time. The results are very similar.24 In unreported

results, I have obtained the result that the degree of localization has fallen over time also using

unadjusted and partially adjusted TFP data, for choosing alternative R&D depreciation rates such

23The long-run standard deviation is about 0.233, calculated from the G-5 country shares in Table 2. Note that the
G-5 country shares in the global pool of technology change over time as well. From Table 3, e.g., U.S. R&D growth
over this period has been slower than in France, Germany, and Japan. This suggests that the long-run U.S. share in
G-5 technology might be below 61%, its value in 1980.

24The effective foreign R&D term is then y(1 + )T) (9€c5S e_69(1 Tt)D) . If there is only a stronger effect

from G-5 R&D over time but no change in the degree of localization, one expects that ). > 0 but =0. For the
full sample (corresponding to column 1 in Table 7), I estimate A = 0.079 and b = —0.561, suggesting that the
less-localization result is robust to allowing for a differential effect of foreign R&D over time independent of distance.
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as 0%, and for the alternative specification where effective foreign RkD is given by Sg6. I will

now turn to some concluding discussion of these findings.

4 Summary and discussion

I have analyzed the international diffusion of technology by estimating the spatial distribution of

productivity effects of G-5 country R&D spending in other OECD countries. This paper provides,

first, evidence suggesting that the international diffusion of technology is geographically localized in

the sense that the productivity effects of R&D are declining with the geographic distance between

sender and recipient countries. The average elasticity estimates of productivity with respect to

distance varies across specifications from —1% to —2.4%. Using these averages to evaluate a particular

bilateral effect, this suggests that Italy's productivity is 0.5 to 1.2 percent lower than Denmark's

because of less technological diffusion from the U.K., due to a fifty percent higher bilateral distance to

Italy compared to Denmark. This is a substantial effect and points to an important role for geographic

factors in determining the availability of technological knowledge across different countries.

Second, the degree of localization of technology diffusion has significantly declined over the sample

period. Again, estimates vary somewhat depending on specification. In the benchmark specification

of Table 7, the average elasticity of productivity with respect to distance falls from —2.4% during the

period of 1970-82 to —2.0% during 1983-95. This is a 20% smaller distance effect over a relatively

short period of time, and suggests that the importance of geographic factors is declining rapidly today.

While my estimates point thus in some ways to the demise of the importance of geographic distance,

in other ways I probably overestimate its importance. For instance, although it is plausible that U.S.

R&D is Canada's major foreign source of technology, my estimate of the U.S. share (exceeding 99%)

appears to be too high, because surely, Japan, Germany, France and the U.K. together contribute
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more than 1% to Canada's stock of foreign technology. Other evidence, including from case studies,

contradicts these findings.

Comparable results on the geography of technological diffusion from other work are scant at this

point. Hanson (1998) estimates the geographic scope of demand linkages by correlating county-level

wages with distance-weighted incomes in other U.S. counties. His results also imply a very high

degree of localization, in that case for goods trade.25 Nevertheless, the finding of strong geography

effects for technology diffusion is even more striking, because a priori, if anything can be moved

costlessly around the globe, it would be technological knowledge. Generally, the more knowledge-

intensive the products are, the less plausible is it to assume that the volume of transactions between

different locations has much to do with distance-related transport costs. Sending a software program

by email from Austin, Texas to Dallas costs essentially the same as sending it to Sydney. So why

are there strong location effects for technology diffusion?

One reason might be that my results will prove to be not robust in other samples, with different

data, or with different specifications. As data on a larger set of countries, especially outside Europe,

becomes available, it will be possible to re-examine the questions my work has tried to address. More-

over, it might be possible in the future to compute productivity indices that consistently account for

differences in human capital across countries and industries. In terms of specification, I have focused

here on international within-industry effects, while technology diffusion between industries—that is,

across technology space—might be important as well. Further, the temporal dimension of technology

diffusion has been collapsed into one point in time in my analysis that focuses on contemporaneous

effects. While I have already presented results for a number of different specifications, these are

certainly possibilities the reader should keep in mind.

25For instance, a typical simulation based on Hanson's estimates implies that a 10% reduction in the total personal
income of the residents of Illinois reduces wages in counties circa 200 miles away by approximately 1% and leaves wages

in counties 500 miles or more away essentially unchanged.
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Second, my empirical analysis abstracts from the heterogeneity of technological knowledge. From

previous analyses of the value of patents we know that most innovations are worth very little while

a few are worth millions of dollars. If the innovations that are diffusing internationally are those

which are relatively valuable,26 then the value-adjusted stock of Japanese technology in Canada, e.g.,

might be substantially higher than I have estimated above. A third reason of why there might be

comparably strong geography effects in technology diffusion as there are for goods trade could be

that in fact the localization of neither is primarily caused by physical, distance-related transaction

costs. As an alternative, Rauch (1999), e.g., presents a network/information cost-theory of trade

that might also have some relevance for the diffusion of technology. Future work will have to further

clarify what geographic distance means in economic terms. By providing estimates of its importance

for international technology diffusion, this paper makes some progress towards this goal. Other

research should also examine whether geographic effects are present in the diffusion of technology

among the G-5 countries, as well as in the diffusion of technology to less developed countries.

From this analysis of technological knowledge spillover to nine OECD countries which are next to

the world's technology frontier, a picture emerges where national technological developments in these

countries have often ceased to play the most important role for their productivity. Effective German

R&D is often several times higher than domestic R&D for the European countries, for instance,

according to my estimates. There has been a trend towards the globalization of technology over the

sample period. At the same time, geographic factors leading to clusters of countries that have access

to a regional pool of technology are important today, and are likely to remain important for some

time to come.

26See, e.g., Eaton and Kortum (1999) who relate the probability of international technology diffusion to the value of

patents.
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Table I

Relative Country and Industry Size in terms of GDP

Country Symbol Total ManufacturIng (1980) RelatIve Size in Sample Relative Size mci. G-5
Million $ US 1990 (Percent) (Percent)

Australia AUS 54745 8.3 2.1
Canada CAN 72945 11.1 2.9
Denmark DEN 20827 3.2 0.8
Finland FIN 20878 3.2 0.8
Italy hA 270236 41.0 10.6
Netherlands NL 39096 5.9 1.5
Norway NOR 17792 2.7 0.7
Spain SPA 130753 19.8 5.1
Sweden SWE 31886 4.8 1.2

Sum of 9 Countries 659158 25.7

For reference:

France FRA 298530 11.7
Germany GER 350658 13.7
Japan JAP 332562 13.0
United Kingdom UK 212000 8.3
United States USA 778406 30.4

Industry ISIC Sum over 9 Countries Relative Size In Sample
Million $ US 1990 (Percent)

Food 31 96019 15.0
Textiles 32 77154 12.1
Wood 33 37767 5.9
Paper 34 60232 9.4
Chemicals 351/2 48945 7.7
Rubber 355/6 22361 3.5
Non-met Miner. 36 43257 6.8
Basic Metals 37 35949 5.6
Metal Products 381 54648 8.6
Machinery, lnstr. 382/5 71180 11.1
El. Machinery 383 37358 5.8
Transportation 384 53819 8.4



Table 2

Relative Country and Industry Size in terms of R&D

Country Symbol Total ManufacturIng (1980) Relative Size In Sample Relative Size md. G-5
MillIon $ US 1990 (Percent) (Percent)

Australia AUS 10232 9.1 0.7
Canada CAN 13777 12.3 0.9
Denmark DEN 3296 2.9 0.2
Finland FIN 3053 2.7 0.2
Italy ITA 32436 28.9 2.1
Netherlands NL 24708 22.0 1.6
Norway NOR 2955 2.6 0.2
Spain SPA 6398 5.7 0.4
Sweden SWE 15569 13.8 1.0

Sum of 9 Countries 112424 7.2

For reference: Relative Size In G-5
(Percent)

France FRA 98883 6.8 6.3
Germany GER 130143 9.0 8.3
Japan JAP 187597 12.9 12.0
United Kingdom UK 143304 9.9 9.2
United States USA 892037 61.4 57.0

Industry ISIC Sum over 9 Countiles Relative Size In Sample
MIllIon $ US 1990 (Percent)

Food 31 30338 1.9
Textiles 32 17276 1.1
Wood 33 5642 0.4
Paper 34 17397 1.1

Chemicals 351/2 232369 14.9
Rubber 355/6 36695 2.3
Non-met Miner. 36 21231 1.4
Basic Metals 37 45663 2.9
Metal Products 381 22566 1.4
Machinery, lnstr. 382/5 243046 15.5
El. Machinery 383 382195 24.4
Transportation 384 509971 32.6



Table 3

Average Annual R&D Expenditure Growth, 1970-95
(percent)

By country By industry

AUS 6.53 Food 7.38

CAN 9.29 Textiles 6.64

DEN 7.06 Wood Products 8.57

FIN 4.84 Paper 5.45

ITA 9.75 Chemicals 8.03

NL 8.69 Plastics 7.09

NOR 7.29 Non-met. Mm. Prod. 5.10

SP 7.50 Basic Metals 7.14

SWE 5.30 Metal Products 7.95

Non-elect Machinery 9.40

Elect Machinery 7.89

Transportation 7.67

Average 7.36
Std.Dev. 1.68 Std.Dev. 1.21

G-5 countries

FRA 6.20
GER 9.90
JAP 8.40
UK 3.00

US 5.30

Table 4

Geographic Distance from Nine OECD Countries to the G-5 Countries

In Miles

USA UK Japan Germany France Average

Australia 15958 17004 7966 16557 16943 14886

Canada 734 5367 10327 5857 5652 5587

Denmark 6518 957 8700 660 1028 3572

Finland 6938 1824 7826 1532 1912 4007

Italy 7222 1434 9867 1066 1108 4139

Netherlands 6198 359 9300 235 428 3304

Norway 6238 1156 8414 1048 1343 3640

Spain 6096 1265 10775 1421 1055 4123

Sweden 6641 1433 8180 1182 1544 3796

Average 6949 3422 9039 3284 3446 5228



Table 5

Specification with common distance parameter*

Equation

(3)

Low-R&D

industries

European

countries

Labor

utilization-

adjusted

TFP

Unad-

justed

TFP

R&D de-

preciation

rate = 0%

Lagged

R&D

y

6

n

R2

AIC

0.054

(0.007)

1.219

(0.060)

0.495

(0.098)

2808

0.779

-4.218

0.039

(0.010)

3.498

(0.073)

0.357

(0.027)

1872

0.809

-4.317

0.028

(0.013)

1.339

(0.068)

0.384

(0.163)

2184

0.791

-4.119

0.076

(0.017)

1.281

(0.060)

0.581

(0.054)

2808

0.727

-3.889

0.077

(0.015)

1.054

(0.060)

0.441

(0.045)

2808

0.732

-3.928

0.068

(0.017)

1.124

(0.060)

0.452

(0.054)

2808

0.789

-4.219

0.051

(0.009)

1.054

(0.061)

0.336

(0.034)

2700

0.794

-4.254

* Dependent variable is the multilateral TFP index as defined in equation (1). Standard errors in parentheses; /3

measures the effect of domestic R&D, 'y the relative effect from G-5 R&D, and 5 determines the distance effect (5 > 0 is

consistent with localization); n = numberof observations, AIC = Akaike's Information Criterion, as defined in the text.



Table 6

Specification with varying distance parameters*

Equation

(4)

Low R&D

industries

European

countries

Lagged

R&D

/3 0.050 0.034 0.023 0.049

(0.014) (0.011) (0.010) (0.009)

'y 4.086 3.905 3.400 4.089

(0.060) (0.073) (0.068) (0.061)

i5us 0.326 0.331 0.204 0.326

(0.020) (0.008) (0.093) (0.078)

'5UK 0.665 0.560 0.303 0.592

(0.086) (0.087) (0.007) (0.124)

Sj 0.358 0.376 0.071 0.277

(0.079) (0.077) (0.017) (0.087)

o 0.214 0.156 0.500 0.229

(0.078) (0.066) (0.031) (0.050)

'5F 0.860 0.852 0.508 0.852

(0.040) (0.030) (0.021) (0.018)

n 2808 1872 2184 2700

R2 0.781 0.811 0.791 0.796

AIC -4.223 -4.323 -4.117 -4.261

*Dependent variable is the multilateral TFP index as defined in equation (1). Standard errors in parentheses; i

measures the effect of domestic R&D, y the relative effect from G-5 R&D, and the 5g determine the distance effects

(ög > 0 is consistent with localization); n = number of observations, AIC =Alcaike's Information Criterion, as defined

in the text.



Table 7

Localization over time

Equation Low-R&D European Lagged

(5) industries countries R&D

/3 0.060 0.053 0.025 0.051

(0.009) (0.009) (0.012) (0.005)

-y 4.089 3.895 3.402 4.091

(0.060) (0.073) (0.068) (0.061)

6us 0.195 0.193 0.398 0.245

(0.018) (0.032) (0.075) (0.028)

6UK 0.554 0.524 0.275 0.484

(0.137) (0.081) (0.042) (0.090)

0.475 0.418 0.113 0.673

(0.108) (0.070) (0.049) (0.093)

öc 0.526 0.500 0.476 0.494

(0.087) (0.054) (0.015) (0.064)

0.836 0.817 0.524 0.838

(0.068) (0.046) (0.014) (0.026)

—0.505 —0.467 —0.297 —0.611

(0.049) (0.058) (0.020) (0.063)

n 2808 1872 2184 2700

R2 0.786 0.815 0.791 0.801

AIC -4.247 -4.341 -4.118 -4.287

*Dependent variable is the multilateral TFP index as defined in equation (1). Standard errors in parentheses; /3

measures the effect of domestic R&D, 'y the relative effect from G-5 R&D, and the 5g determine the distance effects

(6g > 0 is consistent with localization). The parameter b governs the relative strength of localization between the

years 1970/82 and 1983/85 (b < 0 is consistent with less localization over time); n = number of observations, AIC =

Akaike's Information Criterion, as defined in the text.
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Figure 5

Effective foreign R&D of the technology sender countries
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Figure 6

Distribution of total effective foreign R&D by technology receiving countries
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Figure 7

Bilateral effective foreign R&D stocks
Averages across industries
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Figure 9

Distribution of Finland's effective foreign Research and Development over
time
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Figure 10

Changes in the variance of G-5 technology sources for nine OECD countries over time
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A Theoretical framework

According to the following model, technology diffusion is related to international trade, which itself

is geographically localized. Consider two symmetric countries, home and foreign, that are located

at distance D from each other. In the home country, output is produced according to the familiar

CES-specification due to Dixit and Stiglitz (1977)

Z = AK1a
(JN

d(i)di + J m(i*)di*) , 0 <a, < 1, (6)

where A > 0 is a constant and K is capital. The d(i) are m(i) are domestic and foreign intermediate

inputs of variety i and i, respectively. At a given point in time, there is a range N (N) of domestic

(foreign) distinct input varieties. As in Romer (1990), these ranges are an index of the level of

technology in each country; they are increased through R&D spending. Assuming for simplicity that

a t9, each of the atomistic final output producers is demanding domestic and foreign intermediate

goods according to

= aAKlda_l * = aAK'm°1, (7)

where and j. is the price for any of the symmetric domestic and foreign intermediates, respectively.

Each intermediate is produced by a monopolist using labor. Due to international transport costs

as in Samuelson (1954), however, delivering x units of a foreign intermediate to the home country

requires sending off xeD units, which requires xeD of labor. Let w and w be the home and foreign

wage, respectively. One can show that optimal pricing of the monopolists implies = w/a and

= we'/a; further, the equilibrium quantities d and m are related by

m=deT. (8)



Thus, when D > 0, the equilibrium usage of foreign intermediates is below that of domestic inter-

mediates. Assuming that the two countries have exogenous endowments of labor of L and L which

have no alternative usage, and using the fact that the countries are symmetric and hence m = m,

it is possible to show that

d=L[N(1+e-)]
1

m=Lt[N*e'(1+e1)] 1• (9)

Let d(D) = (i + e) , (D) = eD(1 + and (D) (em/edf; together with symmetry,

this allows to write (6) as

= AK'°L [NI—a + N—(D)] , (10)

where A = Because 8/OD <0, equation (10) predicts that home output is falling, all else

equal, in the distance to the foreign economy.27 If total factor productivity is defined as F =

equation (10) leads to

F = in A + ln (Ni_a + N(D)),

which is shown in the text above. A complete description of this model requires to specify preferences

and the process determining N and N. For the purposes of this paper, this is not necessary, but

the interested reader might consult Romer (1990) as well as Aghion and Howitt (1992).28

This is a simple framework. Economic geography, through its effect on trade and technology

diffusion, is the only factor determining the spatial correlation of productivity, even though there

may be other factors affecting the spatial pattern of productivity levels. There are also factors that

may influence international technology diffusion beyond geographic distance, such as a common lan-

27Here, output is falling in D because imported inputs areemployed at a lower equilibrium level due to the resource
costs of distance-related shipping. At the extensive margin, greater distance might also lead to a range of imported
inputs below N if international trade involves fixed costs; see Romer (1994).

28Multi-country models have been considered, e.g., in Eaton and Kortum (1999), Howitt (1998), and Keller (199gb).



guage. Moreover, even though this model is highly stylized, the broad conclusion that an economy's

productivity is related to its geographic location is not unique to this trade-and-growth model: it

is also consistent with some recent models in the economic geography literature, e.g. Krugman and

Venables (1995). The analysis above is thus distinguished by a focus on geographic factors affect-

ing knowledge spilover, and it allows to see how these factors alone help to explain variation in

productivity levels across countries and over time.

B Estimation issues

B.1 Country as the unit of analysis

I consider technological knowledge diffusion among countries. In my sample, the latter are very

different from each other—strong heterogeneity—, and for an analysis at the industry-level, the current

data availability implies a relatively small sample.29 There are at least two important reasons,

however, of why an analysis of technology diffusion between countries appears to be the appropriate

first step in this research agenda: first, whether technology diffuses between two economies or not

is likely due to a significant degree to factors that typically operate at the country-level, such as

institutions, language, history, and culture.30 Second, economic policies, especially towards R&D

and technological capacity, are typically adopted at the national level. These two reasons make the

country level the natural unit of analysis for the purposes of this paper.

29 economic regions (for instance, U.S. states or European regions) as the unit of analysis might there-
fore seem to be an attractive alternative, but the quality of the data, especially on regional productivity figures,
would be considerably lower. Moreover, not only countries, but also regions within countries differ substantially in
their technology-creating capacity as measured by R&D expenditures (for the states of the U.S., see NSF 1999), and
technology absorption by other regions might be limited by the lack of adaptive R&D (e.g. Cohen and Levinthal 1989).

30This also points to the economic significance of national borders, the reasons of which are not very well understood
to date (see Helliwell 1998 for a recent synthesis).



B.2 Simultaneity

There are numerous reasons of why the regressor function might not be orthogonal to the resid-

ual in the estimation equation. One possibility, strong inter-industry spillover, has already been

mentioned above. Also price shocks could cause the dependent and independent variables to be

jointly determined, if there is correlation between the R&D deflator and the output deflator. While

instrumental-variable estimation is a way of addressing simultaneity problems, a standard choice of

instruments for quantity series, namely factor prices, is not available for a broad sample as is used

in this paper. Patenting activity is another measure of technological activity which is known to be

correlated with R&D. However, patenting might be simultaneously determined with productivity as

well. In the absence of good instruments, I rely on my choice of specification to deal with possible

simultaneity problems.3'

A powerful element in my approach are the country-by-industry (C x I = 9 x 12) fixed effects

As mentioned above, the j capture differences in the average productivity levels which might be

due to specific omitted variables. Moreover, the fixed effects also eliminate distance-related produc-

tivity differences between industries that are not caused by technology diffusion being geographically

localized. For instance, the composition of products within the two- to three-digit industries of my

sample might vary by country, and this could be correlated with the countries' location. Then, an

alternative to the localization of technology-hypothesis to explain a distance parameter estimate of

S > 0 is a technology matching hypothesis. According to that, the degree to which G-5 technology is

suited to the needs of the nine other countries is inversely related to geographic distance. Since Aus-

tralia is further away from the G-5 countries than Finland, e.g., this would mean that productivity

in Australia is lower than in Finland. For my purposes, this correlation would be spurious because

31 also Griliches and Mairesse (1998) who give an overview of a number of approaches whose main common goal
it is to identify production function parameters by avoiding simultaneity problems.



it does not mean that productivity effects from foreign R&D decline with distance. Therefore, the

country-by-industry fixed effects are very important to obtain consistent estimates.32

C Data on labor inputs, physical capital, and gross production

Data on these variables comes from the OECD (1998a) STAN database. It provides internationally

comparable data on economic activity at the industry level for OECD countries.33 In constructing

the multi-lateral TFP variable I have used data on labor and physical capital inputs. The number

of workers engaged in country c and industry i at time t are taken from the STAN database. This

includes employees as well as the self-employed, owner proprietors and unpaid family workers. These

figures are adjusted by multiplying them by the average annual hours per manufacturing worker in

country c and time t to arrive at the labor input measure, denoted L. The data on annual hours

worked is from OECD (1999); a relatively small number of missing values has been interpolated.

Physical capital stock data is not available in the STAN database, but gross fixed capital formation

in current prices is. I first convert the industry investment flows into constant 1990 prices using

country- and industry-specific deflators that are derived from the STAN database.34 The capital

32
price one pays for that is to give up exploiting any between-industry variation in the analysis.

33The STAN figures are not those submitted by the OECD member countries, but they are based on estimates by
the OECD, which tries to ensure greater international comparability. See OECD (1998a) for the details on adjustments
of national data.

34STAN contains data series on both value added in current and constant 1990 prices, which allows to deduce
deflator series. However, I found that these series varied implausibly much from year to year. Therefore, the deflators
to compute constant value investment and constant value production are smoothed; they are based on giving a weight
of 50% to industry-specific price movements, and the remaining 50% to price changes of total manufacturing in a given
country.



stocks are then estimated using the perpetual inventory method, with

= (l—6)Kt_i+invct_-i, fort=2,...,26, c=1,...,9.

and (11)

k1 = (gj+6) , c = 1, ..., 9,

where industry subscripts have been suppressed. The variable mv is gross fixed capital formation in

constant prices (land, buildings, machinery and equipment), g is the average annual growth rate of

mv over the period 1970-1995, and 5 is the rate of depreciation for capital in country c. As far as

possible, I use country-specific depreciation rates, taken from Jorgenson and Landau (1993b), Table

A-3: Canada 8.51%, Italy 11.90%, and Sweden 7.70%. These numbers are estimates for machinery&

manufacturing in the year 1980. For the remaining six countries, the averageof the eight countries'

depreciation rates that are listed in Jorgenson and Landau (1993b) has beenused.

Capital is adjusted for differences in capacity utilization by first estimating a smooth output

series in Zt (from the regression 1nZjt = Ei + (t+ Adjusted capital is then35

Knit = * (1 + (lnZit — lnZjt)),Vc,i,t.

Let the parameter c be the share of the labor in total production costs. Following the approach

suggested by Hail (1990), the &s are not calcu'ated as the ratioof total labor compensation to value

added (the revenue-based factor shares), but as cost-based factor shares which are robust in the

presence of imperfect competition. For this I use the framework of the integrated capital taxation

model of King and Fullerton (see Jorgenson 1993, Fullerton and Karayannis 1993) and data provided

I impose a maximum absolute value on the adjustment term = (1nZt — hi Zj), mainly to avoid negative

capital stock estimates: when (1nZct —lnZt) > 0.8, 1 set = 0.8, and when (1nZt — lnZct) < —0.8, I set

8cit = —0.8.



in Jorgenson and Landau (1993b). The effective marginal corporate tax rate w is given by the wedge

between before-tax (p) and after-tax rate of return (p), relative to the former

(12)p

Here, the variable of interest is p, the user cost of capital. It will be a function of the statutory

marginal tax rate on corporate income, available investment tax credits, the rates of depreciation,

and other determinants. In the case of equity financing, the after-tax rate of return will be =r + ir,

where r is the real interest rate and r is the rate of inflation. Jorgenson (1993) tabulates the values for

the marginal effective corporate tax rate in Table 1-1. According to the "fixed-r" strategy, one gives

as an input a real interest rate r and deduces the tax rate. In this case, I use a value of r 0.1, which,

together with the actual values of ir allows, using equation (12), to infer the user cost of capital,

p. From Jorgenson's Table 1-1 on w, I use the values on "manufacturing" (the 1980 values given

are used for 1970-1982 in the sample, the 1985 values for 1983-1986, and Jorgenson's 1990 values

are used for 1987-1991). This certainly introduces an error; in addition, the Jorgenson Table 1-1 is

derived from a "fixed-p" approach, as opposed to the "fixed-r" approach employed here. Further,

the results depend on, first, the chosen real interest rate, second, w varies by asset type, and third,

7 is a function of the way of financing (equity versus debt primarily). Hence, due to unavailability

of more detailed data, there are several shortcomings in the construction of the cost-based factor

shares. However, the chapter by Fullerton and Karayannis (1993) presents a sensitivity analysis in

certain dimensions that can be used to estimate the sensitivity of the estimated cost-based factor

shares. I have also experimented with different values for the real interest rate, and found that the

basic results do not depend on a particular value. The main advantage of using the cost-based factor

share approach is that it uses all data on the user cost of capital compiled in Jorgenson and Landau



(1993a) while at the same time producing factor shares that are robust in the absence of perfect

competition.

Having obtained the series on the user cost of capital and capital stock data, cis given by

wL
wL+pK' (13)

where wL are the constant price labor costs. Labor and capital inputs together with the factor shares

allow to construct an index of relative total inputs in 'cit —

in 'cit — cit = * {cxjt + t] [lnLit —LtJ + * [(1 — ait) + (1 — t)J [lnKt — (14)

for all c,i, and t, where in L2 = lnLcit, lnKt = 1nKcjt, and Xjt = >ocit• The relative

TFP index is obtained by subtracting relative total input from relative output, see equation (1) in

the text.

D Data on R&D Expenditures

The R&D expenditure data comes from OECD (1998b). I have been able toobtain consistent data

for all twelve industries and the period of 1970-95 for fourteen countries. Even in these countries,

however, there is not necessarily a R&D survey in each year: in the United Kingdom, for instance,

R&D surveys were held only every third year until well into the 1980s, and in Germany R&D data

is collected only bi-annually. I rely on the OECD estimates of missing R&D expenditure data; the

OECD has developed these by cubic spline interpolation techniques. The OECD (1998b) publication

covers the years 1973-97; estimates for 1970-72 are based on data in hardcopy versions of the OECD's

Basic Science and Technology Statistics. Expenditures qualify as R&D according to the OECD's



Frascati Manual definition.

The construction of the R&D stocks is based on data on total business enterprise intramural

expenditure on R&D (denoted Et);36 the OECD code for this series is BERD. The estimates are

available in constant 1990 $ U.S., using the OECD purchasing power parity rates for conversion. I

use the perpetual inventory method to construct stocks, assuming that

St = (1—)S_1+E_1, for t=2,...,26

and (15)

S — E1
1 —

(9RD+5)

where the industry and country subscripts have been suppressed. The rate of depreciation of the

knowledge stock, , is set at 0.1, and gRD is the average annual growth rate of S over the period

of 1970-1995. A higher (lower) choice of 5 reduces (increases) the rate of growth of the knowledge

stock over the period of observation. For some results presented in the text, I set 5 equal to zero,

assuming a zero rate of depreciation for R&D capital.

36
exception is Italy, where also extramural R&D expenditure is covered.


