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1. Introduction

Speaking from the perspective of a fegional Federal Reserve Bank president, Poole (1998)
recently listed five sources of uncertainty that affect the formulation of monetary policy:
future events, shocks and disturbances; the actual workings of the economy; market reactions
to current central bank policy; market expectations of future central bank policy; and
limitations of the data. The first of these, which we will refer to as shock uncertainty, has
been studied extensively and underlies the stochastic simulations that are performed as part of
state-of-the-art policy analysis exercises. The next three of these types of uncertainty can
broadly be categorized as model uncertainty. Model uncertainty can arise from many sources.
All models are approximations, so any particular model has approximation error. The true
economic relations might be time varying, perhaps because of structural breaks, in which case
the approximate model could be time varying. Even if the economy is time invariant, the
parameters of the approximate model could be time varying because of specification error.
Finally, even if the model is correctly specified and is time invariant, its parameters are
estimated, so there is econometric estimation error.

At least since Brainard’s (1967) important work, economists have tried to incorporate model
uncertainty into policymaking. Generally speaking, existing approaches to model uncertainty
employ Bayesian decision theory; these solve for decision rules that are desirable under some
set of priors on the model parameters. As is discussed below, however, this approach has
important limitations, perhaps accounting for the infrequency with which formal decision
theoretic methods are used in the actual conduct of monetary policy.

This paper takes a different approach to monetary policymaking under model (and shock)

uncertainty. This approach draws upon advances over the past decade in the field of robust



control in the engineering literature; see Dahleh and Diaz-Bobillo (1995) and Zhou, Doyle and
Glover (1996) for recent textbook treatments.! This approach is fundamentally different from
the Bayesian decision theoretic approach. Rather than specifying a prior and solving for the
rule that minimizes the ‘Bayes risk, the robust control approach specifies a broad, usually
nonparametric set of possible modeling errors (model perturbations) and poses a minimax
problem in which the policy is chosen to minimize the maximal risk over all perturbations in
this set. Typically this problem must be solved numerically if it can be solved at all.

Our analysis focuses on a specific model, the two-equation model used by Rudebusch and
Svensson (1999) (henceforth, the RS model), although some theoretical results are provided for a
simplified version of this model. We consider policy rules of the generalized Taylor form, in
which the monetary authority sets the interest rate based on the rate of inflation and the output
gap. The RS model and generalized Taylor rules were chosen because of their simplicity so that
the resulting robust rules can be given economic interpretations.

In this context, the robust control problem can be formulated at a general level. Let M
denote the model at hand, and let A denote the unknown nonrandom deviation of the true
model from the model M. In general A can be time varying and state dependent, and the set of
such perturbations considered is denoted by D. The model M will be referred to as the base or
nominal model. The perturbed nominal model is M+A, which can be thought of as the true
model that is relevant at the time the policy is placed in effect. Let {K} be the set of poiicy
rules under consideration, and let R(K,M+A) denote the risk (expected loss) of pursuing policy
K when the true model is M+A, where the expectation is taken over shock uncertainty. We

consider robust control problems of the form,

(1.1) min{K}supAEDR(K,M+A).



In the numerical work, M is the RS model, and {K} is the set of generalized Taylor rules.
Choices for the risk function R and the set of perturbations D are discussed in sections 2 and 3,
respectively.

This paper addresses two sets of questions. The first set of questions concerns the
economics of the robust policies, and how these policies differ from policies without parameter
uncertainty. There have been three previous, limited investigations of robust rules in the RS
model or variants: Stock (1998a, 1998b) considered two restrictive choices of D, while Sargent
(1998) studied Ball's (1997) related model using a relatively unrestricted choice of D.
Intriguingly, these studies all found the robust rules to be more aggressive than the rules that
would obtain without model uncertainty, in the sense that the responses to both inflation and
the output gap in the modified Taylor rules were larger. This contrasts with the usual finding
for Bayesian approaches to uncertainty: model uncertainty often leads to less aggressive
policies, as discussed by Brainard (1967) and, in the context of monetary policy, Rudebusch
(1998) and Wieland (1998) (although as the latter authors note this tendency to conservatism is
not generally true in the static case, cf. Chow (1975), or if there is learning). But how general
is the proposition that robust policy rules are more aggressive than the certainty equivalence
rule?

The second set of questions are methodological. Various choices for D are available,
corresponding to different formulations of the robust control problem. As is discussed in
section 3, there is an approximate hierarchy of generality for choice of D. This raises the
questions of whether these different choices for D imply economically different policy rules
and, if so, which choice of D seems most natural for the monetary policy problem.

Before proceeding to these questions, it is useful to digress by contrasting this approach to
the usual decision theoretic treatment of model uncertainty. At its simplest in a static context,

this approach posits a prior distribution on the mode] parameters and computes the policy that



minimizes the Bayes risk. Rudebusch (1998, section 5) provides an interesting extension of this
approach where the prior entails evolution of the parameters over time, with the stochastic
nature of this evolution characterized by hyperparameters of the priors; he solves for
generalized Taylor rules that minimize the Bayes risk in the RS model. More complicated
dynamic treatments incorporate learning, so that posteriors are continuously updated, cf.
Wieland (1998), who builds on work by Wieland (1996), Easley and Kiefer (1988), and others.
Although grounded in optimal decision theory, the Bayesian approach has two related
disadvantages. On the one hand, in realistic macroeconomic models, the dimensionality of the
parameter space is large, and proper implementation of these methods requires elicitation of
priors of policymakers to a degree that is impractical. Retreating to "uninformative" or flat
priors is not a solution, both because the decision problem is compelling mainly if there are
informative priors and because the construction of flat priors depends on which arbitrary
nonlinear transformations of the parameters are used (dynamic responses are generally nonlinear
transformations of primitive model parameters for example). This is particularly problematic in
models like the RS model, which has large autoregressive roots, indeed, the question of how
best to specify priors in the presence of possibly large autoregressive roots in univariate
autoregressive models remains unresolved (see the special issue of Econometric Theory,
August/October, 1994). On the other hand, the parametric nature of the problem limits the
types of misspecifications and disturbances that can be considered: the policymaker might be
worried about a possible breakdown of the model that arises from sources she cannot now
identify and therefore upon which she cannot place parametric structure and prior probability.
In contrast, the robust control approach specifies a neighborhood of disturbances, which can
have nonparametric characteristics. The perturbations can be specified generally or can focus
on the some parts of the model. Beyond specifying the general nature of her uncertainty, no

further information is required from the policymaker (beyond her loss function) to construct the



robust policy.

The remainder of the paper is organized as follows. The RS model, generalized Taylor
rules, and policymaker loss functions are introduced in section 2. Section 3 presents a hierarchy
of different specifications of D, which each produce robust control rules. Numerical results for
these different rules are presented and discussed in section 4. Some theoretical results for a
first-order version of the RS model are presented in section 5; these results address, from a
theoretical perspective, whether the robust policy rules are generically aggressive. Section 6

concludes.

2. The Model, Loss Functions, and Policy Rules

2.1. The model and policy rules

Rudebusch and Svensson’s (1999) model is a two equation model of inflation (7l't)‘, measured
at an annual percentage rate, and the output gap (Y, measured as 100 times the log ratio of
actual real output to potential output. The first equation is a Phillips curve linking the change
in inflation to the past level of the output gap. The second equation links the output gap to the
ex-post real interest rate. Rudebusch and Svensson (1999) estimated the model using quarterly
postwar data for the United States. The estimated model, with standard errors of the

coefficients in parentheses, is,

(213) 7rt+1 = .70 7rt— .10 7Tt_1 + .28 7rt_2 + .12 7l't_3 + .14 yt + 61rt+1
(.08) (.10) (.10) (.08) v (.03)

2.16)  ypyq =116y -.25y, 5 -.10 Grm) + gy g
(.08)  (.08)  (.03)




where i, is the Federal funds rate at an annual rate, It = .25%(y+1,_y +ij o +i;_3) is the four-
quarter average value of the Federal funds rate, and %t = 25%(m+ 7|+ 7y p+ T 3) is the four-
quarter average value of the rate of inflation. The coefficients on lagged inflation in (2.1a)
sum to one, so that (2.1a) could alternatively be expressed in terms of changes of inflation, Ty
Te 1 rather than in levels of inflation. This accords with conventional Phillips curve
specifications for the U.S., cf. Gordon (1998), in which the change of inflation is written as
depending on a demand measure (the output gap or the unemployment rate), lagged changes in
inflation, and supply shocks, although the supply shocks are not incorporated here.

The monetary authority is assumed to control the nominal interest rate using a policy rule.
In general policy rules can depend on all observable data. In this paper, however, we consider
simple policy rules of the generalized Taylor form, in which interest rates are set based on
current values of the rate of inflation and the output gap. As emphasized by McCallum (1988,
1990) and Taylor (1993), simple rules have the advantage of being easy for policymakers to

follow and also of being easy to interpret. The generalized Taylor rules considered here are,

22 i = g7 + gyY;

where g_. and gy are parameters to be chosen when designing the rule. Taylor (1993) suggested
the parameters g, =1.5 and gy=0.5, and these will serve as a benchmark for comparing various
robust policies.

It is convenient td reexpress the model and control rule in vector notation. Looking ahead,
we consider loss functions that involve the change in the interest rate, 1-1;_q, so it is useful to
augument the state vector to include both the change and the level of i, 1. Let L denote the

lag operator and a(L) denote a lag polynomial. Then (2.1) and (2.2) can be written,




[ Tl | -amT(L) an, (L 0 0 17 L | [ 1 0 |

(2.3) Yesr | = [2yr(D) 2y, (L) 0 -a (L) Ve + |0 1 |:E1rt+1}
TP a (L) aj (L) 0 ayy (L) -1 i -d IV |
| i 1 V_aiw(L) aj (L 0 ajm JL i l9,/4 g,

2
where aj,(L)=(g;/Mla; (L) +1+L+L7+gpa (L), 2 (L) =(g /N2y (L) tgyay (L), a;(L)=-gyay (L),
amr(L) is fourth order, ayy(L) is second order, aﬂ.y(L) is first order (so ary(L)=a7ry,O)’ and
ay (L) is the restricted fourth order lag polynomial, ay(L) = 0.25%y.; (1 +L+L2+13).

The combined model and control rule (2.3) can be written more compactly as,
2.4) z, 41 = Az, + B

where z, = (7rt, Y it'it-l’ it)’ and € = (em, eyt)', and A(L) and B are the corresponding
matrices in (2.3). Note that A(L) and B are functions of 8 gy, and the elements of the upper
left 2 X2 block of A(L).

Although no intercepts appear in any of these expressions, the analysis is invariant to
reinterpreting the variables as deviations from target values. For example, if target inflation is
2% per year, then 7, , 1 would denote actual inflation minus 2%. Without loss of generality we

therefore set target values to zero.

2.2. Loss functions

The monetary authority is taken to prefer inflation close to zero, an output gap close to
zero, and a stable interest rate, that is, an interest rate with small changes. The level of the
interest rate is assumed not to enter the loss function. Two loss functions are considered:
quadratic (or fz) loss and worst case (or { ). Let A denote a 4 X4 diagonal matrix with diagonal

elements (1, )\ﬂ., )‘Ai’ 0).




Quadratic loss. Under quadratic loss, the loss function is,
1
2.5) Ly (z) = z/Az, = [A%2,13,

where | X[, is the ¢ norm of the nx 1 vector X, [|X|[|,=[tr(XX")] 2 The associated risk function
is the expected value of this loss function, Rf 5 = Var(7rt) +)\yvar(yt) +A Aivar(it'it-l)z’ where the
expectation is taken over the shock uncertainty (the model perturbation is treated as
nonrandom).3
Maximum value loss. Although quadratic loss is conventional because of its tractability, it
might not accurately reflect the attitude of the monetary authority towards risk. For example,
the monetary authority might be far more concerned about worst case scenarios than about
ensuring the deviations from target paths are always small. One way to formalize this is to
consider a loss function that focuses on worst case outcomes for the variables of interest, where
the variables are scaled by the square root of the diagonal elements of A. This maximum value

loss function is,
1 v, .. 1
2.6) Ly, @ = supmax(|m |, Nyl MGG pD) = 14%2] o,

where |[x| o, is the ¢ _, norm of the nX I vector time series X=(.0,X_1,X0pX]50 00

1
Ix0l o =sup;max; | x; |. The associated risk function is the expected value, R, . =E A %, I o- So
that the risk is finite, when working with 1?1 loss, the shocks are assumed to be random

variables with bounded support.




3. Optimal Policies Under Model Uncertainty

This section provides an approximate hierarchy of characterizations of model uncertainty,
going from the least to most parametric. When combined with a risk function and the
specification of the policy rules (2.2), this completes the specification of the monetary
authority’s decision problem (1.1), and it remains only to solve the optimization problem. In
general these solutions are computationally difficult, and not all possible combinations of model
uncertainty and risk functions constitute well-posed and computationally solvable problems. In
some cases the optimal policy can be computed, but in others only partial solutions are
available, in which case typically it is feasible to compute a set that contains the optimal policy
but not to compute the optimal policy itself.

In general, model uncertainty can be expressed as the true model deviating from the nominal
model, so that A(L) becomes A(L) +At’ where A, 1s a sequence of perturbations to A(L).

Substituting this into (2.4), the perturbed model can be written as,

@3B.1) Zi41 = A(L)zt + Az + Bet+1'

Thus, letting 9, , | = Az, + Be,, 1, we have

(3.2) Zes1 = ALZ + 1
or
(.3) Zgy1 = GMne gy




where G(L) =[I—A(L)]'1. One interpretation of (3.1) is that A(L) +A, represents the true model,
A(L) is the linear approximation, and €+ 1 are the shocks to the true model. The combined
shock 7, , ; includes both components.

The benchmark for the numerical analysis is the conventional linear quadratic (LQG) control
solution, for which there is no model uncertainty, so A;=0. The general optimal policy is
obtained using standard methods for linear-quadratic problems. Here, the policy is restricted to
be of the generalized Taylor form (2.2).

The remainder of this section discusses different sets for A;. Computation of the associated
optimal robust policy is discussed in conjunction with the introduction of the set. The sets are
approximately hierarchical and are discussed from the most general to the most specific. The
most general forms of model uncertainty are essentially nonparametric and incoporate both
model and shock uncertainty. The remaining forms of uncertainty focus on model uncertainty

and exploit, to varying degrees, the parametric form of the nominal model.

3.1. Mixed model and shock uncertainty

These formulations treat model perturbations (Atzt) and shocks (et) symmetrically. The
robust control problem is formulated to guard against undesirable outcomes resulting from bad
distributions of the combined errors N which could arise from bad distributions of shocks,

modeling errors, or a combination of the two. Note that, in this formulation, the worst case

combined errors against which the policymaker wants to be robust can always be constructed
using shock perturbations only (for a given Ny set At= 0 and et%nt).

fz-bounded perturbations, £’2 loss. In this case it is assumed that E || AtZt I g <o and
E| € Il 9 <, 50 that E | N I 5 <. The monetary authority wishes to guard against the worst case
distribution of perturbations and errors, subject to E[|7,[|, < o. So that the problem is tractable,
the monetary authority in this case is taken to have €5 loss. This leads to the so-called H
robust control problem.

-10 -




Because of the linearity of (3.2), the scale of 7, is arbitrary, so without loss of generality it
is possible to restrict attention to combined shocks with E |7, [ ,=1. Thus the optimization

problem (1.1) becomes, -

(3.4) ming, e3P {n:E |n | 2= 1}EZAZe

Because EziAz, = tr2m) ! | T AV GE™)E, ()G ™) A do =

(27r)'1 § "_rwtan(w)G(e'iw)’AG(eiw)dw, where F_ is the spectral density matrix of 9, (3.4) is

Ui
equivalent to,

. 1
3.5) ming, o314 "Gy,

where [M]] H,, the H, norm of the stable operator M, M Ho, = {sup wmaxeval[M(eiw)'M(e_iw)]}l/z,
where maxeval denotes the maximum eigenvalue. Alternatively, (3.5) can be expressed as
min sup [l NG *Gyll5/linll,1. Because sup [l Al/an l~/lm1l5] is the induced
{gr.gy> P{n:[n]2>0 2t ot {n:lnll2>0 2712
norm of AVZG, which is the H , norm (e.g. Dahleh and Diaz-Bobillo (1995)), this is equivalent to
(3.5).
{ . -bounded perturbations, {  loss. This case is similar to the previous case except that the
perturbations cum shocks 7, are assumed to be bounded in absolute value, so Il o, < o, and, so
that the problem is well defined and tractable, the monetary authority is assumed to have

maximum value loss. Accordingly, (1.1) becomes,

. 73
(36) Imn{gmgy}sup{n: "77 " o < I}E "A Z" o

- 11 -




Here 7, are a series of random variables with bounded support but otherwise unrestricted. This
is equivalent to the problem, minge o WP 7] o < 1}[ IA”2Gnll o/ Il o], which is in turn

equivalent to solving,
. 1
(3.7) mingg o3 Ia™al,,

where [M], ; denotes the £ norm of the nxr operator M, M|, =
MaX| i<y 51=1 Y cf: =O|mij,k| , wWhere M(L)={m1-j(L)}. Because the induced norm of the ¢
loss/t , errors problem (3.6) is the ¢ 1 horm, this is referred to as the ¢ 1 robust control problem.

Minimum entropy control. A modification of the (deterministic) H oo control problem is,

. v,
(3.8) minge g 3SWPen: I ll2< 1+ngmoy 147212

where =g, 17> 77,--.). The solution to (3.8) constitutes a continuum of controllers, indexed
by the Lagrange multiplier on the constraint |7 || 2= 1+7q41. This family of solutions is called
the minimum entropy controller.

The problem (3.8) can be motivated in a variety of ways. It is equivalent to the risk-
sensitive control problem formulated by Whittle (1990); see Hansen and Sargent (1998) for a
discussion. For our purposes, the attractive feature is that if the Lagrange multiplier is zero,
the minimum entropy controller is the LQG controller, while if the Lagranger multiplier is the

H ,, norm of the nominal model (its maximum value), the controller is the H oo controller.
3.2. Model uncertainty only
In the previous cases, the control problem guards against uncertainty both in the model and

in the shocks. An alternative approach is to focus solely on model uncertainty, so that the

-12-




minimax problem guards against worst case modeling errors (misspecification, structural breaks,
etc.) but not against worst case shocks.

- There are two main difference between these cases and those in the previous subsection.
First, the previous formulations have both model and shock uncertainty, whereas these
incorporate only model uncertainty. Second, the previous formulations placed no restrictions on
the perturbations A, other than that Az, have finite norm, whereas in the case of structured
uncertainty these perturbations will be required to be operators and thus be defined
independently of the state vector {Zt}. Here, the operator A denotes the deviation of the
nominal model from the true model, so A captures the misspecification of the model. For
example, if the true model is linear but subject to one or more structural breaks, then A is
linear but time varying.

The various cases of structured uncertainty are differentiated by the amount of structure
that is imposed on A. For each case, the size of the perturbations can be indexed by their

norm (either H  or ¢ 1)- Thus for each case, the optimization problem becomes,

3.9 rr1111{g7r’gy}supA e DrR

where R denotes the risk function and D, denotes the set of perturbations considered, indexed
by r, where larger values of r denote larger sets of A. Calculation of r is related to the |
structured norm of the perturbed model, and is discussed in the Appendix.

The results that will be presented for structured uncertainty are limited by the
computational tools currently available. In most cases, computational methods for obtaining a
unique solution to (3.9) (if one exists) are unavailable. However, for a given set Dr it is
generally possible to compute the set of {g7r, gy} which result in output with finite norms, that

is, which result in stable controlled systems. Thus, although (3.9) is formulated as a robust

13-




performance problem, in fact the numerical results will mainly be for robust stability. Since
stability is a property of the system and not the parameters A of the loss function, these sets do
not depend on A. For r sufficiently large, it is generally impossible to stabilize the perturbed
system, in which case no solution to (3.9) exists for finite risk and the set of stabilizing rules is
empty. For r sufficiently small, the set of rules that stabilize the system can be large, in which
_case this set is relatively uninformative about the nature of the minimax rule that solves (3.9).
A value of r that is of particular interest is the critical value, T axe such that for r> I maxe the
set of stabilizing rules is empty.

In general, the perturbation operators have the structure,

(Am by O 0
A A 0 -A
(3.10) A= | YT YY ym
Bir Biy O 844
Big b4y O By

where (analogously to (2.3)) Ai1r =(1/4)g7rA1r7r +gyAy1r’ Aiy =(1/4)g7rA7ry +gyAyy, and Aii ='gyAy7r'
In linear cases, the perturbations are structured so that the coefficients on the lagged rate of
inflation in the first equation sum to one. Accordingly, we set Aﬂ_=5mr(1-L); also, for

reasons of interpretation, we set A Ayw( 1 +L+L2+L3)/4. Note that all elements of A are

yr—
functions of the elements of its first 2 X2 block, so perturbations are henceforth specified only in
terms of this block.

When entries of the A matrix are restricted to be constant operators (scalars), then they can
be interpreted as once and for all deviations from the nominal model coefficients in 2.1). In
this case it is natural to measure A in units of the standard errors of the corresponding
estimates. In the general case, we continue to measure the size of A in these standard error

units, although strictly the standard error is the correct term only for the lead elements of A

when A is a general operator.

-14 -




Nonlinear time varying bounded perturbations (general case). In this case A is permitted to
be a nonlinear time varying (NTV) operator with bounded norm, so D, = {A:
max( | An 01 A%ry 0,1 Ay‘/r I, 1 Ayy l)<r}. For computational reasons, only results for the oo -induced
norm are reported.

In principal, one could alternatively consider perturbations that are nonlinear time invariant
(NTI) or linear time varying (LTV) operators. However, the structured norm for NTI and LTV
operators is the same as for NTV operators (Dahleh and Diaz-Bobillo, ch. 7), so the resulting
sets of stabilizing rules that are computed in lieu of unique sotutions to (3.9) are the same for
these three cases (NTV, NTI, LTV).

NTV bounded perturbations, cross effects only. In this case, D, = {A: Arr=0, Ayy=0,
max( || Avry 0,1 Ay7r [)<r}. This restricts the previous case by imposing that there is no uncertainty

about the "own dynamics” in the model, so that the only model uncertainty is associated with

the cross effects (the effect of the real rate on the output gap and the effect of the the output
gap on inflation). This uncertainty can include both uncertainty about the levels effect and
about the cross dynamics. Results are reported for the ¢ -induced norm.

Linear time invariant bounded perturbations (general case). In this case, Dr is as defined for
the general NTV case except that the perturbations are LTI operators. It turns out that, in
general, for LTI perturbations the set of stabilizing rules are the same, for a given r, whether
the norm is H, or £;. |

LTI bounded perturbations, cross effects only. In this case, A is LTI with A7r7r=Ayy=O' For
this type of uncertainty, the same set of rules obtain for both H_, vand £ norms.

LTI bounded perturbations, contemporaneous cross effects only. This case further restricts
the uncertainty so that there is no uncertainty about the cross dynamics, rather, the uncertainty
is only about the levels effect of the real rate on the output gap and of the slope of the Phillips

curve. Thus, A has the form (3.9) with Apr=A =0 and Ayi(L)=Ayi 0 and Aﬂ,y(L)=A

yy 7y,0’

where Ayi,O and A7ry,0 are constants.

-15 -




This formulation of uncertainty is highly restrictive but has the advantage of permitting
computation of the actual optimal rule (the solution to (3.9)), not just a set of rules which
contains the optimum. Unlike the sets computed for the other cases of structured uncertainty,
this optimum policy will of course depend on A. The results are computed for ¢ o loss. The
low dimensionality of the perturbations permits direct evaluation of the loss for all perturbations
of size r by grid search over D, (to compute the worst case loss) and over {gy, 8.} (to compute

the minimax loss).

4. Numerical Results

4.1. Computational issues

To simplify the calculations, the system was transformed so that the radii of allowable
deviations are in standard error units. The calculations were performed using the u toolbox in
MATLAB and programs developed for this project. The sets of stabilizing rules were computed
by grid search in the domain, g7r€ [1.2,7] (grid of 0.2) and gye [0.1,4.5] (grid of 0.1). We
experimented with the size of the grid and chose the reported one because our solutions are in

the interior.

4.2. Results

Mixed model and shock uncertainty. The parameters of the robust generalized Taylor rules
for the cases of section 3.1 are summarized in figure 1. The linear-quadratic (LQG), optimal
H  and optimal ¢ rules are each characterized by individual points in (81> gy) space. The
minimum entropy rule is indexed by a scalar parameter and the family of minimum entropy

rules is a curve with endpoints equaling the LQG and H oo Tules. The benchmark LQG rule

-16 -




parameters are (gﬂ.,gy) = (2.71, 1.58). The H oo Tobust control parameters are (gw,gy) = (6.42,
2.75), and the ¢ 1 Tobust control parameters are (gw, gy) = (4.80, 3.33). The inverse of the H o

and £ norms of the controlled nominal model are shown in figures 2 and 3.

NTV perturbations, general case. As discussed in section 3, the results for structured
perturbations generally take the form of a set in which the optimal rule parameters must fall,
where the sets are indexed by the radius of the perturbations r. These sets have the property
that all ruies in these sets stabilize the perturbed model. These sets, for various values of I, are

shown in figure 4 for the £, norm. The set of rules which stabilizes the system for r=r sa

max |
singleton, and r ., =.805. Thus there is, to the limits of computational accuracy, a unique
solution to the optimization problem (3.9) when I=TI .y Which is & gy) = (3.2,2.3).

NTV perturbations, cross-effects only. The sets of stabilizing policy rule parameters for this

case are shown in figure 5. The set of stabilizing rules for I hax IS @ singleton, with

a

Imax=2-02. The associated optimal robust rule for general LTI perturbations with r=r s

(gw,gy) = (3.0, 1.73).

LTI perturbations, general case. The sets of stabilizing policy rule parameters for general

max !

LTI perturbations are shown in figure 6, where, Tax=1-82.

LTI perturbations, cross effects only. The sets of stabilizing policy rule parameters are
shown in figure 7, where Tmax =33 To within numerical precision, there is a plateau at
T=Tmax:

LTI perturbations, contemporaneous cross effects only. Three sets of stabilizing policy rule
parameters for these perturbations are shown in figure 8: for Tmax=3-3>1>3.2, for 3.2>1>0, and
the unstable region. The set of stabilizing rules for r>3.2 is large.

As mentioned in section 3, because of the low dimensionality of these perturbations the

optimization problem (3.9) can be solved numerically, given a loss function. These optimal
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rules were computed for £, loss, and the results are the curved line segment in figure 8. The
endpoints of this curve are for r=0, which is the LQG rule, and for r=3.2 ;rmaX' |
4.3. Discussion
First consider the results for the policies that are robust to mixed shock and model errors.

As noted by Rudebusch and Svensson (1999) and discussed extensively by Rudebusch (1998),

the LQG policy is more aggressive than the Taylor rule, with larger response coefficients on
both inflation and the output gap. The policies that are robust to both ishock and model
uncertainty (figure 1) are in turn more aggressive than the LQG policy.

The parameters of the optimal H _ and optimal £, robust rules appear quite different. This
does not necessarily imply however that these controllers are different in terms of their
objective functions. The H_, and ¢ objective function surfaces (inverted, so that the problem
is maximization rather than minimization) are shown in figures 2 and 3, respectively. The ¢ 1
objective function, || A"2G || ¢, in the notation of (3.7), is flat in a large region of (g, gy) space.
Evidently, the rule that solves the H _, robust control problem is nearly optimal from a £y
perspective. The converse is not true however, since the t’l controller has H _ norm well below
the maximum.

Generally speaking, as more structure is placed on the perturbations, the sets that contain
the optimal policies become less aggressive, that is, they tend to exclude more aggressivé

policies. The optimal policy for general NTV perturbations with r=r (figure 4) and for

max
NTV perturbations on only the cross effects (figure 5) are somewhat more aggressive than the
LQG policy, but far less extreme than the robust policies in figure 1. It is interesting to note
that in these cases the LQG rule and even the Taylor rule have reasonably good stability
properties.

The LTI perturbations are more restrictive, and the policies for the maximal perturbations

become even less aggressive in the LTI case. Although the coefficient on the output gap for
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Ihax femains approximately the same as for the LQG solution, the coefficient on inflation gets
smaller and approaches the limiting case of one, below which the nomimal model becomes
unstable. The Taylor rule and the LQG rule both have similar stability properties with LTI

perturbations.

4.4. Incorporating Noisy Data.

The final source of uncertainty in Poole’s list in the introductory paragraph is noisy data.
This source of noise has been ignored so far. Observational noise has two relevant implications.
First, observational noise induced errors in variables bias in estimated econometric models.
Second, policy rules that are optimal when there is no measurement error in general will not be
so in the presence of measurement error, holding the model constant. The first of these
difficulties, errors-in-variables-bias, is well understood, and econometric methods are available
to handle some types of measurement error. Here, we focus on the second of these
implications, and examine the extent to which robust policy rules change when data noise is
introduced.4

Orphanides (1998) argued that measurement error will temper optimal rules: a jump in
inflation that in the absence of measurement error might appropriately result in an aggressive
response, with measurement error might call for a dampened response because of doubts about
whether the jump is simply a consequence of mismeasurement. To examine this, we follow
Orphanides (1998) and modify the nominal model to include explicitly additive noise in
inflation and in the output gap. Inflation noise is white and the output gap noise is first order
autoregressive, with coefficient p. To simplify the computations, we considered only optimal
H , -robust Taylor-type rules. Three values of p were considered, p=.1, .5, and .9. Four sets
of standard deviations of the inflation and output gap noise were considered, (.5,.9), (.5,1),

(1,.5), and (2,2) (Orphanides used (.7,1) for his computations, similar to our case of (.5,1)).
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Note that the standard devation of the stochastic disturbances in the nominal model is 1.2 for
the error in the inflation equation and 0.9 for the error in the output gap equation, so that the
magnitude of the measurement error considered brackets the magnitude of the stochastic
disturbances.

Interestingly, the H , optimal rule was found to be insensitive to the introduction of this
measurement error. For the nominal model, the H , Taylor rule coefficients are (v, gy) = (6.41,
2.75). When measurement error is added, the H, rules become less aggressive, but only slightly
so. For the noise standard deviations (.5,.5), (.5,1), (1,.5), for all p considered, the H _, Taylor
rule coefficients are between 5.84<g_<6.23 and 2.59<g,<2.76. Even for the most extreme case,
where the standard deviations of the measurement error are (2,2), the H_ Taylor rule
coefficients are between 4.61 <g_<5.90 and 2.25<g,.<2.80.

Evidently, at least for these types of measurement error and H , robust rules, the robust
rules become less active, but only slightly so. One interpretation of this finding is that while
adding measurement error can significantly change the LQG optimal rule, measurement error
does not substantially change the worst possible models (or shocks) that are the focus of the H

robust rules.

5. Theoretical Results

The foregoing numerical analysis suggests that the robusf rules are typically, but not
necessarily, more aggressive than the LQG rule. In the case of NTV perturbations, the rule for
the maximal perturbations was slightly more aggressive than the LQG rule, and the LQG rule
was found to have a high degree of robust stability against these perturbations. Because the
results are numerical, however, it is difficult to develop much intuition or to assess their
generality.
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This section undertakes a theoretical analysis of some robust rules in the simple two

equation of Ball (1997) and Svensson (1997a, 1997b). The nominal model considered is,
(5.1a) Tep1 = Tt oy, + €4
(5.1b) Vi1 = BOrm) + oy, + €yt+1

where a, 8, and & are constants. It is assumed that for the nominal model, o> 0 and 8>0. Note
that this is the RS model in which higher order lags are suppressed and the moving average Tt-

%t is replaced by 1-7;. The control rules remain generalized Taylor rules. To simplify the
analysis, we set A 4;=0 in the loss functions (2.5) and (2.6), so that the policymaker is concerned
only about inflation and the output gap.

The theoretical analysis has two parts. The first entails obtaining the LQG Taylor rule and
examining the stability of the nominal controlled system. The second is an analyis of robust
stability under NTV perturbations. Although we would iike to consider NTV perturbations to
all three coefficients, for tractability we only consider NTV perturbations to a single key

coefficient, a, the slope of the Phillips curve. The class of deviations considered thus is,

(5.2) D_ = {A: A7”r=Ayy=Ay7r=O, I Awy | <r, ANTV}.
Two norms are considered for (5.2), the H, norm ({, loss) and the £ norm (€ o loss). Under
the H _, norm, in this simple case, the results for NTV, NTI, LTV and LTI perturbations will
coincide, and moreover the results for the H , norm are also the results for the fl norm with
LTI perturbations (Dahleh and Diaz-Bobillo [1995, ch. 7]). The results for the £; norm with

NTV perturbations are different however and are presented separately.
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The LQG controller can be obtained analytically for this system. Write the risk function as

R = kvar(w) + (1-k)var(y), where 0<k<1. Then the LQG optimal Taylor rule is,
6.3 @ E0) = (1 + 51/Bgy. (o5 455188

where {1 = Yok + Vz[a2K2+4K(1-x)] 2 and $y = a§'1+ 1-k. If the policymaker cares only about

inflation (so k=1), then (g=QC, gQ0) = (1+1/08,(1+8)/8). Alternatively, if the
T 8

policymaker cares only about the output gap, (gI,EQG, ggQG) = (1, 4/B).

It is convenient to introduce a reparameterization of the policy rule, specifically,
Y= -6+Bgy and 6 = aB(g D).

This reparameterization is convenient because stability conditions depend on the parameters of
the nominal model only through vy and 8. Under this transformation, the eigenvalues of the
controlled system (1), Xq and Xy, are,

—1 L 2 4g12
(5.4 {Xl’ x2} = W(-y+1) £ L[(1+y)"-460]7".
Thus the controlled system is stable if and only if  and 8 are in the region of stability S:

(5.5) S = {y,0: 0>27-2, < 1+7, 6>0}.

We now turn to an analysis of the robust stability. The nominal model (5.1), controlled by

the Taylor rule and subject to perturbations (5.2), is

(5.6) [“t+1} } [ 1 a+0A‘ny} {”t} . rwul}
eyl B(1-gp) 6'6gy Y fyt+1
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where ¢ is a fixed constant chosen by the researcher to scale A7ry to be in natural units of the
problem, for example, in units of standard errors of .. It is useful to rewrite this as the

feedback system,

Tesl . o ™ €rt+1
(5.7a) Yes1| = B(l-gw) 6—Bgy 0 |ve| + eyt+1

Sy 0 (o} 0 ht 0
(5.7b) ht = Awyst

If the policy rule (g, gy) stabilizes the nominal model, then introducing the additional
feedback to the systems leaves it stable if and only if the feedback interconnection between h;
and S¢ is stable (Dahleh and Diaz-Bobillo (1995, ch. 5)). In the frequency domain, the

inteconnection is represented by two channels: feedforward s=Gh and feedback h=As, where

-1 -1

z -1 -o 1 2 -1

(5.8) G(z) = (0 o) -1 = -{0/a)0z [(1-xlz)(1-xzz)]
: -8(1-g,) =z —6+Bgy 0

where x, and X, are given in (5.4). Because A is one-dimensional, by the Small Gain Theorem
in its necessary and sufficient form, the interconnection is stable for all A such that Al <rif
and only if |G|l <1/r, thatis, r<1/| G|, where |G| denotes either the H, or £ norm of G,
depending on which is specified in (5.2).

We now are able to characterize the robust rules for the maximal perturbation, I ax’ for -
this controlled system. Results for ¢, loss (H , norm in (5.2)) are given in proposition 1, and

results for ¢  loss (El norm in (5.2)) are given in proposition 2.
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Proposition 1 (172 loss).
Let D = {A: A7r7r=Ayy=Ay7r=0’ I A1ry I Ho, <T, A NTV}. Then the maximal radius of
affordable perturbations is equal to /0. The set of robust rules for the maximal

perturbation is, Ry, = {v,0: v<1, O<0$(1+'y)2/(3+'y)}.

Proposition 2 ({ , loss).

Let D, = {A: App=Ayy=4y=0, A

affordable perturbations is equal to o/o. The set of robust rules for the maximal

Ty Iy, <r, ANTV}. Then the maximal radius of

perturbation is, Ry, = {v.6: v<1, 0<0<(1+7)2/4}.

Proofs are given in the appendix.

The results of these propositions are summarized in figure 9. The region of stability S is
the large triangle in the figure. The area in the triangle to the right of the curved line
corresponds to complex conjugate pairs of eigenvalues, while the area to the left of the line
corresponds to real eigenvalues. The set of optimal LQG rules for different risks (i.e. different
values of k, 0<k<1) is given by a straight line segment connecting points (0,0), which is optimal
when all wéight is on the output gap (x=0), and (1,1), which is optimal when all weight is on
inflation (k=1). The shaded area A is the region RHoo in which the radius of allowable
perturbations is maximal as given in Proposition 1, and the region A(JB is the region R fi in
which the radius of allowable perturbations is maximal as given in Proposition 2.

As can be seen from figure 9, the proposition has two relevant implications. First, the LQG
rules all fall in region A, so every LQG rule is a maximally robust. Second, for any robust rule
in RHoo or R, v there exists a no less aggressive LQG rule. For these perturbations, at least, the

maximally robust rules need not be more aggressive than the LQG rules.
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6. Discussion and Conclusions

Several substantive conclusions emerge from this analysis. For many classes of
perturbations, the robust rules are more aggressive than the LQG rules. An intuitive
explanation of this finding is that a particularly undesirable situation for the monetary
authorities is when the uncontrolled nominal model is unstable but monetary policy has virtually
no effect; in this case, an aggressive rule is called for. This rule produces high volatility if the
model is close to the nominal model, but still minimizes the worst case risk. However, this
finding that the robust rules are more aggressive than the LQG rules is not true for all types of
perturbations, as shown both by the numerical analysis of section 4 and by the theoretical
results of section 5.

" The specific robust control rules vary, depending on the formulation of uncertainty. This
analysis suggests some guidance about which formulation of uncertainty seems most appropriate
for the monetary policy application. The formulations that involve both error and model
uncertainty confound these two sources, and the worst cases can be achieved by the appropriate
structure of error uncertainty alone. Thus these seem not to focus on the characterization of
model uncertainty. Among the formulations that involve model uncertainty only, those with
NTV perturbations allow the most general deviations of the approximate model from the true
relations. The formulation of uncertainty with the greatest amount of structure, LTI
perturbations to only the two leading cross terms, is closest to the structure that would arise in a
Bayesian formulation (although the Bayesian formulation would in general admit uncertainty on
all coefficients). This latter formulation can be thought of as a one-time shift in the model, or
alternatively as the true model being of the RS form but with different coefficients. In our

view, this is unduly restrictive and does not do justice to the notion that the RS model is an
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approximation to a much more complicated, unknown and possibly time varying set of relations.
In this light, we find the nonparametric generality of the NTV perturbations on all coefficients
more appealing.

Many issues remain for future work. The computations here do not involve discounting,
and one could argue that policymaker loss functions should discount the future. We have not

taken a stand on the issue of the choice of r; while r=r is a concrete choice, this might

max
result in unduly conservative policies. There also remains the difficult problem of computing
the optimal (minimax risk) rule within the set of rules with finite maximal risk. These

constitute interesting questions for future research.
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Appendix

Computation of Radius of Affordable Deviations

As is discussed in section 3, it is generally not computationally feasible to compute the

optimum solution to (3.9), but it is possible to compute the set of control rules with finite risk

uniformly over D, that is, {gw,gy: sup AEDrR< oo}, This set will necessarily contain the

optimum. This appendix describes the computation of this set for the structured perturbations

of section 3.2. The computation relies on the so-called Structured Small Gain Theorem (Dahleh

and Diaz-Bobillo (1995, ch. 7)), and involves the following steps.

First, the perturbed model is rewritten as nonperturbed model with additional input, ouput,

and feedback connections. The general perturbed model is,

(A1) z, 1 = [A(L)+Alz, + Beyy |

where z,, A(L), B and ¢ are defined following (2.4) and A is given in (3.10). This system,

rewritten without perturbations but with additional input, ouput, and feedback connections, is:

+ +
Zesl A1 Bio||%: B
(A.2a) = N + €r i1l
s A o |{h o| **
t 21 t

(A.2Db) ht = ASt

where A=diag(A1r7r’A1ry’Ay7r’Ayy

), AT1=A(L), and

[ 1 1 0o o0 | [ 1-L

A 0 o 1 1 At 0

12 ' 12 ° 2 .3
9p/4 9y 9y 9y (1+L+L“+L7) /4
9, /4 9 9, Gyl L 0

=27 -

0
0

—(1+L+L2+L3)/4

0




Next, fix g, and 8y- If the nominal system is stable for these control parameters, then
(A.2) is stable if and only if the feedback interconnection between h and S is stable. Denote
the transfer function between h and S as G, so the interconnection is S=Gh and h=AG. By the
Structured Small Gain Theorem, this interconnection is stable for all A such that [|Afl <r if and
only if the structured norm of G, SN, (G), is less than or equal to the reciprocal of r, where
SN, (G) = [inf( IAl|A:AE€A, (I-GA)_1 is not stable)]'l, where A represents the structure that
was assumed for A. In our case, A contains the diagonal operators, diag(Al,Az,A3,A4). The
structured norm is computed as outlined in Dahleh and Diaz-Bobillo (1995, ch. 7). The radius
of allowable perturbations for this value of (g7r, gy) is the reciprocal of the structured norm.
Using a grid search over (g, gy), this radius is computed for all (g, gy) for which the nominal
controlled system is stable. The set {g_, gy' SUPAE DrR< oo} is the set of points for which the

radius of allowable perturbations is at least r.
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Proofs of Propositions 1 and 2

Proof of Proposition 1

Consider first the case when x,x9 € R, |x1 |,|x5| <1. This corresponds to v,0 such that 6>0,
6>2v-2, and §<(1 +'y)2/4. From (5.8) it is clear that |G| Hoo = S9P|z| =1 | (oﬁ/a)zzl(l-xlz)(l-xzz)l =
(af)/a)inf|z| —1lzx(llz%p| = wﬁla)infmé[o,w] leiw~x1| |eiw-x2| = (00/a)infw=[0,7r][(1 +x%—
2x1cosw)(l +x%-2x2cosco)] Y 2. Tt is straightforward to check that the infimum is attained at w=0
ify<1 and at w=7 if y>1. Therefore, if y<1, IIGIIHoo = g/ocand if y> 1, ||G||H°° =
00/a(2y+2+8) > dla.

Now consider the case when xy,x, are complex, and |x1 |, |x2| <1. Interms of 7,6, this
corresponds to 8> (1 +7)2/4 and § < 1+7. Substituting z=eiw, X1 =peL¢, and )~{2=pe'i¢> in (5.8), and
making some algebraic transformations, we get, sup 12| =1 |G(2)| =
(GB/a)inwa [0, ﬂ(a+bcosw+ccoszw)l/ 2 wherea = (1—p2)2+4p2c052¢>, b=-4p(1 +p2)cos¢, and c=4p2.
Optimizing with respect to w, we find that sup |z| =1 |G(z)| equals o/a if y<1 and §<(1 +'y)2/ B+7),
and it equals (0/0)8/(2-2y+0) > o/aif y>1and § < -[(1-7)2-47]/(5-')/). Finally, supl z| =1 |G(z)| =
[00/c(1+v-0)[1-(1-1)2/4(6-Y)]"* > o/t for the rest of  and y. In summary, 1., =
1/inf0’,ysup |z| =1 |G(z)| = a/o is a maximal radius of affordable perturbations. The set of robust

rules that correspond to it satisfy {y,6: y<1, >0, 0s(1+'y)2/(3 +y}. O

Proof of Proposition 2
From (5.8), it is clear that |G || 0= 0f/a and that equality holds for x; =x,=0. This would

> a/0, and the robust rules for the

happen if y=1 and 6=1. Immediately, min||G | <o/, r,, =

maximal perturbations have § <1.
Next, it is shown that, for any rule in R, ||G || =o/c. First write G(z) = ) OI‘; =0ann,

where Gn = -(00/a)(xrll+ 1-xr21+ 1)/ (xl-xz). If {y,0} €ER, then the eigenvalues are real and, by
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direct calculation, |G|l = (@0/)) L % _ 63+ Lt yi(x xp) = 08/le1-x))(1-%9)] = o/cy; thus

the maximal radius of affordable perturbations for {y,6} €R is the same and is a/0.
The rest of the rules in S are either from R(I: = {v,8: v>1, 8§ <1}, for which the eigenvalues
of the nominal system are real, or from Rg = {y,0: 6>(1 +'y)2/4, 6 <1}, for which Xy and x, are
a pair of complex conjugates. First consider the set R(I:' For rules in this set, § = (1 +7)2/4-c
for some ¢>0. Along this curve, X4 =1/z(1-'y)+cl/ % and x2=1/2(1-'y)—cl/ %, Therefore, |G| = (ab/0) | (Ya-
Yoy +c 20t 1-(‘/2-1/2')/-c1/2)n-'_1 | /2¢”2. Tt can be shown that |G,|/0y<0. It follows that, in this region,
|G|l >o/a. The éigenvalues in RS are complex, and in this region it was verified numerically
that | G|| > o/a. Hence, the minimum of | G| is 6/, which is attained iff the rule is in R. By

the small gain theorem, the maximal radius of affordable perturbations is r . =1/ |Gl =a/o. O
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Footnotes

1. Applications of these concepts in economics include Anderson, Hansen and Sargent (1998), .
Hansen and Sargent (1998), Stock (1998a, 1998b), Sargent (1998), Tallarini (1998), and Tornell
(1998).

2. To analyze cases in which z; is nonstationary but ergodic one can consider an alternative
formulation of the risk function, R, q= limy_, OON_1 ) I;I:l Il Al/zzt Il % We adopt this
formulation when considering time-varying perturbations to the model.

3. The formulations of quadratic loss and risk adopted here match those in typical treatments

of monetary control problems in linear/quadratic problems. They differ, however, from typical
formulations in the robust control engineering literature, in which € and z are treated as

deterministic elements of some normed space of infinite sequences. A dynamic system then

becomes an operator transfering € to z, and robust control is the control that minimizes the

norm of the operator. Typically, the normed space is the space of all n-dimensional vector

valued real sequences on the integers with finite ¢ 2 P, or { , norms, where for the sequence z,

lzly = (EF c o E2o1230", Izl o = supymax;|zy |, and Izl = limy, o, [(12N) T} _ nziz]
(power norm).

A

In this paper, the robust control problems stated in terms of quadratic loss and risk can be
reformulated in terms of norms of deterministic sequences. Perhaps the easiest way to see this
is to note that the square of the power norm of a mean zero ergodic stationary process with
realization {z} is equal to trEz;z,'. One also can show that for most purposes in the paper the
formulations of problems in terms of quadratic loss and in terms of deterministic sequences with
¢, norm are interchangeable. Whether z, is being treated as a deterministic element of a
normed space, or as a stochastic process with finite variance, should be clear from context by

the dimension of the process and by whether an expectation is taken.

4. We thank Athanasios Orphanides for suggesting this exercise to us.
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Figure 9
Stability analysis in transformed parameter space
Large triangle: region of stability
Region A: region with maximal ¢, radius of allowable structured NTV perturbations
Region A[JB: region with maximal ]Hc,c> radius of allowable structured NTV perturbations
LQG rules: straight line segment connecting (0,0) and (1,1)




