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ABSTRACT

This article provides a stochastic valuation framework for bond and stock returns that builds on

three different pricing traditions: affine models of the term structure, present-value pricing of equities, and

consumption-based asset pricing.  Our model provides a more general application of the affine framework

in that both bonds and equities are priced in a consistent fashion.  This pricing consistency implies that term

structure variables help price stocks while stock price fundamentals help price the term structure.  We

illustrate our model by considering three examples that are similar in spirit to well-known pricing models

that fall within our general framework: a Mehra and Prescott (1985) economy, a present value model

similar to Campbell and Shiller (1988b), and a model with stochastic risk aversion similar to Campbell and

Cochrane (1998).  The empirical performance of our models is explored, with a particular emphasis on

return predictability.
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1 Introduction
In this paper, we present a general and tractable framework for pricing assets in a
dynamic, arbitrage-free economy. The pricing model we present falls within a gen-
eralized affine class, in which asset prices (or simple transformations of asset prices)
are affine functions of the set of state variables. The affine framework is analyti-
cally tractable, and yields easily to empirical testing. While the affine framework
has primarily been applied to term structure models, our framework encompasses all
financial assets, most notably equities and bonds.1 This more general application of
the affine framework is economically consistent, in that the pricing structure that de-
termines the value of bonds must be the same as that used for thepricing of equities.
Thus, we will find that the variables that determine the pricing of equity will also
determine the pricing of bonds, and vice versa. For example, dividend growth rates
will help determine the term structure, while the term spread will help determine the
equity return.

The general structure of our model is as follows. We begin by specifying the
processes for the state variables that account for the fundamental nncertainty in the
economy. Importantly, a subset of the set of state variables represents observable
economic factors such as dividend growth and inflation. This will be critical to both
the interpretation and empirical identification of the model. The remaining state
variables represent unobserved (or difficult to measure) factors snch as productivity
shocks, expected inflation, or stochastic risk aversion. Given the dynamics of the
state variables, the pricing model is completely determined by the specification of the
pricing kernel. By applying the pricing kernel to the discounting of future cash flows
on bonds and equities, a set of arbitrage-free prices is determined.

The characterization and use of affine pricing models has beenparticularly preva-
lent in the literature on the term structure of interest rates. An affine term structure
model is one in which the yield on any zero coupon bond can be written as a maturity-
dependent affine function of the set of state variables underlying the model. Many
of the most widely-known term structure models are special cases of the broader
class of affine models.2 Due to its tractable nature, the affine framework has proven
particularly fruitful for empirical applications.3

An important benefit of developing the general affine pricing model is that it
encompasses many of the more popular models from a variety of asset pricing tradi-
tions. In order to highlight this, we examine three examples that are very similar to
well-known pricing models. The first example is a generalization ofa Lucas (1978) or

'There are several recent papers that develop stock valuation models forpricing individual stocks
in a framework similar to ours. See Bakshi and Chen (1998), Ang and Liu (1999), and Berk, Green
and Naik (1998).

2Examples include the models of Vasicek (1977), Gox, Ingersoll, and Ross (1985), Ho and Lee
(1986), and Pearson and Sun (1994). Duffie and Kan (1996) providenecessary and sufficient condi-
tions under which an affine term structure model is consistent with the absence of arbitrage.

3Dai and Singleton (1997) provides a detailed empiricalanalysis of affine term structure models.
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Mehra and Prescott (1985) economy, that accommodates a more general consump-
tion growth process, stochastic inflation and a Cox, Ingersoll, Ross (1985) style term
structure (CIR). Thus, our model can be linked to the rich literature on consumption
or production based asset pricing.4 Our second example highlights how our model
builds on the tradition of present-value pricing models of equities in a framework that
is very similar in spirit to the model of Campbell and Shiller (1988b). Despite the
presence of a time-varying discount rate and a complex dividend process, asset pric-
ing remains tractable. Moreover, the Mehra-Prescott economy can be shown to be a
special case of this second example. Our third example, like our first, demonstrates
the connection between our framework and the consumption-based asset pricing lit-
erature. This example is similar in spirit to the model of Campbell and Cochrane
(1998) whose model appends a slow-moving external habit to the standard power
utility function. This third model permits cyclical variation in risk aversion, and thus
in the risk premia on risky assets. Such models provide a potential explanation for the
observed empirical phenomenon that equity risk premia are larger during economic
downturns than during economic expansions.

To explore the empirical performance of our models, we estimate the structural
parameters using the General Method of Moments [GMM, Hansen (1982)]. We ex-
plore unconditional moment implications such as the mean and variability of bond
and equity returns. However, our main focus is on return predictability. The evi-
dence on conunon predictable components in bond, equity, and other asset returns
[see Fama and French (1989), Keim and Stambaugh (1986) and Bessembinder and
Chan (1992)] partially motivates our insistence on the presence of one kernel pricing
all assets. We investigate endogenous predictability by computing variance ratios,
regression coefficients of returns on instruments such as dividend yields and term
spreads, and characterizing the conditional risk premiums implied by the models.
Finally, we revisit the excess volatility puzzle by computing the variability of price-.
dividend ratios implied by the various models.

Our paper is organized as follows. Section 2 presents the general affine model
structure and the pricing of bonds and equities. In Section 3, we apply the model to
three specific examples that fall within the affine framework. Section 4 discusses the
estimation strategy for the general model, presents parameter estimates and compares
some unconditional moments implied by the models with the data. Section 5 examines
the endogenous predictability of returns. Given the increasingly worrisome evidence
on statistical biases in small samples, we are careful to distinguish small sample from
population behavior. Section 6 concludes.

4Bakshi and Chen (1996, 1997) provide a continuous-time version of a Lucas economy in which
both bonds and equity are priced.
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2 The General Model
In this section we specify the dynamics of the underlying sources of uncertainty in the
economy and of the pricing kernel process. We then use these specifications to derive
the pricing equations for bonds and equities. The resulting pricing equations will fall
within an affine class of models. That is, the term structure of interest rates will be
equal to an affine function of the underlying state variables. Similarly, the pricing
structure of equities will fall within what one might refer to as an "exponential-affine"
class. Specifically, the price-dividend ratio will equal a sum of elements, where the
log of each element is an affine function of the underlying state variables.5

Consider an economy with N state variables that summarize the fundamental
uncertainty of the economy Let Y, be the N-dimensional vector of state variables,
with Y' = (Y1,, Y2,,, ..., YNt). A subset of the N state variables represents observable
economic factors such as dividend growth and inflation, while the remaining state
variables represent unobserved (or difficult to measure) factors such as productivity
shocks, expected inflation, or stochastic risk aversion. One of the elements of the
vector Z will always represent real dividend growth, Ads, and one element will always
represent inflation, lTj. Thus, if D1 represents the real level of aggregate dividends
and A represents the price level, then L�d+1 = ln(D+i/D) and 1rt = ln(At+i/At).
The additional state variables will vary under different specifications. Let ii denote
the function defined by:

iiY 11=1 \/3;; if1',�O—
1 0 ifYj,t<0.

Let F denote the NxN diagonal matrix with the elements (iiY1,, ii, Y2,t ii, ..., H YN,t H)
along the diagonal. Writing this in matrix form,

= (ii 11,11 Y2,1 ii, n YN,t ii)' a I, (2)

where I is the identity matrix of order N, and a denotes the Hadamard Product.6
The dynamics of Y, follow a simple, first-order vector autoregressive (VAR) sto-

chastic process:

+i =p+AYt+(EpFt+EH)+l, (3)

framework does not (nor is it intended to) represent the most general structure for pro-
viding affine bond yields and exponential-affine price-dividend ratios. Our framework is, however,
sufficiently general to imbed many well-known asset pricing models, as illustrated in this paper. For
a more general affine framework, one should refer to Duffle and Kan (1996).

6The Hadamard Product is defined as follows. Suppose A =(a) and B = (b) are each N x N
matrices. Then A 0 B = C, where C = (cjj) = (ab) is an N x N matrix. Similarly, suppose
a = (ai) is an N-dimensional column vector and B = (b) is an N x N matrix. Then a 0 B = C,where C = (c) = (ab) is an N x N matrix. Again, suppose a = (cii) is an N-dimensional row
vector and B = (b) is an N x N matrix. Then a 0 B = C, where C = (c) = (ab) is an
N x N matrix. Finally, suppose a = (a), and b = (b) are N x 1 vectors. Then a 0 b = C, where
C = (ci) = (ab) is an N x 1 vector. Note that FtF = Y 01 if i,t � 0, Vj.
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with s '- N(O, I) representing the fundamental shocks to the economy. The time i
conditional expected value of Y÷ is equal to i + A, where is an N-dimensional
column vector and A is an N x N matrix. The time t conditional volatility of
is represented by EFFt + EH, where EF and EH are N x N matrices representing
sensitivities to the fundamental economic shocks.

In essence, the dynamics of Y represent a discrete-time system of a multidimen-
sional combination of Vasicek and square-root processes. For example, if A and jF
are diagonal, and EH = 0, would contain N square-root processes. Similarly, if A
and EH are diagonal, and EF = 0, Y, would contain N AR(1) processes.

Given the specification of the dynamics of , the pricing model is completed by
specifying a pricing kernel (or stochastic discount factor). The (real) pricing kernel,
M, is a positive stochastic process that ensures that all assets i are priced such that:

1 = E [(1 + R,+1) Mt+i], (4)

where Rj,t÷1 is the percentage real return on asset i over the period from ito t+ 1, and
PJ denotes the expectation conditional on the information at time t. The existence
of such a pricing kernel is ensured in any arbitrage-freeeconomy. Harrison and Kreps
(1979) derive the conditions under which M is unique. Let mt+i = ln(Mt+i).

The log of the real pricing kernel is specified as:

mt+i = m + FnYt + (E1F + En) Et+1 + (5)

where & -- N(O, 1) and is independent of Et+1 Fm, Em!, and Em are N-dimensional
column vectors, and /tm and °m are scalars.

In order to price nominally denominated assets, we must work with a nominal
pricing kernel. Let the nominal pricing kernel be denoted by ñit÷1. The nominal
pricing kernel is simply the real pricing kernel minus inflation: i = mt÷1 — lrt+i

7This is simple to demonstrate. Let Pt denote the real price of an asset at time t, and letDt+j
denote its real payout at time t + 1. Let A denote the price level. The nominal price of the asset
is simply PAt p/v and its nominal payout is Dt+jAt+1 D1. Using the real kernel, the real
price may be expressed as:

Pt = E [(P+1 + D+1)M÷1].
Rewriting the above expression:

PA = E 1(Pt÷iAt+i +Dt+1A+1) (——)
L At÷1

— r' (DN N \ ( A ' ,,— --t .' t+1 + , z.t+1\llt+1 /

Thus,
flN

I t+1-l- t+11=E DN exp(mt+l—lrt+i)" ..t
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In order to ensure that the specification of the process }'4 and mt+i permits a
well-defined system of pricing equations, as well as ensuring that the resulting pricing
system falls within the affine class, we impose the following four restrictions on the
processes:

= 0, (6)
E1FtEm = 0,

EHFtEmI = 0,
EFFtE = 0.

We can now combine the specification for Y and mt+1 to price financial assets.
The details of the derivations are presented in the Appendix. It is important to note
that, due to the discrete-time nature of the model, these solutions only represent
approximate solutions to the true asset prices. The nature of the approximation
results from the fact that if one of the state variables can become negative, and if the
specific model allows for a stochastic volatility term containing a square-root process,
we must rely on the ii ii function to make the square-root well defined. When the
state variable is then forced to reflect at zero, our use of the conditional lognormality
features of the state variables becomes incorrect. However, this effect is minimized
in the following ways. First, the square-root process is not always utilized in some of
the standard applications of our model, in which case the pricing formulas are exact.
Second, even in the case in which a state variable is forced to reflect at zero, reasonable
parameterizations of the model can ensure that the likelihood of such a reflection is
quite small. Finally, the exact solution can be computed numerically (for example,
using quadrature), which would overcome the analytical approximation, but would
also introduce approximation error. For these reasons, we have decided to present
the simple affine solutions both to ensure the tractability of the results, and because
of the close approximation in most instances.

Let us begin by deriving the pricing of the (nominal) term structure of interest
rates. Let the time t price for a default-free zero-coupon bond with maturity n be
denoted by P. Using the nominal pricing kernel, the value of P must satisfy:

P = Pi [exp (th+1) Pn_i,+iJ, (7)

where = mt+1 —r+ is the log of the nominal pricing kernel. Let Pn,t = ln(P).
The n-period bond yield is denoted by Yn,t, where Yn,t = Pn,t/fl. The solution to
the value of Pn,t is presented in the following proposition, the proof of which appears
in the Appendix.

Proposition 1 The log of the time t price of a zero-coupon bond with maturity n,
Prt,t, can be written as:

Pn,t = a + A)', (8)
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where the scalar a and the N x 1 vector A satisfy the following system of difference
equations:

12 1,= a_1 + Pm + -o + EmEm + (A1 —
e,1) [p + EHEm] (9)

+ (A_1 — e4' EHEH (A_1 — e4,

AF+(mfoEmf)'+(Am_l_e4'[A+E'foEF]
+ [ (A_1 — er) 0 E (A_1 — e4]

with alj = 0, A'0 = (0,0,...,0), and where eff is an N x 1 matrix with a 1 in the
position that ir occupies in the vector Y, and zeroes in all other positions.

Notice that the prices of all zero-coupon bonds (as well as their yields) take the
form of affine functions of the state variables. Given the structure of Y, the term
structure will represent a discrete-time multidimensional mixture of the Vasicek and
CIR models. The process for the one-period short rate process, rt lilt, is therefore
simply — (ai + A'1Y). Note that the pricing of real bonds (and the resulting real term
structure of interest rates) is found by simply setting the vector e,1 equal to a vector
of zeroes.

Let R+1 and r.,t+i denote the nominal simple net return and log return, respec-
tively, on an n-period zero coupon bond between dates t and t + 1. Therefore:

= exp(a_1 — a + A_11i+1 — A}) — 1, (10)
= a_ — a + A1Y+i —

We now use the pricing model to value equity. Let 14 denote the real value of
equity, which is a claim on the stream of real dividends, D. Using the real pricing
kernel, 14 must satisfy the equation:

14 = E [exp(mt+i) (D+1 + 14+i)I. (11)

Using recursive substitution, the price-dividend ratio (which is the same in real
or nominal terms), pd, can be written as:

pd = = E1 {EexP[ (mt+ + Ad+)] }, (12)

where we impose the transversality condition lim E [n
exP(mt+i)vt+]

= 0.
n—.oo

In the following proposition, we demonstrate that the equity price-dividend ratio
can be written as the (infinite) sum of exponentials of an affine function of the state
variables. The proof appears in the Appendix.

6



Proposition 2 The equity price-dividend ratio, pd, can be written as:

pd = exp (b+B), (13)

where the scalar b and the N x 1 vector B satisfy the following system of difference
equations:

b = b_1 + [tm + Tn + 'mEm + (B1 + ed)' [Ii + EHEm] (14)

(B_ + Gd) EHE'H (B1 + ed),

B = F + (Em ® Emf)' + (B_1 + e4' [A + 0 EF]

+ [' (B_1 + ed) ® E (B_1 + e4],

with b0 = 0, B = (0, 0, ..., 0), and where ed is an N x 1 matrix with a 1 in the
position that id occupies in the vector Y, and zeroes in all other positions. Given
the expression for pdt, the real value of equity can simply be written as =D - pd.

Comparing Equations (9) and (14), the stock price can be seen as the current
dividend multiplied by the price of a "modified" consol bond. The "modified" consol
bond has the following characteristics. First, the corisol's coupons are real, and hence
the inflation component characterized by the e,T- term does not appear. Second, the
payoffs each period are stochastic depending on how much dividends grow relative to
D, hence the appearance of the e term.

Let R÷1 and r+l denote the nominal simple net return and log return, respec-
tively, on equity between dates t and t + 1. Therefore:

R1 = exp +1+d+1)( =1XP(+B±1)+1 —1 (15)\ _1exp( +B )
exp (b + B+1) + 1rt+j = (7rt+1 + dt+i) + ln

\

3 Examples of Affine Models
In this section we will analyze three models that fall within the general affine class of
the previous section. The models will be quite similar in spirit to well-known asset
pricing models in the literature. Notably, the present framework allows us to analyze
each model's implications for both equity and bond returns, rather than for just one
asset class. Estimation of these models appears later in this paper.

7



3.1 The Lucas/Mehra-Prescott Model
The first, and simplest, example represents a slight modification to the standard one-
good models of Lucas (1978) and Mehra and Prescott (1985). In this case, we allow
for the addition of stochastic inflation, as we will apply these models to the pricing
of nominal assets.8 Bakshi and Chen (1997) develop a continuous-time version of the
Lucas model that is closely related to our Mehra-Prescott economy.

A representative agent maximizes the expected discounted sum of a strictly in-
creasing concave von Neumann-Morgenstern utility function U:

E0 [>tU(C)], (16)

where C is consumption at time t, /3 is a time discount factor, and E is the expec-
tation operator conditional on all information up to time t.

In equilibrium, the consumption process C must equal the exogenous aggregate
real dividend process D. In addition, the first-order conditions of the optimization
problem ensure that the following condition holds for all assets i and all time periods

1 ,' f-t _____________= r.t 1 + fl,i+1) ,- \ IU J-'t) J
where is the percentage real return on asset i over the period from t to t + 1.
Thus, as is well-known in this setting, the pricing kernel M+1 is equivalent to the
representative agent's intertemporal marginal rate of substitution.

We shall assume that the representative agent's utility function U has constant
relative risk aversion equal to 'y > 0, that is,

U(C) =
1

(18)

Therefore, we have:

(19)

and the log of the real kernel, mt+i, satisfies:

ln(/3) — -y . d+1. (20)

The full description of the economy is completed with the specification of the
dividend growth process and the inflation process. We shall assume that the divi-
dend growth process is driven by a productivity shock, X. The technology shock
and inflation both follow discrete-time square root processes, allowing for stochastic
volatility.

8Labadie (1989) also adds stochastic inflation to a Mehra-Prescott economy, with a considerably
different dividend process from ours.
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Thus, this is a three state variable model, where the state variables represent real
dividend growth (/M), a real productivity shock (Xe), and inflation (itt). The pricing
kernel and state variable system for this example are summarized below.

yt, = Ad±,X,it,) (21)

= ln(13) — ,y• Lxd+1

2 ln(/3) t d=
Cd+ ++CdEt+1

=
7rH4 = /1,. + Th,itt + ci,i/Fs+1

= (e,e7,e)
In the Appendix we demonstrate that this model falls within the general affine class.

The solution for the pricing of bonds is as follows:

Pn,t = A + BX + Cnirt, (22)

where:

A = —ji,, + A,-_i + pB_1 + p,,C_1 (23)
B,, = —1 + pB,,_1 + 1/2cB_1
C,, = —p,, + l/2u + (p,, — o)C,,_1 + 1/2a,CL1,

with A0 = B0 = C0 = 0.
The nominal rate of interest, rt, can be written as:

= p,, + X, + (p,,. — l/2o.) itj, (24)

and the real rate of interest, rrl, (where we set the inflation parameters equal to
zero) can be written as:

= x. (25)

Note that the nominal short rate is equal to the sum of the real short rate and expected
inflation, minus a constant term (o/2) due to Jensen's Inequality. The model thus
yields an "approximate" version of the Fisher equation, where the approximation
becomes more exact the lower the inflation volatility term. This will also be the case
in the next two examples.

The real rate follows a square-root process, which is analogous to a discrete-time
version of GIlt. The nominal rate follows a discrete-time version of a multifactor CIR
model, permitting a more flexible characterization of the nominal term structure of

9



interest rates. Note that the resulting nominal rate process in this example is the
same as that in the continuous-time term structure model of Richard (1978).

Denote the risk premium on an n-period bond as PJ, (r+i — ri), the
expected log return on an n-period bond minus the short rate. This can be written
as:

rpt = —cB_1X + aC_1 (i — t. (26)

Thus, the bond risk premium is affine in the short rate and inflation. Notably, the real
bond risk premium is equal to —crB,_1X, which is proportional to the current real
rate of interest. Increases in the nominal (real) rate lead to a less than one-for-one
increase in the expected return on a nominal (real) n-period bond.

The solution for the pricing of the equity price-dividend ratio is as follows:

pd = exp (a + bX), (27)

where:

a = ln(fi)/7+ (1
2 + a_1 + b_i (28)

= —1+—+pb_i+1/2ab._1,

with a0 = b0 = 0.

If the representative agent is more risk averse than an investor with log utility
(-y > 1), then = E=i li . exp (a + bX) will generally be negative, and thus
increases in the real rate will lower the price-dividend ratio. This is because b will
generally be negative when 7> 1, as long as a is small relative to p. The intuition
for this result is simple. There are two competing effects of a change in the real rate.
First, an increase in the real rate leads to an increase in the expected return on all
assets, leading to a fall in the price of equity. Second, in this example an increase
in the real rate (the technology shock) also raises the conditional mean of dividend
growth, and hence, leads to an increase in the price of equity. F1om equation (21),
a 1% increase in X leads to a increase in E(Ad+i). This combination of forces
is apparent in the first two terms in the expression for b in eqnation (28). The —1
term reflects the discount rate effect, and the term reflects the cash flow effect.9
For > 1 ,the discount rate effect dominates the cash flow effect, and the degree of
domination will be greater the larger is . The fact that there are two competing
effects on the price-dividend ratio will lead to a general lack of variability in the
price-dividend ratio. In our next two examples, however, this tight lirdc between cash
flow and discount rate effects will be broken.

9The remaining terms account for further effects due to the persistence in X and a Jensen's
inequality term.
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In this example, we can derive an explicit expression for the conditional expected
(simple) return on equity, PJ

= exp(7o + a7rt) . exp(rt) — 1. (29)

Thus, the conditional expected return on equity is a function of the current short rate
and inflation. The equity risk premium (rpfl, in terms of simple returns, will equal

— (exp(rj) — 1). Thus,

= [exp(7o + c.1rt) — 1] exp(rt). (30)

As would be expected, the risk premium is increasing in the degree of risk aversion
and the volatility of dividend growth.

3.2 An Extension of Campbell and Shiller (1988b)
In Campbell and Shiller (1988b), a linearized version of the present value model for
pricing equities is developed. Their state variables are real dividend growth and a
time-varying discount rate that they measure as the ex-post real return on commercial
paper. Their state variables follow a VAR together with the log price-dividend ratio.
The VAR is used to generate expectations of future state variables. Their model
permits the testing of a present value model with constant expected excess returns
(constant risk premium), along with a time-varying interest rate. This example is
similar in spirit, but does not rely on linearization nor using a VAR to measure
expectations. Our approach imposes more structure on the environment than does
Campbell and Shiller (1988b), since we fully specify the stochastic environment and
generate price-dividend ratios that are an exact function of the state of the economy.

This is a three state variable model, where the state variables represent real div-
idend growth ( Ad,), a real rate process (S) and inflation (7rt). The pricing kernel
and state variable system are summarized below.

yt, = (d,6,7rt) (31)

mt+i = —1/2a — 1/2A2 — bt + +

= Pd + pdAdt + go6t + Cd6+l + 5dbEt+1
= Pö + gdLd + p66 + oe
= Pr + Pt + CrE+i

;= (s1,e,a)
In the Appendix we demonstrate that this model falls within the general affine class.
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This system can be explained as follows. As we shall see below, S equals the
real rate of interest. The real dividend growth rate and real rate of interest follow
a first-order VAR process. Shocks to real dividend growth and the real rate are
contemporaneously correlated. Inflation follows an AR(1) process. The parameter
A will determine the equilibrium risk premium on both bonds and equities. When
A = 0, this economy yields a pricing model where interest rates vary over time, but
where the real return on equity has no risk premium.

The solution for the pricing of bonds is as follows:

Pn,t = A + + CnSt + Dir, (32)

where:

A = — + A_1 + (Pa + Aa) B_1 + p5C_1 + p,,D_1 (33)

+1/2 [aBi + (c5C_1 + CdB_1) + (D1 — 1)2 a]
= Pa-8n—i + gC_i
= —1+g6B_i+p5C_j
=

with A0 = B = C0 = = 0. Note that in this model, the dividend process directly
impacts the pricing of bonds, illustrating how the general model facilitates a unified
structure for pricing both stocks and bonds.

The nominal rate of interest, rt, can be written as:

= + p7, + P71Jtt — 1/2cr, (34)

and the real rate of interest, (where we set the inflation parameters equal to
zero) can be written as:

= s. (35)

Both the real rate and nominal rate follow discrete—time versions of a multifactor
version of the Vasicek term structure model. Again, the multifactor nature of the
processes will permit more flexible characterizations of the real and nominal term
structure of interest rates.

The risk premium on an n-period bond can now be written as:

= —AaB_1 + 1/2c — 1/2 [aBL + (c6C_1 + aasB_i) + (D_1 — 1)2 c]
(36)

Thus, the bond risk premium is non-stochastic, and is purely a function of the bond
maturity. This results from the homoskedasticity of the log-pricing kernel. The
maturity-dependent risk premium will move linearly with A. Since the sign of B,-,
is ambiguous, the derivative of the bond risk premium with respect to A cannot be
signed. We will find below that (under certain parameter restrictions) the equity risk
premium is decreasing in A. Thus, while the parameter A helps determine both the
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bond and equity risk premium, it is indeed possible that increases in A could lead to
an increase in the bond risk premium and a decrease in the equity risk premium.

The solution for the pricing of the equity price-dividend ratio is as follows:

pd = exp (a + bM + c6), (37)

where:

a = Pd + Acd + a_1 + (Pd + Aud) b_1 + P5Cn_l (38)

+1/2 (1 + b_1)2 c + 1/2 [(1 + b_1) d5+
= Pd+PdbTh_1+Ydcfl_1
=

with a0 = b0 = co = 0. Note that dividend growth is now priced in the price-dividend
ratio, due to the more general VAR dynamics of this example.

The effects of changes in the real rate (S) on the price-dividend ratio are captured
by the c term. As was the case in the Mehra-Prescott example, there are two
effects of an increase in the real rate on the price of equity. There is a discount rate
effect in which the price of equity decreases one-for-one with an increase in the real
rate, and there is a cash flow effect in which the impact of the real rate changes
on expected future cash flows is manifested in price changes. However, unlike the
case of the Mehra-Prescott economy, the cash flow effect is no longer restricted by
preferences, but is now governed by the parameter 9s. If the real rate goes up by
1%, the conditional mean of dividend growth increases by g. The two effects are
evidenced in the first two terms for c, displayed in equation (38). It is now possible
that g can be negative, leading the two effects to both serve to decrease the price-
dividend ratio and allowing for a greater variability in observed price-dividend ratios.
It may in fact be economically reasonable for g to be negative, in which higher
interest rates are accompanied by lower future expected cash flows.

Under certain simplifying parameter restrictions, we can derive an explicit ex-
pression for the conditional expected (simple) return on equity, E (R), for this
example. First, suppose that the risk premium parameter is zero: A = 0. In this
case,

= exp(rt + o.) — 1, for A = 0. (39)
Thus, for the case in which A = 0, the conditional expected return on equity is solely
a function of the short rate, Tt. The equity risk premium (rj4), in terms of simple
returns, will equal E(R+1) — (exp(r2) — 1). Thus,

= [exp(c) —
1] exp(rt), for A = 0. (40)

The equity risk premium will be positive, and move with the short rate. However, the
real equity risk premium will be precisely zero. This is intuitively clear, since with
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A = 0, the real dividend process is uncorrelated with the log of the pricing kernel, and
thus represents nonsystematic risk. In such case, dividend risk would not be priced,
and equities must yield a real expected return equal to the real rate of interest.

For the case in which A $ 0, but in which Pd = Yd = 0, the equity risk premium
can again be derived. In this case,

E(R:+1) =exp(rt+o —Aa4-- 1, for Pd =Yd =0. (41)

Thus, for the case, the conditional expected return on equity is just as it is in the
case in which A = 0, except the constant Aad is subtracted from the short rate. The
equity risk premium (rp), in terms of simple returns, will equal:

rp = [exp(a. — Aad) —
1] exp(rt), for Pd = = 0. (42)

For A <0, the equity risk premium will be positive, and move with the short rate. The
equity risk premium, however, will be decreasing in A. Thus, the parameter A controls
the magnitude of both the bond and equity risk premia. Note that with Pd = = 0,
the state variable dynamics are very similar to that for the Mehra-Prescott example.
The only significant difference is that the state variables follow a system of Vasicek
AR(1) processes, while in the previous example they follow a system of square-root
AR(1) processes. Comparing the equity risk premium in (42) with that in (30), we
find that the parameter A plays the same role in the Campbell-Shiller economy as the
function —'Y5d does in the Merha-Prescott economy. This similarity will prove useful
in our empirical work below.

3.3 The "Moody" Investor Economy
Consider an economy as in our first example, but modify the preferences of the
representative agent to have the form:

E0 [E(ct
H)

-1]
(43)

where C, is aggregate consumption and ii is an exogenous "external habit stock"
with C, � H.

One motivation for an "external" habit stock is the framework of Abel (1990, 1999)
who specifies preferences where H represents past or current aggregate consumption,
which a small individual investor takes as given, and then evaluates his own utility
relative to that benchmark. That is, utility has a "keeping up with the Joneses"
feature. In Campbell and Cochrane (1998), the coefficient of relative risk aversion

equals . c—H where (ct_iit) is defined as the surplus ratio. As the surplus ratio
goes to zero, the consumer's risk aversion goes to infinity. In our model, we view
the inverse of the surplus ratio as a preference shock, which we denote by Q. Thus,
Qt = CIC_HL Risk aversion is now characterized by y Qt, and Qt> 1.
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The marginal rate of substitution in this model determines the real pricing kernel.
It is given by:

= (Q:+Q (44)

= /3exp [—'yd+1 + -y (qt+i — qt)J,

where q = ln(Qt).
This model is potentially better able to explain the predictability evidence than

the Mehra-Prescott model. The evidence suggests that expected returns and the price
of risk move countercyclically. Using the intuition of Flansen-Jagannathan (1991)
bounds, we know that the coefficient of variation of the pricing kernel equals the max-
imum Sharpe ratio attainable with the available assets. As Campbell and Cochrane
(1998) also note, with a log-normal kernel:

= ijexp (Vart [ln(Mt+i)J — 1). (45)
Lit vLt+1)

Hence, the maximum Sharpe ratio characterizing the assets in the economy is an in-
creasing function of the conditional volatility of the pricing kernel. If we can construct
an economy in which the conditional variability of the kernel varies through time and
is higher when Qt is high (that is, when consumption has decreased closer to the habit
level), then we have introduced the required countercyclical variation into the price
of risk. Note that our previous models fail to accomplish this. In the second example
the conditional variability of the pricing kernel is constant over time, whereas in the
first model there is only variation in the conditional variability of the nominal kernel,
which depends on the level of inflation, which tends to move pro-cyclically.

Whereas Campbell and Cochrane (1998) have only one source of uncertainty, our
model is again a three state variable model, where the state variables represent real
dividend growth (Adt),stochastic risk aversion (q), and inflation (7rt). The pricing
kernel and state variable system are summarized below.

= (zd1,q,w) (46)

mt+i = ln($) — 'y Ad+1 + -y (qt+i — qt)

= Pd (1 — Pd) + pdIXdt + UdSt+l + k/E1
=

= /2,. + PTt + CirvE+i

= (e,e,e)
In the Appendix we demonstrate that this model falls within the general affine class.
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This system can be explained as follows. The variable qt represents stochastic risk
aversion that will allow for a time-varying risk premium that can account for such
phenomena as the Sharpe Ratio of assets increasing during economic downturns. The
parameter ij, which is assumed to be negative, captures the effect that when current
real dividend growth is above normal (i.e., an economic expansion), the conditional
expected risk aversion is lower.'3 The parameter tc, which is also expected to be
negative, captures the potential correlation in the residuals for real dividend growth
and risk aversion. A positive shock to dividend growth is expected to reduce risk
aversion, as it leads to an increase in the surplus ratio. The parameters tc and aq
govern the magnitude of the countercyclical risk aversion. The conditional variability
of the pricing kernel can be written as:

Vart(rnt+i) = 72C + 72 . (aq — ic)2 qt. (47)

Consequently, increases in q will increase the Sharpe Ratio of all assets in the econ-
omy, and the effect will be greater the larger are 'y, aq, and 4

The solution for the pricing of bonds is as follows:

Pn,t = A + BLXd + Cq + Dir, (48)

where:

= p — /j + A,, + /Jd(1 — pjBn_1 (49)
+ [pq(1 — 8) — Pd] Ca_i + pD_, + 1/2 (B_, — 7)2 C

= (ij — Pd) + PdBfl_1 + ijC,_1
C = —7(1 — 9) + 8C_1 + 1/2 {(B_, —7)/c + (C_, + 7) (Tq]2
n fl 1 /n In 1 \2 2.i-ifl = — + PlrUJn_1 + 1/ Lij_ — 1) C,

with A0 = B0 = C0 = = 0, and where p = ln(/3)+'y [pq(1 — 0) — pd(1 — Pd + 7])].
The nominal rate of interest, Tt, can be written as:

= Pm1/2720+P7r+7(Pd7])1t (50)
2 2 22+[7(18H1/27 (aqIc)]qt+(p_1/27cj7rt,

and the real rate of interest, rr1, (where we set the inflation parameters equal to
zero) can be written as:

= Pm — 1/272a + 7 (Pd — ) &4 + [7 (1 — 8) — 1/272 (cq — )2] qj (51)

In this model we did not parameterize the dynamics of the state variables so as to yield
a simplified interest rate process. Now, the interest rate is totally endogenous and a

10The presence of i in the process for qt+i introduces an additional channel for to become
negative, which deviates from our requirement that Qt+, stay above one. The inclusion of i helps
in linking the "habit stock" to past consumption, but it is not essential and hence can be set equal
to zero without undermining the main thrust of the model.
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function of the dividend growth rate and stochastic risk aversion dynamics. This im-
plies that this economy may be subject to the low risk-free rate puzzle [Kocherlakota
(1996), Weil (1989)].

To understand the risk-free rate in equation ,51), first consider the risk-free rate
in the standard Mehra-Prescott economy, ea1M

real M-P 2 2= —ln(,8) +7E(&4+i) — C. (52)

The first term represents the impact of the discount factor. The second term rep-
resents a consumption-smoothing effect. Since in a growing economy agents with
concave utility (7 > 0) wish to smooth their consumption stream, they would like
to borrow and consume now. This desire is greater, the larger is . Thus, since it
is typically necessary in Mehra-Prescott economies to allow for large 7 to generate
a high equity premium, there will also be a resulting real rate that is higher than
empirically observed. The third term is the standard precautionary savings effect.
Uncertainty induces agents to save, therefore depressing interest rates and mitigating
the consumption-smoothing effect.

The real rate in the Moody investor economy, rrlMJ , equals the real rate in the
Mehra-Prescott economy, plus two additional terms:

= rlM + [(1 — 0) (qt — pq) — (Ad — Pd)] — _72 (aq — K)2 q1 (53)

The first of the two extra terms represents an additional consumption-smoothing
effect. In this economy, risk aversion is also effected by qt, and not only 7. When q
is above its unconditional mean, the consumption-smoothing effect is exacerbated."
The second of the two extra terms represents an additional precautionary savings
effect. The uncertainty in stochastic risk aversion has to be hedged as well.

The risk premium on an n-period bond can now be written as:

TP,t = —u (B_, — 27B_i) — (D_, — 27D_,) (54)

+ (2(cq — K)2 — 7) K + (c_, + 7) aq]2) q.

Thus, the bond risk premium is a maturity dependent affine function of inflation and
stochastic risk aversion. Note, however, that dividend growth does not impact the
bond risk premium. This is due to the fact that LXd does not impact the conditional
variance of the pricing kernel.

The solution for the pricing of the equity price-dividend ratio is as follows:

pd = exp (a + bAd + cnq), (55)

the special case in which 0 = 1, where shocks to q are fully persistent, this additional
consumption-smoothing effect would vanish as shocks that increase q, would permanently increase
marginal utility, obviating the need to borrow to consume now.
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where:

= Pm+Pd(1_Pd)+afl_1+Pd(1Pd)bTh_1 (56)

+ [pq(1 —9) —/Aj?7] c_i+ 1/2(1+b_1 —y)2a
b = 7@1—Pd)+Pd+Pdbn_1+1Cm_1

= —7(1 —O)+9c_i+1/2[(1+b_i —7)lc+(cn_i +7)aqJ2,

with a0 = b0 = = 0.
This model provides an alternative to the preference-free Campbell-Shiller frame-

work for breaking the tight link between cash flow and discount rate effects. It is
still the case that a shock that decreases the dividend growth rate simultaneously
depresses cash flows and discount rates, which have countervailing effects on prices.
However, there is now an additional discount rate effect that makes the cash flow
effect more pronounced. Since q, and zd are negatively correlated, a negative shock
to dividend growth (recession) leads to higher risk aversion. Higher risk aversion
serves to lower prices and the price-dividend ratio. These effects can be seen in the
expressions for the b and c, coefficients in equation (56). The direct discount rate
effect is represented by the —7• Pd term in b, hence when dividend growth decreases,
prices increase by 7 Pd From the dynamics of Ad, the direct cash flow effect would
be a decrease in the price-dividend ratio of Pd The direct effect of the resulting pos-
itive shock to q is represented by the —'y (1 — 0) term in c. Thus, prices are further
depressed by (1 — 0). The other coefficients accommodate the persistence in the
process.

4 Estimation and Asset Return Properties
In this section, we begin by outlining the general estimation methodology for the
model parameters. We then briefly discuss the data. Next, we discuss the qualitative
properties of the parameter estimates. Finally, we analyze the implied unconditional
moments of bond and stock returns under each example economy, and compare them
with those estimated from the data.

4.1 General Methodology
The three example economies above have a very similar structure. In particular, the
two "measurable" economic factors in all three economies are inflation and dividend
growth. Moreover, all three economies have one state variable that we do not directly
measure from the data: the real rate in the first two examples, and the stochastic
risk aversion process in the third. Let us call this "unobserved" variable Zt. The
state variable vector for our three economies is Y' = Zt, irtl. Now consider the
vector 1'V,' = {Ad, Tt, 7r1], recalling that rt represents the nominal interest rate. Let
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the parameters governing the state variables and pricing kernel berepresented by the
vector 'I'. The affine structure implies:

= c(W) + C(W)Y, (57)

where c(W) is a 3 x 1 vector and C(W) a 3 x 3 matrix of structural coefficients. Using
the stochastic process describing the dynamics of Y, it is straightforward to derive a
structural VAR relation for W:

= d(W) + D(W)W1 + C(W) (EFFt1 + >2H) , (58)

where it is understood that the change in variables from t' to W, is made in F1_1 as
well, and:

d(4) = C(W)p + (I — C(W)A {C(iI')]1) c(W), (59)
D(W) = C(I')A[C(w)f1.

Since e was assumed to be normally distributed with identity covariance matrix,
maximum likelihood estimation is one possibility to obtain estimates of 'I'. For reasons
that will soon become clear, we will use standard GMM. Given the relation between
W' and Y in Equation (57), computation of the moments of Y leads immediately to
the moments of W. We will restrict attention to the first two moments (given the
log-normal structure). In particular,

E(Y) = (I — A)—5, (60)
vec[Var()J = (I — A 0 A)1vec [EF (E [Yt] 01) E + EHEH],
cov(YY'1) = A Varft).

These moments ignore the presence of the function ii in Equations (1) - (2).
Although it is possible to derive the exact relations, they will not dramatically alter
our results as long as the mass below zero is small.

Of the examples in Section 3, the first is the most parsimonious; it has 9 para-
meters whereas the last two example economies have 13 structural parameters. As
a consequence, it is possible to identify all the parameters from the first and sec-
ond moments of W(t), for example in an exactly identified GMM system. Such an
approach would then match the moments of the nominal rateprocess exactly. How-
ever, such a procedure would leave out important information contained in equity
and bond moments. Unfortunately, taking into account the asset return moments in
a full GMM system would prove computationally infeasible. Thus, as a compromise,
we fix the critical risk parameter (y in models 1 and 3, A in model 2) in order to
match the equity premium (measured in logs) in the data and estimate the remaining
parameters. With these parameters we then investigate the implications for bond and
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equity pricing by computing sample moments of the implied bond and stock returns.
Essentially, we avoid small sample problems by not investigating population moments
but recovering the set of state variables relevant for our particular observed sample
and investigating the return properties predicted by the model. Given the obvious
stochastic singularities in all of the models, it would not be very hard to reject them.
However, it remains useful to test and examine which moments the models can and
cannot match.

4.2 Data Properties
The data inputs for this paper are annual stock and bond returns, a one-year nominal
rate, inflation, a long-term bond yield, and dividend growth rates, all for the U.S.
Most of the data are from the Ibbotson Database. Annualized data are used to
avoid the seasonality in dividend payments. Both Campbell and Shiller (1988b)
and Cochrane (1992) use annual data for this reason. The use of annual data also
diminishes the small mis-matches that occur, for example, in matching inflation data
collected during the month with asset price data.

To arrive at an annual dividend to be used in computing dividend growth rates
and dividend yields, Campbell and Shiller simply add the dividends paid out during
the year, whereas Cochrane measures the aggregate dividends assuming they were
invested in the market. Below, we will show the properties of dividend growth rates
using both of these assumptions. For stock returns, we use the actual total returns
with re-invested dividends.

The one-year interest rate is supplied by Ibbotson. It represents the yield on
Treasury bills with maturity closest to one year. The Ibbotson bond series uses a
one bond portfolio with a term of approximately 20 years. We define the yield on
this bond series as our long rate. Unfortunately, the yield data series only goes
back to the 1950's. We obtain a time series of the yield on a similar bond portfolio
from statistics supplied by the Board of Governors. For the overlapping years, the
correlation between the two series is 97%.

Table 1 indicates the data sources for the time series we use and their avail-
ability. In Table 2 we analyze the time-series properties of the "state variables,"
the exogenous variables in our model and the "instruments," the variables that are
most typically used to empirically track predictable components in returns. These
instruments include the term spread, dividend yield and nominal interest rate. In
our model, the instruments are endogenous. Note that the instruments and state
variables are mostly quite persistent time series, except for real dividend growth.
Long-term bonds on average yield about 1% more than a one-year bond investment.
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4.3 Parameter Estimates
In this section we discuss the qualitative properties of the estimation results andsome
important parameter values.

4.3.1 Mehra-Prescott Economy

As indicated above, we begin by fixing 7 at reasonable values ranging from 2 to 10 and
re-estimate the 8 remaining structural parameters to match 9 moments: the mean,
variance and autocovariance of dividend growth, inflation, and the nominal rate of
interest. Since there is one over-identifying restriction, we can use the standard J-test
[Hansen (1982)J to verify that the fit with the moments is satisfactory. We did not
reject the restrictions for any of the parameters we tried.

Since the economy is fully parameterized, we can recover the implied state vari-
ables for the sample using equation (57). The implied real rate process is persistent
with an autocorrelation of about 0.85 (with a standard error of 0.33). Table 3reports
the implied mean excess equity return, at different levels of The last line in the
table reports the corresponding data moment with a GMM standard error, reveal-
ing the equity premium (in logs) to be 6.14% with a standard error of 2.40. As 'y
increases, agents with greater risk aversion will value the exogenous dividend stream
less and require higher expected returns in order to hold the claim to it. Whereas
in the original Mehra-Prescott paper, the equity premium could not be matched for
moderate levels of risk aversion, our economy produces an equity premium largerthan that in the data at = 6. The main reason is the use of dividend growth rates
as the fundamental process. The variability of dividend growth is an order of magni-
tude larger than the variability of consumption growth (see Table 2) and as Equation
(30) shows, the equity risk premium is directly impacted by the product of dividend
growth variability and . At = 5.55, we obtain a value for the equity premium that
is indistinguishable from that of the data. We use that risk aversion value and the
corresponding parameter estimates for the remainder of the analysis.

4.3.2 Campbell-SMiler Economy

For the Campbell-Shiller model, we use 12 moments to estimate all parametersexcept
A. The moments we add to the ones used in the Mehra-Prescott world are cross-
moments between dividend growth and interest rates.13 After some experimentation,

121t is straightforward to compute population moments as well, either analytically (as in the case
of bond variables) or by simulation (as in the case of equity variables).

'3To get an idea of what value of A will lead to a realistic equity premium, we can use our
analytical results. For Pd and g equal to zero, there is a very close link between the Mehra-Prescott
economy and the Campbell-Shiller world, with A =—'I' C,. With d estimated to be 0.114 in the
Mehra-Prescott estimation and 7 equal to 5.55, we deduce that A's in the range of —0.5 to —0.7
should be tried.
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we find that the equity premium is almost matched at a A value of _Q 14 Another
parameter of interest is g. In the Mehra-Prescott model gs was constrained by the
structure of the model to equal 1/y; here it is a free parameter. We estimate go to
be —0.605, but it is not estimated very precisely (the standard error is 2.33). That
implies that at the estimated value, this model will likely generate more price-dividend
variability, since shocks to real rates now generate cash flow and discount rate effects
in the same direction (an increase in ö increases the discount rate, depressing prices,
but also depresses cash flows, which in turn depresses prices further). We will discuss
the magnitude of this effect below.

4.3.3 Moody Investor Economy

For the Moody Investor Economy, we set ij = 0, and attempt to estimate all parame-
ters from the same 12 moments that were used for the Campbell-Shiller model. For
7 equal to 2.6, we obtain an equity premium very close to the one observed in the
data.15 The parameters of interest here are of course the ones driving the qt process,
since these determine how much variation there will be in risk aversion and hence the
price of risk. With standard errors between parentheses, the estimates were 0.233
(0.085) for the drift Pq, 0.358 (0.100) for the persistence and 0.099 (0.114) for the
standard deviation 0q•

V/hat are the implications of these parameter estimates? First of all, they imply a
risk aversion coefficient of on average 3.29 with a standard deviation over the sample of
only 0.17. Very high risk aversion is not required as in Campbell and Cochrane (1998)
because of the higher variability of dividend growth. Second, risk aversion is indeed
positively correlated with recessions, and reaches its peak in the Great Depression,
while still remaining below 4.0. One interpretation of this behavior of risk aversion,
and hence the price of risk in this model, is the wealth-based risk premium idea
of Sharpe (1990). Sharpe postulates that when people become wealthier their risk
aversion drops. This has only price implications when it happens for society as a
whole, that is, when aggregate economic growth has been unusually high propelling

'41n reality Pd and g are not zero, Pd 15 estimated to be 0.175 with a standard error of 0.185, and
Pd is estimated to be —0.035 with a standard error of 0.012. Hence, these parameters are indeed
either statistically insignificant form zero, or close to zero in magnitude, explaining why our guess
for the relevant range was rather accurate.

15The estimation for this model was decidedly less smooth, and we had trouble obtaining con-
vergence, for example because autocorrelation parameters drifted into non-stationary regions. We
finally dropped two cross-moments and fixed the parameter for the unconditional mean of dividend
growth at its sample value. That yielded an exactly identified system for which reasonable parameter
values were obtained, but with huge standard errors. These are not so surprising since in this model
the parameters ic and aq are hard to identify jointly. In our model, the critical sensitivity ratio,
determining how risk aversion reacts to dividend shocks, equals nq/tc. In Campbell and Cochrane
(1998), this sensitivity ratio is explicitly modelled as a time-varying, non-linear process. We fixed
at its estimated value, as expected smaller than 0 (—0.246), and re-estimated, now obtaining more
reasonable standard errors.
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wealth levels above normal levels. Third, does the relation between qt and current
and past dividend levels conform to a habit formation story? It is straightforward,
using the same first-order approximation as Campbell and Cochrane, to write the log
habit level as slowly decaying moving average of past consumption, but the relation
is more complex because of the presence of separate q-shocks and the autocorrelation
in consumption growth. However, Campbell and Cochrane have more flexibility in
modelling the sensitivity of the surplus ratio to consumption shocks and they ensure
that the derivative of log(habit) with respect to log(consumption) is always positive.
In our model, this condition corresponds to cq/ic � 1 — exp(qt+i) for all t. Although
we could impose parameter restrictions that would make this condition likely to hold,
we choose to let the data "speak." At the current parameter values, this particular
restriction is not satisfied, but it would be if we were to drop to —.40.

4.4 Unconditional Properties of Asset Returns
Table 4 reports the mean price-dividend ratio and the mean and variance of the
equity premium (in logs) for all three models. By construction, the equity premium
is matched by all three economies. The mean price-dividend ratio is similar across
the three examples at around 16.4, which is substantially lower thazi what is observed
in the data, where it is 25.23. One potential explanation is that the price-dividend
ratio mean in the data is upwardly biased, because of the recent trend of distributing
cash to shareholders through repurchases rather than dividends [see Campbell and
Shiller (1998)]. Most noticeable about the table, is that the additional richness of
the Campbell and Shiller and Moody Investor economies leads to higher, and more
realistic variability of equity returns.

In Table 5, we look at the term structure implications of the three models, as
we continue to use the parameter combination that matches the equity premium. In
the data, we observe on average a positive term spread and bond premium (in logs).
Also, we observe a bond return volatility of about 8%, which is much lower than the
equity return variability, and low correlation between equity and bond returns. In the
Mehra-Prescott model, although excess bond return variability is of the right order
of magnitude compared to the data, the model generates an on average downward-
sloping yield curve and a negative bond premium. Both other models, however, do
generate positive bond premiums. They also generate more variability in excess bond
returns and match the correlation between equity and bond returns.

In Table 6, we examine whether these example models can replicate the non-
linearities in stock and bond returns. In the data, both equity and bond returns
display leptokurtosis, but equity returns are negatively skewed whereas bond returns
are positively skewed. All models generate negatively skewed equity returns as in the
data, but produce too much kurtosis in equity returns. They also match the positive
skewness and excess kurtosis in bond returns. It is important to remember that
these are small sample results. For example, log bond returns in the Campbell-Shiller
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economy should be normally distributed, since we did not allow for heteroskedasticity
in the state variables. The skewness and kurtosis we see here are purely a small sample
phenomenon (as they may be in the real data).'6

5 Empirical Analysis of Predictability
This section examines the performance of the various models with respect to pre-
dictability, using a variety of measures. We compute variance ratios to measure long-
run autocorrelations in returns, we estimate univariate predictability regressions with
"yield" variables, we analyze empirical and model-based conditional risk premiums,
and finally, we compute the variability of price-dividend ratios.

5.1 Variance Ratios
En Table 7 we report variance ratios for both stock and bond returns. The variance ra-
tios observed in the data suggest some long-run persistence in bond returns (variance
ratios above 1), whereas the evidence for stocks suggests some slight mean reversion
(variance ratios below 1), consistent with the well-known evidence in Poterba and
Summers (1988). The Mehra-Prescott economy generates slightly too much persis-
tence in stock returns, and too much mean reversion in bond returns, with the latter
being significantly different from the positive sample variance ratios. In the Campbell
and Shiller world, the relative magnitudes are more realistic, in that equity returns
are much more mean-reverting than bond returns, but the model also fails to gener-
ate positive persistence in bond returns. The Moody Investor economy is the only
one that generates some weak positive persistence in bond returns, and strong mean
reversion in equity returns.

It is important to realize that variance ratios are biased downward in small samples
and that the asymptotic standard errors we use to compare data with model moments
may not be appropriate in our small sample. Nevertheless, both are based on the
same small sample and hence the bias in both computations may be similar.'7

16As a check, we compute kurtosis and skewness for our three example economies in population,
using a simulation of 25,000 observations. As expected, for the Campbell-Shiller economy, we indeed
find a normai population distribution for bond returns as well as for equity returns. Interestingly, the
dramatic excess kurtosis and negative skewness for equity returns generated by the Mehra-Prescott
economy are not present in the population moments. Hence, the negative skewness observed in
equity returns can be matched in an economy which in population generates symmetric equity
returns. The extreme realizations of dividend growth during the Depression years are the likely
cause of this phenomenon.

17To examine the effect of small sample biases, we also compute the population variance ratios
implied by the three models (not reported). For the Mehra-Prescott economy, the variance ratio for
equity returns is severely biased downward in small samples, but the bond return variance ratios
remain close to the small sample values. The same is true for the Campbell-Shiller economy where
equity returns in population are also slightly positively correlated. Hence, both economies fail to
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5.2 Univariate Predictability Regressions
To examine linear predictability, we focus on two measures of "yield" as predictive
instruments: the dividend yield in excess of the nominal interest rate [see Harvey
(1991)], and the long-term yield in excess of the short rate (the term spread).'8

The univariate regressions in the data, reported in the last row of Table 8, provide
weak evidence of predictability in the stock return equation. Both an increase in the
term spread and the dividend yield indicate a higher risk premium on equity. Whereas
the excess dividend yield fails to predict the future stock return significantly at the
10% level, the term spread coefficient is significantly different from zero at the 10%,
but not the 5% level. The sign and magnitude of the coefficients are similar to the
coefficients found in previous studies. One reason for the weak predictability results
is the annual data frequency, as most predictability studies use monthly data. In
addition, the literature has typically found stronger evidence of predictability for
longer-horizon returns.

The univariate bond return regressions reveal that the dividend yield does not
seem to predict bond returns. However, the coefficient is positive, as it was in the
stock return equation. The term spread is a very strong predictor of excess bond
returns. This result is very closely related to one of the long-standing puzzles in
the term structure literature. Campbell and Shiller (1988b) point out that the yield
spread provides the wrong prediction for changes in future long rates relative to the
prediction implied by the Expectations Hypothesis. In particular, when one regresses
the change in the long rate multiplied by the duration of the bond onto a constant
and the yield spread, one finds significantly negative coefficients that become more
negative for longer maturities. Changing signs in the regression and adding the
yield spread, the dependent variable becomes an excess bond return. The regression
coefficient that we find is then approximately one minus the regression coefficient
in the Campbell-Shiller regression. The link is not exact, since we use a coupon
bond, whereas Campbell and Shiller use continuously compounded zero coupon rates.
Recent research by Bekaert, Hodrick and Marshall [1997(a,b)], among others, suggests
that this empirical finding may constitute a serious challenge for any model of risk.

The slope coefficients implied by the models are reported in Table 8. It is re-
markable how well the three models seem to capture the (weak) predictability in the
data. Of the 12 coefficients displayed in the table, only one (equity on term spread
in the Campbell-Shiller economy) has the wrong sign, and only one coefficient is not
within two standard errors from the sample moment (the bond return on term spread

generate both in population and in small samples persistence in bond returns. The exception is tbe
Moody Investor economy where in population variance ratios are well over 1.0 for bond returns.
Moreover, equity returns show some weak mean reversion in population.

18Practitioners often view these relative yields as indications of fundamental value and use them
in tactical asset allocation models. Although we do not focus on them, univariate regressions of
both bond and stock returns on inflation and nominal interest rates typically yield insignificant
coefficients.
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regression in the Moody Investor economy).
One possibility is that the good performance is driven by small sample effects.

That is, since all of these regressions feature rather persistent regressors, the coef-
ficients will be biased in small samples [see Stambaugh (1986)]. Hence, if our the-
oretical economies generate persistent term spreads and dividend yields, that may
be enough to obtain similar regression results as in the data, even though there is
little true predictability in population. We checked this by deriving population re-
gression coefficients through simulation. For the Mehra-Prescott economy we find
that the population coefficients are uniformly smaller than the small sample regres-
sion coefficients, the largest being the bond return on the term spread, yielding a
slope coefficient of 0.313 (versus 2.137 in the data). Not surprisingly, the bond re-
turn regression coefficients are essentially zero in the Campbell-Shillereconomy as we
know there is no time-variation in the bond premium in this model. The other slope
coefficients are similarly small. Although the Moody Investor generates the highest
positive regression slopes that seem most consistent with the data, the population
slopes are small. In fact, the regression slope of excess equity on term spreads is even
negative. Essentially, the Moody Investor economy has a channel to generate sub-
stantial time-variation in risk premiums, but overall the price of risk is very smooth.
Given the observed state variables during our sample (which includes the Depression
years, and some major recessions in the seventies and eighties), the effect on measured
predictability is, however, rather substantial.'°

5.3 Conditional Risk Premiums
To potentially gain more power, we also produce an alternative test of the performance
of the various models with respect to predictability. Equations (10) and (15) reveal
that we have closed-form solutions for the gross conditional risk premiums on equity
and bonds and we can exploit this to create unexpected returns, predicted by the
various models:

+ 1) = R2(t + 1),— E[R3(t + 1)11(t)] with j = s, b. (61)

If the model captures all relevant information about time-variation in expected re-
turns, this unexpected return should be orthogonal to any set of
variables. We use as the instrument set a constant, the dividend yield, the term
spread and also the nominal interest rate, since our closed-form solutions often pre-
dict a particular relation between risk premium and the nominal rate. In constructing
the test, there are two sources of sampling error we have to take into account.

The first source arises from the small sample used in computing the moments
themselves, and the second source is the uncertainty surrounding the true structural

'9Analogously, Bekaert, Hodrick and Marshall (1998) were also only able to explain the deviations
from the Expectations Hypothesis by combining time-varying term premiums and small sample
problems. As is the case here, term premiums in population were small and showed little variation.
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parameters. For a particular pre—estimated parameter configuration, we present a
GMM-based predictability test taking both sources of standard errors into account.
The predictability test is described in the Appendix.

This test is carried out in Table 9. The results are uniform across the three
models. There is not enough power to reject the null that the model's unexpected
equity returns are not predictable by the instruments, but for bond returns the null is
rejected for all three models at the 1% level, with the test statistic value being lowest
for the Moody Investor economy.

Table 9 also reports some characteristics, such as the minimum, maximum, mean,
and volatility of the (gross) bond and equity return premiums implied by the model.
There are no counterparts to these in the data. A naive approach to modeling ex-
pected returns would be to simply use the linear projections implied by the regression
evidence. The last line reports some characteristics for the fitted values of a regression
of returns onto our two yield instruments. However, the risk premiums obtained in
this way seem excessively variable and often become negative. Generally, the model
risk premiums behave more reasonably, in that their variation is more moderate and
that equity premiums are always positive. As expected from the moment analysis
above, bond premiums are always positive in the Campbell-Shiller and Moody In-
vestor economy, but negative in the Mebra-Prescott model. It is here that the power
of the Moody investor economy to generate time-varying prices of risk shows up
most forcefully. Focussing on equity premiums, the sample variability in the other
two models is negligible, but in the Campbell-Cochrane model it is 1.88%. Our
regression-based procedure yields a variability of over 4%.

5.4 Excess Volatility Tests
Arguably the most powerful way to test for long-horizon predictability is to use the
present value model directly. Intuitively, the price-dividend ratio should predict future
dividend growth and future required rates of returns [Campbell and Shiller (1988a,b)
and Cochrane (1992)]. Its variability in the data (see Table 10) is estimated to be 7.70
with a standard error of 0.79. The challenge for our models is to match some salient
features of bond and equity returns, whereas at the same time providing enough time-
variation in discount rates to be able to match this large variability of price-dividend
ratios.

Table 10 reports the implied variability of price-dividend ratios. Because of the
close connection between discount rate and cash flow effects, it is not surprising to
find that the Mehra-Prescott economy generates price-dividend variability that is
much lower than in the other economies. However, the endogenous price-dividend
variability generated by all three models remains starkly low. Since we failed to
match the mean of the price-dividend ratio, and its variability will likely rise with
the mean, we also report the coefficient of variation. In the data, the coefficient
of variation equals 0.305. The models still fall considerably short of this, with the
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Campbell-Shiller economy, which has no equilibrium restrictions, being the one that
comes the closest. Clearly, if we calibrate the models as we do, using dividend growth
data and a close matching of the interest rate process, the excess variability puzzle
of Shiller (1981), Kleidon (1986) and others remains.

6 Conclusion
In this paper, we have presented a stochastic valuation framework for pricing bonds
and equities. We have first shown, in a tractable fashion, how the framework embeds
a number of well-known pricing paradigms in both the term structure and equity
pricing literature. In several examples we were able to derive closed-form solutions
for equity and bond premiums. When confronted with the data, a three factor model
can simultaneously match the equity premium and equity volatility, provided that
either equilibrium restrictions are relaxed iu a Campbell-Shiller like economy, or that
a time-additive preference economy is generalized to an economy with preference
shocks, as in the Moody Investor economy. The latter two models also generate
upward sloping term structures on average, as is true in the data, but they still fall
to match the variability of price-dividend ratios present in the data. Nevertheless, we
took the data, in particular dividend growth, very seriously in our empirical exercise,
despite the noisy nature of these data.

The basic model is flexible enough to be extended in many directions. First, our
model has been extended to include a more generalized "external habit stock" in the
style of Abel (1999).20 Abel (1999) specifies an alternative and more general model
of "external habit," in which the benchmark level of consumption can depend both
on current and past consumption. His model embeds both the original "catching
up with the Joneses" specification of Abel (1990) and the consumption externalities
preferences of Gali (1994). Whereas Abel derives closed-form solutions for asset prices
(bonds and stocks) under the assumption of i.i.d. consumption growth, his setup fits
within our general model and we can accommodate more general dynamics for the
state variables.2'

Second, our model has been extended in several directions to explore the effects of
dividend uncertainty on equity prices and examine the role it plays in accounting for
endogenous asymmetric volatility in asset returns (the tendency of market volatility
to rise more after bad news than after good news).22

Third, Brennan (1997) discusses how the evidence on predictability clashes with
the practice of using a static CAPM for capital budgeting. In order to generate a
time-varying discount rate, Brennan uses an empirical approach to first estimate the
joint process for short and long-term interest rates, the market dividend yield, and

20This extension is available upon request from the authors.
21However, part of Abel's results do not assume log-normality, while ours do.
22This extension is available upon request from the authors. See Abel (1988), Campbell and

Hentschel (1992) and Wu (1998).
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the return on the market portfolio. He then performs a Monte Carlo simulation to
estimate the expected return (and discount rate) on the market portfolio over T-
year horizon. The approach followed in this paper [and other related papers such
as Ang and Liu (1999)] allows one to create discount functions that are consistent
with predictability, change with the state of the economy, and use the information
present in the term structure. That is, the present model allows one to construct an
internally consistent model of time-varying risk premiums that follows directly from
a simple, underlying theory. Such an approach could prove quite useful in capital
budgeting applications.

Our approach has some disadvantages that provide substantial challenges for fu-
ture work. First, we do not fully specify the general equilibrium that can support the
kernel process, particularly on the monetary side. There are many ways to introduce
money in a general equilibrium economy, but outside of putting real money balances
in the utility function, it is difficult to retain tractability. Second, the preference
structures allowed by our framework are not entirely general. An important class
of models that does not fit into our framework are models with Kreps-Porteus pref-
erences (1978) that allow the separation of risk aversion for timeless gambles from
temporal elasticity of substitution. Campbell (1993) and Restoy and Weil (1998) have
recently delivered tractable solutions for risk premiums in such models, relying on a
log-linear approximation. Third, the permissible state variable dynamics are restric-
tive and do not allow for non-linearities except through stochastic volatility of the
square root form. GARCH-type processes as in Bekaert (1996) or regime-switching
processes as in Hung (1994) and Cecchetti, Lam and Mark (1990) cannot be accom-
modated. Such processes may be necessary to match the higher order moments of
higher frequency return data.
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Appendix
In this Appendix we derive the general solutions for the pricing of bonds and equities
presented in Propositions 1 and 2. We shall find it useful to prove several lemmas.
Let c be an N x 1 vector and let c be a scalar.

Lemma 1: Vart(c'Yt+i) = [(E'c) ® (E'c)J' Y + C'EHEJJc.
Proof:

Vart(c'Yt+i) = c' [(EFFt + EH) (EFFt + EH)] c

= ' + EFFE + EHFEF + EHEH] C

= c'[EF(øI)+EH]c
= [() ® (c)]'Yt+c'EHE'Hc

where we use the conditions in (6) and the properties of the 0 operator to simplify
the expression.

Lemma 2: Vart(mt+i) = (Em1® Em1)' + EEm + T.
Proof:

Vart(m+j) = (1F + ) (F+ E) + u
= EjFtF'Em1 + ErnfFtEm + ErnFt Em1 + rnEm + C7
= E:1 (Y 01) Em1 + ErnEm +
= (Em1® Emj)' + EEm +

where we use the conditions in (6) and the properties of the 0 operator to simplify
the expression.

Lemma 3: Covt(c'Yt+i, mt+i) = C' [(E 0 E) Y + EHEm].
Proof:

Covt(c'Y+i,mt+i) = c' [(EFFt + EH) (EF + E)]
= ' [EFtFEm + EFFtEm + EHF Em1 + EHEm]

= C' [EF (Y 01) Emj + EHEmI
= ' 0 + EHEm].

where we use the conditions in (6) and the properties of the G9 operator to simplify
the expression.



Lemma 4: E [exp (c + c'1 + mt+i)] = exp (g + g'Y),
where:

90 = a + /1 + T + EiiEm + C' ( + E11Em) + C'EHE1IC

9' = + (Ems ®Emf)' + C' + (E:f ® Er)] +
2 (®c)'.

Proof: By log-normality,

E [exp (a + c'Yt+i + mt+1)] = exp {E (a + c'+i + mt+1) + Vart (c'+1 + mt+i)]

We can first write:

Et(a+c'+i+mt+i) =a+c'(+AYt)+m+F'yt
In addition,

Vart (c'+1 + mt+i) = Vart (c'+1) + Var (mt+i) + 2Cov (c'+1mt+i)

= ® (c)]' yt + C'EHEHC + (Em1® Em1)' Y + +

+2c' 0 Y +

CEHEHC + EnEm + 7 + 2C'EHEm

+ [(Emf®Emf)'+2C' (Ef®EF) + (E'Fc®Ec)']

where we apply lemmas 1, 2, and 3, and the properties of the 0 operator.
Thus,

E (c'+1 + mt+1) + Vart (c'+1 + mt+1) = go + g'Yt.

Proof of Proposition 1
The derivation begins by guessing that the solution for the log of bond prices equals:

= a + (A.1)

We shall verify that the guess is indeed correct.
Under the nominal pricing kernel, the time t value of an n-year bond must satisfy:

exp(pn,t) = E [exp(7t+i + Pn—it+i)} (A.2)
= E [exp(mt+i — eY+i + Pn_i,t+i)]

where we write the nominal kernel as the real kernel minus inflation.



Using our 'guess" for the form of Pn,t, we can then write:

exp(pt) = E {exp (an_i + (A_1 — e) Yt+i + mt+i)] . (A.3)

Using 'emma 4, with a = a_ and c = (An_i — e4, we have:

exp(pn,j) = exp (go + g'Y), (A.4)

with:

go = a_1 + Pm + + EEm + (An_i — e4' [p + HEm] (A.o)

(An_i — e4' EHEH (An_i —

9 =
r+(EmfoEmi)'+(An_i_e4'[A+E'mfoEF]

+ [ (A_1 — e4 ® E (An_i — e4]

Thus, Pn,t = go + g'Y, and our guess is verified by setting an = go, and A' = g'.

Proof of Proposition 2
From equation. (12), the price-dividend ratio, pd, can be expressed as:

pd = = PJ
{EexP [E

(mt+ + &lt+j) (A.6)

Define q = E {exp [;= (mt+ + dt+)] } = E {exp [E;= (mt+ + e+j)] },
forn=1,2 Thus,

pdt=qt. (A.7)

We will now prove by mathematical induction that can be written as:

qn,t = exp (b + (A.8)

where b,-, and Bn are defined by the difference equations in (14).
First, we show that qi,t = exp(mt+i + eY+i) can be written in this affine form

as qit = exp (b1 + BY). This is clear, since we can use lemma 4 by setting a = 0
and c = ed. The proposed solution holds provided:

= Pm + + EnEm + e (p + HEm) + edHEHed (A.9)

B; = + 0 1) + e [A + ® + (e 0



Thus, we have verified our solution for the case of ri = 1.
Now, assume that qn,t = exp (b_1 + B1). We now show that q,t =

exp (b + B).

q,t = E
{ex [E (mt+j + eYt+i)] } (A.1O)

= E {ex [(mt+i + e+i) + (mt+l+j+ e+1+i)] }

= E {E÷1 [ex (mt+i + e+i) . exp( (n++ + e+i+i))] }
= E {e (+ + e+i) E1 [exP (mt+i+j + eYt+i+i))] }
= E {exp (mt+1 + eYt+i + m_1,t+1)}
= E {exp (b_1 + (B_1 + ed)' +i + mt+i) }.

We can use lemma 4 by setting = b,_i and c = (B_1 + Cd). The proposed solution
holds provided:

= b1 + m + + + (B_1 + e4' [ + Hm] (A.11)

+ (Bn_i + Cd) EHE'H (B_1 + Cd),

B = + (m 0 Em1)' + (B_1 + e4' [A + Ernf 0 EF]

[ (B + Cd) ® E (B1 + Cd)].

We have therefore verified the solution in Proposition 2.

Demonstrating That the Examples Fall Within the General Affine Class
1. The Lucas/Mehra-Prescott Model

The model outlined in system (21) is a special case of the general affine class
where the following parametric definitions are applied:

(O1/'yO'\ /00 0\ (UdOOA=0p OJEF OoO JEH=0 000 pJ 0 a) \\O 0 0



(0 '\ /—.yadJFm=J1JEm(0lI ) 0 J1—li

and /1m = F = 0, = 0, and Urn = 0.

2. The Extension of Campbell and Shiller (1989)
The model outlined in system (31) is a special case of the general affine class

where the following parametric definitions are applied:

pagoo\ (adU0
9d P5 0 J EH= 0 6 00 0 p) \o 0 O

/0 \
/2=(IL J Fm(O J Ern=0\-1)

and /tm = —(a + \2), EF = 0, Emf = 0.

3. The "Moody" Investor Economy
The model outlined in system (46) is a special case of the general aHmne class

where the following parametric definitions are applied:

Pa 0 0 0 c 0 /Ud 0 0
'ij 00 0 Uq 0 0 00
0 0 PIn 0 0 \O 0 0

d(Pd) /i-Pd)
/1q(1G)?1J1 ) Fm y(O1)
IIr /

/0
= ( 0 J mf =

f -y (0q — ic)

\0 /
and cr0.

Description of the GMM-Based Predictability Test
The predictability test can be described as follows. Denote the orthogonality condi-
tions used to estimate 'I' as P1T(W) and the orthogonality conditions we wish to test
as g2T(W). By the Mean Value Theorem,

g2T(W) 92T(O) + D2T(Wo)• ( — we), (62)

where W0 is the true parameter vector, and 'I' is the estimated parameter vector, and

D 'T \ 392T(WO)
2Tt.WO) . 63



Since we estimate Ji from the first set of orthogonality conditions:

— o — (AllDlTY A11 Y1T(WO), (64)

with

591T('I'O)
65

A11 =

where S11 is the spectral density at frequency zero of the orthogonality conditions
But then,

92T('I') ' MgT(I'o), (66)
with

M = [—D2T. (A11D1TY' A1, I] (67)

Since we can assume that /gT("I'o) —* N(O, S), where S is the spectral density at
frequency zero of the orthogonality conditions, and

gT(Wo) =
[glT(wo)',g2T(wo)']', (68)

the statistic

T g2T(W) {MsM'] 92T(') (69)

will have a X2(k) distribution under the null, where k is the number of moments
considered in g. In our case, k = 4, since we use four instruments and test bond
and stock return predictability separately.



Table 1
Data Sources

Series Symbol Source Availability

Nominal Stock  Return rs
t+1 Ibbotson (S&P 500) 1926:96

Nominal Bond Return rb
t+1 Ibbotson (20 year

bond)
1926:96

Nominal Interest rate rt Ibbotson (one year T-
bill)

1926:96

Inflation ðt Ibbotson 1926:96

Long Yield lrt Board of Governors 1925:96

Real Dividend growth
(end-of-period)

Ädt,1 Own Computations 1927:96

Real Dividend Growth
(additive)

Ädt,2 Own Computations 1927:96

Price Dividend Ratio =
1/Dividend Yield

pdt = 1/dyt Own Computations 1926:96

Term Spread lrt - rt Own Computations 1926:96

Note: Stock and bond returns, the nominal interest rate, inflation, the long yield, real dividend growth and
the term spread are all in logs.  To compute nominal dividend growth, assume ct is the gross capital gain
return over the year and it the income return (it = n

tD 1+ /Qt, with n
tD 1+  the nominal dividend, and Qt the price

level).  In the end-of-period case, the income return is computed assuming dividends are re-invested in the
stock market.  In the additive case, we simply add the dividends paid out during the year.  Then, n

tD 1+ / n
tD  =

(it+1/it) ct, and real dividend growth is Ädt = log( n
tD 1+ / n

tD ) - ðt.



Table 2
Empirical Properties of the Variables

State Variables

Dividend Growth
(end-of-period)

Dividend Growth
(additive)

Inflation

Mean 0.0080
(0.0155)

0.0078
(0.0159)

0.0367
(0.005)

ó 0.1369
(0.0121)

0.123
(0.023)

0.031
(0.004)

rho -0.0976
(0.1089)

0.185
(0.154)

0.922
(0.040)

Instruments

Dividend Yield Term Spread Interest Rate

Mean 0.044
(0.002)

0.0095
(0.0021)

0.0403
(0.005)

ó 0.015
(0.002)

0.0132
(0.0013)

0.032
(0.004)

rho 0.667
(0.094)

0.7345
(0.0505)

0.906
(0.042)

Notes: All variables are in logs, except for the dividend yield.  All moments were estimated using GMM
[Hansen (1982)] allowing for one Newey-West lag.



Table  3

Example of Calibration of γγ Parameter in the Mehra-Prescott Economy

γ Mean
Equity
Premium

Estimate = 0.283 ---
2 1.51
3 2.78

5.55 6.09
10 11.90

Data
(s.e.)

6.14
(2.40)

Notes:  We estimate the parameter set for the Mehra-Prescott economy Ø = [β, σd, µπ, ρπ, σπ, µx, ρx, σx]�
using 9 moments of dividend growth, the nominal rate and inflation in a GMM-system.  The estimated
parameter values are used to infer the state variables from the data and to compute the mean equity
premium (in logs).  The last line reports the data moment with a GMM-based standard error between
parentheses.



Table  4

  Equity Characteristics of the Three Example Economies

Mean
Equity

Premium

Mean
pdt

Equity
Variability

MP-model
(γ=5.55)

6.09 16.81 12.64

CS-model
(λ=-0.45)

6.31 16.33 19.37

MI-model
(γ=2.60)

6.18 16.72 18.56

Data
(s.e.)

6.14
(2.40)

25.23
(1.20)

19.58
(2.16)

Notes:  MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The parameter
γ is chosen to roughly match the mean equity premium in the Mehra-Prescott Economy and in the Moody
Investor economy.  In the Campbell-Shiller economy, the parameter λ is similarly calibrated.  We report the
mean equity excess return and its volatility and the mean price dividend ratio computed over the actual data
sample, with the state variables inferred from data on dividend growth, nominal rates, and inflation.  The
last line reports the data moment with a GMM-based standard error between parentheses.



Table  5

  Bond Characteristics of the Three Example Economies

Mean
Term

Spread

Mean
Bond

Premium

Bond
Variability

Bond/Equity
 Correlation

MP-model
(γ=5.55)

-0.19 -0.57 7.38 -0.04

CS-model
(λ=-0.45)

0.34 0.40 8.01 0.31

MI-model
(γ=2.60)

0.59 0.54 9.81 0.10

Data
(s.e.)

0.95
(0.21)

0.90
(0.92)

7.82
(0.77)

0.189
(0.089)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The parameter
γ is chosen to roughly match the mean equity premium in the Mehra-Prescott Economy and in the Moody
Investor economy.  In the Campbell-Shiller economy, the parameter λ is similarly calibrated.  We report the
term spread, the mean bond excess return and its volatility and the correlation between bond and equity
returns computed over the actual data sample, with the state variables inferred from data on dividend
growth, nominal rates, and inflation.  The last line reports the data moment with a GMM-based standard
error between parentheses.



Table  6

  Skewness/Kurtosis for the Three Example Economies

Equity Bonds
Skewness Kurtosis Skewness Kurtosis

MP-model
(γ=5.55)

-1.19 3.96 0.73 1.56

CS-model
(λ=-0.45)

-0.69 3.21 0.61 1.24

MI-model
(γ=2.60)

-1.13 6.43 0.84 1.59

Data
-0.906
(0.283)

1.187
(0.780)

1.157
(0.294)

1.716
(1.096)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The parameter
γ is chosen to roughly match the mean equity premium in the Mehra-Prescott Economy and in the Moody
Investor economy.  In the Campbell-Shiller economy, the parameter λ is similarly calibrated.  We report
skewness and excess kurtosis for equity and bond returns computed over the actual data sample, with the
state variables inferred from data on dividend growth, nominal rates, and inflation.  The last line reports the
data moment with a GMM-based standard error between parentheses.



Table  7

  Variance Ratios for the Three Example Economies

Equity Bonds
VR(5) VR(10) VR(5) VR(10)

MP-model
(γ=5.55)

0.92 0.79 0.76 0.75

CS-model
(λ=-0.45)

0.50 0.39 0.82 0.82

MI-model
(γ=2.60)

0.52 0.43 0.96 1.03

Data
(s.e.)

0.726
(0.137)

0.734
(0.150)

1.397
(0.260)

1.885
(0.416)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The parameter
γ is chosen to roughly match the mean equity premium in the Mehra-Prescott Economy and in the Moody
Investor economy.  In the Campbell-Shiller economy, the parameter λ is similarly calibrated. VR(k) stands
for variance ratio computed using k autocorrelations of the underlying process.  We report variance ratios
using 5 or 10 autocorrelations for stock and bond returns computed over the actual data sample, with the
state variables inferred from data on dividend growth, nominal rates, and inflation.  The last line reports the
corresponding variance ratios in the data with the standard errors computed by estimating the correlations
jointly in a GMM framework. We use 11 Newey - West lags for this estimation.



Table  8

  Predictability Properties for the Three Example Economies

Equity Bonds
Excess

Dividend
Yield

Term
Spread

Excess
Dividend

Yield

Term
Spread

MP-model
(γ=5.55)

0.370 0.634 0.273 0.909

CS-model 0.295 -0.085 0.278 1.567
(λ=-0.45)

MI-model 0.864 2.640 0.515 6.376
(γ=2.60)

Data 0.875 2.936 0.179 2.137
(s.e.) (0.595) (1.698) (0.276) (0.622)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The parameter
γ is chosen to roughly match the mean equity premium in the Mehra-Prescott Economy and in the Moody
Investor economy.  In the Campbell-Shiller economy, the parameter λ is similarly calibrated.  We report
slope coefficients from univariate regressions of equity or bond excess returns onto excess dividend yield or
term spreads.  The regression variables are computed over the actual data sample, with the state variables
inferred from data on dividend growth, nominal rates, and inflation.  The last line reports the coefficients
actually obtained in the data using heteroskedasticity-robust standard errors.



Table 9

Analytical Risk Premiums: Tests and Properties

Bond Returns Equity Returns
Test Min. Max. Mean Vol. Test Min. Max. Mean Vol.

MP-
model

14.53
(0.006)

-0.0039 0.0000 -0.0010 0.0009 5.70
(0.223)

0.0741 0.0861 0.0782 0.0028

CS-
model

14.74
(0.0053)

0.0094 0.0109 0.0099 0.0003 5.66
(0.226)

0.0848 0.0961 0.0882 0.0027

MI-
model

13.55
(0.009)

0.0027 0.0182 0.0099 0.0021 5.94
(0.204)

0.0222 0.1555 0.0858 0.0187

Data -0.054 0.086 0.009 0.031 -0.044 0.139 0.061 0.042

Notes:  The column labelled “Test” reports the value of the test statistic described in section 5.2.3, which is
distributed χ2(4).  The p-value is indicated between parentheses.  The columns min., max., mean and vol.
report these sample characteristics for the (gross) bond or equity return premiums implied by the model.
MP stands for Mehra-Prescott Economy, CS for Campbell-Shiller Economy and MI for Moody Investor
Economy.  The last line reports the same properties for fitted values from multivariate regressions of stock
or bond returns on the two “yield” instruments.



Table  10

  Variability in Price Dividend Ratios

Standard
deviation

Coefficient of
variation

MP-model 0.662 0.039

CS-model 1.695 0.104

MI-model 1.116 0.067

Data
(s.e.)

7.670
(0.792)

0.305
(0.148)

Notes:  MP stands for Mehra-Prescott, CS for Campbell-Shiller and MI for Moody Investor.  The first
column reports the standard deviation (volatility) of price-dividend ratios, the second its coefficient of
variation both for the three models and the data.  The number between parentheses is a GMM-based
standard error.  For the coefficient of variation, the standard error is computed using the delta method, since
it is a function of the first two moments.  We could also view it as a function of the mean and the volatility,
in which case the standard error is reduced to 0.030.


