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ABSTRACT

This paper studies the bidding behavior of firms in U.S. Forest Service timber auctions in

1976--1990. When conducting timber auctions, the Forest Service publicly announces its estimates

of the tract characteristics before the auction, and each bidder additionally has an opportunity to

inspect the tract and form its own private estimates. We build a model that incorporates both

differential information and the fact that bids placed in timber auctions are multidimensional. The

theory predicts that bidders will strategically distort their bids based on their private information,

a practice known as "skewed bidding." Using a dataset that includes both the public ex ante Forest

Service estimates and the ex post realizations of the tract characteristics, we test our model and

provide evidence that bidders do possess private information. Our results suggest that private

information affects Forest Service revenue and creates allocational inefficiency. Finally, we

establish that risk aversion plays an important role in bidding behavior.
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1 Introduction

This paper studies the extent to which bidders in auctions obtain and strategically exploit private

information. Since the private signals of bidders are not typically observable by an econometrician,

it is in general difficult to test theories about how bidders make use of these signals. In this paper we

identi a setting in which a post information about attributes of the object is available, attributes
that affect the value of the object to all bidders. Using this information, we are able to empirically

examine the extent to which bidders possess private information about these common attributes,

as well as the effect of such private information on behavior and the outcome of the auction. In

particular, we are able to test predictions in the spirit of Milgrom and Weber's (1982) model of the
"mineral rights" auction.

The setting for our study is the U.S. Forest Service timber auction program in the Pacific
Northwest from 1976 to 1990.1 Our analysis relies on a particular auction format — called a "scale
sale" used by the Forest Service. Each tract of timber contains multiple species. Before the sale,

the Forest Service conducts a "cruise" and estimates the volume of each species (as well as other

factors such as timber quality and logging costs). These estimates are publicly announced at least

a month before the sale, at which time bidders have the opportunity to hire their own cruisers and

form independent estimates. In a scale sale, firms bid a price per unit of volume for each species.

The winner is the firm that places the highest estimated total bid, computed as the sum of the

prices on each species weighted by the Forest Service quantity estimates. The contract requires
the winner to remove all designated timber from the tract. As the timber is removed, the Forest

Service measures the volume of each species, and the winner pays for the timber removed at the

rates specified in the bid. Thus, there may be a significant gap between the average bid, weighted

by the Forest Service estimates, and the average payment, weighted by the actual proportion of
each species. Such a gap is typical: on tracts with two main species of timber, the Forest Service's

estimate of the proportion of timber that is the primary species turns out to be within 5% of the
actual proportion that is removed on only half of the sales.

While scale sales may appear particular to the Forest Service, similar rules are in fact used

in many government auctions. Examples include bidding for highway construction contracts and
"indefinite quantity" procurement auctions for goods and services. In such procurements, thegov-
ernment specifies its estimated demand for different goods, which are used as weights in computing

the total bids. But, the government can also choose to order more than those estimated quantities.

Despite the prevalent use of scale sales, the equilibrium behavior of firms in such auctions has

not to our knowledge received a general theoretical or empirical analysis in the economics literature.

1Other recent analyses of Forest Service timber auctions include Hansen (1986), Leffler and Rucker (1988), Cum-

mitts (1995), Baldwin, Marshall, and Richard (1997) and Haile (1998).
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Our formal model of equilibrium bidding behavior in scale sales can be described as follows. There

are two species, 1 and 2, and each (risk-averse) bidder receives a signal about the true proportion

of species 1, and places bids for each species, b1 and b2. If the Forest Service has estimated that

the proportion of species 1 timber is Xl, and the total quantity is QEST, then the total bid B is
computed as B = QEST x (bixi + b2(1 — xfl). The winner, who submitted the highest total bid,

ultimately pays P = QACT x (bjp1 +152(1 —Pi)), where QACT is the realized quantity on the tract,

and Pi is the realized proportion of species 1 on the tract. In such an auction, bidders have an
incentive to "skew" their bids onto the species they believe the Forest Service has over-estimated.

The intuition is that a bidder can achieve the same total bid (and thus the same probability of

winning the auction) while paying less if the total bid is allocated mainly to species that are over-

estimated, since each dollar bid on an over-estimated species increases the total bid by more than

it increases the expected payment.

To see how this would work in practice, consider a simple example. Suppose that the Forest

Service announces a tract with 1000 units of volume, and estimates that half of the tract is Douglas

Fir, and half is Western Hemlock. A bidder can achieve a total bid of $100,000 by bidding $100 on

each species. Another way to achieve the same total bid is by bidding $150 per unit on Douglas

Fir, and $50 on Spruce. Suppose that a bidder's cruise indicates that the expected proportion of

Douglas Fir is in fact 0.25, not 0.5 as the Forest Service estimated. Then the bidding strategy

($100,$100) yields an expected payment of $100,000. However, the bidding strategy ($150,$50)

yields an expected payment of $75,000.
We analyze the equilibria of sealed bid auctions and a stylized oral ascending bid auction. The

theory exploits a basic insight, that bid decisions can be decomposed into two components: a
choice of what total bid B to submit, and a decision about how to allocate that bid across the two

species, that is what level of bid skew, ZS.b = — b2, to select. We show that bidders who have
higher signals about the extent to which the Forest Service has over-estimated one species (i.e.

about lxi — Pi I) will skew their bids more aggressively, and will be more optimistic about the gap

between submitted bid and payment. As a consequence, they will also submit higher bids. The

oral ascending bid auction works in a similar fashion, although some subtleties arise from the fact

that bids at any point in time have two dimensions, a total bid and a skew. The theory we develop

has the attractive feature that skewing behavior at each stage of the auction corresponds to the

optimal skew of a bidder who is just indifferent about dropping out of the auction. Thus, we can

give a precise interpretation to losing bids in our oral auction data.

We test our theoretical predictions using data from sales in Oregon and Washington during

1976—1990. We match bidding data, which includes information from the Forest Service cruise as

well as the bids and bidder identities, with ex post cutting data from the tract. Since we observe

both the estimated quantities of each species and the quantities that are removed, we are able to
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use the difference between the estimated and actual proportions of species 1, x -møi, as a proxy for

the private information potentially available to the firms. We refer to this difference, x1 —Pi, as the
"mis-estimate" of the Forest Service. Using this data, we estimate the extent to which information

about Forest Service mis-estimates affects bidding behavior and Forest Service revenue.

Our empirical analysis broadly confirms the predictions of our theoretical model. We find strong

evidence that bidders respond to mis-estimates by skewing their bids, and also that higher-ranked

bids tend to be better matched to mis-estimates than lower-ranked bids. Likewise, we see that

conditional on the level of a bidder's total bid, the amount paid (or the amount the bidder would

have paid, had they won) is decreasing in lxi — Pi . Forest Service revenue is also systematically

affected by mis-estimates. We further find that in a given sale, there is often heterogeneity in the

extent and direction of the skew, consistent with private information on the part of the bidders.
Higher bidders at an auction tend to also skew their bids more, and we find some evidence that

bidders incorporate information in the course of an oral auction. Finally, we frequently observe firms

using moderate skews, which can only be optimal for risk averse bidders (in or out of equilibrium).

The results in this paper contribute to the existing literature in several ways. We have extended

Milgrom and Weber's (1982) theory of mineral rights auctions to the case of "scale sales," as
described above. Previous papers have looked at auctions with multidimensional bids and scoring

rules, but these studies consider settings with independent private values, and there is no analog
to the skewing behavior identified here.2 Baldwin (1995) and Wood (1989) have formally analyzed

skewing: Baldwin considers the bid allocation problem, taking the bid level as exogenous. Wood

restricts attention to pre-selected linear bidding rules and looks at second-price auctions. Neither

considers both the full decision problem and equilibrium behavior when information is dispersed

among the bidders. Baldwin also empirically estimates the degree of risk aversion of bidders at

Forest Service timber auctions. Her dataset, however, does not include the ex post realizations of

the volumes of each species on the tract, and thus her conclusions are based on revealed preference

rather than direct measures of the returns to skewing.

The effects of private information in "mineral rights" auctions have also been empirically ana-

lyzed by Hendricks and Porter (1988) in the context of leases for off-shore oil drilling. Hendricks

and Porter identi the effects of informational advantages using ex post information about the
tracts (in this case, the amount of oil in the tract), and testing to see whether "neighboring" firms

have better information. In contrast to oil lease auctions, scale sales have the attractive feature

that it is possible to distinguish the effect of information on each bidder's decision-theoretic choice

about skewing (which does not directly affect the probability of winning the auction) from her

2Osband and Reicheistein (1985), Che (1993) and Bushnell and Oren (1994) study auctions where bidders can bid
in two dimensions (cost and quality in the case of Che, and fixed and variable cost in the case of Bushnell and Oren).
The winner is determined by a scoring rule.
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strategic decision about the total bid.

This paper is organized as follows. Section 2 provides background on the Forest Service Timber

Program and describes some of the relevant institutional details of the timber auctions. Section

3 presents a formal model that captures many of the main elements of bidding behavior at scale

sales. Section 4 describes the data, while Sections 5 and 6 provide our main empirical analysis.
Section 7 concludes.

2 Background: The Forest Service Timber Program

In the northern and western regions of the U.S., the national forests have been the primary source of

timber for mills, logging companies, and forest products companies. During 1976—1990, the Forest

Service conducted well over a thousand auctions per year in these areas, generating annual revenue

of around $1 billion. Our empirical work will focus on Forest Service Regions 5 (California) and 6

(Oregon and Washington); in the 1980s, these regions accounted for two-thirds of all Forest Service
timber sold and 80% of all Forest Service timber receipts.

USFS Timber Auctions, 1976(1)—1990(2), Statistics
Region 5 Region 6

Sales 6009 16,857

Avg. Volume (mbf)3 3752.6 3994.6

Avg. Reserve Price ($) 184,897 329,280

Avg. Winning Bid ($) 542,047 682,227

Avg. Bid per unit vol ($/mbf) 110.34 151.69

Avg. Number of Bidders 3.67 5.07

% Oral Auctions 47.5 87.1

Since details of the Forest Service timber program have been discussed elsewhere (see, for example,

Baldwin, Marshall, and Richard (1997)), we touch only on a few key aspects of the industry
organization, and focus our discussion on the process through which bidders acquire information
and prepare a scale sale bid.

Bidding in Forest Service sales is undertaken by a diverse collection of timber conglomerates,

smaller mills, and independent logging operations. Timber from a sale is frequently processed in

mills proximate to the national forest. In Region 6, there are several hundred mills of different

types, each demanding different species and qualities of timber. Conglomerate firms (such as
Weyerhauser, Boise-Cascade, and Georgia-Pacific) own many mills all over the country, and may

be able to process the whole range of species and timber qualities on a given tract. Smaller mills
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and independent "gyppo" logging operations do not have this ability. When these smaller bidders

win Forest Service auctions, they tend to resell some or all of the timber. In the 1980s, this resale

was done either through private bilateral trades or, in smaller quantities, through prices posted by
the mills (see Haile (1998) for an analysis of resale in timber auctions).

The Forest Service begins preparation for a sale several months prior to the sale date. The

forest manager organizes a cruise and publicly announces the findings at least 30 days before the

sale date. The manager also decides, based on tract characteristics and expected competition,
whether to conduct the sale by oral or sealed bidding in Region 6, the great majority of the
sales are oral auctions. Once the sale is announced, each firm must "qualify" for an auction by

submitting a deposit of 10% of the bid in a sealed bid auction, or 10% of the appraised value of
the sale in an oral auction.4 This deposit is held until the contract is awarded.

In addition to the scale sale format already mentioned, the Forest Service occasionally uses an

alternative "lump-sum" format. In a lump-sum sale, each firm makes a fixed bid, and the firm

with the highest bid wins the auction and pays that bid, irrespective of the realized volumes of
each species. As described above, bidders in a scale sale submit a bid rate for each species and

the winner pays the bid rate for the realized volume of each species. The reserve price mechanism

differs slightly between the two formats: in a lump-sum sale, the Forest Service sets a fixed reserve

price for the whole tract; in a scale sale, there is a minimum acceptable bid for each species.

Scale sales are used mainly in the Northern and Western regions of the country. The main

motivation for using scale sales is to reduce risk on the part of the bidders.5 If the bidders face

substantial risk about the value of the sale, their bidding will be less aggressive (not only do they

require a risk premium, but they may be more concerned about the winner's curse, whereby the

bidder who wins is generally the one whose cruiser gave the most optimistic estimate). In lump-

sum bidding, bidders bear all of the risk about the species composition of a tract. In contrast, a

scale auction automatically mitigates uncertainty about the total volume of timber on a tract, and

bidders can in principle insure against uncertainty concerning the proportion of each species on the

tract by bidding the same profit margin on each species.

Before submitting their sealed bids or qualifying bids, the bidders have the opportunity to cruise

the tract and form their own estimates of tract characteristics. Cruising a tract has traditionally

been considered something of an art by industry insiders, and many cruisers have an undergraduate

degree in forestry (such a degree as well as two years of experience are requirements for admission

41n oral sales, a bidder can cboose to raise the bid above the reserve price in this initial qualifying round of bidding,

in which case the deposit must be equal to 10% of the bid.
5Forest Service personnel also bear political costs when their ex ante estimates are incorrect. The scale sale system

has the potential to reduce the sensitivity of bidder outcomes to volume mis-estimates, thus making it politically
desirable. Firms in the industry have historically excercised great influence over Forest Service policy.
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to the industry association). According to industry sources, beginning cruisers in the 1990s made

about $30,000 to $40,000 per year, while more experienced cruisers made $60,000 or more. Large

forest product companies have in-house cruising staffs, while smaller companies may use for-hire

cruisers from consulting companies. These for-hire cruisers typically price their services either by

the acre or by the hour. While the costs vary substantially from tract to tract, one firm estimated

a "typical" cost of $10/acre. The average tract size in our sample is 380 acres, putting this cost at

about .6% of the tract value. While bidders reportedly spend more resources on cruising for "lump

sum" rather than "scale" sales, industry sources in the Pacific Northwest report that it is unusual

for a bidder to place a bid on a tract without cruising. Moreover, firms that have incurred the costs

of surveying a tract generally submit bids — thus, one can think of the decision to survey a tract
as roughly equivalent to an entry decision.

To cruise a tract, the cruisers go out into the forest for several days. A difficult aspect of the

job is detecting potential defects in trees. For example, insects can damage old growth trees, but

this may be difficult to verify from external characteristics; and different kinds of insects may have

caused problems in different areas of a forest. Cruisers must guess at the defects in trees and
determine the "merchantable" timber, which will be sold at the prices bid at the auction, and the

"non-merchantable" timber, which is essentially scrap.

The Forest Service has long been aware of the problems of "skewed bidding" in scale sale auctions

(see, for example, GAO Report RCED-83-37, which documented revenue losses from skewing). In

order to limit such behavior, rules have been adopted over time that limit the scope for skewing.

For example, during the 1980s, in some forests bidders could only place bids above the reserve price

on "major species," which account for more than 25% of the volume. In 1995, some parts of the

Forest Service moved to "proportional bidding," whereby bidders are required to distribute their
bids across species according to fixed proportions.

3 The Model

In this section, we build a stylized model of equilibrium bidding behavior in scale auctions. We

abstract from a number of considerations, most notably heterogeneity in the values of firms for each

species of timber, as well as privately observed cost or inventory shocks. Thus, our results can be

viewed as providing insight into one component of bidding behavior, while stopping short of a full

analysis of the real-world auction setting. In particular, with private values as well as a common

component, the tract would be allocated in part on the basis of individual preferences and in part

on the basis of signals about the common value. It is important to note, however, that if the FS

had the same information as the bidders about the value and extraction costs of each species of
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timber (as in our formal model), there would be no need for an auction at all.6

The model can be outlined as follows. There are two species, 1 and 2. These species have
commonly known values Vi � V2, which are the same for all bidders. The auctioneer provides

estimates of the total volume on the tract, QEST, and the proportion of the volume that is species

1, x (and let x2 = 1 — xi). These estimates are announced, together with the reserve prices for

each species, r1 and r2. We assume that v1 > r and v2 > r2.

Each bidder has an identical utility function defined over wealth uQ, which we assume to

be strictly increasing and (weakly) concave. Let p indicate the true, unobserved, proportion of
species i, and let S x — p be the difference between the estimated and actual proportion, so

that 8 > 0 corresponds to an over-estimate of the proportion of species i. All bidders observe a
public signal, x {1, 2}, which is informative about the direction of the auctioneer's mis-estimate.

We will assume that x conveys enough information that all bidders will choose to skew in the same

direction. This substantially simplifies the analysis, without disturbing the underlying ideas, by
allowing us to ignore the extent to which bidders learn about the direction of the mis-estimate

when they discover that they have won. Each bidder j also observes a private signal, 4, about

the auctioneer's mis-estimate (under the assumption below, E[5I4} will be increasing in 4). We

assume that the total volume, QACT, is fixed and commonly known to the bidders, though not

necessarily equal to QEST. Alternatively, we can allow QACT to be stochastic so long as it varies

independently of S. We make the following assumptions about the random variables:

(Al) (i) support(SIx,4) = [x — l,xJ and E[bIx,4,...,d] >0 for all (4,...,d); (ii) condi-
tional on x, (4, (x,8x) are strictly affiliated and (4 ,d) are exchangeable.

Part (i) implies that the public signal is sufficiently informative that the bidders always agree
in their assessment of the expected direction of the mis-estimate; however, even after seeing the

public signal, any mis-estimate is possible (that is, the support does not change with the public
signal). The affiliation and exchangeability assumptions (ii) will allow us to establish the critical
comparative statics results in the analysis.

We now consider the sealed bid auction and the oral ascending auctions in turn. We then
discuss the empirical implications of the model. Proofs are deferred to the Appendix.

3.1 The Sealed Bid Auction

Consider a first-price, sealed bid auction. After observing the auctioneer's announcements, the

public signal x and a private signal 4, each bidder j submits a sealed bid for each species, b

5For this reason, it is trivial to describe the optimal mechanism in this context: the Forest Service should simply
set a rate for each species equal to its value and sell to any bidder. If one were to add a private value component,
the question of optimal auction design would become interesting.
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and 14, to the auctioneer. The total bid is computed as B2 = QEST bx and the highest bid
wins. After the sale, the true total volume QACT and proportion of species , /h, are realized.
Ordering the bidders j = 1, .., J in descending order of their total bids, the winning bidder pays
P' = QACT > bfp.

It is useful to think about each bidder's decision in two parts: selecting a total bid B and
allocating that bid over the two species, i.e. choosing Abx = — b_ix.7 Given opponent strategies,
each bidder j faces a two-part optimization: first, for any total bid B1, what is the optimal bid

allocation A14(Bi , 4)? Second, given that any total bid will be allocated optimally, what is the

optimal total bid B1(4)?
Only a bidder's decision about his total bid affects his probability of winning the auction; his

bid allocation is relevant only if he wins. Thus, bidder j's bid allocation problem, for which we

assume a unique solution, can be written as follows (letting LXvx v —v,>, and V = QEST(V . x)):

rnaxE {u (QAcT ((bx — Avy) . 5 + I 4,; Vk j, Bk(d) <B2], (1)
subject to: b1 � r1, b2 � r2,

where j conditions on winning with total bid B1 (accounting for the winner's curse), as well as his

own private information.

The bid allocation problem is formally equivalent to a portfolio problem; think of the bidder

as choosing his "investment," — vx, in the risky asset, 6. A bidder can eliminate the risk

due to b by bidding a constant profit margin on each species (setting Abx = vx). We refer to

this as "full-insurance," and we refer to any departure from this strategy as a "skew." Assumption

(Al) ensures that the expected value of the risky asset O is positive. Thus, if a bidder is risk-
neutral, he will invest as much of his total bid B as possible on species x, maximizing Ab —

subject to the reserve price constraints. The latter finding is quite robust (and in particular, it
does not depend on our assumption that x is publicly observed). So long as the bidder believes

that there is, on average, a mis-estimate, risk-neutrality implies that skewing should be maximal.

In contrast, for a risk-averse bidder, the solution will involve some investment in the risky asset,

that is, zb — 1Vx > 0, but in general the solution will be interior.

Proposition 1 Consider the bid allocation problem. (i) If a bidder is risk-neutral, then the optimal
bid sets b_iy = r-.y. (ii) If the bidder is risk-averse, and B2 � V — (v — r2), it is optimal to set

TNote that b = B/QEsr+&(1—xx) and = B/QEST—LS.bXXX, so choosing B and Ab uniquely determines

bx and bx (and vice-versa).
51f B' < V— (v2 —r2), a risk-averse bidder will skew maximally, setting b., =r_., but the reserve price constraints

imply that ib < Av.
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Proposition 1 tells us that the solution to the bid allocation problem entails taking on some
risk, despite the fact that a full-insurance policy is available. Consistent with portfolio theory, the

next Proposition establishes that bidders with higher signals about Forest Service mis-estimates

will skew their bids more aggressively.

Proposition 2 Suppose that B(d) is nondecreasing in d for all Ic j, and that B3 � V. If
preferences satisfy C'ARA or IARA, any optimal b(B1, 4) will be nondecreasing in B and 4.

Proposition 2 also establishes that the optimal skew is increasing in the total bid. One reason
for this is straightforward when opponents use nondecreasing bidding functions, winning with a
higher total bid means that the distribution of (defeated) opponent types is more favorable. There

is also a further effect, which is the reason we require constant or increasing absolute risk aversion

(CARA or IARA). When the total bid is higher, bidders evaluate the species composition risk from

(essentially) a position of decreased wealth. Under decreasing absolute risk aversion (DARA), this

decrease in wealth would lead to an increase in risk-aversion and a reduced propensity to skew,

introducing a competing effect that, though presumably small, would greatly complicate the model.
Thus, while DARA would seem to be a reasonable assumption (and indeed, one that is supported

by Baldwin's (1995) empirical work), we rule it out.

We now establish the existence of a pure strategy Nash equilibrium in which bidders with more

optimistic signals skew more aggressively and submit higher total bids. Our approach is to show

that, for each bidder j, if all opponents Ic 0 i use identical strategies that
are nondecreasing in (B", d) and d respectively, then bidder j's best response must be similarly
nondecreasing. Under this condition, Athey (1997) has shown that a pure strategy Nash equilibrium
exists.

Proposition 3 (i) For each bidder j, suppose that all opponents Ic j choose B/C according to

the strategy fl(d), which is nondecreasing in d with f3(.) � V. If preferences satisfy CARA or

IARA, any best response function Bi(4) will be nondecreasing and have Bi(.) � V. (ii) Thus, a
pure strategy Nash equilibrium exists in nondecreasing strategies where all bids submitted are greater

than or equal to V.

Recall from Proposition 1 that bidders choose to skew their bids as the optimal solution to their

first-stage portfolio problem. Proposition 3 implies that bidders must skew to win. A bidder who

chooses a full-insurance policy that does not result in a sure loss can bid at most B =V. He will

thus be outbid by an opponent who believes that the Forest Service estimates are incorrect, since

by skewing, such an opponent can generate a higher total bid, while still expecting to pay less than

the full-insurance policy. The monotonicity of the equilibrium bid functions implies that the bidder

who gets the highest signal about the mis-estimate will skew his bid the most and win the auction.
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Our model assumes that bidders have identical signal quality and that this quality isexogenous
and fixed. Hendricks and Porter (1988) have demonstrated the importance of superior informa-

tion in oil lease auctions; bidders who have already drilled a neighboring tract are better informed

than outsiders. In the case of timber auctions, this extreme form of information asymmetry seems

unlikely, although it seems plausible that firms with greater resources could invest more in infor-

mation gathering. Indeed, there is significant evidence that bidders can invest varying amounts in

"cruising" the tract. Persico (1998) has shown that endogenizing the information acquisition de-

cision can have important consequences for revenue predictions. Essentially all of the comparative
statics results we will seek to test would persist in a symmetric model with endogenous information

acquisition. Heterogeneity of information quality is a more difficult problem, and we will not pursue
it here.

3.2 Equilibria in Oral Ascending Auctions

We now describe equilibria in a stylized version of an oral ascending auction. The oral auctions

conducted by the Forest Service are "free-form": after each bid is placed (where each bid must

specify bids for each species, not just the total bid), any bidder can choose to raise the bid. A

bidder may place a bid, stay silent for a time, and then become active againY If more than one
bidder indicates a desire to bid, the auctioneer selects one. Importantly, a bidder is not permitted

to raise her own bid at the end of the auction. If an auction ends, the high bidder is stuck with
the skew they have chosen.

One concern with oral auction data is that announced bids may not be accurate indicators of

beliefs, and in particular, that non-winning bids may be difficult to interpret. In the scale context,

this problem might be acute since bidders have significant leeway to engage in strategic bidding

behavior (such as skewing dramatically or onto the wrong species) early on to try to signal to
or confuse the other bidders. Anecdotal evidence suggests these practices are not widespread,

but nevertheless, we want to consider a more formal analysis of bidder behavior in oral auctions.

In particular, we are interested in interpreting the skews of non-winning bidders, since these are
observed in our data. We also wish to analyze the extent to which information is accumulated

in the course of an oral auction, as many comparative statics results (for example, the prediction

that the expected winning bid and winning skew will be larger in an oral auction than a first-price
sealed bid auction) follow from this information accumulation.

Our oral auction model is similar to Milgrom and Weber's (1982, henceforth MW) "English"

auction, which requires total bids to rise smoothly and does not permit bidders to drop out of the

5The Forest Service does have a rule stating that a bidder who has placed a bid earlier in the auction cannot lower

his bid on any given species. Past bids by other bidders do not place any restriction on a given bidder's behavior,
except for the standard requirement that total bids must go up.
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bidding and re-enter.

(English scale auction) All bidders are active at zero. The auctioneer raises the total bid
in small increments. At any bid increment, all bidders call out a skew (L\b) for the next
increment. They then announce their activity for the next increment. No bidder who has
dropped out can become active again. If only one bidder announces activity, that bidder is

declared the winner at her last announced bid.

Observe that relative to MW, the scale auction has an additional ambiguity. In the MW English

auction, a bidder's only decision is whether to remain active — and by remaining active, he reveals
only that his signal is above some lower bound. In the scale auction, each bidder must also announce

a bid allocation. A bidder could conceivably reveal all of his information in the first round of the

auction. A simple argument, however, suggests that in equilibrium, the release of information
must be gradual. Suppose that when the total bid was B, each bidder's strategy was to announce

a distinct bid allocation depending on their signal. For example, they might choose the value

zb(B, d) that maximizes their expected utility conditional on their signal and on winning at the

next increment. Then each bidder's information could be immediately inferred by all opponents.

From that point on, all bidders would have the same information and thus the same conditional

expected value for the object. All bidders would bid until the expected utility from winning is
zero, conditional on the signals of all of the bidders. This cannot be an equilibrium, since any

individual bidder has an incentive to deviate by announcing a lower signal. Doing so would reduce

the drop-out level of all opponents, and give the deviator positive expected profits. We conclude
that there must be some "pooling" of signal types in equilibrium.

Given a history and a bid level B, we define the "marginal" private signal d to be the signal

that leaves a bidder indifferent between winning and losing at B, when the skew is chosen to

maximize expected utility conditional on winning at B. We propose an equilibrium whereby, at
each point in time, all active bidders mimic the optimal bid allocation announcement of a firm with

the marginal signal. Further, bidders drop out at exactly the point where their signal becomes

marginal, so that bidders with higher signals stay in the auction longer. Thus, our equilibrium has

the same qualitative features as the MW equilibrium: (1) bidders with lower signals drop out first,

and fully reveal their information when they drop out; (2) bidders remain in the auction until they

are just indifferent between dropping out and winning the auction at the current bid; (3) the only

information that can be inferred about active bidders is that their signals are at least as great as

some marginal signal.

Formally, order the bidders in descending signal order. If k bidders have dropped out, let
= {p1, ...,pk} be the vector of total bids at which the drop-outs occurred. Then, define the
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function Bt(D; k, Pk) as the solution to the following problem:

0 =rnaxE [u(QAcT. ((b_v)+ LB)) 4 = ... =d =
DPkX] (2)

subject to : (B/QEST) + b(1 — x1) r1, (B/QEST) — zbxi � r2.

Given earlier drop-out prices Pk, the function B*(D; k, Pk) corresponds to the total bid level at
which a bidder with signal d = D can achieve a payoff of at most zero given that all other remaining

bidders also have signal D.

Proposition 4 B*(D; k, Pk) is strictly increasing in D, and B*(D; k, Pk) > V.

Defining D*(B; k, Pk) to be the inverse of B*, we have now identified the "marginal" type given

drop-out points Pk, and bid level B. Let /bE(B;k,Pk) be the bid difference that delivers the
solution D*(B; k, Pk). We can describe behavior in the auction as follows:

Proposition 5 Assume that 'utility functions are CARA or IARA. (i) There exists a Perfect

Bayesian equilibrium of the English scale sale auction with the following bidding strategies. Given
that k bidders have dropped out and until another opponent drops out, each bidder stays in the auc-

tion untilB = B*(d;k,Pk). For each B < B*(4;k,Pk), active bidders announce 1bE(B;k,Pk).
(ii) The player with the highest signal wins the auction, and the (sb, B) that wins the auction solves

0=rnaxE [u(QAcT. ((b_v)+B)) (3)

subject to: (B/QEST) + r, (B/QEST) — r
Once again, the equilibrium has the property that bidders must skew to win any winning

total bid is greater than the maximum full-insurance bid with positive profits. It also has the
feature that as the bid level rises, skewing becomes more aggressive, until only the bidder with the

highest signal is willing to own the contract.

Though bidders can make a wide variety of deviations from the equilibrium strategies, the off-

equilibrium-path beliefs required to support the equilibrium are weak. The main restriction is that

following a larger than expected skew by a given bidder, marginal opponents, i.e. those who are
about to drop out, must become slightly optimistic about that bidder's signal. The idea is that
announcing a deviant bid allocation is payoff-relevant only if a bidder wins at that exact bid, that

is, only if all opponents the marginal sigial D*(B, Pk, k). If a deviation makes marginal bidders
more optimistic, they will stay in the auction, and no gain can be realized. The assumption of

increased optimism is reasonable since a bidder with a signal less than or equal to D*(B, Pk, k)
would lose money if the auction ended following a deviation.
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As mentioned above, the real-world Forest Service auction differs from our theoretical model in

several ways. Bidders can drop out and re-enter the bidding and the bidding may rise in jumps.
However, even in a more "free-form" model — where bidders do not necessarily have to indicate

their activity at every point and where arbitrary jumps are possible — the behavior described

above can be supported in a Perfect Bayesian Equilibrium given strong enough assumptions about

off-equilibrium-path beliefs.

Consider an auction similar to the one above, except that after bidders indicate activity at a

given round (for example, by raising their hands), one bidder is recognized and allowed to raise the

total bid and call out an arbitrary skew. Bidders then indicate their activity for the next round,

and the process repeats. Moreover, bidders may drop out (not announce activity at a given bid)
and then re-enter later. In this auction, there will be an equilibrium in which bidders remain active

until dropping out once and for all, raise the bid level only in the minimal increments, and skew

according to bE(.) as defined above. Essentially, two assumptions are sufficient to support this

behavior as an equilibrium: following a 'jump bid" (i.e. larger than some minimum increment),

or an unexpected skew, opponents assign probability one to the deviant bidder having the highest

possible signal. Moreover, if a bidder drops out and then re-enters, announcing activity at a later

time, bidders similarly assign probability one to their having the highest possible signal. These
off-path beliefs support the above strategies as an equilibrium, since there is no way for a deviator

to make positive expected profits.

Although bidding behavior is unlikely to proceed in such a structured way in practice, the main

qualitative feature of the equilibrium is somewhat more robust: bidders announce skews that are

consistent with having observed the lowest possible signal that makes them profitable if they win.10

This feature is natural because inducing more optimistic beliefs by the opponents simply leads

them to bid more aggressively. It is particularly useful for interpreting the data recorded by the

Forest Service. The FS simply reports the highest bid placed by a particular bidder. Since that
bidder might have been willing to bid at higher prices than the last recorded price, this bid can

serve only as a bound on the bidder's total value. However, if the bidder is playing according to the

equilibrium described above, the bid does have an exact interpretation. The losing bid allocation

can be interpreted as the optimal choice by a bidder whose signal is marginal for the level of
the total bid. Although we will not pursue it here, this fact could be used to recover parametric

estimates of the underlying risk aversion and signal distribution in a structural model.

'°Equilibria 'with this feature also could be constructed with different rules about activity announcement, as in

Harstad and Rothkopf's (1997) "alternating recognition" model, where only two bidders at a time announce activity.
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3.3 Predictions of the Theory

We now summarize a number of theoretical predictions that we will attempt to check against the

data. Since the private signals of the bidders are not observable, we frame our predictions in terms

of the relationship between the observed bids and the Forest Service mis-estimates (the difference

between the estimated and actual species proportions). From the perspective of the econometrician,

both the mis-estimate, S = x1 —Pi, and the observed bids, B and Ab = b1 —b2, are random variables.

The theoretical model predicts a systematic relationship, summarized in Proposition 6.

Proposition 6 Assume that utility functions are CARA or IARA. In the oral and sealed bid

auction, bidder j's equilibrium choice of is affiliated with (5 and the same conclusion holds
conditional on any fired total bid B.

We now briefly summarize a number of comparative statics implied by the model. To state
some of the predictions, it is useful to order the species so that the Forest Service mis-estimate is

positive. Let be the species that is over-estimated, so that 6 = — Pçt' � 0 and bct, = bço
—

Observe that Proposition 6 holds no matter how we choose to order the species; £5 . Lsb1 is positive
exactly when the bid and the skew are in the same direction.

1. The amount bid per unit of volume is expected to be greater than the amount paid per unit
of volume, i.e. E[B/QEST — P/QACT} = E[L\bi .

6] > 0.

2. On average, bidders skew in the "right" direction: Pr{Ab, — Avç,, > 0} > and further,
Pr{zb — Avp > 0164 is increasing in 6,.

3. The expected skew will be nondecreasing in the mis-estimate, i.e. E[zbi — vI6] is increasing
in 6; and similarly for a fixed total bid B, E[Ab1 —AvlB, 6] is increasing in 6.

4. The skews of the higher ranked bidders should be larger, both unconditionally and for any
given bid level B, i.e. E[Ab, — &], E[Ah, — àvøIB] are decreasing in j.

5. Conditional on the per-unit bid, the amount paid per unit of volume, E[P/QAcTIB/QEsT, 6],
is decreasing in the over-estimate 5,.

6. Under CARA, the second-highest bid should be more skewed in an oral than in a sealed bid

auction, i.e. E[b — 1Xv6j,,ORAL] — — AvøIS#,SEALED] is increasing in 6.
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4 Data on Forest Service Auctions

4.1 The Data

Our data set includes a subset of the bidding and cutting data from Forest Service timber sales
described in Section 2. To our knowledge, we are the first to combine bidding and cutting data

to systematically analyze bidding behavior in timber auctions.11 We restrict attention to "two

species" sales, where two species, but no more than two, each comprise at least 25% of the volume

on the tract. We have found the most transparent way to think about skewing is in the context

of two-species sales because bidders can skew their bids only along a single dimension.12 In much

of our analysis, we restrict attention to oral auctions in Region 6 (Oregon and Washington) that

required only a small amount of road construction.13 In Section 5.4, we consider sealed bid sales

in Region 5 (California).

In the bidding data, we observe all information that the Forest Service makes public after its

cruise: its estimated volumes of timber, the reserve price, and also its estimates of end-product

selling values and projected processing costs. The bidding data also includes the identities of all
bidders and their bids. In the oral auctions, the bid we observe for bidder j is that bidder's last
announced bid.14 The cutting data allows us to observe the total volume and species proportions

actually removed from the tract (these are the same records used to bill the winning bidder).

In our empirical analysis of skewing and revenue, we include a number of control variables,

referred to as X. These include the volume of the tract and the average reserve price, whether or

not the sale was a small-business set-aside sale, and controls for other sale characteristics. These

include the number of months in the contract per unit of volume; the density of timber (where a

higher density may indicate "old-growth" and thus more variable volumes); the volume of per-acre

material, which is essentially scrap; the estimated logging costs for the tract; and the estimated
amount of road construction required. A variety of additional sale characteristics are also available

in the data; the results we report are robust to our choice of controls. In our analyses of skewing

(but not revenue), we control for the number of biddersj5 Last, we include dummy variables for

"Although see Cummins (1995), who uses the cutting data to analyze how the timing of timber harvesting varies
with market prices through the life of the timber contract.

'2When analyzing skews, we simply ignore any bids and/or mis-estimates on the remaining species. In contrast,
when we study revenue, we consider bids on all species.

"In Forest Service auctions, bidders are "reimbursed" for road-building using a system of credits that can be
redeemed for timber. Restricting attention to sales where road construction is minimal allows us to more drectly
interpret the prices paid by the bidders.

"As noted above, a bidder's last observed bid might bear only a distant relationship to the highest bid the bidder

is willing to place, but our theoretical model gives some guidance in interpreting the data: even if the bidder is willing
to place much higher bids, the observed skew is optimal for some "marginal" signal.

"Our results about the number of bidders should be treated with some caution, since unobserved features of the
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the time period, for several large forests, and for several common species combinations.

Appendix B provides further details about our data sources and sample selection criteria. Table

I contains summary statistics.

4.2 Preliminary Observations

On average, the revenue the Forest Service collects from a given sale is around 9% (in our main

sample, $40,692) less than the winning bid. To see how the gap between winning bid and revenue

arises, we can decompose it as follows:

B — P = (B/QEST)(QEST — QACT) + (ah• 5) . QACT,

where the first term is the portion of the bid-revenue gap due to the volume shortfall (on average,

tile volume cut is 5.8% less than the volume estimated), and the second term is due to the bidder

systematically paying a different amount than he bid for a "representative tree" from the tract. In

our sample, the first term accounts for $30,110 of the $40,692 bid-revenue gap, while the second

terms averages out to $10,582. Thus for the average thousand board feet of timber removed from

a tract, the auction winner pays about $4 less than it bid (the average winning bid is $143).

A second feature of the data is the significant variance in the Forest Service estimates and in the

amount of skewing. Chart I shows the distribution of Forest Service mis-estimates, demonstrating

the potential return to information. The Forest Service estimates of the species proportions differs

from the proportions removed by more than 5% in nearly half the sales (45%) and by more than

10% in about one of six sales (17%). Chart II shows how the winner distributed his or her overbid

(the difference between the total bid and the reserve price) among the two species. As established in

the theoretical analysis, a risk-neutral bidder with information would place his or her entire overbid

on one species or the other, but the chart shows significant dispersion and many sales where the

winning overbid is distributed across both species.

Finally, we note one aspect of the data that is, strictly speaking, inconsistent with our model.

While our model assumes the existence of enough public information so that in equilibrium all

bidders skew in the same direction, this is clearly not the case in practice. Chart III shows a
scatter-plot of the skew of the winning and second-place bids (III.A), and of the winning and

tract may affect both participation and skewing behavior. However, our feeling is that for skewing regressions, this

endogeneity problem is less significant than in standard analyses of auctions, where the main dependent variable is
the magnitude of the bid. Here, the unexplained portion of a bidder's skew should correspond to private information
obtained during the cruise. If one thinks of the cruise as tantamount to an entry decision, it is plausible that
unobserved factors leading to entry will be unrelated to information obtained after the decision to cruise is made. In

any event, our results are robust to both the omission of the number of bidders as an explanatory variable, as well as
to instrumenting for the number of bidders using some of the standard approaches from the existing literature (such
as the forest and district of the tract and related measures, as in Hansen (1985) and Haile (1998)).
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third-place bids (III.B). Both scatter-plots exhibit a clear positive dependence but also significant

variation. In some auctions, bidders skew in entirely opposite directions: one bidder has all of the
overbid on species 1, the other on species 2.

4.3 Bid Skewing: Some Examples

To give some sense of the pattern of bid allocation in oral auctions, we briefly discuss a few "case
studies" of bidding in oral auctions. In our theoretical model, skews increase monotonically with
oral auction bids. While this is the case in many sales in the data, the it is byno means the rule.
Moreover, in many auctions, the reserve price plays an important role —at least one of the bidders
places his entire overbid on one species, so that the reserve prices are binding. In fact, there are

relatively few examples of auctions where every observed bid is an intermediate skew, and the skews

are ordered exactly as predicted by theory. The following is one such case:

Example: Monotonic Bidding Behavior. 5 = .019

Bidder B/QEST Sp. 1 skew: tb —r % overbid on sp. 1 (Lb —r) .

1 347.8 339.39 .94 6.45
2 346.5 334.39 .94 6.35
3 285.6 50.39 .56 .96
4 277.5 33.39 .52 .63
5 250.72 .39 .48 .007

On occasion, skewing can have very large consequences. Consider the following sale where the
bidders skewed heavily in one direction at the start, then switched later in the auction.

Example: Switching Skews. 5 = .227

Bidder B/QEST Sp. 1 skew: b —r % overbid on sp. 1 (b — ir) .

1 234.3 523.96 1 118.9
2 233.9 522.96 1 118.7
3 207.6 —396.62 0 —90

4 193.8 —353.66 0 —80

In this example, earlier bids are skewed into species 2, which was in fact under-estimated. As it

turned out, the average payment was less than half of the winning bid; if the third or fourth bidder
had been awarded the contract, they would have paid significantly more than their average bid.
The Forest Service would have received more revenue from awarding the tract toone of the lower
bidders.
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There are a small number of cases where bidders seemed to place a "surprise" skew at the end

of an auction. Boise Cascade did this in two instances. In each instance, several lower-ranked

bidders had placed large skews in one direction, and Boise Cascade won the auction with a very
small increase in the average bid, but with a switch in the skew of several hundred dollars. In
one case, the skew turned out to be in the right direction; in the other, it was wrong. It appears
that information affects allocation of the tract, since the winner pays a very different price than
the next-lower bidder would have for the same object, and the winner's behavior reveals that the
winner anticipates this.

5 Evidence on Skewing

We now turn to testing whether the predictions of the theory are consistent with the Forest Ser-

vice data. Before presenting our empirical analysis, we discuss two choices we made that merit
discussion.

First, the theoretical model suggests thinking about the skewing relative to a "full-insurance"
allocation; that is, the variable of interest is Ab —Av. However, the data contain no exact analogue
to the "values" in our model. We use the difference in reserve prices as aproxy for the difference
in the values of the species, i.e. we assume that Av = Ar. In a linear regression of z?b on Ar,
this amounts to a restriction on the coefficient of Ar. Such a restriction seems reasonable — in
a subsample of 97 auctions where mis-estimates are small and the reserve prices do not bind, a

regression of Ab on Ar leads to a coefficient of 1.055 on Ar (with a standard deviation of .171 and
an B2 of 0.28).

A second point concerns the way in which we order the species. If we were interested only in the

unconditional relationship between Ab and 6, the order of the species would be irrelevant (because

(Ab1, 61) = — (Ab2, 62)). Yet we would like to control for the possibility that some observable
features of the tract might explain the fact that bidders skewed in the right direction. Thissuggests
studying the relationship between the absolute magnitude of the mis-estimate (6 > 0) and the
skew in the "right" direction Ab4, — Ar4,. We follow this approach in order to test the model's
predictions. In Section 6, we consider an alternative approach: namely, we assume that the model

is correct, infer x (the species that the winning bidder believes is most likely to be over-estimated),
and then directly estimate bidding functions Ab9, B@).

5.1 Winning Bids Reflect ex ante Information

We begin with the primary question of whether winning bids in Forest Service auctions reflectex
ante information about Forest Service mis-estimates. The following cross-tabulationsuggests that
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winning bids tend to be skewed in the right direction, especially when the Forest Service makes a

significant mistake in estimating the species proportions.

Mis-estimates and Skews in Region 6 Oral Auctions
Tncorrect Skew Small Skew Correct Skew

(b — Ar < —20) (—20 < — < 20) (b0 — ir > 20)
Small mis-estimate

83 44 90
(5 < .025)

Larger mis-estimate
139 104 239

(b > .025)

Overall, the winning bid is skewed correctly (zb—zr0 � 0) in 58% of the sales. Table 2 reports

a probit regression, confirming the theoretical prediction that, conditional on the control variables

(X), larger mis-estimates correspond to a higher probability that the winning bid is skewed in the

right direction. An increase in the magnitude of the mis-estimate of .01 is associated with roughly

a 1-2% higher chance of the winning bid being skewed correctly. Column (2) establishes that the

relationship is concave: the initial effect of an increase of .01 in the mis-estimate is a 2-4% increase

in the probability of a correct skew, but the slope diminishes in 5. Of the control variables, the
most interesting result is that the number of bidders increases the probability of skewing in the

right direction. This finding supports the hypothesis that information is revealed in the auction.'6
To obtain a more rigorous test of whether bidders in fact have ex ante signals about the ex post

value beyond what can be publicly observed, we would like to account for the competing hypothesis

that Forest Service estimates are systematically biased, and bidders have realized this and just skew

systematically in response. To do this, we ask whether unanticipated deviations in S help to explain

the winning bid allocation, controlling for exogenous sale characteristics (X) that might "predict"
the mis-estimate. However, theoretically we have no reason to expect a linear relationship between

X and the skew; X might affect the bidder's risk aversion, or her beliefs, in a variety of ways. Since

empirically, X is correlated with 6, it is important to isolate the effect of the mis-estimate from

a potential nonlinear relationship between X and the distribution of 6. To accomplish this, we
consider the following model:

(4)

where X contains sale characteristics as described above. If the bidders do not have ex ante
information about S, we should find 'y = 0.

'5As dicussed in footnote 15, it seems plausible that the number of bidders is exogenous in the skewing regression,

as bidders must cruise the tract to learn about mis-estimates. Our results are robust to excluding this control.
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We consider a semi-parametric approach to estimation. Dividing the control variables X
(as listed in Table 2) into continuous regressors Z and dummy variables W, we allow h(X) =
i(Z) + Wf3, where ii is an arbitrary continuous function of two indices (Ziai, Z2a2). We begin

by estimating

— = ha(Z) + Ca, W = iiw(Z) + 6w and 5 = ui5(Z) + 65, (5)

letting ha, hw and h5 take a double-index form.17 While it should be noted that our double-index

model is still somewhat restrictive, our results are robust across a wide range of specifications of
the two indices Z1 and Z2. In the specifications we report, we let Z1 be the average reserve price,
while Z2 contains the remaining continuous control variables. Denoting the residuals from these

semi-parametric regressions as Ca,ew and 6, we then use ordinary least squares18 to estimate

= ewf3+esy +a (6)

Our estimate of the coefficient 'y is 406.8 with a standard error of 114.8. That is, an increase
in the mis-estimate of .01 is associated with a $4 increase in the skew (in the right direction).
We can reject the null hypothesis that 'y = 0 at the 1% level. These findings can be compared
with a simple linear specification, assuming h(X) = X/3. As shown in Table III (2), this yields
an OLS estimate of 'y of 383.8 with a standard error of 140.1. Table III (3) includes a control

for the magnitude of the bid; this captures the idea that part of the effect of the mis-estimate is

to encourage more aggressive bidding. Indeed, we find a positive, significant effect of the value
bid on the skew, alongside a somewhat smaller point estimate of 'y (319.6 with a standarderror
of 121.9). However, we are cautious about interpreting these coefficients as structural parameters
of the bidding function, due to the fact that we have ignored the issue of the reserve prices. The

per-species reserve prices bind in about 42% of our observations; this implies that bidders were not

able to skew as much as they would have liked, without further raising their overbid. Further, the

magnitude of the overbid, an endogenous variable that depends on b,, determines whether or not
the reserve prices bind. Thus, we interpret the coefficients in Table III as reduced-form correlations,

deferring a more formal analysis of the reserve prices to Section 6.

Finally, all of these specifications restrict the relationship between (b —r) and 8 to be
linear. While establishing a linear relationship is sufficient for testing our hypotheses about bidder

7To estimate, e.g., ib0 —Ar., = iia(Z) + e, we used the average derivative method of Powell, Stock and Stoker
(1989) to obtain consistent (up to scale) estimates of a1,a2, where &a(Z) = hA(Zlal,Z2cx2). We then then used a
kernel estimator (with a normal density) to estimate the function hA, estimating abø—r# =hA(Zjâi, Z2a2)+r.
We used a routine described in Stoker (1989) to choose the bandwidth (the values were .41 for the first index and
1.1 for the second), and we used a trimming rule of 5%. Tom Stoker generously provided portions of code for the
estimation.

'5As Robinson (1988) points out, OLS estimation of eA on ew and e5 yields consistent estimates of j3 and -y and
the OLS standard errors are correct. See also Stoker (1989) for a clear discussion of the model we consider.
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information, it is interesting to inquire more generally into the relationship between skews and
mis-estimates. To do this, we estimated the model tb0 — 1rçf, = h(Zck, + Wf3+c (where
Z = (Zr, Z2) and W are defined as above), using the density-weighted average derivative method

of Powell, Stock and Stoker (1989) as described above. The main finding, robust across a variety

of specifications of the index Z, is that the average derivative with respect to 6 is positive and
statistically significant at a 5% level of confidence. To see the shape of the functional relationship,

Chart IV plots the resulting estimate of the relationship between the skew and the mis-estimate

(h(Za,64, evaluated at the mean of Z). The chart illustrates the positive slope and a generally
convex shape over the region of 6 with most of the density weight.

5.2 Bidders have Different (Private) Information

A key aspect of our skewing model, and indeed of any "common-value" auction, is that allocation

is driven by private information rather than preferences.'° In our model, bidders who are more

optimistic about the gap between bids and payments skew more aggressively and submit higher

bids. Thus, we would like to know in the data whether higher-ranked bidders were more aggressive

in their skews. We also seek to test whether higher-ranked bids are more likely to be skewed in

the right direction: because information is revealed during the course of an oral auction, the th

highest bid should incorporate strictly more information than the (j + l)st.20 Finally, our model
of information revelation implies that the top two bidders should exhibit very similar skewing

behavior. The top bidder should stay in the auction for only one bid increment past the second-

highest bider, while lower-ranked bidders will in expectation drop out at significantly lower bid
levels with significantly less aggressive skews.

To investigate whether higher-ranked bidders allocate their bids more accurately, we look at
the following model:

Duny(Skew in right direction)t = . Dmy(Rank j) +X + Ut + &t. (7)

We estimated this as a fixed-effects linear probability model. Using a fixed effect for each auction

eliminates the auction-specific sale characteristics and the disturbance Ut, allowing us to isolate the

effect of the rank. The results are reported in Table IV. As expected, we find that the winning and

'5lndustry sources reported complaints by bidders that mis-allocation results when their opponents have "bad"
information (i.e. were "over-optimistic" about tbe skew).

20As we noted in Section 4.2, our theoretical model is not consistent with the data on this point, since in equilibrium,

it suggests that all bidders will skew in the same direction (which is not the case in practice). However, the result
that bid i in an oral auction will be based on more information than bid j + 1 should be robust across a wider range
of models.
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second-highest bid are significantly more likely to be skewed in the right direction than the third
and fourth-highest bids.

The second question is whether the skews of higher-ranked bidders are more aggressive. Here,

we restricted attention to sales where none of the top four bids is censored by the reserve price.21
We estimated

(M — rø) = . Dummy(Rank j) +X$ + Ut +E, (8)

again using a fixed effects specification. As is shown in Table IV (2), the winning and second-

highest bids were similarly skewed, while the third and fourth-highest bids were significantly less

skewed (by roughly $20—30) 22 The third column of Table IV reports a final specification where

the dependent variable is an alternative measure of aggressiveness: the absolute magnitude of the

bidder's skew. This specification separates out the fact that higher-ranked bidders skew more

accurately and concentrate solely on the size of the skew. We again find that the top two bids
are very close, while the third and fourth bids are less skewed. In this case, there is a substantial

difference between the magnitude of the third and fourth-highest bids; both are significantly less
skewed than the top bids.

Our findings are consistent with the hypothesis of differential information among the bidders.

Suppose, alternatively, that bidders have identical beliefs about the true volumes on the tract and

choose optimal decision-theoretic skews. In this case, observed differences in bids and skews might

be driven by differences in costs, private values for the species, or risk aversion (either intrinsic or

due to different bid levels and values for the tract). For instance, if bidders have decreasing absolute

risk aversion, then bidders with a higher overall value for the tract would be willing to skew more

aggressively.23 Such a model has higher-ranked bids being more skewed, though all bids skewed in

the same direction. Idiosyncratic variation in tsv also could generate variation in skewing, simply

through differences between the "full-insurance" allocation.

These private value explanations have number of shortcomings. First, there is no reason to
think higher-ranked bids should be more accurate. Second, there are numerous cases in the data

where we observe a given bidder bidding on some combination of two species (e.g. hemlock and

fir) in multiple sales and skewing in different directions in different sales. Third, reconciling the

21Although this restriction leads to a non-representative sample, it is still possible to test predictions about dif-
ferences in behavior across ranks within an auction. We expect that the sample of uncensored auctions displays less
pronounced skewing behavior than the full sample.

"One concern is that we have relatively few sales in which none of the top four bidders were constrained by the

reserve prices. We performed a robustness check by enlarging the sample to include all sales where the top three
bidders were unconstrained. We obtained similar results — no significant distinction between the top two bidders;
the third-highest bid tends to be closer to full-insurance.

"We are grateful to Phil Haile for pointing out this potential explanation for monotonicity of the skews.
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observed data with differences in private values or risk parameters seems to require implausible

differences across bidders. The fact that bidders can resell timber and subcontract logging suggests

some compression in values for the different species. Yet, among the subset of 72 auctions in which

the top four bids are not close to the reserve price, the average difference between the largest and
smallest skew was substantial $46 (with a standard deviation of $86 and maximum of $393). To

place this in perspective, the average winning bid was $167, while the average magnitude of the
winning skew was $87. Finally, while our information-based model of bid allocation is consistent

with the similar skews of the top two bidders relative to the others, it is hard to see how this could

be explained in a model without some aspect of differential information.

We draw three conclusions regarding the variation in skews across bidders. First, dispersion in

skews can be large within a given sale. Second, it appears that bids later in the auction are "more

informed." This might reflect either more accurate prior estimates or the fact that information

is acquired during the auction. Third, given that winning bidders are effectively paying a lower
percentage of their bids than lower-ranked bidders, the logical consequence of our findings is that
information should have an effect on allocation.

5.3 Revenue Effects

One simple consequence of the scale sale format is that losing bidders might have actually generated

more revenue than the winners, given the actual volumes cut. In our sample, a losing bidder would

have generated more revenue in 17% of the sales; the revenue "loss" from this misallocation is $5.39

million, about 1.7% of the total revenue. While such discrepancies have attracted the attention of

policy-makers (see GAO report RCED-83-37), such magnitudes should be interpreted with caution:

the losing bids as well as the winning bids were placed taking into account the benefits of skewing,

so clearly, any change in the allocation rule would also change the equilibrium bidding strategies.

Given our model, it is interesting to ask how revenue changes in response to an arbitrary Forest

Service error, that is when b increases. With two species, the revenue collected by the Forest
Service per unit of volume is equal to B/QEST — 6, so the change in revenue is

a—Revenue = .a—B/QEST
— —h0 . — (9)

An increase in b affects both the magnitude of the bid and the gap between bid and payment,

5. Consider first the latter effect. We have already established that J-Ab0 > 0, a force in
favor of a reduction in revenue. However, the sign of is ambiguous. If Ar1, is greater than 0,
then on average we expect iXb,1, > 0 as well. But, if & <0, we cannot sign b#. In our sample,
when & � 0, the mean of Ab0 = $99; when &0 <0, the mean of = —$46. To capture the
net effect of the mis-estimate on the gap between the bid and the payment, Table V (1) reports
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the results from the following specification:24

B/QEST — .P/QACT = So1{zr>o}"yi + So1{ar0c0}'72 + X@ + a (10)

Overall, the gap between, the bid and the payment is increasing in 80 irrespective of the sign of
Ar0, but derivative is larger when Arqs � 0 than when Ar0 <0 ($110 with a standard error of 34,
versus $82 with a standard error of 24).

Now consider —B/QEST. Our theoretical analysis established that the level of the bid increases
when O increases. However, it is not necessarily true that = x. As analyzed above, Pr(i = xI°o)
is nondecreasing in o; but, for those cases where x, then 8 is affiliated with A higher 6.
leads such bidders to be less optimistic about the magnitude of the mis-estimate, and to bid less.
Overall, if Pr( = x8o) is high enough, the expected value of the winning bid should be increasing
in the actual mis-estimate 8; but, in general the relationship may be ambiguous.25 Table V (2)

reports a regression of B/QEST on sale characteristics, following the specification from (10). We

see that when Ar0 <0, higher mis-estimates lead to higher bids, but not when Ar0 � 0.
Finally, to estimate the net effect of a Forest Service mis-estimate on revenue, in Table V (3)

we report the relationship between revenue (P/QACT) and the mis-estimate, following the same

specifications as above. An increase in the mis-estimate, conditional on Ar0 � 0, is associated
with a statistically significant reduction in revenue. The effect is relatively small in magnitude (a

mis-estimate of .05 is associated with roughly a $12,500 reduction in revenue). Conditional on the

lower-valued species being over-estimated, a larger mis-estimate is associated with an (even smaller
in magnitude) increase in revenue.

Summarizing, mis-estimates appear to have a negative effect on the revenue received by the
Forest Service. However, we mention several caveats. The first is functional form; the specifications

include only linear functions of X and 6. While the result about revenue loss is only reinforced
when we allow for richer functional forms for X,26 the functional relationship between B/QEST
and b appears to be non-monotonic, and our estimates are somewhat sensitive to specification.

Second, as discussed above, we have not accounted for the fact that the reserve prices constrain
skewing behavior in 42% of the sales. We return to this issue in Section 6.

24As the sales in our sample have more than two species, B/QEST — P/QAcT Ab., . 6, although this is a close
approximation. The empirical results report the gap between the bid and payment including all species.

25Even if $—B/QEST � 0, the magnitude of —B/QEST depends on a number of factors, including the risk
aversion of bidders and the variance of 6.

26We also estimated the models of Table V (2) and (3) using the semi-parametric methods from Section5.2,
following the two-step procedure described in equations (5) and (6). In the bidding equation, our estimates of 7i and
'72 are 110 with a standard error of 43, and -16 with a standard error of 39, respectively. In the revenue equation, our
estimates of 'y, and '72 are 49 with a standard error of 42, and -121 with a standard error of 37, respectively. Thus,
relative to the linear model, these results suggest greater revenue loss.
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5.4 Sealed Bid Auctions

We now report some evidence on sealed bid auctions. We are especially interested in sealed bid

auctions because the interpretation of skewing behavior is unambiguous —each firm's bid is only
relevant in the event that the firm wins, and so it is a dominant strategy for each bidder to choose

the skew that maximizes expected utility conditional on winning and the bidder's private signal.

Using a small (63 sales) sample of "two-species" sales from Region 5, we reprise the main tests
conducted on the oral auction sample. We chose Region 5 because sealed-bid auctions were more

prevalent there.

The first column of Table VI reports sealed bid estimates of the probit model from Section

5.1, where the dependent variable is the probability that the winner skewed correctly. Overall, the

winner skewed in the right direction in 65% of the sealed bid sales, and was more likely to skew in

the right direction when the mis-estimate was large. The size of the winner's skew (Ab, — r0) is
increasing in the mis-estimate B0 (Table VI (2)). An increase in the mis-estimate of .01 is associated

with an additional $3.80 skew in the right direction (our point estimate in the oral auction sample

was $3.83). Thus it appears that in sealed bid auctions, as well as in oral sales, the winner's bid

does incorporate information about the species proportions beyond what is known from the Forest
Service estimates.

The last three columns of Table VII report sealed bid estimates of the fixed-effects panel specifi-

cations, analogous to Section 5.2. We restricted the sample first to sales where there were at least

three bids (column (3)) and then (columns (4)-(5)) to a still smaller sample where the top three
bids are unconstrained by the reserve prices (that is, where the overbid was large enough relative to

the skew that the reserve prices do not bind). Across ranks, we did not find significant differences

in the accuracy of the skews, nor in the magnitude of the skews in the right direction (Ab0 —Ar0).
We did, however, find that the winner's skew is significantly larger in absolute magnitude than the

skews of the lower-ranked bidders. In fact, the magnitude of the skew is ordered by rank. These

findings are fairly consistent with the logic of information-based skewing, though not perfectly
so. Since there is no learning in a sealed bid auction, it is not clear that the winner should have

more accurate information than other bidders. However, according to theory, the winner is more

optimistic, and hence skews more aggressively, leading to larger absolute skews (which we found).

Because bidders are likely to skew in the right direction, this should presumably also lead to larger

skews in the right direction (which we did not observe).27

"One theoretical prediction that we were unable to test is that the skews of the second-highest bids should he
larger in an oral sale. Our samples of Region 6 oral sales and Region 5 sealed bid sales are sufficiently different

(Region 5 sales generally having younger, less-valuable, second-growth trees, and fewer bidders) that we did not feel
confident making direct comparisons. Moreover, the choice of auction format is conditioned on sale characteristics
and is endogenous. In exploratory work using a mixed sample of sales from Region 1 (Idaho and Montana), we did
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5.5 Moral Hazard in Cutting: An Alternative Hypothesis

An alternative story, that can potentially explain many of the empirical regularities described above,
is that bidders do not have private information ex ante, but instead are able to destroy some of the

timber on the tract rather than pay for it. This would lead to a moral hazard problem, where sale

winners would have incentives to destroy low-quality timber rather than harvest it.28 Anecdotal

accounts from the industry suggest that loggers may have a limited ability to manipulate the ex

post measurement process. This would help to explain the 6% difference between the estimated
and observed volumes.29 Moral hazard could also explain observed skewing, since higher bids ona
given species would imply a larger motivation to destroy low-quality logs of that species30 — thus

generating a correlation between skews and differences in estimated and cut species proportions.

Of course, the presence of moral hazard is not inconsistent with our story of ex ante information

and might reinforce incentives to acquire information — bidders may want to examine a tract to
see whether it will be easy or difficult to destroy low-quality timber of a given species. We can

place this in the framework of our model by thinking of easy-to-destroy low-quality timber as being

simply not present. In general, the more skewed the bidding, the higher the incentives for ex post

destruction of one of the species;31 and, conversely, the easier it is to destroy low-quality trees of a

particular species ex post the more incentive to skew.

Several pieces of evidence weight against an explanation of the data based solely on moral haz-

ard. With pure moral hazard, the total volume of timber destroyed should be strongly correlated

with the "observed mis-estimate." But in the data, the correlation between the proportions esti-

mated and cut and the total volume estimated and cut is very low and insignificant: 0.053 (with

a t-statistic of 0.32). This finding is confirmed when we control for observed sale characteristics.32

Moreover, the distribution of skews within sales is hard to rationalize with a moral hazard story.

We found in Section 5.2 that the second-highest bidder was just as likely to skew in the right direc-

tion as the winner, while the lower-ranked bidders were significantly less likely to skew in the right

find some difference between skewing behavior in oral and sealed sales, but perhaps due to the very small sample the
results were sensitive to specification.

28A similar story has loggers colluding with the monitors responsible for measuring the timber as it leaves the tract.
2'Leffier and Rucker (1988) analyze the effects of various policies on the harvest rates on Forest Servicecontracts,

showing that a higher percentage of the estimated timber is extracted when contracts are shorter in duration.
30Only logs that meet a certain threshold are counted at all; broken limbs and other damaged material is charged

at a different rate. Thus, a bidder could avoid "stealing" timber simply by breaking a log into pieces and paying a
low price for it.'

Interestingly, one Forest Service official told us that cutting was monitored inteasely when bids were especially
skewed.

32We also looked at how the gap between estimated and cut total volume and species proportions variedover time.
Because timber prices were quite volatile, one would expect the gap in total volume to vary a lot if moral hazard
were a primary concern. On average, it remained relatively stable over time.
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direction. This is sensible in the context of an ex ante information story, but if moral hazard were

the primary force, the winning bidder's cutting behavior should respond to herown skew, while the
second-highest bidder's skew should be less closely related to the actual difference in proportions.

5.6 Bidder Heterogeneity

Our theoretical model assumes that bidders are homogeneous. However, in our background discus-

sion on the timber program, we raised the issue that bidders can be a very heterogeneous group,
with giant conglomerates bidding against small independent logging operations. Because it seems
plausible that there could be systematic differences between different type of bidders in terms

of their skewing behavior, we briefly note our attempts to uncover observed differences between

bidders that might be major (un-modeled) determinants of skewing behavior.

We classified the bidders into three groups (small, mid-size and large) on the basis of the number
of employees. Small bidders have less than 100 employees, mid-size bidders have between 100 and
300, and large bidders have over 300. We then looked in a variety of ways for systematic differences

in the skewing behavior of these groups of bidders. Rather than report specific empirical results,we

give a brief summary of our findings. No particular class of bidders was more likely to skew in the

right direction, though larger bidders did appear to skew their bids somewhat more dramatically.

However, it also appeared that in sales where the mis-estimates were large, smaller bidders were

somewhat more likely to win. Overall, we did not find large differences between bidgroups.
We also examined the individual skewing behavior of a few frequent participants. None of

these were significantly more likely to skew in the right direction, although a few bidders (such as
Boise Cascade) skewed more aggressively (that is, the average magnitude of the skew was larger).
We might attribute this behavior to a lower level of risk aversion, as Boise Cascade is a large

conglomerate.

6 Direct Estimates of the Skewing Model

In the previous section, we tested whether predicted relationships between variableswere borne
out in the data. We now take a somewhat different cut at the data, by assuming that the model is

correct and attempting to directly derive and parametrize bidding functions. There are a number
of reasons to take this approach: first, if the model is correct, it allows us to quantify thesensitivity
of bidders skews to information; and second, it allows us to investigate in some detail the way in
which the reserve prices constrain skewing behavior.
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6.1 Structural Bid Functions

We start by assuming that bidders have (approximately) CARA utility, so that wealth effects can

be ignored. We impose a number of functional form assumptions, beginning with an assumption
about the species values v.

(B1) vk = r + X Ck+7), for k = 1,2 (so zv = &), ij independent of r, X,x,6.

In an oral auction, the winning bid allocation solves equation (3) from Section 3.2. Writ-
ing the information that this bid is conditioned on as d, we can express the winning skew as

bx(B,dx,X,r,&,xx), where

ab — — f — R)/Qsp if f(d',X,e) > —(B — R)/QEST

t f(d, X) otherwise

When the reserve prices do not bind, our assumption that the utility function is CARA implies

that the optimal skew f(.) is independent of the total bid. Moreover, Proposition 1 implies that

at any equilibrium bid zb > L1v = so the reserve constraints can only prevent bidders from
skewing as much as they want.

The function of interest is the optimal unconstrained skew fØ, which we observe only when

the reserve price constraint does not bind. Because whether or not this constraint binds depends on

the total bid level B, we need to model this selection. The winning bid level again solves equation

(3) in Section 3.2, and can be written as

= f gC(d,,Xrgjj) if f(d',x,X,e) >
Qest gU(W, , X, r,e, ij) otherwise

To complete the model, we make assumptions about functional forms. Under the assumptions
of our theoretical model, the bidders observe x which provides information about the direction
of the optimal skew. As this can be inferred directly from the winner's skew, we order species so
that Ab — Ar � 0. Thus, both the overbid and the skew will always be positive in our model.

This motivates a specification of the bidding functions in logarithms (recalling that our continuous

control variables are denoted Z1 and the dummy variables are denoted Wj):

(B2) = ln(b + .3); X= ln(Z) + W2

(B3) d' ln(d') =Z+g, e independent of

(B4) ln f(.) = + + Ea1U€.

(B5) lng(.) = + X/32 + e/3c + rn3c.
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Consider the interpretation of these equations. First, (B2) introduces logarithmic transforma-
tions of the continuous control variables; since our sample includes sales with mis-estimates of as
low as —.27, we add 3 to the mis-estimate. (B3) states that the bidder's signal about the mis-
estimate is the sum of the (transformed) actual mis-estimate, and an independently distributed

error term. We interpret e as the error in the bidder's estimate of 8x; a bidder with a higher & is

more optimistic about the extent of the over-estimate on species x In (B4) and (B5), we assume
that the log of the overbid and the log of the skew are both linear in the log of the signal.

Of course, the functional forms in (B2)-(B5) are ad hoc, and we do not attempt to relate them to

the primitive utility function; but they offer several distinct advantages. First, below we will require

an assumption on the distribution of the errors, and the normal distribution will be convenient;
thus, we will assume below that & and tj are normally distributed. Second, although we did not
formally model the choice of transformation, several back-of-the-envelope calculations33 indicated

that a logarithmic transformation of the skew and overbid provides a better fit than linearity. Our

elasticity estimates are fairly robust to the way in which variables are scaled. Third, and most

importantly from a computational perspective, our functional form assumptions imply that the
probability that the reserve price binds is a linear function of observables and unobservables:

Pr(res does not bind) = Pr(f(d,x,X,&) <-—f(d,x,X,r,&,uj)) (11)
Xx

= Pr ( Sxai + Xa2 + ln(xx) — 8x/3 — XJ3

<fl6 + i/? La —

Pr(h(d,x,X,r,xx) <

Notice that x, the fraction of the volume estimated on the over-estimated species x affects

whether the reserve price binds. To understand its effect, observe that for a small Xx, only a small
overbid is required to achieve the desired level of skew. Thus, in principle, variation in x, can
be used to identify the full distribution of ii. However, in practice, due to Forest Service bidding
restrictions and our focus on sales with two primary species, our data set includes only sales where

x > .25. One-fourth of the observations (170 sales) have x E [.25, .44]; call this group A and the

complement group B (524 sales). In group A, the reserve prices bind 30% of the time, as opposed
to 45% of the time in group B. This suggests a crude approach to understanding the effects of the

reserve prices: estimate the effects of mis-estimates on skews and bids in each group and compare

them to results when the sales are divided according to whether the reserve pdces were binding in

practice. The following table summarizes the results about the effects of mis-estimates:34

331n particular, we performed Box-Cox estimation on uncensored subsamples of the data, as well as the full sample
ignoring censoring; however, that approach is not rigorous unless censoring is accounted for.

34These elasticities were estimated using OLS with robust standard errors, and using the specification of control
variables as in Table VII.
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Elasticities of: Contrast: low (A) v. high x> (B) Contrast: Reserve prices binding
Skew w.r.t. Group A Group B Not bind Bind
mis-est. b 0.065 (0.025) 0.018 (0.010) 0.020 (0.011) 0.032 (0.011)
Overbid w.r.t. Group A Group B Not bind Bind
mis-est. 8x 0.045 (0.021) 0.013 (0.008) 0.010 (0.009) 0.035 (0.011)
The elasticities in this table are all evaluated at the (overall) sample means. Note that there is

some ambiguity about interpreting the elasticities with respect to mis-estimates, as we are consid-

ering the effect of a larger mis-estimate in the "right" direction as perceived by the bidder. In sales

where the reserve prices bind (286 sales), bids and skews are more sensitive to mis-estimates than

in sales where the reserve prices did not bind. But when censoring is exogenouslymore likely, bid-
ding and skewing are less sensitive to mis-estimates. The latter conforms to our theoretical model:

when bidders are unconstrained in their skews, they are able to optimally adjust their skews, in
turn allowing them to place higher bids without expecting to pay more. Notice that in uncensored

sales, we find only a small and insignificant relationship between the overbid and the mis-estimate.

This indicates that in sales where firms chose to skew "moderately," they also chose not to increase

the total bid in response to the mis-estimate. On the other hand, when they skewed aggressively,
they also increased the total bid sharply in response to higher mis-estimates.

The fact that the way in which the sales are divided affects our comparisons indicates that

the censoring is endogenous. Of course, our theoretical model predicts this: the error in the selec-
tion equation, ii, is correlated (though imperfectly so) with the errors in the skewing and overbid
equations. Formally:

E[lnCAbx(.) —r )Ires does not bind] = 6xal + Xa2 + aiu6E[ev > h(j] (12)

E[ln ( res does not bind] = + + E[efia + flcjv > he)] (13)\ Qest ,'

E[ln (B@)_R) Ires binds] = x + + E[eu + flaIv ch(.)]. (14)Qest

The model fits into the framework of sample selection problems (Heckman, 1976). Of course, the
most efficient approach to estimation entails estimating the system of equations simultaneously;
with sufficient data, the exogenous variation inXx further implies that we could allow for a flexible
functional form for the distribution of the errors. However, for computationalsimplicity and because
our dataset is limited, we instead estimate each equation individually using standard single-equation

selection routines (for each equation, we used Heckman's two-step procedure, with standarderrors
computed using full information maximum likelihood). Thus, we assume that ij and e are standard
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normal, so that E[ev > h9j = Also for simplicity as well as robustness, we did

not impose the cross-equation restrictions between (11) and the other equations.

Our results from this estimation are reported in Table VIII (1) and (2). We use a somewhatmore
parsimonious specification than in earlier tables. First consider the probit estimates. As expected,

higher values of ln(x) lead to a lower probability that the reserve prices do not bind. The effect of

the mis-estimate is close to zero, although it is somewhat imprecisely estimated. This implies that

mis-estimates affect the overbid and the skew at approximately the same rate (cii

Now consider the skewing regression, incorporating the selection correction Table WI (2). Our

parameter estimates can be interpreted as elasticities, although we must correct for the transfor-
mation of the mis-estimate (this requires multiplying the estimates by E[Sx]/(E[Sx]+ .3) = .0461).
The average value of the skew is $103.50, while the average mis-estimate is .014. We find thata 1%
increase in the mis-estimate leads to a .022% increase in the skew. Thus, if the mis-estimate rises

by one standard deviation (.075), on average the skew rises by about $12. Finally, the correlation
between the error in the selection and skewing equations is large and negative, at —.80. Recalling
the definitions of ii and & above, if e and i are independent or positively correlated, this implies
that cii is large relative to $. In words, the skew is more sensitive than the overbid to the private
signal about the mis-estimate.

The selection model can be usefully contrasted with several alternatives. The first is an ordinary

least squares regression on the observations where the reserve price does not bind; the second is

a standard censored normal regression model (CNR), which requires that censoring is exogenous.
The CNR model estimates:

— Ark] = bxai + + 1{r blnds}01UeE[&fbU1 + Xci2 —
B — R

<—&]. (15)
Qest

The results are reported in Table WI (3) and (4). Notice that the coefficients on the mis-estimate

from the selection model are greater than the OLS estimates and smaller than the CNR estimates.36

Intuitively, considering only the uncensored sample leads to a downward bias, as sales where skews

are particularly sensitive to mis-estimates may be censored. On the other hand, ignoring the
endogeneity of censoring yields an upward bias: the fact that is positively correlated with
both & and 6 leads us to exaggerate the inferred effects of both variables on the desired skew for

censored observations. The selection model places a smaller weight on the censoring correction

term than the CNR model, leading to more conservative estimates about the effects of & and8.
35To evaluate the robustness of our results to the normality assumption, we verified thatour results do not change

when polynomial functions of the Mills ratio ./(1 — 4) are included as explanatory variables. Such an approach
serves as a simple first pass at semi-parametric estimation.

36We also estimated (but did not report) an ordinary least squares regression on the full sample; the coefficients
on the mis-estimate variables were about 2% smaller than the censored normal regression.
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Now consider the results for overbids. The elasticity of the overbid with respect to the mis-
estimate is approximately .01 and significantly different from 0 only at the 15% confidence level.

Accounting for selection (as opposed to (unreported) OLS or CNR) lowers the estimated effects of• On the other hand, we find larger and significant effects of mis-estimates on overbid for censored

sales; the elasticity is approximately .03. This finding runs counter to the following intuition: we

would expect that when the bidders are constrained by the reserve price, they will not be able to

skew as effectively and efficiently, and thus their bids will be less sensitive to mis-estimates. One

way to reconcile our results with the intuition is to consider the possibility that the econometric

model does not fully account for the heterogeneity across sales. For example, the sales where
censoring occurs and bids are high, might be sales where the bidders are more confident about the

direction of the mis-estimate. Another hypothesis is that our functional form does not fully capture

nonlinear effects of the mis-estimate.

Recalling our analysis from Section 5.3, we now use our estimates to calculate the effect of mis-

estimates on revenue. Equation (9) indicates that an increase in S,, affects the magnitude of the bid

as well as the gap between bid and payment, zXb.b. In contrast to Section 5.3, we now examine the

effect of an increase in the mis-estimate in the direction of x In our sample, the average predicted
Ah is quite large (107.8), so that an increase in the mis-estimate leads to a large increase in the gap

between the bid and the payment. We find that for uncensored sales, the elasticity of revenue with

respect to mis-estimates is -.0066; thus, an increase in the mis-estimate of one standard deviation

(.075) leads to a reduction in revenue of $4.74 per Mbf., or about $14,560 on the average sale.

In sales where the reserve prices bind, the bid increases at a rate proportional to the skew. For

these (less frequent) sales, we find that revenue actually increases when the mis-estimate grows;

the elasticity is .0032.

Overall, the magnitudes of our estimates in this section should still be interpreted with caution,

due to the fairly strong functional form assumptions. Nonetheless, our results may provide some

insight into the direction of, and relative importance of, the effects of the reserve prices; as well,

they indicate that skewing leads to small but statistically significant reductions in revenue.

7 Conclusion

In this paper, we have considered the effects of information on bidding behavior in Forest Service

timber auctions. The rules of the "scale sales" create incentives for bidders to distort their bids.

By using ex post information about the value of the tract, we are able to provide evidence that

bidders are risk-averse, have private information about the underlying characteristics of the tract,

and exploit this information in their bidding behavior. This information appears to play a role

in allocating the tract between bidders, since bidders who take larger gambles are more likely to
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win the auction. Further, larger realizations of the mis-estimate typically lead to lower revenue

for the Forest Service, consistent with the hypothesis that the bidders require a risk premium to

compensate for the large gambles they must take to remain competitive in the auction.

Our use of ex post information has an additional advantage: our results provide evidence about

the validity of several of the assumptions commonly invoked in auction studies. The hypothesis

of pure private values, which requires that all private information on the part of a given bidder
concerns the bidder's own private costs and benefits, is not supported by our analysis. Observed

bidding behavior is also inconsistent with risk-neutrality. Finally, bidders clearly expend resources

to obtain strategically useful information, suggesting that attention should be given to the process
of information acquisition.

In future work, it may be possible to use the ex post value information in a more complete
structural model. For example, we might be able to assess the relative salience of heterogeneous

values for the tract and private signals about mis-estimates. Alternatively, we could explore direct

estimates of bidder risk-aversion. We might also quantify the extent of the winner's curse in this

market, and the value of additional information. However, these questions would require a number

of demanding extensions to the theoretical and econometric models.

8 Appendix A: Proofs

The following results are used in the formal analysis. See the appendix of Milgrom and Weber

(1982) for basic results about affiliation and Athey (1998) for a unified treatment of these lemmas

and further references. For our purposes, we need the following definitions. 9 lIt is bivari ate

single crossing in (x; y) (see Milgrom and Shannon, 1994) if for all xH > x' and y" > ,,L g(xH yL) —

g@L,YL) � (>)O implies g(xH,yH) _g(xL,yH) � (>)O. A function I is supermodular if, for all
> ,,L, f(yH, z) — f(y'-', z) is nondecreasing in z; f is strictly supermodular if the difference is

increasing. If f is positive, f is (strictly) log-supermodular if log(f) is (strictly) supermodular. If y

and z are random variables with positive joint density f(y, z) with respect to Lebesgue measure, y
and z are (strictly) affiliated if and only if f is (strictly) log-supermodular in (y, z) almost everywhere

(Lebesgue measure). A vector of random variables z with a positive joint density 1(z) is (strictly)

affiliated if 1(z) is (strictly) log-supermodular in (z, z) almost everywhere, for all i j.

Lemma 7 (Milgrorn and Shannon, 1994) If g(X, 0) satisfies bivariate single crossing, X*(9) =
arg max g(X, 9) is nondecreasing ii 0

"If there are multiple optima or no optima for some parameter values, the set of optimizers is nondecreasing in
the strong set order (Milgrom and Shannon, 1994).
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Lemma 8 Let (y,z) be affiliated random variables with conditional density f(yz). If g(x,y,z) is

bivari ate single crossing in (x; y) and superrnodular in (x, z), then fg(x, y, z)f(ylz)dy is bivariate

single crossing in (x; z).

Lemma 9 Let u(w; 9) be differentiable and increasing in w, and suppose that 0 decreases the coef-

ficient of absolute risk aversion of u(w; 9) (u(w; 0) is log-supermodular). Then [u(x . y; 9)f(y)dy
is bivariate single crossing in (x; 0).

Lemma 10 If(y,z) are strictly affiliated, and g(y) is increasing, then E[g(y)z] is increasing in z.

Lemma 11 Suppose that (y,z) are strictly affiliated. (i) If g(y) is increasing, then E[g(y)Iz e
[a,b],i = 1, ..,n] is increasing in a and b for all i. (ii) If g(x,y) is bivariate single crossing in
(x; y), then E[g(x, y) I z E [ai, b] ,i = 1, .., n] is bivariate single crossing in (x; a) and (x; b).

Lemma 12 If (y,z) are affiliated, and g(x,y) is supermodular, then fg(x,y)f(yz)dy is super-
modular in (x, z).

Proof of Proposition 2. The bid allocation problem can be written as:

rnaxEs (QACT. ((b —&) . + v x —
QE8T))

Vk j, Bk(4) <B2]

subject to: b1 � r1, b2 � r2,

Let U(!Xb; B2,4) represent the objective in this optimization program. Fix B2. Then bidder j's

payoff function, u() is bivariate single crossing in (Lb, 6) i.e. crosses zero once from below

as a function of Moreover, from (Al), (o,4,d3) are affiliated. Thus, by Lemma 8, for fixed

B2, U(b; B2, 4) is bivariate single crossing in 4). The monotonicity theorem of Milgrom

and Shannon (1994) (Lemma 7) then implies that bjBi,4) is nondecreasing in 4 for a fixed
B2. Now fix 4. An increase in B2 has two effects. First, it acts as a downward movement in
wealth, which, under CARA or IARA, makes the bidder no more risk-averse and increases LXb

(Lemma 9). Second, it increases the set of opponent types defeated; by Lemma 11 this effect favors
an increase in So a.b(B', 4) will be nondecreasing in B for a fixed 4. Q.E.D.

Proof of Proposition 3. (i) First, notice that by bidding B = V and Ab = Ivx (i.e. b, =
bidder j can ensure a payoff of zero. If j3(.) � V, then any total bid B < V also results in a
payoff of zero, so bidder j can restrict attention to bids that are greater than or equal to V. We
now establish monotonicity. Define m3 = Since the signals were assumed to be
exchangeable, m3 is affiliated with 4 (Milgrom and Weber, 1982). Given an optimal choice of

the bidder chooses B to maximize expected utility. In order to analyze the problem, it will
be convenient to break the interaction between B and 4 into two components, the direct effect of
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4 on payoffs for a fixed and the indirect effect arising due to the fact that the optimal choice

of Lb depends on 4. To separate the two effects, we write payoffs as

(B,d,y) = U((B,y),B,d3) f l{(m_j)<B}(mxi)dF(mxiIX,d),

and show that U(B, 4,4)is bivariate single crossing in (B; 4), which by Lemma 7 will imply our

result. To do so, we show that Ti(B,4,y) is single crossing in 4 and y at y = 4.
To begin, consider the effect of y on L7(B, 4,y). Letting subscripts denote partial derivatives

(and applying the envelope theorem in computing 7i(B, 4,y)), we have

aL(B, d, y) = U1(b(B,y), B,

+Ui2((B, y), B, d) y) f l{i)<B}(mXi)dF(mXi lx, di).

Applying the envelope theorem again, we know that Ui (i4(B, y), B, 4) = 0 at y = 4. Further,
our arguments in Proposition 2 imply that U12(AJ4(B,y),B,4) � 0 at y = 4, using the assump-
tion of CARA/IARA and Lemma 10. Since i4(B,y) � 0 by Proposition 2, it follows that
ft7(B,d,y) � Oat y = 4.

Now consider the effect of 4 on U(B, 4, y) when y is fixed. We introduce some additional
notation:

= f u (r (i4,B,)) dF(6xld,m,),
[0,1]

so that

t7(B, d,y) = (J(B, m) l{13(m_i)<B}(mxi)dF(7•flxilX, di).

By the envelope theorem, we can ignore the effect of B on U through when computing
U(B,4,y). To apply Lemma 8, we need to show that Ci is supermodular in (B,4) and
(B, m3). This will in turn imply that the integrand in i(B, 4,y) is supermodular in (B; 4)
and bivariate single crossing in (B; m3). To establish the desired properties of U, we compute

(A4,B6)) = —u'(r). Recall from Proposition 1 that b(B,d) > and thus

B, is nondecreasing in 6. Since u is concave, it follows that is nondecreasing in

Sx. Then, since 6 and are affiliated, Lemma 12 implies that U is supermodular in (B;m3).
The argument for (B; 4) is analogous.

(ii) The above argument verifies the single crossing condition in Athey's (1997) existence theo-
rem for the case of two bidders. The result can be applied to the case of J symmetric bidders by
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looking for a fixed point in the best response correspondence for a single bidder, whenall opponents

play the same nondecreasing strategy. Q.E.D.

Proof of Proposition 4: Suppose to the contrary that R < B* (D; k, Pk) < V. Then there

exist some b1, b2 such that QEST(b x) = B*(D;k, Pk) and r < b < v. This "safe" portfolio
has strictly positive expected profits for any resolution of uncertainty, contradicting the fact that

the optimal skew gives zero expected utility. So B*(.) > V. Now, by Proposition 1, at the

optimum, ib(D;k,Pk) > which implies that b � v > rx. Let r(b,B,5) = QACT•

((sb — v)c + (V — B)/QEST) and let ). and denote the Lagrange multipliers on the reserve

price constraints. We have

0 = E [ (it(b(D; k, Pk), B*(D; k, Pk), )) 4 = ... = = D,Pk, + (16)

+A [(B/QEST) + zb(1 — x1) — r1] + )- [(B/QEST) — zbxi r2.].

Since Zb > it is increasing in 5.. Lemma 11 implies the right-hand side of (16) is increasing

in D; it is decreasing in B since it is decreasing in B and .\_ � 0 = X. The result follows. Q.E.D.

Proof of Proposition 5. (i) Suppose bidders I j follow the strategies described in the

Proposition. Then, if all opponents are still active at a bid B, all that can be inferred is that

4 � D(B; k, Pk) for each opponent I. Suppose no one has dropped out; we will consider player

j's incentives to deviate from the equilibrium strategy. At B = B* (4; 0,0), bidder j knows that

he will win at B only if all opponent's signals are equal to D*(B; 0,0) =4. For him to earn non-

negative expected profits if he wins, he must announce bE(B; 0,0). So bidder j has no incentive

to deviate at B = B*(d;0,0). Moreover, as B rises past B*(4; 0, 0), j can not possibly make

positive expected profits if he wins. So he will drop out just beyond B*(4; 0, 0).

Now consider j's bid allocation announcement tb when B < B*(4; 0,0). Consider first an

announcement b < bE(B; 0,0). Suppose that following such a deviation, opponent's beliefs

are the same as if j announced ibE(B; 0, 0), that is, opponents do not update at all. Then the

deviation will be payoff-relevant only if bidder j actually wins at B, i.e. if 4 = D*(B; 0,0) for all.

Given this event, we know that if j had signal D*(B; 0,0), he would prefer a skew of bE(B; 0,0)

to any lower b. But in fact, 4 > Dt(B; 0,0), so j certainly prefers a skew of bE(B; 0,0) to any

lower b (this follows from the fact that the objective defining bE is bivariate single crossing in

sb and 4). So this deviation is not profitable.

Finally, suppose B < B*(4; 0,0) and consider a deviation to ib > LbE(B; 0, 0). Note that

if 4 < D*(B;0,0), then j's expected profits from bidding zb> bE(B;0,0) are negative. Since

opponents already believe that 4 � Dt (B; 0,0), it makes sense to assume that if they do update

their beliefs they will revise upward. To this end, assume that any opponent 1 who is marginal,
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i.e. who plans to drop out immediately, revises his beliefs about j to be that 4 � D(B; 0,0) >
D* (B; 0,0), where D (B; 0,0) is large enough to deter 1 from dropping out. All other bidders
make no revision in their beliefs about 4. With these off-path beliefs, a bid allocation deviation

by bidder j to Ab > bE(B; 0,0) cannot increase and may decrease j's expected payoffs (since
opponents have more optimistic beliefs about his signal and will stay in the auction longer). The

same arguments can be applied after any number of bidders have dropped out, which ensures that

the proposed strategies form an equilibrium. Note that a variety of other off-equilibrium-path belief

restrictions would also suffice. So long as in the event of a bid allocation deviation by some bidder

j, opponents are at least as optimistic about his signal as in the equilibrium we have described, he
will have no incentive to deviate.

(ii) The proposed equilibrium fully reveals the signals of all players except the player with the

highest signal. Q.E.D.

Proof of Proposition 6: The result follows because nondecreasing functions of affiliated random

variables are affiliated. In the sealed bid auction equilibrium of Proposition 3, dx) is nonde-

creasing in both arguments, and Bi(dx) is nondecreasing, so that abjBi(dx),dx) is nondecreasing

in dx. Since dx and O are affiliated, so are A14 and 6 (and similarly for a fixed bid B). Now
consider the oral auction equilibrium described in Proposition 5. Each bidder fully reveals their

signal on dropping out. Suppose Ic bidders have dropped out. Then the next observed drop-out

point B and skew Abx will be higher, the higher is the signal of each of the lowest Ic + 1 signals.

Since each of these signals is affiliated with 6, zbx will be affiliated with 6. Finally, if x = 1,

then 6 = 6 and zb = so 6 and b are affiliated conditional on x = 1. If x = 2, then, an
increase in dx increases Ab and d. Since, conditional on x = 2, 6 and dx are affiliated, so are 6
and zXb. Thus 6 and Ab are affiliated. Q.E.D.

9 Appendix B: The Data

In this section, we briefly describe our data sources and criteria for selecting our sample. The data

can be divided into two categories: "bidding data" and "cutting data." The bidding data contains

sale appraisal information as well as the highest bids placed by each bidder at the auction. This
data is publicly available from the Forest Service immediately after the auction. The cutting data is

the ex post information about the timber actually removed from the tract. This data is also publicly

available from the Forest Service. Because the Forest Service uses different coding systems for the

different species of timber in the bidding and cutting data, the Forest Service data is somewhat
difficult to work with, and so we purchased "matched" data from one of the leading industry data

sources, Timber Data Company.
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We selected a number of forests, focusing on larger forests that had a large fraction of sales with

two major species. The forests we obtained include Region 6, Forests 1-6, 9-12, and 15-18; Region

5, Forests 3, 5, 6, 10, 11, and 14-18. Among the sales from these forests, we consider only sales
where the matching process met certain reliability criteria. We then narrowed the sample along a
number of criteria.

In Region 6, we ruled out sales where the average bid per Mbf. was within $1 of the reservation

price, as such sales leave little scope for skewing; similarly, we ruled out sales where the overbid per

MbL was less than 5% of the appraised difference in values, zr. We further ruled out sales with

extreme mis-estimates (greater than 27%) or gaps between aggregate volume sold and cut (greater

than 30% in magnitude on the sale, or 25% on either species), as these sales may have special

circumstances (for example, cutting may have been aborted for some reason). We then dropped

outliers along a number of dimensions, including only sales with volume estimated between 100

Mbf. and 25000 Mbf., and density less than 115 Mbf./acre. Finally, we dropped sales where road

construction was greater than 2.5% of the value of the sale. Since the government reimburses road

construction using a complicated system of credits, bids in sales with low road construction can

be interpreted more directly in terms of expected payments. For Region 5, we used essentially the

same criteria, with one notable exception: we allowed sales with road construction valued at up to

100% of the appraised value of the tract. This allows a larger sample size, a problem for Region 5
sealed-bid auctions.

Finally, we note a subtlety that arises in interpreting the bidding data. Forest Service regulations

require that no matter what the appraised values and costs, all per-unit bids must clear a certain

minimum value, known as the "base rate." On a small number of sales, the base rate is greater than

the reserve price. Thus, the Forest Service might accept a bid that violates the base rate rule. In
such a case, the Forest Service uses a pre-announced mechanism to lower the bid on some species

aid raise it on others. In this way, firms can sometimes achieve skews that violate the posted

reserve price constraints. Fortunately, the Forest Service data includes the information required

for us to compute the amount a bidder anticipates paying when the bid is placed. This is known

as the "statistical bid," and all of our results use the statistical bids. In any case, only a few sales
are affected by this rule.
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Table I: Summary Statistics for Oral and Sealed Auctions with Two Primary Species

Region 6 Oral Region 5 Sealed
N 699 63

Mean Std. 0ev. Mean Std. Dev.

Bidding and Volume Variables
sl bid rate = bl
s2 bid rate = b2
Si reserve rate = rl
s2 reserve rate = r2
si market value
s2 market value
Volume est. (mmbf)
Volume cut (mmbf)

Average reserve price (per mbf)
Estimated % of Volume on high-valued species
Actual % of Volume on high-valued species
Tot. Bid (B)
Tot. Paid (P)

(Tot. Bid)/(Volume Est.) = BIQest
(Tot. Paid)/(Volume Cut) = P/Qcut

166.06
135.34
76.43
76.54

439.90
438.42

3.25
3.02

74.95
0.520
0.517

467380.10
426688.40

142.98
139.07

138.99
116.42
73.65
73.65
98.16
88.87

3.71

3.35
55.69
0.125
0.138

620525.50
566565.30

83.44
81.23

118.38
106.00
53.40
35.86

344.18
309.30

1.70
1.85

43.70
0.543
0.529

247820.40
259778.20

104.85
99.91

108.88
111.42

56.37
35.83

108.27
97.22
3.37
3.80

33.23
0.126
0.156

682193.00
741056.60

56.73
52.53

Skewing Variables
% of (Tot. Bid - Res. Price) on over-est. species

Skewontoover-estspecies: Lib-4r
Revenue Shortfall from Skew
Revenue Shortfall from Undercut

0.57
30.79

10581.69
30109.96

0.40
150.88

57819.42
110740.90

0.49
-5.35

9780.05
-21737.85

0.30
139.15

28956.45
88802.78

Misestimate Variables
(Volume Cut—Volume Est)/(Volume Est.)
Misest. on si=high-valued sp: Est. % Si - Act. % si
Absolute magnitude of mis-estimate

-0.066
0.003
0.057

0.157
0.076
0.051

0.036
0.015
0.049

0.125
0.072
0.054

Bidder Participation Variables
# of bidders

SBA dummy
6.06
0.21

3.12
0.41

5.32
0.17

2.60
0.38

Sale Characteristics
Contract LengthNolume

DensityofTimber(nibf/acre)
Vo'ume per-acre material per mmbf

Logging costs est. (thousands of $)
Road construction (thousands of $)

0.01
27.98
80.87

401.05
0.61

0.02
24.31

168.29
566.08

3.02

0.02
12.32
0.00

159.34
11.21

0.02
14.74
0.00

213.17
31.12
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Table II: Probability of Skewing in the Right Direction 

Dependent Variable : Dummy = 1 if Skew*Misestimate =( b-ir)ô1 >0 

(1) (2) 

Probits 

coefficient Robust s.e. coefficient Robust s.e. 

Misestimate Variables 
= misestimate 3.1378 (1.0884) 6.7987 (2.6894) 

&1A2 (misestimate squared) -19.5529 (13.0112) 
Volume and Reserve Price Controls 
Volume est. (mmbf) -0.01 69 (0.0448) -0.01831 (0.04525) 
Volume squared 0.00387 (0.00276) 0.00386 (0.00279) 

Average reserve price per mbf -0.00039 (0.00124) -0.00041 (0.00125) 
Bidder Participation 
# bidders 0.0286 (0.0194) 0.0313 (0.0196) 
SBA sale (dummy) -0.1189 (0.1302) -0.1213 (0.1304) 
Other Sale Characteristics 

Contract LengthNolume 4.7634 (3.5466) 4.8589 (3.5802) 

Density of Timber 0.00339 (0.00295) 0.00352 (0.00295) 
Volume per-acre material -0.00041 (0.00034) -0.00041 (0.00034) 

Logging costs est. per mmbf -0.00014 (0.00021) -0.00014 (0.00021) 
constant 0.1064 (0.3856) 0.0110 (0.3960) 

N=699 N=699 

Chi-sq(30) 44.37 Chi-sq(31) 46.5 

Prob>Chi-sq 0.0441 Prob>Ch-sq 0.0364 

Psuedo R-sq 0.0496 Psuedo R-sq 0.0519 

Notes: Species, Forest, and Year dummies included in each specification. 

Sample includes Region 6 oral auctions. Species ordered so that sp. 1 is over-estimated. 
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Table Ill: Skewing in Response to Misestimates 
Dependent Variable : Skew = Lb-tXr = (Si bid rate - s2 bid rate) -(si reserve - s2 reserve) 

(1) (2) (3) 
OLS OLS OLS 

coefficient robust s.e. coefficient robust s.e. coefficient robust s.e. 

Total Bid/Volume Est. 
Total BidNolume Est. = B/Qest 0.793 (0.277) 
Misestimate Variables 

= misestimate 383.751 (140.117) 319.617 (121 .855) 
Volume and Reserve Price Controls 
Volume est. (mmbf) -2.206 (4.37) -1.257 (4.526) -1.512 (4.401) 
Volume squared 0.461 (0.302) 0.423 (0.308) 0.438 (0.297) 

Average reserve price per mbf 0.081 (0.174) 0.105 (0.174) -0.753 (0.299) 
Bidder Participation 
#bidders 4.115 (2.48) 4.061 (2.444) -0.794 (2.610) 
SBA sale (dummy) -12.677 (15.316) -14.568 (15.284) -15.317 (15.474) 
Other Sale Characteristics 
Contract LengthNolume 79.607 (469.51 0) 52.235 (479.194) 34.857 (494.604) 
Density of Timber 0.511 (0.381) 0.534 (0.381) 0.309 (0.374) 
Volume per-acre material -0.029 (0.033) -0.031 (0.033) -0.026 (0.032) 

Logging costs est. per mmbf -0.030 (0.021) -0.030 (0.022) -0.029 (0.023) 
constant 42.4 (54.4) 27.9 (55.3) -16.18 (58.72) 

N=699 N699 N=699 

F( 29, 669) 1.41 F( 30, 668) 1.51 F( 30, 668) 1.95 

Prob> F 0.0759 Prob> F 0.0416 Prob> F 0.0017 

R-squared 0.0604 R-squared 0.0754 R-squared 0.116 

Notes: Species, Forest, and Year dummies included in each specification. 

Sample includes Region 6 oral auctions. Species ordered so that sp. I is over-estimated. 
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Table IV: Skewing and Skewing Outcomes, All Ranks 

(1) (2) (3) 

Fixed Effect Regressions 

Dependent Variable: Dummy=1 if Skew b-Lr ILb-rl 
in Right Direction Skew Magnitude of skew 

coefficient s.e. coefficient s.e. coefficient s.e. 

Rank Dummies 

rank2 2.04E-10 (0.0296) 4.8150 (12.8003) -2.0061 (9.6092) 
rank3 -0.0365 (0.0299) -24.6335 (12.8003) -19.6113 (9.6092) 

rank4 -0.0776 (0.0299) -34.3153 (12.8003) -46.3047 (9.6092) 

constant 0.5799 (0.0211) 41.2283 (9.0512) 87.8910 (6.7947) 

sale F(218,654) = 7.139 F(71 213) = 5.320 F(71 213) = 6.471 

N=876 n=219 N=288 n=72 N=288 n=72 

corr(u key, Xb) = 0.0000 corr(u_testn, Xb) = .0.0000 corr(u_testn, Xb) = -0.0000 

F(3, 654) = 3.07 F(3, 213) = 4.37 F(3, 213) = 9.96 

Prob>F = 0.0274 Prob> F = 0.0052 Prob>F = 0.0000 

Notes: Sample includes Region 6 oral auctions. Species ordered so that sp. 1 is over-estimated. 

Specification (1) includes all auctions with at least four bidders. 
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Table V: Reduced-Form Revenue Effects of Misestimates 

(1) (2) (3) 
Dependent Variable Total Bid/Volume Est Total BidNolume Est Total Paid/Volume Cut 

- Total PaldNolume Cut 
OLS Regressions 

coefficient Robust s.e. coefficient Robust se. coefficient Robust s.e. 
Total Bid/Volume Est. 
Total BidNolume Est. = BIQest 

Misestimate Variables 

&ldummy(&<0) mis-est. on Tow-valued species 110.26 (34.01) 171.10 (59.40) 60.84 (43.29) 
1*dummy(Ar>=0) = mis-est. on high-valued species 81.63 (23.81) 1.19 (46.92) -80.44 (43.63) 
Volume and Reserve Price Controls 
Ave. reserve price using actual volumes -0.616 (0.200) -0.455 (0.278) 0.161 (0.230) 
Ave. reserve price using estimated volumes 0.633 (0.200) 1.537 (0.284) 0.904 (0.242) 
Volume est. (mmbf) -0.012 (0.431) 2.419 (1.266) 2.430 (1.245) 
Volume squared 0.017 (0.027) -0.108 (0.090) -0.125 (0.088) 
Bidder Participation 
SBA sale (dummy) -0.50 (1.31) 2.90 (4.52) 3.40 (4.78) 
Other Sale Characteristics 

ContractLengthNolume -19.7 (50.1) -8.4 (109.5) 11.3 (125.0) 

Density of Timber 0.074 (0.029) 0.528 (0.105) 0.454 (0.101) 
Volume per-acre material -0.002 (0.003) -0.010 (0.011) -0.008 (0.010) 

Logging costs est. per mmbf -0.0022 (0.0020) -0.0036 (0.0053) -0.0014 (0.0059) 

constant -2.26 (4.39) 72.22 (14.23) 74.48 (13.75) 
N=699 N=699 N=699 

F(31, 667) = 2.78 F( 31, 667) = 51.92 F( 31, 667) = 56.35 

Prob> F = 0.0000 Prob> F 0.0000 Prob> F = 0.0000 

R-squared 0.3008 R-squared = 0.7552 R-squared = 0.7580 

Notes: Species, Forest, and Year dummies included in each specification. 

Sample includes Region 6 oral auctions. Species ordered so that sp. 1 is over-estimated. 
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Table VI: Skewing in Response to Misestimates in Region 5 Sealed Bid Auctions 

(1) (2) (3) (4) (5) 

Dependent Variable Skew In Right Dir. Skew Skew in Right Dir. Skew Magnitude of skew = 

Dummy=1 If Skew Ab-Ar Dummy=1 if Skew Ab-/sr lAb-MI 

in Right Direction in Right Direction Magnitude of skew 

Probit OLS Fixed Effect Regressions 
coefficient s.e. coefficient s.e. coefficient s.e. coefficient s.e. coefficient s.e. 

Rank Variables 
Rank 2 dummy 0.107 (0.074) 5.181 (8.005) -11.779 (4.977) 

Rank3 dummy 0.054 (0.074) -1.468 (8.005) -17.246 (4.977) 

Misestimate Variables 

SI = misestimate 5.241 (2.899) 380.929 (240.164) 

Volume and Reserve Price Controls 
Volume est. (mmbf) -0.213 (0.113) -37.503 (13.025) 

Average reserve price per mbf 0.008 (0.007) 0.103 (0.491) 
Bidder Participation 
# bidders 0.067 (0067) -L890 (4.165) 

SBA sale (dummy) -0.389 (0.483) -1a498 (31 .265) 

Other Sale Characteristics 

Contract Length/Volume -17.706 (11.495) -971.996 (786.576) 

Density of Timber -0.004 (0.016) 2.554 (2.456) 

Road costs est. per rnmbf -0.015 (0.023) -2.191 (2.437) 

constant 2.49 (2.79) 419.68 (262.44) 0.64 (0.05) -0.09 (5.66) 30.58 (3.52) 

N =63 N = 63 Ff55.1 10) = 2.138 F(38,76) = 2.154 F(38,76) = 5.689 

Chi-sq(13) 18.63 F(13, 49) 1.4 N=168 n=56 N=117 n=39 N=117 n=39 

Prob>Chl-sq 0.1350 Prob> F 0.1958 corr(u_key, Xb) = -0.0000 corr(u...key, Xb) = -0.0000 corr(u_key, Xb) = -0.0000 

Psuedo A-sq 0.1564 P-squared 0.4512 Ff2, 110) = 1.04 F) 2,76) = 0.38 F(2, 76) = 6.27 

Prob,-F = 0.3572 Prob > F = 0.6846 Prob>F = 0.0030 

Notes: Species, Forest, and Year dummies included in each specification. Sample includes Region 5 sealed bid auctions. Species ordered so that sp. 1 is over-estimated. 

Specification (3) includes only sales with at least three bidders. 

Specifications (4)-(5) include only sates with at least three bidders and all three bids uncensored. 
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Table VII: Bidding in Response to Misestimates and Binding Reserve Prices 

(1) 

Dependent Variable Probability Reserve ln(Magn. Of Skew) 
Prices Do Not Bind ln(lAb-ArI) 

Full Sample Res. doesn't bind 

Probit Heckman Selection Model 

coeff. Robust s.e. coeff. s.e. 

Misestimate Variables (ordered by direction of Skew) 

ln(1+.3) 

ln(Magn. Of Skew) ln(Magn. Of Skew) ln(Overbid) ln(Overbid) 
ln(lzth-iri) ln(l.b-rI) ln((B-R)/Qest) ln((B-R)IQest) 

Res. doesn't bind Full Sample Res. doesn't bind Res. Binds 

OLS Censored Normal Heckman Selection Model 

coeff. Robust s.e. coeff. Robust s.e. coeff. s.e. coeff. s.e. 

Volume and Reserve Price Controls 

Notes: Species, Forest, and Year dummies included in each specification. Sample includes Region 6 oral auctions where skew is strictly positive. 
Species ordered so that the winners skew is positive. 
Columns (2) and (5) are estimated using the full sample to determine the probability that the reserve price binds, but the skewing and bidding equations 
are estimated on the subsample where the reserve prices do not bind. Column (6) estimates the bidding equation when the reserve prices do bind. 
Column (3) includes only sales where reserve prices do not bind. 
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(2) (3) (4) (5) (6) 

0.435 (0.254) 
-0.109 (0.076) 

-0.061 (0.192) 0.464 (0.251) 0.413 (0.250) 0.573 (0.263) 0.220 (0.152) 0.666 (0.168) 

-0.353 (0.376) -0.200 (0.436) -0.539 (0.404) 0.173 (0.233) 0.703 (0.218) 
0.413 (0.114) 0.368 (0.144) 0.396 (0.131) -0.014 (0.071) -0.091 (0.066) 

0.166 

0.211 

0.084 

-0.6 16 

ln(Volume est. (mmbf)) 

ln(Ave. reserve price per mbf) 
Bidder Participation 
SBA sale (dummy) 
Other Sale Characteristics 

ln(Contract LengthNolume) 

ln(Density of Timber) 

ln(Volume per-acre material) 

ln(Log. costs est. per mmbf) 

Binding Reserve Prices 

ln(% of est. volume on sp. 1) 

Distributional Parameters 
Rho (correlation across eqn's) 

Sigma (std. dev. of bid or skew eqn) 
Lambda (Rho*Sigma) 
Std. Dev (cens. Normal model) 
constant 

-3.651 

-0.035 

-0.055 

0.588 

-2.734 

0.066 

-0.0 14 

0.36 1 

(4.204) 

(0.075) 

(0.046) 

(0.435) 

-0.261 (0.133) 0.274 (0.180) 0.161 (0.182) 0.417 (0.185) 0.075 (0.113) -0.157 (0.121) 

(4.366) (5.009) (5.227) 
(0.047) (0.066) (0.074) 

(0.027) (0.040) (0.045) 

(0.248) (0.366) (0.413) 

-1.061 (0.216) 

-2.803 

-0.137 

-0.086 

0.849 

-0.587 

1.440 

2.4 (1.4) 

-0.845 (0.028) 

0.7 (2.1) 

2.211 (3.002) 5.766 (3.933) 
0.107 (0.048) 0.271 (0.042) 
0.015 (0.027) 0.099 (0.024) 
-0.105 (0.232) -0.724 (0.218) 

0.167 -0.990 

0.838 0.937 

0.140 (0.218) -0.928 (0.034) 

1.1 (2.4) 

1.718 (0.093) 
0.4 (?r3) 

N =694 N =694 N = 408 N = 694 N = 694 N = 694 

Chi-sq(17) 134.9 Chi-sq(34) 162.13 F( 16,391) 4.79 Chisq( 16) 118.38 Chisq(34) 151.35 Chisq(34) -101.35 
Pr> Chisq 0.0000 Pr> Chisq 0.0000 Prob> F 0.0000 Pr> Chisq 0.0000 Pr> Chisq 0.0000 Pr> Chisq 0.0000 
Ps. R-sq 0.1434 R-sq 0.1357 

4.9 (1.3) 10.1 (1.2) 


