NBER WORKING PAPER SERIES

FOUNDATIONS OF
INCOMPLETE CONTRACTS

Oliver Hart
John Moore

Working Paper 6726
http://www.nber.org/papers/w6726

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
September 1998

We are grateful to Douglas Baird, Martin Hellwig, Eric Maskin, Andy Postlewaite, Ilya Segal, and
Jean Tirole for helpful discussions on this topic. We also thank Philippe Aghion, Patrick Bolton,
Malcolm Baker, V. Bhaskar, Mathias Dewatripont, Bentley MacLeod, Leeat Yariv, and an
anonymous referee for comments on an earlier draft. We acknowledge financial support from the
US National Science Foundation through the NBER, the LSE Financial Markets Group, and the
Suntory Toyota International Centre for Economics and Related Disciplines at the LSE. Any

opinions expressed are those of the author and not those of the National Bureau of Economic
Research.

© 1998 by Oliver Hart and John Moore. All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.



Foundations of Incomplete Contracts
Oliver Hart and John Moore

NBER Working Paper No. 6726
September 1998

JEL No. D23

ABSTRACT
In the last few years a new area has emerged in economic theory, which goes under the
heading of “incomplete contracting.” However, almost since its inception, the theory has been under
attack for its lack of rigorous foundations. In this paper, we evaluate some of the criticisms that have
been made of the theory, in particular, those in Maskin and Tirole (1998a). In doing so, we develop

a model that provides a rigorous foundation for the idea that contracts are incomplete.

Oliver Hart John Moore

Department of Economics London School of Economics
Littauer Center 220 Department of Economics
Harvard University Houghton Street

Cambridge, MA 02138 Aldwych, London

and NBER ENGLAND

oliver_hart@harvard.edu



1. Introduction

In the last ten to fifteen years, a new area has emerged in eccnomic
theory, which goes under the heading of "incomplete contracting".1 This
approach has been useful for understanding topics such as the meaning of
ownership and the nature and financial structure of the firm. Yet almost
since its inception, the theory has been under attack for its lack of
rigorous foundations. In this paper, we evaluate some of the criticisms that
have been made of incomplete contracting theory, in particular, those in the
Maskin and Tirole (1998a) (henceforth MT). In doing so we develop a model

that provides a rigorous foundation for the idea that contracts are

incomplete.

Many papers in the incomplete contracts literature motivate the idea of
contractual incompleteness as follows. Imagine a buyer, B, who requires a
good (or service) from a seller, S. Suppose that the exact nature of the
good is uncertain; more precisely, it depends on a state of nature which is
yet to be realized. 1In an ideal world, the parties would write a contingent
contract specifying exactly which good is to be delivered in each state.
However, if the number of states is very large, such a contract would be
prohibitively expensive. So instead the parties will write an incomplete
contract, Then, when the state of nature is realized, they will renegotiate

the contract, since at this stage they know what kind of good should be
traded.

MT have criticized this informal story on the following grounds. They
argue that there is a tension between the (standard) assumption made in the
incomplete contracts literature that the parties are unboundedly rational,
and the appeal to the transaction cost of describing the ex ante nature of
trade. MT develop a number of irrelevance theorems showing that the parties
can design clever contracts, involving the exchange of commonly held

information via messages, that overcome the inability to describe trade in

The incomplete contracts literature can be seen as a development of the

earlier transactions cost literature. See, e.g., Williamson (1975).



advance. They conclude that the informal justification of contractual

incompleteness based on the ex ante indescribability of actions or trades is

unconvincing.

In this paper we evaluate the MT critique. We argue that MT’'s
irrelevance theorems are less damaging to the theory than might appear at
first sight. Our argument has two parts. First, we develop a model, inspired
by Segal (1995, 1998), in which it is costless to delineate the set of
possible trades in advance ("trades are describable"), and yet where the “null
contract"--the quintessentially incomplete contract--is optimal. Applied to
our model, the MT irrelevance theorems say that the optimal contract without

describability of trades cannot be worse than the optimal contract with

describability, i.e., it must be the null contract too. However, this result

in no way undermines the conclusion that the ocptimal contract is incomplete.

Second, moving beyond our model, one finds that what we consider to be
MI's potentially most important result, their Theorem 4, requires quite
restrictive assumptions. If these assumptions are relaxed, describability
does matter. In fact, we provide an extension of our basic model in which
the optimal contract with describability yields the first-best, whereas the

optimal contract without describability is the null contract.

An important feature of our model, found also in Segal’s work, is that
there is no natural metric or ordering on the good to be traded; that is, it
is not the case that a good can be represented by its quantity or quality
(with higher quantity or quality being more valuable for the buyer}. Instead,

in each state of nature a particular type of good is uniquely appropriate.2

21n this respect our model differs from much of the literature on the
foundaticns of incomplete contracts, where it is supposed that agents
contract over the quantity of a homogeneous good to be traded. A paper that
obtains similar results to ours, although using a different approach, is Che
and Hausch (1996}. In Che and Hausch’'s model, a good can be represented by
its quality (with higher quality being better for the buyer), but there are
externalities: the seller’s investment affects the value of the good to the

buyer, and the buyer’'s investment affects the seller’'s cost.



Although our model is closeiy related to that of Segal (1995, 1998), our
formulation is somewhat different, and this greatly simplifies the analysis

and proofs of the theorems.

We should emphasize that we are not wedded to the idea that contracts
are totally incomplete. We also provide a simple extension of the basic
model in which the optimal contract is partially incomplete. Moreover, we
find in this extension that describability again matters: the degree of

partial incompleteness depends on the parties’ ability to describe the nature

of trade.

Our conclusions rely heavily on the assumption that parties to a
contract are unable to commit not to renegotiate their contract (and also to
some extent on the assumption that they cannot commit not to collude with a
third party). In contrast, MT take the point of view that, at least in an
ideal world, commitment should be pessible. Indeed, much of their analysis
pertains to this case (see their Theorems 1 and 2). We examine their
reasoning in some detail but do not find their arguments entirely convincing.
Ultimately, however, our view is that the degree of commitment is something
about which reasonable people can disagree: both cases--where there is and

where there is not commitment--are worthy of study.

The paper is organized as follows. In Section 2 we discuss MT’s notion
of describability and their irrelevance theorems, using as a vehicle a simple
buyer-seller model in which the buyer and seller cannot specify in advance
the efficient good to trade. Section 3 is devoted to an examination of the
commitment issue. In Section 4 we present a preliminary discussion of the
role of property rights (asset ownership) when contracts are incomplete.
Finally, Section 5 asks to what extent the optimal contracts we derive should
be interpreted as incomplete, given that we employ the mechanism-design
machinery of maximizing subject to incentive constraints, and do not impose

eXogenous restrictions on contracting.

2. A Model of Incomplete Contracts

Consider a buyer B and a seller S, who are involved in a two-date

relationship, as illustrated in Figure 1. The parties meet and contract at



date O, and trade at date 1. In between, at date 1/2, say, one or both of the
parties may invest. For expositional purposes, in the text we assume that

only S invests, but we deal with the more general case in the Appendix. Both
parties are risk neutral (and are not wealth-constrained} and the rate of

interest is zero. Also, both parties are sufficiently rational that they can

compute and maximize expected payoffs.

date O date 1/2 date 1
L | |
I i B
B and S S B and S
contract invests trade
Figure 1

We assume that the parties trade one unit of a good, which we call a
widget. To capture the idea that it is hard to contract on this good in
advance, we assume that there are N different widgets. In any state of
nature, exactly one of these widgets should be traded.3 We call this the
“special" (or specific) widget. It yields a (monetary) value v to B and
costs S a (monetary) amount c to produce (this cost is incurred if and only
if trade takes place). Here ¢ is stochastic as of date 0. For simplicity, in
the text we suppose that ¢ takes on two values: ¢ = <y with probability n(c)
and ¢ = s with probability 1 - n(o), where o represents the cost of S’'s date
172 investment. We assume that 0 = €y €6 < vVv; that 0 < n{s) < 1, n' (o) > O,
n“(¢) < O for all ¢ = 0; and that n’ (0) = w. Note that, among other things,

there are always gains from trade at date 1.

The other N-1 widgets are "generic" (or general purpose) widgets.
These generic widgets have cost g, for S, where g, = 4 + %(c2 - cl), n =

1,...,N-1. In other words, the costs of the generic widgets lie evenly

We assume that it is technologically infeasible to trade more than one
widget.



between cl and c2. It will become clear that the exact specification of
these costs is not important. What matters is that as the number of widgets,
N, increases, no large "gaps" remain between Cy and C,- Also, it makes no
difference if there are other generic widgets whose costs lie outside this

range; see the analysis of the general case in the Appendix.

As will be seen, the value of a generic widget to B is unimportant,
provided that such a widget generates strictly less surplus than the special

widget (i.e., strictly less than v - c2); we assume this in what follows.

We suppose that there is complete symmetry among the widgets at date O,
in the sense that each widget is equally likely to be the special widget or
to be one of the N-1 generic widgets. That is, there are 2N! possible states
of nature at date 1: for each of the two possible realizations of S's cost of

producing the special widget (c1 with probability m(e¢); ¢, with probability 1

2
- n(ec}), there are N! equally likely possible permutations of how costs are

allocated across widgets.4

We assume that both parties observe the state of nature at date 1
(including the realization of ¢). However the state is not verifiable, and
nor are the parties’ final payoffs: that is, these things cannot be observed
by ocutsiders, such as the courts. In the parlance of incomplete contract

theory, the state and parties’ payoffs are "observable, but not

4The assumption that S's investment affects only the cost of the special
widget, and yet S does not know which widget this is when she invests,
requires some justification. We have in mind a situation where S's
investment is relationghip-specific rather than widget-specific., For
examplie, S's lnvestment might be in learning how to do business with B more
efficiently. Such an investment will pay off whatever widget B needs at date
1, i.e., whichever widget is special, but will not pay off with respect to
the widgets B does not need (the generic ones).

Note that, if we had assumed that B invests rather than S, then it
would be quite standard to suppose that B’s investment pays off only if B
receives the special widget from S (in spite of the fact that B does not know

in advance which the special widget is).



verifiable.”S

We follow MT in distinguishing between two cases. One is where the

widgets can be described in advance, and the other is where they cannot.

Case D: The N widgets can be costlessly described at date O.

Case ND: It is prohibitively costly to describe the N widgets at date 0, but

it is costless to describe them at date 1.

In Case D, for example, it is possible to write a specific performance
contract at date 0 to the effect that S must supply a particular widget at
date 1 -- although, by assumption, this widget will turn out to be the special

widget only with probability 1/N. In Case ND, such a contract is infeasible.

The focus of MT's paper is on what differences, if any, there are

between these polar cases, in terms of what contracts can achieve.

We begin our analysis of optimal contracting by considering the
first-best. In the first-best, the special widget is always traded and the

investment ¢ is chosen to maximize total expected surplus:

(2.1) maximize n(e)[v - 01] + (1 - n(e)) v - C2] - .
o

5The assumption that the state of nature is unverifiable is important. If
the state were verifiable, then the parties could achieve the first-best by
writing a contract that specifies that S must supply the widget that is
"special” in whatever state occurs, at a fixed price.

The assumption that the state of nature is observable is probably less
important. We make this assumption for two reasons. First, it greatly
simplifies the analysis. Second, the informal motivation of contractual

incompleteness given in the introduction does not rely on an asymmetry of

information between the parties.



One simple way to achieve the first-best is for the parties to write a
contract that specifies the optimal value of ¢; and then rely on
bargaining at date i to ensure that the special widget is traded. Following
the literature (including MT), however, we assume that this is impossible:
either ¢ is too complicated to describe in an enforceable way, or it is

observed only by S.

2.1. Commitment

When the parties can commit not to renegotiate their contract, there is
another way to achieve first-best: give S the right to make a
take-it-or-leave-it offer to B at date 1. This way S captures all the date 1
surplus, and, anticipating this, makes the efficient investment decision at
date 1/2. Moreover, such a contract does not require that the widgets are
described at date 0, and so works in Case ND (even in Case ND, the parties can

describe, and hence contract on, the special widget at date 1).

Proposition 1. Suppose Case ND holds. If the parties can commit not to

renegotiate, then the first-best can be achieved.

Proof Under a take-it-or-leave-it contract, at date 1 S will ask B to pay v
for the special widget, and B will agree. S's private incentive to invest is

aligned with the social objective, (2.1), and the first-best is achieved.

Q.E.D.

If the first-best can be achieved when widgets cannot be described at
date O (Case ND), then a fortiori it can also be achieved when widgets can be
described (Case D).

Corollary. The conclusion of Propositien 1 also holds in Case D.



This corollary serves to illustrate MT's Theorem 1, albeit in a very
particular setting. Their theorem states that, if the parties can commit not
to renegotiate, then the inability to describe the nature of trade in advance
does not matter. This is clearly true in Proposition 1, since there is an
optimal contract that does not require S to describe the widget at date Q,

but only at date 1 when she makes a take-it-or-leave-it offer.

The strength of MI's Theorem 1 lies in its general applicability to
implementation problems. They have shown that in environments with complete
information, where agents can commit not to renegotiate, implementation does
not require the ex ante specification of a mechanism that maps messages into
actions (widgets). Instead, the mechanism can be specified ex ante in terms
of a mapping from messages into utilities (which are numbers}. The
description of actions (over which utilities are defined) can be postponed
until ex post, as part of the message game. In other words, MT have shown
that, with commitment, it does not matter if actions are impossible to
describe ex ante, provided they can be described ex post -- as in Case ND.
Unquestionably, this is a major contribution to implementation theory.
However, as will become clear shortly, much depends on the assumption that

agents are committed not to renegotiate the mechanism ex post.

2.2. No commitment

Proposition 1 relies heavily on the commitment assumption. The reason
why B accepts S’s take-it-or-leave-it offer is that if he rejects then the
contract specifies "no trade", and, even though there are gains from trade

6
still outstanding, the two parties are committed to abide by the contract.

6The same applies were S to offer the wrong widget (one of the generic ones)

and B were to accept: they precommit not to switch to the special widget.



Suppose instead that the parties cannot commit not to renegotiate.7 We
will see that the positive conclusion of Proposition 1 is dramatically

reversed.

For concreteness, let us assume that if the outcome of the contract at

date 1 is inefficient and the parties renegotiate, then B has all the

bargaining power. (The Appendix deals with the case of a general division of

bargaining power.) Under this assumption, the take-it-or-leave-it contract
of Proposition 1 works very badly, because B can reject S's offer and rely
instead cn bargaining to extract all the surplus, which gives S absolutely no
incentive to invest at date 1/2 to reduce her expected costs. In fact, this
take-it-or-leave-it contract works no better than no contract at all: under

the "null contract”, too, B extracts all the surplus in the date 1 bargain.

The question arises: can contracts achieve anything in these
circumstances? For the moment we will assume that we are in Case D: the N
widgets can be described at date 0. This puts us squarely in the worid of
mechanism design and classical implementation theory. That is, the parties
can write into the date 0 contract a mechanism which is to be played at date
1, once they have learned the state: and, by design, the equilibrium of the
mechanism will differ across states, so the contractual outcome is thereby
indirectly conditioned on the state.8 The important difference here from
most of the literature on implementation is that we are supposing that the
parties are free to renegotiate the outcome once the mechanism has been

played. For this class of problem, where there is renegoetiation, Maskin and

7Ue assume that there is a (short) period of time after the formal

provisions of the contract are carried out and before trade actually occurs;
it is during this period that the parties have an incentive to renegotiate ex
post {even though they would like to prevent such renegotiation ex ante). See

Section 3 for a detailed discussion of commitment.

8See Moore (1992) for an introduction to the theory of mechanism design and
implementation in environments with complete informaticon. (Here, B and S

both observe the state at date 1, and so have complete information. )



Moore (1998) provides a general characterization of the set of implementable
choice rules. In what follows, although we implicitly rely on their
characterization theorem, we will try to argue from first principles, so as

to clarify the logic of the argument.

By "state" we mean actually two things: first, the realization of S's
cost of producing the special widget; and, second, the realization of the
permutation of the N widgets (i.e. the identity of the special widget, and
the cost permutation of the generic widgets). Now, in terms of providing S
with an incentive to reduce her expected costs, the only aspect of the state
that matters is the realization of the cost of the special widget. That is,
S is only concerned with the (expected) price Py she receives if her cost of
preducing the special widget is Cl' as opposed to the (expected) price p2 she
receives if the cost is s The symmetry of the model -— the fact that all

permutations are equally likely -- suggests that there can be no gain from

having p, or P, depend on the realization of the permutation.9

S's choice of investment ¢ at date 1/2 is given by the solution to

(2.2) maximize n(rr)[p1 - c1] + (1 - n(rr))[p2 - c2] - o

Notice that her private incentive to invest will be aligned with the
first-best if p1 and p2 are equal: in that case, she enjoys the full benefit

from any cost reduction. However, as the gap between the prices, Py ~ Py

9This assertion is justified within the formal proof of Proposition 2 below.
Note that it would not be true if some permutations were more likely to occur
than others. For example, suppose a particular widget were much more likely
to be the special widget than any of the others. Then a specific performance
contract -- the parties agree to trade that particular widget at a fixed
price -- would work well. (Under the specific performance contract, Py would
equal P, whenever the widget was the special widget, but not otherwise; and

so the realization of the permutation would matter.)



grows, she shares any cost reduction with B, and her incentive to invest is
diluted. Hence the parties’ aim is to find a contractual mechanism that

implements prices p, and p, for which the gap p, - p, ils as small as
1 2 2 1

possible.

As we have argued, the take-it-or-leave-it contract of Proposition 1 is
useless, no better than having no contract at all. The point is that,
because B has all the bargaining power at date 1, the difference between the
prices, Py - Pys ends up being equal to the difference between S's costs, c

- cl; and from (2.2} this implies that S has no incentive to invest.

2

The surprising fact is that, for large N, no other contract can do
significantly better!

Proposition 2. Suppose Case D holds. If the parties cannot commit not to

renegotiate, then irrespective of the contract, as the number of widgets N
tends to infinity, S’'s investment ¢ approaches zero. That is, in the limit,
contracts cannot make any difference to expected total surplus, and the

parties may as well use the null contract.

In fact, we will show that the most that can be gained from writing

to E:l(c - c,):

any contract is to reduce the price gap P, - Py from C, - & N > 1

a reduction of the order of O(%J.

Proposition 2 generalizes to any ex post division of bargaining power,
and to a model in which both parties make investments, which may be

multi-dimensional. See the Appendix.

Proposition 2 is closely related to Theorem 1 of Segal (1998), except
that we dispense with his extreme widgets--what he terms "gold-plated" and
"“cheap imitation" widgets. Segal’s construction relies on there being
uncertainty over the number (and identity) of extreme widgets, and hence
uncertainty over the ranking (in terms of cost) of the special widget. In our
model, the generic widgets have costs similar to the special widget and,
crucially, the ranking of the special widget depends only on S's investment:
there is no other "aggregate uncertainty." This greatly simplifies the

analysis and the proofs of the theorems.

11



The intuition behind Proposition 2 is as follows. Consider the
problem the parties face in designing a contractual mechanism whose
equilibrium depends on the realization of S's cost of producing the special
widget. When this cost is i i=1,2, let us say that "state i" has
occurred.lo The parties are in effect playing a composite game: the
contractual mechanism followed by renegotiation. Whichever widget, W say, is
specified by the mechanism, even if it is one of the N-1 generic ones,
renegotiation ensures that at the end of the day the special widget will be
traded. Moreover, since B has all the bargaining power, S's payoff is minus
the cost of producing W, C(W) say. (This is gross of any transfer that the
mechanism might specify. Note that such transfers can depend on the outcome
of the mechanism, but not on ci directly.) Now, given renegotiation, B’'s
payoff and S’s payoff sum to the gains from trade v - C;- Hence B’s payoff
equals C{W) + v - ;- Also, we must not forget that the mechanism might
specify “no trade" as the outcome; this costs S nothing, and, following
renegotiation, yields B a payoff v - Ci' Ignering permutations, then, in
either state there are N+1 possible (nonstochastic) outcomes to the composite
game, each corresponding to a different point along the Pareto frontier. We

list them in descending order of S's payoff (continuing to ignore transfers

specified by the mechanism):

1OThis terminology is loose. Strictly speaking, both of these "states"

comprise a subset of N! states, each corresponding to a different permutation

of the widgets.

12



Final payoffs following renegotiation

(gross of transfers specified by mechanism)

State 1

no trade

special widget

generic widgets -

State 2

no trade

generic widgets <

special widget

Seller S

1 = —N—[CZ—C )
0
1
1~ leey)
N-1
1 - —N-(CZ C )
- <,
Figure 2

13

Buyer B

-c,)

v o+ l(c
2 71

N

N-1
v + T(CZ—Cll



Note that in state 1, the cheapest of the N widgets is the special cne.
And in state 2, the special widget is the most expensive. However this is
only a matter of labeling: following renegotiation, all contractually
specified ocutcomes, even "no trade", lead to the special widget being traded.
In effect, we can ignore the labels ("no trade, "special widget", "generic

widgets") that appear in the lists in Figure 2.

Unfortunately, this leaves very little to screen on. To see why,
consider the limit N - =, where the only difference between the lists is that
a constant, cy - Cy is added to B’s payoff in state 1 relative to state 2.
(This amount is the additional surplus from S having a lower cost of
producing the special widget.) Clearly, for the purpose of mechanism design,

adding a constant to one of the parties’ paycffs does not help screen the

states.

For finite N, we claim that S's payoff cannot differ by more than %(c2

- cl) across states 1 and 2. To check this, consider a simple mechanism in

which S is allowed to choose one of the N widgets. Then she will always

select the cheapest widget —— viz., the special one {(cost cl) in state 1, and
the cheapest generic one (cost Sy + %(cz—cl)J in state 2. Correspondingly,
if B is allowed to choose, he will always select the most expensive widget --

viz., the most expensive generic one (cost c, + Eﬁl(cz—cl)) in state 1, and

the special one (cost cz) in state 2. Under either mechanism, S's payoff

differs by only %(c2 - cl} across states 1 and 2, as claimed.

Other, more sophisticated mechanisms might be considered. For exampie,
one party might be entitled to veto a certain number of widgets prior to the

other party choosing. It is easy to see that this doesn't succeed in widening

the gap in S's payoff between states.

A specific performance contract does no better either. Consider the
contract specifying that a certain widget should be traded at a fixed price.
The payoffs associated with this widget are equally likely to be any one of
those listed above (excepting "no trade"). Again, S's (expected) payoff
differs by only %(c2 - c1] across states 1 and 2.

An equivalent way of saying this is that the price difference P, - Py

equals —ﬁl(cz—cl). In terms of S’s incentive to invest, this is only O(%)

14



better than the null contract.

Now for the formal proof of the proposition.

Proof of Proposition 2

Take any abstract mechanism M. Consider a state, (1,T) say, in which
the special widget costs S 4 to produce, and the N widgets are arranged
according to some permutation 1.11 Without loss of generality, suppose that T

is such that widget 1 is the special widget, and that widgets 2,...,N are
1 N-1
generic widgets costing c, * ﬁ(cz-cl), ces ©g ¥ —N---(c2 cl) respectively.

In state (1,71), let the equilibrium strategies of M for B and S be
ub(l,t) and us(l,r]. And, following any renegotiation, let p(1,T) denote the
overall price that B pays S for delivery of the special widget: p(1,T) equals
any transfer specified in the mechanism plus any amount agreed by the parties
during renegotiation. 1In other words, B's and S's final equilibrium payoffs
are respectively v - p(1,7) and p(1,1) - Cy-
Now consider another state, (2,t*) say, in which the special widget

costs S c, to produce, and the N widgets are arranged according to some new

permutation t* in which widgets 1, ..., N-1 are generic widgets costing c1 +
1 N-1 . . . .

ﬁ(c2 cl), Sy Cp * —ﬁ—(cz—cl) respectively, and widget N is the special
widget. Note that t* is a simple rotation of T: widget n = 1,...,N-1 now has

the characteristics that widget n+1 formerly had; and now widget N is the

special widget rather than widget 1.

In state (2,t*), let the equilibrium strategies of M for B and S be
ub(Z,T') and us(z,r'). After renegotiation, let their respective payoffs be
v - p(2,T*) and p(2,t*) - C5-

The question arises: What outcome does M specify if the strategy pair

11State (1,7) is thus one of the N! constituent states of what in the text we

loosely called "state 1".

15



(ub(Z,r*),uS(l,r)) is played? Suppose some general stochastic outcome is

specified: B pays S an amount q; widget n = 1,...,N is traded with
probability an 2z 0; and there is no trade with probability 1 - (al + ...+
12
OLN]zo.
There are two incentive constraints that q, al, e, aN must satisfy.

First, in state (2,t*), S must not have an incentive to deviate to us(l,r).

Second, in state (1,T), B must not have an incentive to deviate to pb(Z.T*).

Suppose strategy pair ub(Z,T‘),uS(l,r) is played. The
contractually-specified outcome is typically inefficient, and will be
renegotiated: when the outcome of the lottery (al,...,aN) specifies either
that a generic widget is traded, or that there is no trade, the parties must
bargain in order to exploit the gains from trading the special widget (and,
by assumption, B has all the bargaining power). The final payoffs depend on
the state, as indicated in Figure 2. In state (2,7*), following the play of

ub(Z,r‘),us(l,T), S's final payoff is

- a,lc. + l(c -c, ) - - c, + E:l(c -c.) - c
q 1“1 T NC2TY N-11%1 N 2% “NC2r

which, according to the first incentive constraint, cannot be more than what
she gets in equilibrium, p(2,7*) - Cye And in state (1,7), following the

piay of ub(Z.r‘),uS(l.r). S's final payoff is

q - «,cC - a,le, + l(c ~c,) - .. - c, + E—--l(c -c. )],
11 2|1 TN C2TS i S T I

which, according to the second incentive constraint, cannot be less than what

she gets in equilibrium, p(1,T) - Cyo since if S were worse off B would be

better off (all final payoffs lie along the Pareto frontier).

12As both parties are risk neutral, there is no gain from making the transfer

q depend on which widget (if any) the mechanism specifies is traded.

16



Combining these two constraints, we have

C., — C - (x, + .t ]l{c
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Since this lower bound applies for any permutation Tt (and associated
rotation 1*), we can take expectations across permutations, which are equally
probable, to deduce that the difference between the expected price S receives

if it costs her s to produce the special widget and the expected price she
receives if it costs her 4 is at least H%—l—(cz - Cl)'

In other words, as the realization of S’s cost falls from c2 to c

payoff rises by at most ]—t-(c2 - c1). But this gives her only O[%) more

1 her
incentive to reduce her expected costs than does the null contract (under

which her payoff would be independent of the cost realization).

Q.E.D.

Given that, when there is no commitment, almost nothing can be achieved

in Case D, it follows a fortiori that the same must be true in Case ND.

Corcllary. The conclusion of Proposition 2 also holds in Case ND.

This corollary serves to illustrate MT's Theorem 4, albeit again in a
very particular setting. Their theorem states that, sub ject to certain
additional conditions, if the parties cannot commit not to renegotiate, then
the inability to describe the nature of trade in advance does not matter.
This is clearly true in Proposition 2, since even when the parties can
describe widgets in advance, they achieve little more than under the null

contract.

Before we move on, it is worth reviewing the role of our assumption
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that the costs of the generic widgets fill the whole interval from o to ¢

Suppose this were not true, e.g., the costs of the generic widgets were

spread evenly between % cy * % S, and Cy- Then the following contract would

>

be useful: S is allowed to choose which widget to supply at date 1 and
receives a fixed price. The reason is that S will always choose the cheapest
widget, which is the special widget if c = 4 and the cheapest generic
widget if ¢ = Cy- Thus S's payoff differs by (% c, * % Cy - cl) across the
high cost and low cost states of nature, which gives S an incentive to invest

in cost reduction.

2.3. Does describability matter?

The main message to emerge from the analysis of Sections 2.1 and 2.2 is
that the inability to commit not to renegotiate makes a crucial difference.
In contrast, the issue of whether or not actions (widgets) can be described
eX ante -- whether Case D or ND prevails -- appears not to matter; this is

consistent with MT’s thesis.

These findings shed light on the informal story with which the paper
began. It turns out that the usual "observable but not verifiable"
assumption is enough to justify a high degree of contractual incompleteness
(taking the null contract to be the quintessentially incomplete contract),
provided (i) the parties cannot commit not to renegotiate, and (ii) the
environment is rich enough (here, there are enough generic widgets). That
is, the incentive constraints that emerge from dealing with Case D, and
treating the problem as one of classical mechanism design (constrained by
renegotiation), are enough to reduce massively the contractual possibilities.
At a formal level, there is no need to invoke additional -- and less
traditional -- assumptions like nondescribability in order to give the
informal story solid theoretical foundations. This raises the question:
Should contracts that are optimal subject to well-defined incentive contraints

be thought of as "incomplete" at ail? We address this question in Section 5.

The matter of describability should not be ignored altogether. It is
clearly ridiculous to assume that all actions can be costlessly described in
advance. And for this reason, MT's Theorem 4 is a potentially important

result, because, stripped of its auxiliary conditions, the theorem appears to
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conclude that nondescribability is irrelevant even when there is no
commitment. We believe that such a broad-brush conclusion would be

misleading, however. The inability to describe the widgets ex ante can make
a big difference.

For example, consider a model where there is no uncertainty. Without
loss of generality, suppose widget 1 is always the special widget, and that
xi?gets 2,...,N are always generic widgets costing c, * %(CZ_CI}' s Gy +
—ﬁ—(cz—cl) respectively. In this deterministic model, the first-best can
obviously be achieved if widgets can be described at date 0 (Case D): the
parties simply write a specific performance contract under which the parties
agree to trade widget 1 at a fixed price, say v. Since this outcome is
efficient, there is nothing to renegotiate, and S enjoys all of any cost

saving: p, = P, = V. S has first-best incentives.

Things look very different, however, if the N widgets cannot be
described at date O (Case ND). Now a specific performance contract is no
longer feasible (widget 1 cannot be specified). The parties have to rely
instead on a mechanism which reveals the identity of the special widget at
date 1, whille at the same time keeping py = P, We assert that this
implementation problem is essentially the same as that of Proposition 2, and

that the conclusion is therefore the same: in approximate terms, no

contract can do any better than the null contract.

A simple way to prove this assertion is to suppose that there are N
"names"” at date 0, each of which will describe a widget at date 1. However,
it isn’t known which name will attach to which widget: the meaning of the
vocabulary (the list of N names) only becomes established at date 1. And
there is no other way of describing widgets at date 0. In particular, even
though B and S know at date O which widget is the special one, they have no
words to describe it, other than the N names, any one of which may turn out
to be appropriate at date 1. It is clear that this implementation problem is
isomorphic to the problem in Section 2.2, vhere it wasn’t known at date 0O
which widget would have which costs/values. The conclusions of Propesition 2

thus carry over to the present setting, where widgets have fixed costs/values

but cannot be described at date 0.

We introduce names here only as a device to simplify the argument. A
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fortiori, our assertion holds when there are no names, or any other

vocabulary for describing the widgets at date O.

This example is not covered by MT's Theorem 4. Their result requires two
conditions: first, that the set of states is "maximal"; and, second, that the
final outcome is “renegotiation welfare neutrai." Roughly, maximality means
that every permutation of the N widgets has to be possible (which rules out
our deterministic example); and renegotiation welfare neutrality means that
final payoffs have to be the same across permutations. The first condition is
not restrictive, but the second one is. To see thls, notice that the example
can be modified to include a small measure of fringe states so as to meet MT's
maximality condition. Moreover, such a modification doesn’t rob the example
of its force: it is still the case that the specific performance contract is
approximately first-best in Case D, whereas in Case ND the null contract is
almost optimal. However, although this modified example satisfies maximality,
it does not satisfy MI’s renegotiation welfare neutrality condition, and so is

not covered by their Thecrem 4.

We may conclude this section as follows: nondescribability is generally

an important constraint in the absence of a commitment not to renegotiate.

2.4. Partially incomplete contracts

Propesition 2 can be criticized for going too far: there is no point in
writing any contract at all. What is needed is a theory of partial

incompleteness.

The model can also be criticized on the grounds that the effects of S's
investment o are too jagged: only the special widget’'s cost is affected by o;
the costs/values of the other (generic) widgets are fixed. In principle,

investment may reduce the cost of any widget.

Here we make a start in responding to these criticisms. Consider a
variant of our model. There are N widgets, each of which can be described at
date 0: we are in Case D. Of these N widgets, M are "defined". Defined
widgets are simply a category of widget distinct from the others: e.g., they
may all have a common shape, which is not shared by the other N - M widgets.

And each defined widget is distinct from the other defined widgets: e.g.,
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each may have its own color. We take M to be large, and N large relative to
M: N» M » 1.

There is one "special” widget, which is the widget that yields the
greatest surplus at date 1. This is the widget that will be traded at date 1
(possibly following renegotiation). Let its value to B be v. Crucially, the

special widget is always one of the M defined widgets: previously, we assumed

that the special widget could be any of the N widgets.

The second important change we make to our model is to suppose that the
cost of producing all of the M defined widgets is affected by ¢. With
probabllity m(¢), the cost of producing a given defined widget, other than
the special widget, is reduced by A > 0.13 And with probability n(c), the
cost of producing the special widget is reduced by kA. We assume k > 1: in
other words, we assume that ¢ has a greater impact on the expected cost of
producing the special widget than on the other M-1 defined widgets. These
cost reductions are perfectly correlated.14 That is, with probability 1 -
n(o), there are no cost reductions. Without cost reductions, we suppose that
costs are evenly spread from c to c, with the cost of the special widget
lying somewhere in the middle, say at c. Assume A is small enough that ¢ < ¢
- kA and ¢ < c - A; i.e., the special widget always has cost lying within
the range of costs of the other defined widgets. All permutations of the M
defined widgets (viz., the identity of the special widget, and the

permutation of the costs of the other M-1 widgets) are equally probable at
date 1.

The costs of the remaining N-M widgets are unaffected by 0.15 We

lan(v) is assumed to satisfy our earlier assumptions: 0 < n(¢) < 1, nw' () > 0O

and n“(¢) < 0 for all ¢ = 0; and n’ (0) = w.

14This is not an important assumption.

As in Section 2, we do not need to specify the values to B of the N-1
non-special widgets, other than to assume that their surplus (value minus

cost) is always strictly less than the surplus of the special widget.
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suppose that these costs are evenly spread from g to g, a range which
<

encompasses the costs of the defined widgets: g

c - Aand ¢ < g. All cost

permutations of these N-M widgets are equally probable at date 1.

The expected total surplus is

nle){v - ¢ + k&l + (1 - na(e))Ilv - ¢c] - o.
And hence the first-best investment level o* satisfies
(2.4) n’ (c*) = 1/KkA.

Just as in our earlier model, the first-best cannot be attained, since
the identity of the special widget is not known in advance. Moreover, as in
Proposition 2, the incentive constraints impose severe restrictions on what
can be achleved through contracting. However, unlike in Proposition 2, the
partles can do appreciably better than under the null contract. With the
nuil contract, S would have no incentive to invest since she gets no surplus
from the date 1 bargain (the price B pays is perfectly correlated with the
realised cost of producing the special widget). That is, ¢ would equal zero.
The same would be true in a contract where, for example, either B or S were
free to choose any of the N widgets (i.e., without limiting the choice to the
defined widgets): S would always choose the cheapest widget (costing g), B
would always choose the most expensive (costing g), and, either way, S's

payoff would not depend on ¢, which would give her no incentive to invest.

Instead, the parties can write a contract specifying that S supplies
one of the defined widgets for a fixed price p. The choice of which defined
widget may be left to S, in which case she will supply the cheapest, costing
her either ¢ - A (with probability n(e¢)) or ¢ {with probability 1- n(e)).
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This is not the special widget, and so the parties will renegotiate at date
1. But since S gets none of the surplus, her expected payoff, net of

investment costs, equals

(2.5) mle)lp - ¢ + 4] + (1 -mn(e))lp-~cl - o.

~

And hence her choice of investment ¢ satisfies

(2.6) ' (e) = 1/A.

~

Comparing (2.6) with (2.4), we see that there is underinvestment: o < o*.
However, there is more investment than under the null contract: ; > 0. That
is, a "partially incomplete" contract -- a contract defining the set of
widgets from which S must supply one, and fixing the price -- is better than

no contract; but it does not implement first-best.

Notice that if the contract allowed B to select from the set of defined
widgets, then he would choose the most expensive, costing either c - A (with
probability m(e¢)) or ¢ (with probability 1- m(¢)). And S's investment would
again be given by ;. In other words, aside from a transfer difference ¢ - c,

it does not matter if B or S has the right to select one of the defined
widgets.

For large M, these partially incomplete contracts are almost as good as
any contract can be. Consider a specific performance contract: at date O the
parties agree that one specified defined widget should be supplied at date 1
for a fixed price. Since there is a small probability, 1/M, that this widget
will turn out to be the special one, S's incentives are slightly improved;

but as M » « her investment drops to o.

We can appeal to the same logic of Proposition 2 to prove that this is

as far as contracts can take us.
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Proposition 3. Suppose Case D holds. If the parties cannot commit not to

renegotiate, then as M, the number of defined widgets, tends to infinity, the
optimal level of S's investment coverges to ;, the solution to (2.6). In the
limit, it is optimal to contract for the delivery of one of the defined
widgets at a fixed price; the particular widget may be chosen by B or S at

date 1, or may be specified in advance at date O.

Proposition 3 goes some way towards meeting the criticism that we lack
a theory of partial incompleteness. It should be recognized that this is not
really a framework in which agents choose the degree of contractual
incompleteness, because there are no "margins": in Proposition 3, the set of

defined widgets is exogenously given.

Before leaving this model, we should point out that Proposition 3 does
not hold in Case ND, where the widgets cannot be described at date O. In
fact, in this case, one can adapt the argument of Section 2.3 to show that
as the total number of widgets N tends to infinity (and the ratic N/M also
approaches infinity), S's investment approaches zero, irrespective of the

contract. Thus, here we have another example (like that in Section 2.3)

where nondescribability matters.

3. Commitment

In Section 2 we saw that, although nondescribability matters in
incomplete contracting models, the crucial assumption is the lack of
commitment. If the parties can commit not to renegotiate their contract,

then they can achieve the first-best (Proposition 1).

In this section we consider how reasonable it is to assume that the
parties cannot commit not to renegotiate.16 We will also discuss the role of
third parties to a contract. It will be convenient from an expositional

point of view to gear our discussion fairly closely to that of MT.

16F‘or an interesting discussion of this question, see Tirole (1998).
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One obvious way for B and S to commit not to renegotiate is for them to
write in their contract an irrevocability clause; or, equivalently, a clause
that says that B must pay S a huge sum of money if renegotiation occcurs. The
problem with this is that, under the current legal system, there is nothing
to stop B and S from writing a new contract that cancels the irrevocability
clause or waives the penalty. The peint is that the courts will enforce the
new contract rather than the original ocne. Anticipating that the
irrevocability clause will not stand, B will decline S’s take-it-or-leave-it

offer in the model of Section 2, and renegotiate.

MT argue that this justification for lack of commitment is
unsatisfactory because in an ideal world B and S could register their first
contract with the court, and could instruct the court to enforce the first
contract and ignore any revised contract. However, a registration system
like this does not exist anywhere in the world as far as we know, and would

require a system-wide institutional change.17

Even if such a registration system were put in place, it might not
prevent renegotiation. B and S might be able to renegotiate indirectly by
writing side-contracts with third parties. For example, B and S could agree
ex post to operate through a middleman: S will supply the widget to the
middleman, who will supply it to B; in return B pays the middleman, who pays
S. These side-contracts do not violate the first contract (which states that

no renegotiation will occur) because they do not involve B and S directly.

Of course, the original contract could state that not only can it not
be renegotiated, but also no equivalent set of contracts with third parties

should be enforced. The question, though, is: What is an "equivalent set of

17Such a change might be quite costly and the benefits may not be all that

great: the majority of contracting parties may choose not to register their
contracts, since they recognize that they will think of new things to include
as time passes (they are "boundedly rational"). Thus, to the extent that a
registration system has a fixed cost, it might not be worth introducing for
the minority of people like B and S, who are unboundedly rational and for

whom contract renegotiation is an impediment.
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contracts with third parties"? There may be guite legitimate sequences of
trade linking S to B through various middlemen, and it may be hard for a
Judge to distinguish between the legitimate ones and the ones that are

designed to circumvent a "no renegotiation" provision.

Note that side-contracting also interferes with the use of third
parties as a commitment device. Suppose that B and S sigh a contract with a
third party T stating that B and S will each pay T a huge sum of money if
renegotiation occurs. Then ex post B and S can avoid the penalty by
contracting indirectly through a middleman. Moreover, if B and S try to
prevent this ex ante by promising to pay a penalty in the event that a
middleman is used, then the same problem arises as above: it might be hard to
distinguish between cases where the middleman is used for legitimate business

purposes and cases where he is used to circumvent renegotiation.

Now that we have raised the issue of third parties, it is worth asking
whether they can be used in other ways than just to prevent renegotiation,
The answer is yes. Third parties can drive a wedge between B's and S’'s
payoffs: B can be penalized without rewarding S, and vice versa. This may

improve incentives even if the parties cannot commit not to renegotiate their

contract.

To see how a third party can improve matters, consider the following

contract in the model of Section 2.2:

At date 1, B chooses between the following possibilities:
(1) B pays c, -~ ¢ to S and no trade occurs; or (2) B pays
nothing to S. If B chooses (2), S has a choice of
"accepting" B’s offer or "rejecting" B’s offer. If S
"accepts" B's offer, no trade occurs. If S "rejects" B's
offer, then S supplies a widget of her choice to B, and B
pays c, + zé(cz - cl) to S and a fine F = ¢
third party T.

5 c1 te a

An important part of this contract is that it does not prohibit
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renegotiation. Thus, if a "no trade" outcome occurs, or if S "rejects" B’'s
offer and supplies an inefficient widget, then this is not the end of the
matter: since there are gains from trade the partles will always renegotiate
and trade the efficient widget (the special widget). As in Section 2, we

assume that B has all the bargaining power in the renegotiation process.

Consider first the case where S's cost of producing the special widget
at date 1 equals Cy: state 1 occurs. If B chooses (1), then S’'s payoff is c2
- ¢,, and B's payoff is (v - cl) - (c2 - cll =v - c,, since B gets all the
gains from renegotiation. On the other hand, if B chooses (2), then it is
easy to see that S will prefer to "reject” (she supplies the special widget,
costing Cy» and her payoff is - € * oyt E%(cz - cl) = E%(cz - cl) > 0) than
to "accept" (her payoff is zero). Hence B has to pay the fine, which reduces
his payoff below v - c5- The conclusion is that in state 1, B chooses (1),

and S’ s payoff is c, = Cy-

Consider next the case where S’s cost of producing the special widget

at date 1 equals st state 2 occurs. If B chooses (1), then S's payoff is c

2
- ¢, and B's is (v - cz) - [02 - 01) = v +c - 2c,. If B chooses (2),
then it is easy to see that S prefers to "accept" (her payoff is zero) than
to “reject” (she supplies the cheapest generic widget, costing c, + %(02 -
c,), and her payoff is - ¢, - l(c -c,) +c, + —l(c -c,) = - «l(c -c,) <
1°° 1 N "2 1 1 2N "2 1 2N 72 1
0). Hence, under (2} B avoids the fine and his payoff is v - Cy >V o+ ¢y -
2c2 (he gets all the gains from renegotiation). The conclusion is that in
state 2, B chooses (2), and S’s payoff is zero.
We see that S's payoff decreases from c, - ¢, in state 1 to zero in

2 1
state 2. In other words, her payoff falls by the exact amount that her costs

rise. But this means that S has first-best investment incentives: at date
172, S will solve

maximize mn(c)[c
o

R L

which is equivalent to (2.1). Since renegotiation ensures that the efficient

widget is supplied, the three-party contract yields the first-best outcome.
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Let us now discuss some potential problems with the above contract.
First, the mechanism is very fragile. It relies on the fact that there are
discrete differences between the costs of the various widgets; the mechanism
is designed so that when state 1 is the true state "rejection" by S gives her
a small positive payoff, whereas when state 2 is the true state “rejection”
by S gives her a small negative payoff. There is reason to think that if
there is a continuum of widgets, it may be impossibly difficult to screen
state 1 from state 2, even if third parties are allowed; certainly, contracts
like that above will not work. Moreover, general implementation theorems (in
particular, Theorem 3 in Maskin and Moore (1998)), which employ devices, such
as getting one agent to announce the state of nature (which can then be
challenged by the other agent), are unlikely to be operational because the
description of a state is so rich: the entire vector of costs has to be
announced.18 And, since the distinction between states 1 and 2 is
infinitesimally small--a difference in the cost of one widget taken from a
continuum--it does not suffice for agents to announce anything less than the
entire state. We conjecture that in some properly articulated model with a
continuum of widgets, the conclusions of Proposition 2 will hold, even

allowing for third parties; but this awaits further research.

Even if we stick to the case of a finite number of generic widgets, the
above contract is vulnerable to collusion. In particular, either B and T or
S and T can gain by writing a (secret) side-contract in which it is agreed

that any fine received by T is handed over to the other party.

Consider a side-deal between B and T. Suppose state 1 occurs. Then if
B chooses (2) in the above game, S will “reject" as before, but B’s payoff
. 1 . .
will be v ¢y - zﬁ(cz - cl) > v ¢,, since B pays the fine to himself.
Thus B will choose (2), and S's payoff is Eﬁ(cz - Cl)'
On the other hand, if state 2 occurs, collusion makes no difference: B

chooses (2), S "accepts" and S's payoff is zero.

18Note that these mechanisms are designed to rule out unwanted equilibria. If

uniqueness is not required, then the mechanisms can be much simpler.
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We see that collusion has a devastating effect on S's investment
incentives. Recognizing that B and T will collude after she has made her

investment decision, S will choose ¢ to solve:

1
maximize n(@)[zﬁ(cz Cl)] - o,

which leads to a very low value of ¢. In fact, as N > w, ¢ = 0, which is the

same outcome as when there is no contract at all (see Proposition 2).19

Can collusion be avoided? An obvicus approach is to prohibit collusion
in the original three-party contract, i.e., to instruct the courts not to
enforce any side-deals between a subset of the parties. The difficulty with
this, however, is that B and T (or S and T) can disguise their side-deal by

using a middleman.

A second approach to avoiding collusion, suggested by MT, is to replace
the single third party T by a collection of third parties. For example, MT
propose that the contract between B and S could state that any fines should
be paid to the "community of citizens", i.e., to the general public. The
idea is that it is hard -- if not impossible -- for B or S to collude with a

whole community.

However, such an arrangement raises new problems. First, as a matter

of contract law, there appears to be nothing to stop B and S from canceling

191t is not difficult to show that S and T also have an incentive to collude

(assuming B and T do not). Collusion between S and T makes no difference in
state 1, when B chooses (1) and S's payoff is zero. However, in state 2, S
will "reject" if B chooses (2), since S now receives the fine. Thus, if B
understands the collusion between S and T, B will choose (1) in order to
avoid paying the fine. Hence S's payoff is zero in state 2 as well as in
state 1. The conclusion is that S will choose o = 0, which is the same

outcome as when there is no contract.
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the fine, after S has "rejected" an offer from B, but before the fine has
been paid, i.e., they could simply change their mind. The point is that the
community is not a true party tc the contract -- the taxpayers never signed
anything -- and so they would have no grounds to complain or sue. Of course,
B and S could pick a representative of the community to be a signatory, but

this would raise the possibility of collusion between B (or S) and the

representative.

Second, even if we put this issue aside, it is unclear who would
collect the fine on behalf of the community. For example, suppose the
contract states that S must reject B's offer by placing an advertisement in a
designated newspaper, and this advertisement must include an offer from B to
pay F dollars to the first person who responds to it, e.g., by sending an
e-mail to a particular address. Then S could always tip off a friend,

thereby ensuring that the friend is the first to respond, i.e., in effect S

receives the fine herself.

The Use of Lotteries

MT have proposed an even more ingenious way to solve the problem of
third-party collusion: eliminate third parties altogether and use lotteries
to introduce a wedge between what S receives and what B pays. Specifically,
suppose that B Is (at least slightly) risk averse, rather than risk neutral.20
Then it is possible to find a random variable 5 whose mean, ES, equals cy
éé(cz - cl). but the certainty equivalent of - E is very low to B. (Simply
raise the variance of p.) Now replace the previous three-party contract with
a two-party one, where there are no fines, but if S "rejects" B’'s offer, B
pays the random amount E to 5. This is equivalent to the previous contract

since the lottery has the effect of a penalty on B.21

OWe continue to suppose that S is risk neutral. The argument can easily be

modified if S is also risk averse.

21We are assuming that B is not wealth-constrained. Wealth constraints may

l1imit the maximum penalty that can be imposed through a lottery.



This approach has its own difficulties, however. The simplest way to
introduce randomness in S is to make E contingent on an objective,
nonmanipulable event, e.g., the change in a stock market index over a short
interval following S's announcement.22 However, the problem is that, if the
event is objective, B can insure against it in advance, i.e., B could go to a
(competitive) insurance company and agree, conditional on S’s announcement
and a particular realization of the stock market index, to exchange the
actual value of p for its expected value, Ep. If S "rejects", this makes B's

combined payment to S and the insurance company equal to Eg = c, + —l(c

1 2N‘2
Cl)’ and the effect of the penalty is removed.

In a private communication, Eric Maskin has suggested that B and S
could aveid the possibility of insurance by making E depend on the
realization of a subjective event, or an event whose probability distribution
is private information to B and S. For example, B and S could construct a
randomization device, e.g., a machine, whose structure is known only to B and
S. However, this would seem to open the door to manipulation of the device by
B or S. That is, there appears to be a trade-off: the more objective a
lottery is, the less it can be manipulated, but the more it can be insured
against; the less objective a lottery is, the less it can be insured against,

but the more it can be manipulated.23

22The reason the interval must be short is that, if it were not, then this

would give time for B and S to renegotiate the contract after S’'s

announcement, to avoid the unwanted randomness.

23Yet another possibility, suggested to us by Andy Postlewaite, is that,

instead of constructing a machine, the parties can induce endogenous (i.e.,
subjective) randomness by agreeing to play a game, with a publicly observed
outcome, that has a mixed strategy equilibrium. The idea is that, although
the players’ strategies are not observable to outsiders, they are
self-enforcing. See Barany (1992) for an analysis of this kind of idea. The
advantage of a game over a machine is that a game is not manipulable by one
party. However, the disadvantage of a game is that it may be difficult to

arrange that the parties play the game simultaneously with S's "rejection" of
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At this point, perhaps we ought to bring to a halt this rather
protracted tennis match between the believers in commitment and the believers
in no commitment. Let the match be declared an honorable draw. To repeat
what we said in the Introduction: the degree of commitment is something about

which reasonable people can disagree.

4. Property Rights

We saw in Section 2 that the inability to specify trade in advance
and/or the inability to commit not to renegotiate can lead to an inefficient
outcome, in which S underinvests. In this section we consider whether some
form of vertical integration can alleviate the situation. In particular,
following the property rights literature (see Grossman and Kart (1986), Hart
and Moore (1990) and Hart (1995)), we ask whether S would invest more if she

owned B’s (nonhuman) assets.

We will assume that, as owner, S has residual rights of control over
B's assets, in the sense that S has access to B's downstreanm technology.
What this means is that S can turn the special widget into final output that
can be sold on the downstream market at price ; < v. Here v - ; represents
the contribution of B's (specialized) human capital; even though S owns B’s

nonhuman assets, S cannot capture this amount.

To see how downstream integration changes S's incentives, let us stick
to the setup of Section 2.2 where B has all the bargaining power in
renegotliation and where, in the limit N = w, it is optimal to have no
contract at date 0. Consider first the case where ; = ¢ > cC Then, at

2 1.

date 1, S can always threaten to produce without B and obtain v - c1 in state

1 orv- <, in state 2. Of course, renegotiation will occur, since there is

an extra v - v to be gained if B participates, but since B has all the

B’s offer. If there is even a short interval of time between S's “rejection"
and the playing of the game, then the parties can (and will) renegotiate the
contract during this interval, to avoid the randomness induced by the mixed

strategies {see also footnote 21).

32



bargaining power this does not affect S's payoff. Thus S chooses ¢ to
maximize n(o)[v - 1 + (1 - n(a))[v - ¢, ] - o, which yields the same

solution as (2.1), i.e., the first-best.

On the other hand, suppose < >v > cl.24 Then, S will obtain v - cy in

state 1 but nothing in state 2 (it is not worth her while producing without

B's participation in this state). Hence S solves:

(4.1) maximize #n(e)lv - 01] - T,
o
which yields the first order condition n’(¢) = 1/{(v - Cl)' Comparing this

with the first order condition for (2.1), n‘{c) = 1/(c2 - cll. we see that S
Wwill underinvest relative to the first-best, but will generally set ¢ > O,

i.e., downstream integration has a positive effect.

The conclusion so far is that a reallocation of property rights can

help when contracts are incomplete. In fact, this is also the conclusion

obtained in Maskin and Tirole (1998b). However, MT make two further
observations. First, they point out that the parties can obtain an even
better outcome by including a third party in their contract. Second, they

note that there may be several property rights allocations which yield the

same outcome, i.e., the theory lacks predictive power.

Although we have given arguments against the use of third parties in
Section 3, it is worthwhile to consider MI's first point. Since the

first-best can be achieved without a third party if v =z ¢ the interesting

- 2’
case to study is where c1 < vy < C2‘ The contract MT propose is the
following. B and S agree at date 0 that they will jointly own B’'s assets,
i.e., that neither party has the right to use the assets without the other’s

permission. However, B has the option to sell his share in the joint venture

24If v = Cq» downstream integration obviously has no effect, since S will not

produce in elther state without B’s participation.
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to 5 at date 1 at price 0 < P < v - c,: moreover, if B exercises his option,

S must not only pay P to B but also a fine F to a third party.

To see how this works, suppose first that S's cost of producing the
special widget at date 1 equals R state 1 occurs. Then, if B does not
exercise his option to sell, S obtains a zero payoff in the absence of
renegotiation since S cannot use B's assets without B’s permission. Since B
gets all the gains from renegotiation, B's post-renegotiation payoff is v -
Cl. and S’s is zero. On the other hand, if B exercises his option to sell,

S's payoff equals v - ¢y - P - F, and B's payoff equals v - v + P, since B

~ ~

obtains the full amount v - v in renegotiation. It follows that, since P < v

- Sy B will choose not to exercise his option, and so S's payoff in state 1

is zero.

Consider next the case where S's cost of producing the special widget
at date 1 equals Cyt state 2 occurs. Then, whether or not B exercises his

~

option to sell, S will not use the assets without B's participation since v <
c,- Hence B will obtain the full surplus v - y in renegotiation and his

payoff will equal v - c, if he does not exercise his option and v - c, + P if
he does. Since P > 0, B prefers to exercise his cption, and so S’'s payoff in

state 2 equals - (P + F).

Notice that as S’s cost of producing the special widget at date 1 rises
from c1 to Cs» the fall in her payoff can be made equal to S, T ¢ if the
parties choose F = Cy - c, - P. In other words, the appropriate choice of F

induces S to make the first-best level of investment.

Given the discussion of Section 3, it is not altogether surprising that
third parties can be used to enhance a simple property rights outcome (or for
that matter to achieve the first—best).25 However, we argued in Section 3
that third parties may be problematic because they are vulnerable to
collusion. These considerations apply with equal force to the property

rights model presented here. Thus, in practice B and S may find it difficult

2SMT show that their scheme generalizes toc the case where B invests as well

as S.
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to use a third party in the way that MT suggest.

Even in the absence of third parties, MT's Jjoint ownership scheme has
interesting properties. In particular, set F = 0 (i.e., eliminate the third
party). Then the difference between S's gross payoffs in states 1 and 2
equals P, which can be set as high as ; - cy- Thus, the same outcome can be
achieved with joint ownership, plus an option to sell, as by letting S have

100% ownership of the asset: in both cases, S will solve (4.1).

This is in fact MT’s second point: there may be more than one
allocation of property rights that sustains the second-best optimum.z6
However, this observation does not seem terribly damaging to the property
rights approach. First, the theory is still capable of ruling out most
allocations of property rights (for example, in the case where cnly S invests,
ownership structures in which S (resp., B) owns B’s assets with probability p
(resp., (1 - p)) are suboptimal for all 0 = p < 1). Second, MT’s joint
ownership contract seems very fragile. P must be chosen so that B has an
incentive to exercise his option in state 2 but not in state 1. However, if,
say, ; is stochastic with support (cl. 02). then B will exercise his option to
sell with positive probability in state 1, which will reduce S’s incentives to
invest. In contrast, the contract where S owns B's assets with probability 1
is robust to the introduction of uncertainty in ;. In fact, we conjecture
that the indeterminacy in optimal ownership structure will be much reduced,

and may disappear, in a world of uncertainty.

In concluding this section, we should point out that the above analysis
falls some way short of providing a fully satisfactory foundation for a

theory of ownership. The property rights approach takes the view that an

26The reader may wonder whether the solution to (4.1) does indeed represent

the second-best optimum in the two-party case where only S invests; or
whether the parties could do better by having ownership of S's assets be a
function of verifiable messages sent by the parties at date 1. The answer is
that they cannot do any better (under the assumption that S's gross payoff
in the absence of renegotiation with B, ;, is nonverifiable}. This can be

demonstrated using the results of Maskin and Moore (1998).
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owner has residual control rights. However, the above model does not
distinguish between specific and residual rights, and in fact equates
residual rights with complete control rights (in particular, the right to
have access to B's downstream technology). A more satisfactory model would
proceed by assuming that certain decisions need to be taken with respect to
assets, some of which can be described in advance (the specific control
rights), but others of which cannot. (These nonspecifiable decisions are
similar to the characteristics of the widget that cannot be described in
advance in Section 2, Case ND.) Suppose that there is a large number of
hard-to-describe uses of the assets, only one of which, say, will be relevant
in a particular state of nature; and the states of nature are equally likely.
Then it seems probable that an analysis along the lines of Section 2 will
lead to the conclusion that the best the parties can do is to allocate
residual control rights over assets, i.e., ownership rights. However, a

formal demonstration of this must await further work.

S. Interpreting Contractual Incompleteness

A question that is sometimes asked about incomplete contracting models

is: are the optimal contracts really incomplete? To put it another way, what

is an incomplete contract?27

Some contracts are manifestly incomplete in the sense that they leave
something out or are ambiguous.28 For example, consider a contract that says
that S must supply B with a widget on February 29, 1998, even though no such
date exists. Or, to give a deeper example, consider a specific performance
contract which says that S must supply B with a particular widget, but which
does not indicate the damages if performance turns out to be impossible.
Incompleteness like this is very common in reality, but unfortunately it is

very hard to model. It would seem necessary to assume that the parties are

27For illuminating discussions of this question, see Ayres and Gertner
(1992) and Tirole (1998).

28Ayres and Gertner (1992) call such contracts "obligationally incomplete."
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boundedly rational in the sense that they do not foresee even relatively
obvious events. In contrast, in this paper, we have assumed that the parties
are constrained in contracting only by the fact that complicated states of

nature cannot be verified.29

The contracts that we have derived in this paper are therefore not
incompiete in the above sense. In particular, the parties’ obligations are
fully specified in all circumstances. This is true even of the null contract
that was (approximately) optimal in Proposition 2. The null contract is
complete in that it is absolutely clear what everybody’s obligations are:
nobody has any!

However, there is another sense in which one can say that a contract is
incompiete: it is incomplete if the parties would like to add contingent
clauses, but are prevented from doing so by the fact that the state of nature
cannot be verified (or because states are too expensive to describe ex
ante).30 For example, a contract that says that S must supply X widgets to B
at a fixed price (and pay huge damages if she does not supply) is incomplete
if the parties would really have liked to make the number of widgets

contingent on the state.

Viewed in this way, the optimal contract in Proposition 2 (under the
noncommitment assumption) -- that is, no contract -- is incomplete. It is
true that the parties’ obligations are fully specified and that renegotiation
at date 1 always "completes" the contract (i.e., makes it contingent).

However, the way the contract is completed is not optimal from an ex ante

29Actually, it is not entirely clear that parties who write obligationally
incomplete contracts are boundedly rational. Douglas Baird has suggested that
it may be rational for parties to write contracts with missing provisions or
ambiguities, to the extent that they anticipate that the courts will fill
in the gaps or remove the ambiguities. Viewed this way, obligationally
incomplete contracts and the "insufficiently state contingent" contracts

described below are not fundamentally different.

OAyres and Gertner (1992) refer to such contracts as "insufficiently state

contingent.”
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perspective. The parties would like to ensure that the price of the special
widget is independent of S's cost, but, as we have seen, this may not be

compatible with their ex post incentive constraints.

Of course, at some level this is all a matter of semantics -- one could
Just as well call the contracts in Secticn 2 "optimal complete contracts
subject to commitment and incentive constraints {and possibly also
describability constraints)." However, we believe that there is a qualitative
difference between the contracts of Section 2 and the complete or
comprehensive contracts studied in the traditional mechanism design literature
(including that based on asymmetric information or moral hazard) -- not
least because the contracts of this paper provide the beginnings of a
foundation for a theory of ownership or property rights -- and thus it lis

reasonable to have a different term for them.
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Appendix

In this Appendix we generalise Proposition 2 to the case where both
parties make investments at date 1/2: B invests B, costing Cb(B); and S
invests ¢, costing Cs(o). Now B and ¢ may be multi-dimensional. Also, we
allow for any division of surplus in the date 1 bargaining. Specifically, we
suppose that, if the outcome of the contractually-specified mechanism is
inefficient, then with probability A S makes a take-it-or-leave-it offer to

B, and with probability 1-A B makes a take-it-or-leave-it offer to S.

As in the text, there are N widgets, numbered 1,...,N, which can be
described at date 0 (we are in Case D).31 In each state of nature at date 1,
one of these widgets is special, yielding value v to B and costing S c to
produce. The stochastic mapping from (B,o¢) to (v,c) is arbitrary, except
that we suppose v and ¢ are always ranked and bounded: there exist v < = and
¢ = 0 such that vzvzacgz ¢ with probability 1.32 The fact that the mapping
from (B,0) to (v,c) is arbitrary means that we can allow for any degree of
correlation between v and c, and also for externalities where B's investment

B affects S’s cost ¢, or where S's investment ¢ affects B's value v.

The remalning N-1 widgets are generic, and, for n = 1,...,N-1, have

cost g, = ¢ + g(? - E)' To simplify matters, we now assume that the value of

each of these special widgets equals its cost.33

31As in the Corollary to Proposition 2, our result holds a fortiori if the N

Wwidgets cannot be described in advance (Case ND).

32The restriction v = ¢ is made so that, at worst, the special widget is like
a generic widget for which value equals cost (see below). Our results still
hold if the value of a widget (special or generic) to B is strictly less than
the cost to S. In such a case, the parties will typically renegotiate in

order to avoid inefficient trade.

33As in Section 2, the exact specification of these costs/values is not

important. What matters is that as the number of widgets, N, increases, no
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We assume that there is complete symmetry among the widgets at date 0O,
in the sense that each widget is equally likely to be the special widget or
to be one of the N-1 generic widgets. (This uniform distribution over

permutations is unaffected by 8 and ¢.)

At date 1, both B and S observe the state: the realised permutation of
the N widgets, and the cost c to S and the value v to B of the special
widget. However, no-one else observes the state. In other words, the state
is observable (to the two parties) but not verifiable (to outsiders, such as

the courts).

As a preliminary exercise, suppose a contractual mechanism specifles

that some widget W is traded. If the state of nature is such that, first, W
is a generic widget with cost/value g, and, second, the special widget has
cost ¢ to S and value v to B, then, following renegotiation, S’s final payoff
will be - g, * Alv - ¢), and B's final payoff will be g, * (1 -
A)J(v - c). (These payoffs are gross of any transfer that the mechanism might
specify.) Equally, if the mechanism specifies that there is no trade, then,
following renegotiation, S's final payoff will be A(v - c}, and B's final
payoff will be (1 - A)(v - c).

To provide a benchmark for Proposition 2*, let Bo and o° denote the
equilibrium investment levels at date 1/2 if no contract were written at date
0 and the terms of trade were bargained from scratch at date 1 -- in other
words, if the "null contract" were in place. Under the null contract, for a
given realization of c and v, the trade price equals (1-A)c + Av, S's payoff
equals A{v - c), and B's payoff equals (1 - A)(v - ¢). So Bo and ¢° jointly

solve

large "gaps" in cost or value remain between ¢ and v. (In fact, if one knows
the value of A, this range can be reduced; but, by "covering" the full range
from c to Vv, we ensure that Proposition 2* below holds for all A.) Also, it
makes no difference if there are other generic widgets whose costs/values lie

outside this range.
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g° = argmax E[(1 - A)(v - ¢} - Cb(B)‘B,WO].
B
(A.1)
o° = argmax E[A(v - ¢) - CS(¢)|BO.01.
o
where E[+|B8,0] denotes the expectation operator with respect to the date 1

Joint distribution of ¢ and v conditional on investments 8 and o having been

made at date 1/2. We assume that the solution (Bo,vo) to (A.1) is unique.

Proposition 2*. Suppose Case D holds. If the parties cannot commit not to

renegotiate, then, irrespective of the contract, as N + » their investments B
and o approach the values BO and o° given by (A.1). That is, in the limit,
contracts cannot make any difference to expected total surplus, and the

parties may as well use the null contract.

Proof

Take any abstract mechanism M. A state is defined by the permutation
T, say, of the widgets, and the cost ¢ to S and value v to B of the special
widget. In state (c,v,T), let the equilibrium strategies of M for B and S be
ub(c,v,r) and us(c.v,r). And, following any renegotiation, let p(c,v,T)
denote the overall price that B pays S for delivery of the special widget:
plc,v,t) equals any transfer specified in the mechanism EiEE any amount
agreed by the parties during renegotiation. In other words, B’s and S’s

final equilibrium payoffs are respectively v - p(c,v,T) and plc,v,T) - cC.

Let P(c,v) denote the expected value of p(c,v,T) taken over all

permutations t (which are equally probable).

Without loss of generality, we may suppose that T is such that widget 1

is the special widget, and that widgets 2,...,N are generic widgets costing c
+ %(7 -c)l, ..., Cc+ Eﬁl(v - c) respectively.

Now consider another state (c*,v*,t*), where T* is a rotation of T:
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N-1 -

widgets 1, ..., N-1 are generic widgets costing c + %(V - cl, .., c o+ —ﬁ—(v

- c) respectively, and widget N is the special widget. Without loss of

generality, we suppose that
(A.2) (1 - A)(e* - c) + Alvt -v) = oO.

The proof of Proposition 2* proceeds via two lemmas, which together pin
down the size of the gap between the expected prices, P(c*,v*} - P(c,v). The

first lemma provides a lower bound.
Lemma 1. P(c*,v*} - Pl(c,v) = (1 - A)(c* - c) + A(v* - v) - %(V - cl.

Proof of Lemma 1

Consider the outcome of the mechanism M if B plays strategy
ub(c',v‘,t*) and S plays strategy us(c.v,r). Suppose M specifies: B pays S
an amount q; widget n = 1,...,N is traded with probability o = 0; and there
is no trade with probability 1 - (al + ...+ aN] =z 0. [(As both parties are
risk neutral, there is no loss of generality in not having the transfer q
depend on which widget -- if any -- the mechanism specifies is traded.)

There are two incentive constraints that q, « o must satisfy.

1’ """ N
First, in state (c*,v*,t*), S must not have an incentive to deviate to

ps(c.v.r). Second, in state (c,v,T}, B must not have an incentive to deviate
to pb(c*.v‘,r‘).

Suppose strategy pair pb(c*,v‘,t'), ps(c,v,r) is played. The
contractually-specified outcome is typically inefficient, and will be
renegotiated: when the outcome of the lottery (al,....aNl specifies either
that a generic widget is traded, or that there is no trade, the parties must
bargain in order to exploit the gains from trading the special widget. The
final payoffs depend on the state. In state (c*,v*,t*), following the play

of strategy pair ub{c*,v*,r*), us(c,v,t), S’s final payoff is
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q + al[ -c - %(V - c) + Alv* - c*)] +

+ aN—l[ -c - Eﬁl(V - c) + Alv* - c*) ] + “N[ - c* ]

+ (1 -~ @y = aN)[ Alv® - c*)],

which, according to the first incentive constraint, cannot be more than what
she gets in equilibrium, p(c*,v*,t*) - c*. And in state (c,v,T), following

the play of strategy pair ub(c'.v*,r‘), us(c,v,t), S’s final payoff is

q + al( -c ] + az( -c - %(V -c) +Alv -c) ] +

+ aN[ -c - Eﬁl(v - c) + Alv - ¢) ]

+ (1 - @ o= - aNJ[ Alv - ¢} ].

which, according to the second incentive constraint, cannot be less than what
she gets in equilibrium, p(ec,v,T) - ¢, since if S were worse off B would be

better off (all final payoffs lie along the Pareto frontier).

Combining these two constraints, we have

plc*,v*,t*) - ple,v,T) - (1 - A)(c* - ¢) - A(v* - v) + %(3 - ¢}

=z al[c - ¢ + Alv - c)] + aN[U - v* + (1 - A)(v* - c*)]

+ Q- - - aN)[ %(V - c) ].
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which is nonnegative, given that vz v* =z c* 2 cand vazvzc 2 c.

Since this lower bound applies for any permutation t (and associated

rotation t*), we can take expectations across permutations to deduce that
P(c*,v*) - Plc,v) = (1 - A)(c* - ) + Al{v* - v) - %(V - c).
This proves Lemma 1.
The second lemma provides an upper bound for the gap between the
expected prices, P(c*,v*) - Plc,v).

Lemma 2. P(c*,v*) - Plc,v) = (1 - A)(c* - ¢) + A(v* - v).

Proof of Lemma 2

Consider the outcome of the mechanism M if B plays strategy ub(c,v.r)
and S plays strategy us(c*,v‘.r). (Note that, in contrast to the proof of
Lemma 1, the selected states here differ only in the costs and values of the
special widget; in both states, the permutation of the widgets is T. And
recall that the choice of t is without loss of generality.) Suppose M
specifies: B pays S an amount &; widget n = 1,...,N is traded with probability
@ = 0; and there is no trade with probability 1 - (@, + ... + &) =0

There are two incentive constraints that &, ;1. N ;N must satisfy.
First, in state (c,v,7), S must not have an incentive to deviate to

us(c*,v*,r). Second, in state {c*,v*,t), B must not have an incentive to

deviate to pb[c,v.t).

Suppose strategy pair ub(c,v,t), us(c*,v*.r) is played. The
contractually-specified outcome is typically inefficient, and will be
renegotiated: when the outcome of the lottery (;1""';N) specifies either
that a generic widget is traded, or that there is no trade, the parties must

bargain in order to exploit the gains from trading the special widget. The
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final payoffs depend on the state. In state (c,v,t), feollowing the play of

strategy pair ub(c.v,rl. us(c*,V‘.r), S's final payoff is
& + & -c + & -c - 1(3 -c) + Alv -~ ¢) +
1 - N =
+ &N[ ~c - Eil(? - c) +Alv - ¢) ]
+ (1 - @ e = aN)[ Alv - ¢) ],

which, according to the first incentive constraint, cannot be more than what
she gets in equilibrium, p(c,v,t) - c. And in state (c*,v*,t), following the

play of strategy pair ub(c,v,r), us(c*,v*,r), S's final payoff is

-~

q + ;1[ - c* ] + &2[ -c- %(V - c) + A{v* - c*) ] +

+ (1 -&1 - ... —&N)[A(v* - c*) ]

which, according to the second incentive constraint, cannot be less than what

she gets in equilibrium, p(c*,v*,T) - c*, since if S were worse off B would
be better off.

Combining these two constraints, we have

plc*,v*,t) - ple,v,T) - (1 - A){c* - ¢) - A(v* - v)

< - ;1[ (1 - 2A)(ec* - c) + AlvE - v) ],



which is nonpositive by (A.2).

Since this upper bound applies for any permutation T, we can take

expectations across permutations to deduce that

P(c*,v*) - Plc,v) = (1 -2A¥(ec* - c) + Al(v* - v).

This proves Lemma 2.

Together, Lemma 1 and Lemma 2 show that as N » », the gap between
P(c*,v*) and P(c,v) approaches (1 - A){c* - c) + A(v* - v), whatever the
contractually~specified mechanism. But this means that, up to an additive
constant, the expected price paid by B to S is the same as if the parties
bargained from scratch at date 1 -- as if the null contract were in place.
This in turn means that B and S will make equilibrium investments BO and ¢°

at date 1/2. Propositicn 2* is proved.

Q.E.D.
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