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ABSTRACT

The real business cycle literature has largely ignored the empirical question of what role
technology shocks actually play in business cycles. The observed procyclicality of total factor
productivity (TFP) does not prove that technology shocks are important to business cycles, since
demand shocks could generate procyclical TFP due to increasing returns or other reasons. 1 address
the role of technology by investigating the dynamic interactions of inputs, TFP and two observable
indicators of technology shocks: R+D spending and patent applications. Using annual panel data
on 19 US manufacturing industries from 1959 -1991, I find that favorable R+D or patent shocks tend
to increase inputs, especially labor, in the short run, but to decrease inputs in the long run, while
tilting the mix of inputs towards capital and nonproduction labor. Favorable technology shocks do
not significantly increase measured TFP at any horizon, except for a subset of industries dominated
by process innovations, suggesting that available price data do not capture productivity

improvements due to product innovations. Technology shocks explain only a small fraction of input

and TFP volatility at business cycle horizons.
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I. INTRODUCTION

The ‘“real business cycle" approach teo short-run fluctuations,
pioneered by Kydland and Prescott (1982) and Long and Plosser (1983),
has dominated the academic business cycle literature over the last
decade and a half. Kydland-Prescott and Long-Plosser were seminal iIin
several respects. First, they reintroduced the Schumpeterian idea that
stochastic technological progress could generate business cycles.
Second, they arguedi that one could explain fluctuations using a
frictionless neoclassical framework in which business cycles are optimal
and therefore require no smoothing by policymakers. Third, they argued
that business cycles could and should be explained using dynamic
stochastic general equilibrium models in which preferences and
production are explicitly spelled out in a way consistent with
microeconomic first principles, such as optimizing behavior.

The real buginess cycle literature has broadened considerably since
Kydland-Prescott and Long-Plosser. Recent research has introduced
frictions such as imperfect competition (e.g. Rotemberg and Woodford
(1995)), increasing returns to scale (e.g. Farmer and Guo (1994)) and
price stickiness (e.g. Kimball (1995)), as well as alternative sources
of shocks, such as government spending (e.g. Christiano and Eichenbaum
(1992)), monetary policy (e.g. Christiano and Eichenbaum (1995)), and
animal spirits (e.g. Schmitt-Grohe (1997)). The idea that business
cycles should be analyzed using explicit dynamic stochastic general
equilibrium models seems destined to be the main lasting contribution of
Kydland-Prescott and Long-Plosser’s work.

Meanwhile, the profession has largely ignored the empirical
question of what role technology shocks actually play in business

cycles. I believe that this is unfortunate, for four reasons. First,



the idea that new products and processes are introduced at a
time-varying rate is inherently plausible, at least at the disaggregated
industry level. Second, much recent recsearch exploring the effects of
frictions on business cycle propagation still assumes that cycles are
driven by technology shocks (e.g. Cogley and Nason (1995); Horvath
(1997); Carlstrom and Fuerst (1997)). It would be useful to know if
this modelling strategy has any empirical foundation. Third, while few
would argue anymore that technology shocks are the only source of
business cycles, it would still be useful to know if technology shocks
can explain some part of fluctuations, particularly given that monetary,
0il price and other observable shocks seem unable to account for a large
fraction of observed cyclical variation in output (Cochrane (1994)).
Finally, even if technology shocks are not responsible for a large share
of volatility, the response of the economy to technology could help
distinguish between competing views of the economy’s propagation
mechanisms. In the baseline one-sector flexible-price RBC model,
technology shocks shift out the production possibilities frontier,
inducing short-run increases in investment, labor and materials. In
multisector models, industry technology shocks reduce input prices to
downstream sectors, inducing increases in downstream input and output.
Meanwhile, Gali (1996) and Basu, Fernald and Kimball (1997) demonstrate
that favorable technology shocks may reduce input use in the short run
if prices are sticky; intuitively, if prices do not fall, output will be
unchanged and inputs must fall to accomodate improved TIP. Thus, one
can potentially distinguish between sticky and flexible price models by
examining whether technology shocks increase or decrease input use.

To date, the empirical case for technology has largely been made

indirectly, by showing that plausibly calibrated models driven by



technology shocks can produce realistic patterns of volatility and
comovement. Of course, these quantitative exercises, while informative,
do not tell us what technology shocks actually do. Two pieces of more
direct evidence are that measured total factor productivy (TFP} 1is
procyclical and that aggregate output potentially has a unit root,
suggesting that at least some output shocks are permanent. However, it
is now well known that neither of these facts prove that technology 1is
important to business cycles. Observable non-technology shocks cause
procyclical movements in TFP, consistent with imperfect competition,
increasing returns to scale, procyclical factor wutilization, or
procyclical reallocation of factors to high productivity sectors (e.g.
Hall (1988); Evans (1992); Burnside, Eichenbaum and Rebelo (1995); Basu
and Fernald (1997)). Meanwhile, demand shocks can have permanent
effects on output in endogenous growth models (e.g. Stadler (1990}); and
in any case, a unit root is consistent with transitory shocks driving an
arbitrarily large fraction of short-run variation {(Quah (19891]).

This paper takes a more direct approach to assessing what
technology shocks do, an approach inspired by the large literature
estimating the impact of monetary policy shocks on the economy (e.g.
Christiano, Eichenbaum and Evans (1998)). Using annual panel data for
19 US manufacturing industries from 1959-1991, I employ vector
autoregressions (VARs) to document the dynamic impact of shocks to two
observable indicators of technological change: research and develcpment
(R+D) spending, and patent applications. R+D measures the amount of
input devoted to innovative activity, while patent applications measure
inventive output. Previous studies (e.g. Griliches and Lichtenberg
(1984); Lichtenberg and Siegel (1991); Scherer (1993)), as well as

results reported below, suggest that variation in R+D and patenting is



related to long-run variation in productivity growth across firms and
industries. Moreover, industry-level R+D and patents display nontrivial
short-run fluctuations, as can be seen 1n Figure 1, which plots log real
R+D and log patent applications by industry of manufacture and use for
the US aerospace Iindustry. If technological progress 1s truly
stochastic, then fluctuations in R+D should in part reflect variation in
the perceived marginal product of knowledge, while fluctuations in
patents should in part reflect shocks to the success of research
activity. 1T use these fluctuations to estimate how a typical industry’s
inputs and TFP respond over time to technolegy shocks, and to quantify
the share of industry volatility due to technology shocks. I estimate
the impact of both own technelegy shocks and technology shocks in
upstream input-supplying industries.

To be sure, fluctuations in R+D and patent applications may not be
due to technology shocks alone. Griliches (1989), for instance, argues
that patenting fluctuations in the US are in part responses to factors
such as changes in patent law and changes in the efficiency and
resources of the US Patent Office. Both R+D and patent applications,
meanwhile, are a type of investment, and as such they may respond
endogencusly to output shocks, either because of financial market
constraints or because current shocks are positively correlated with the
future marginal product of capital. My preferred VAR specifications
address these concerns by including time dummies in the regressions and
by placing the technological indicators last in the Choleski ordering
used to decompose the VAR innovations into orthogonal compenents. The
time dummies remove fluctuations in R+D and patent applicatiocns due to
aggregate factors unrelated to true technological progress, such as

changes in the number of patent examiners, provided that these factors



affect all industries equally. My impulse responses therefore measure
the impact of industry-specific technology shocks on industry-specific
fluctuations in inputs and TFP, while my variance decompositions
estimate the contribution of technology shocks to idiosyncratic industry
fluctuations. Placing technology 1last in the ordering, meanwhile,
defines technology shocks as the component of R+D or patenting
orthogonal to both lagged technology and lagged and contemporaneous
inputs and TFP. Empirically, innovations to industry cutput are
positively correlated with innovations to both R+D and patent
applications; placing technology last assumes that this contemporaneous
comovement reflects an accelerator mechanism running {from industry
activity to technology, rather than an instantaneous impact of
technology shocks on output. This assumption seems inherently plausible
given the likely lags between R+D spending, invention, and diffusion of

a new technology (Gort and Klepper (1982)).

My main empirical findings are as follows. First, favorable
technology shocks --increases in the orthogonal components of R+D and
patents—- tend to increase input use, especially laber, in the short
run, but to reduce inputs in the long run. Second, technology

improvements tend to encourage substitution towards capital relative to
materials and labor, as well as substitution towards nonproduction
relative to production labor. These results are consistent with recent
cross-sectional studies establishing a complementary long-run
relationship between technological change and equipment (Delong and
Summers (1991)) and skilled labor (Berman, Bound and Griliches (1994)).
Third, favorable technology shocks do not significantly increase
measured TFP at any horizon, and indeed in some cases reduce TFP. This

suggests that procyclical movements in TFP have little to do with the



introduction of new products and processes. Fourth, technology shocks
explain only a small share of idiosyncratic industry volatility of
inputs and TFP at business cycle horizons. This result is bad news for
technology—shock driven models, particularly given that
industry-specific technology shocks are likely to explain
industry-specific volatility better than aggregate volatility (Horvath
(1997)). However, my results could be consistent with models in which
technology contributes to low-frequency fluctuations (e.g. Jovancvich
and Lach (1997)); or with models in which the important "real” shocks
come from strikes, weather, cartel behavior, and so on; or with models
in which "technology shocks" are not due to stochastic scientific and
engineering developments, but to stochastic movements in management
techniques or industrial organization that cause a given set of inputs
to be more or less efficlient. Finally, I find that technology
improvements are more likely to raise TFP and reduce prices 1in
industries characterized by process innovations than in industries
dominated by product innovations. This suggests that my failure to find
strong effects of technology on TFP may be due in part the failure of
available price data to capture productivity gains caused by quality
improvements and new product intreductions.

Two other recent papers (Gali (1996) and Basu, Fernald and Kimball
(1997)) also investigate‘the short-run impact of technology shocks, in
both cases using aggregate data. Gali estimates a structural vector
autoregression for labor productivity and labor input in the US,
identifying technology shocks by assuming that only technology affects
long-run productivity. Basu et al, meanwhile, correct industry-level
TFP for variations due to increasing returns to scale, imperfect

competition and cyclical factor utilization, then measure aggregate



technology as an appropriately-weighted average of sectoral technology.
Interestingly, Gali and Basu et al. both find that favorable technology
shocks reduce input use in the short run, consistent with sticky prices
but contrary to my results.

These two papers represent a quantum advance over existing
literature. Nevertheless, one might disagree with thelr methodologies
for measuring technological change. Gali’s approach rests heavily on
the assumption that demand shocks cannot affect productivity in the long
run. This assumption is inconsistent with both endogenous growth models
and with models in which recessions "cleanse" the economy by wiping out
low-productivity firms (e.g. Caballerc and Hammour (1994 and 1996)).
Cleansing models, in particular, predict that favorable demand shocks
will reduce long-run productivity, and Gali himself has in the past
argued for such an interpretation of the data (Gali and Hammour (1992)).
Interestingly, my Impulse response functions suggest that input
innovations lead to short-run increases in TFP, consistent with
increasing returns or procyclical utilization, but long-run decreases in
TFP, consistent with cleansing models.

Basu et al's approach, meanwhile, does not rely on long-run
restrictions. It does, however, rely on the idea that TFP fluctuations
are valid measures of stochastic technological progress at the two-digit
industry level, once one corrects for increasing returns, imperfect
competition and cyclical factor utilization. This idea seems plausible,
but it is not necessarily true, given that fluctuations in "corrected"
sectoral TFP could still be due to non-technology sources such as
measurement error, within-sector factor reallocations, or inadequate
corrections for increasing returns or cyclical utilization. Basu et

al’s methodology would be more convincing if their corrected measure of



technology could be linked to some sort of outside measure of
technological progress, such as anecdotal evidence on the timing of
particular technical changes in particular industries.

The remainder of the paper proceeds as follows. Section 1I
describes the data. Section III examines long-run and contemporaneous
relationships between technological progress and my measures of
innovative activity, largely to connect my work to previous studies.

Section IV presents evidence from VARs and section V concludes.

II1. DATA DESCRIPTION

My goal is to examine the time series interactions between measures
of technological change, such as patents and R+D, and measures of
economic activity. Ideally, I would estimate these interactions using
aggregate data for a single country, following the empirical literature
on monetary policy. However, this approach is not feasible in my case.
The only readily available data for patents and R+D are annual rather
than quarterly or monthly, implying short aggregate time series. Even
if higher frequency data could be constructed, it is not clear that it
would be useful, given that the impact of technolegical change on the
economy is likely to operate at a somewhat lower frequency than the
impact of monetary shocks. To obtain sufficient degrees of freedom to
estimate the impact of technology shocks with reasonable precision, I
use panel data for 19 manufacturing industries covering 1959-1991,
exploiting the fact that technological developments are not perfectly
synchronized across industries. An alternative, worth pursuing in
future work, would be to use annual aggregate data for a panel of
countries, or for panels of both countries and industries.

Data on R+D by industry is taken from the National Science



Foundation’s annual survey of US firms. I examine only company-financed
R+D. Previous research using cross-sections of industries and firms
(e.g Terleckyj (1975); Lichtenberg and Siegel (1991)) has shown that
long-run productivity growth is related to company-financed R+D, but not
to federally-financed R+D, suggesting that public R+D dollars are spent
inefficiently or that they are spent in areas, such as defense or space
exploration, where productivity measurement is difficult. I convert
nominal R+D to 1991 dollars using the GDP deflator, then convert real
R+D flows to an R+D capital stock, following Griliches (1973) and most
other subsequent research. I employ a linear capital accumulation
equation, assuming a 15 percent annual depreciation rate and setting the
1959 stock equal to the 1959 flow divided by 0.15 plus the industry’s
average R+D growth over the sample period; these assumptions are
standard in recent literature (e.g. Lach (1995), Keller (1997)).
Empirical results are similar if I use real R+D flows instead of R+D
stocks. As a timing convention, I include R+D spending in year t in the
R+D stock for year t, so that I can interpret the correlations between
R+D and other variables as reflecting a contemporaneous response of R+D
to industry activity. I use data for 19 manufacturing industries; these
are listed in Table 1 along with sample means of real R+D flows and the
growth rate of the R+D stock. The largest flows of company R+D are
found in automobiles, electronics, and computers; the fastest-growing
R+D stocks are in drugs, electronics, computers, and instruments. Note
that my baseline sample omits nonmanufacturing industries as well as
some manufacturing industries (tobacco, printing and publishing,
leather, and miscellaneous manufacturing) whose R+D data are lumped
together by the NSF. The share of overall R+D accounted for by these

sectors is trivial for most of my sample period.



I must mention two problems with this data. First, to avoid
disclosure of individual firms’ operations, the NSF suppresses some
industry-year observations. In wvirtually all such cases, the NSF
suppresses either company-financed or total (including federally
financed) R+D, but not both, so that I can interpolate gaps in company
R+D using growth of total R+D. Second, the NSF data is collected at the
company level. All R+D spending performed by a company is assigned to
the industry in which the company had the most sales, even if part of
the R+D was conducted in establishments belonging to another industry.
Given that R+D is typically performed in large conglomerated firms, the
assignment of R+D to particular industries is presumably subject to
error. Particularly troubling is the fact that a given firm’s industry
classification can change over time as 1its pattern of sales changes,
creating the possibility of large movements in measured industry-level
R+D spending wunrelated to actual changes in spending at the
establishment level. Griliches and Lichtenberg (1984) attempt to
overcome this problem by using R+D data grouped by applied product field
rather than by industry of origin. Unfortunately, the reporting
requirements of the NSF’s product field survey were burdensome on
participating firms, leading to spotty coverage. The survey was reduced
from annual to biannual beginning in 1978, and was discontinued in 1986.

Patent data for US industries is not routinely available. The
reason is that the US patent office assigns new patents to technological
fields, but not to industries. Estimating patents by Iindustry for the
US thus requires a mapping from technological fields into industries.
The most satisfactory mapping available 1is the Yale Technology
Concordance (YTC), described by Kortum and Putnam (1997). This

concordance uses the fact that the Canadian patent office assigns
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patents to technological fields, to industries of manufacture, and to
industries of use; for instance, a new farm tractor invented in an
aerospace establishment would be assigned to the agricultural machinery
sector (industry of manufacture) and to agriculture itself (industry of
use}. The YTC estimates mappings between technological field and
industries of manufacture and use using the Canadian data, then applies
the Canadian mapping to US patents by technological field. For this
study, I use annual data on US patent applications grouped both by
industry of manufacture and by industry of use, generously provided by
Sam Kortum. I convert the annual flows of patents to stocks using the
same method as for R+D; empirical results again are similar if I use
flows instead of stocks. Note that patents grouped by date of
application are superior to patents grouped by date of grant, both
because application presumably coincides with the economic viability of
an innovation, and because historically there have been long and
variable lags between application and granting in the US, caused in part
by changes in the resources of the US patent office (Griliches (1989)).
I must again acknowledge potential problems with this data. First,
the assignment of US patents to industries 1s presumably not perfect.
The mapping between technological fields and industries probably varies
between the US and Canada as well as over time. Kortum and Putnam
(1997) show that the estimated Canadian mapping forecasts Canadian
industry patents out of sample reasonably well, alleviating these
concerns somewhat but not entirely. Second, the distinction in the data
between industry of manufacture and industry of use is not as sharp as
one might hope. Ideally, I would like to interpret manufacture patents
as "product innovations" and use patents as "process innovations".

However, conversations with Sam Kortum suggested that this is not
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entirely correct; for instance, process innovations often wind up being
assigned the same industries of manufacture and use even if no new
product 1s created, while new products with broad applicability often
wind up being assigned no industry of use. My sense is that we can at
least safely assume that manufacture patents contain a higher fraction
of product innovations than do use patents, and that use patents contain
a higher fraction of process innovations than do manufacture patents.

1 present sample means for patent flows and patent stock growth in
Table 1. The flows of both manufacture and use patents are highest in
nonelectric machinery and electronics, while patent stocks grow most
rapidly in drugs and computers. Notice that manufacture patent flows
exceed use patent flows in most industries and for my sample as a whole;
this reflects the fact that many product innovations originating in
manufacturing are used in nonmanufacturing, while few innovations
originate in nonmanufacturing. The table also documents the fact,
discussed in Griliches (1989) and Kortum (1993), that patent stocks have
grown more slowly in the postwar US than R+D stocks, or equivalently
that the amount of real of R+D per patent has been steadily rising.
Some observers assert that this trend 1is evidence of vanishing
technological opportunities; others argue that the cost of patenting has
risen secularly and that patenting has become more concentrated in
high-value innovations. Recall that my VARs include time dummies; this
will control for any economy-wide changes in the cost or benefits of
patenting that have affected the ratio of inventive activity to patents.

In addition to examining the impact of own R+D and patents, I
examine the impact of innovations in upstream industries. I construct
these measures using data from the 1977 US input-output study, following

the methods used by Terleckyj (1975), Keller (1997) and others. I begin
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by constructing a 19-by-20 matrix whose element (i,]J) shows the total
flow of goods in 1977 from sample industry 1 to sample industry Js
including both intermediate and capital flows; I describe the

construction of total flow matrices from raw input-output data in Shea

(1991 and 1993). The 20th column combines flows to omitted
manufacturing industries, nonmanufacturing industries, private
consumption, and government. ! set diagonal elements to zero, then

divide by row sums to obtain the shares of external demand for each
sample industry accounted for by each other sample industry. I then
multiply these demand shares by each industry’s R+D and patent flows, to
obtain the implicit "flow" of R+D and patents tc and from each sample
industry. Taking column sums gives me an estimate of the flows of
upstream R+D and upstream patent applications to each manufacturing
industry in any year. I cumulate these flows into stocks using the
methods described above. These measures omit R+D or patents coming from
omitted industries; as mentioned earlier, however, these industries
account for little innovative activity for most of my sample period.

My measures of TFP and inputs for manufacturing industries come
from the NBER productivity data base, described in Bartlesman and Gray
(1996). The NBER data includes annual measures of gross ocutput and
capital, labor and materials inputs for 430 four-digit manufacturing
industries. I measure labor as total employment multiplied by hours
worked per production worker, assuming that production and nonpreduction
hours per worker are perfectly correlated. I define total input as a
Divisia index of capital, labor and materials growth, weighting using
factor shares in gross output and measuring the capital share as a
residual. TFP growth is defined as output growth minus input growth. 1

measure input and TFP growth at the four-digit level, aggregate up to
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the 19 industries listed in Table 1 using shares in nominal gross
output, then convert growth rates to level indices. Below, I examine
the dynamic impact of technology shocks both on total input and on
capital, labor and materials separately, premultiplying log capital,
labor and materials by their shares in nominal gross output in order to
avoid having to impose the condition that factor shares 1in production

are identical across industries.

II1I. PRELIMINARY EVIDENCE

This section examines the univariate time-series properties of my
data, and replicates previous work examining cross-section and
contemporanecous time-series relationships between technology and TEP.
My baseline data are annual observations for 19 manufacturing industries
from 1959-1991 on TFP, total input and its share-weighted capital, labor
and materials components, stocks of own R+D, manufacture patents and use
patents, and stocks of upstream R+D, manufacture and use patents.

Table 2 presents univariate time series evidence. For each series,
I perform an Augmented Dickey-Fuller test of the null hypothesis that
the series has a unit root in log levels, including three lagged growth
rates to correct for serially correlated errors. I include
sector-specific intercepts and time dummies in each specification, and
experiment with including sector-specific time trends; all other
coefficients are constrained to be equal across sectors. Since these
are panel data, I cannot apply the usual Dickey~-Fuller critical values;
I instead use the formula provided in Levin and Lin (1992), which with
19 industries implies a 5 percent critical value of -7.093 and a 10
percent critical value of -6.816. According to Table 2, I can never

reject the null of a unit root when I include only sectoral intercepts
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and time dummies. However, I can reject a unit root in seven of eight
cases when I include sector-specific trends. I conclude that my data
are stationary around trends that differ across sectors.

Table 3 looks at the long-run relationship between technology and
TFP growth. I estimate cross-section OL5 regressions of mean TFP growth
on a constant and the mean growth rates of my technology indicators,
taken one at a time; the sample size for each regression is 19. The
coefficients on own R+D and own manufacture patent growth are positive
and significant at 10 percent, while the coefficients on own use patent
growth as well as upstream use and manufacture patent growth are
positive and significant at 5 percent. My sample is too small to allow
for multivariate analysis, and the results are fragile; omitting
computers, for instance, reduces the coefficient on technology in all
cases, and renders the own R+D results insignificant. Still, these
results suggest that my technology indicators capture something about
technological progress. My findings are consistent with Griliches and
Lichtenberg (1984), Scherer (1984 and 1993), and Lichtenberg and Siegel
(1991), who find that R+D and productivity growth are positively related
across firms and industries, and with Terleckyj (1975) who reports a
significant positive relationship across industries between TFP growth
and upstream R+D. Notice that use patents are more strongly related to
TFP growth than manufacture patents, suggesting that process innovations
may be better captured by available data than product innovations, a
theme to which I return below.

Table 4 estimates contemporaneous time series relationships between
TFP and technology indicators in log levels, while Table 5 does the same
in growth rates. I include sectoral intercepts and time dummies in the

levels regressions, and experiment with sector-specific trends; 1
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include a constant and time dummies in the growth rate regressions, and
experiment with sectoral intercepts. Results omitting sectoral trends
in Table 4 suggest strong, positive contemporaneous relationships
between TFP and all six technology indicators. However, including
sectoral trends weakens the relationship substantially for own R+D and
use patents, and reverses the sign in the other four cases. Similarly,
in Table 5 there is a strong positive relationship between TFP growth
and technology growth when I control only for time dummies, but this
relationship vanishes when I add sectoral intercepts. I conclude that
cross-industry differences in trend productivity growth are positively
related to cross—-industry differences in trend technology growth, but
that once I control for these differences there is little
correlation between TFP and technology. My results contradict Lach
(1996), who reports a contemporaneous positive relationship between
patent stock growth and TFP growth in a sample similar to mine, as well
as Griliches and Lichtenberg (1984}, who find no time series
relationship between TFP and R+D even when omitting sectoral trends.
Tables 4 and 5 suggest that there 1is no contemporaneous
"within-industry" relationship between TFP and technology in annual
data. Table 6 asks whether such a relationship exists over a longer
horizon, by regressing "medium-run" TFP growth on technology growth
measured over the sixteen-year intervals 1960-75 and 1976-91. There are
two observations per industry, implying a sample size of 38. In the
first column, I control only for a constant and a dummy for the second
period; these results suggest a positive and significant relationship
between TFP and technology growth in the medium run. However, these
results rely on \both cross—-industry and within-industry varilation.

Adding a sectoral fixed effect in the second column makes the
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relationship between TFP and technology insignificant, as standard
errors rise substantially in all cases and peint estimates fall
substantially in five of six cases. These results suggest that most of
the variation in medium-run technology growth is cross-industry rather
than within-industry, and that within-industry medium-run variation in
technology and TFP are only weakly related. 1 obtain similar results
when I experiment with different starting and ending dates, as well as
with four- and eight-year horizons.

One might wonder if Tables 4 through 6 obviate the need for any
further investigation of time-series relationships between TFP and
technology. The answer 1is no, Had I found a robust positive
contemporanecus relationship between (say) R+D and TFP, I could not have
concluded that BR+D shocks cause TFP to rise, because of potential
omitted variables bias; shocks to industry output could raise measured
TFP due to (say) cyclical utilitzation, while at the same time
increasing R+D for accelerator reasons. Similarly, the absence of a
contemporaneous relationship does not prove that R+D has no impact on
TFP, since such an impact is likely to emerge only with a lag. Both of

these problems can be addressed by using vector autoregressions.

IV. VAR EVIDENCE

In this section I present results from a series of vector
autoregressions using annual industry panel data on inputs, TFP and
technological indicators from 1959-1991. All variables are in log
levels, following the panel unit root tests presented in Table 2,
although the impulse response functions in log levels are broadly
similar if I estimate using growth rates. All specifications include

sector-specific intercepts, sector-specific time trends, and time

17



dummies. The time dummies are intended to control for aggregate shocks
that affect R+D and patenting intensity, but are unrelated to true
technelogical progress, such as the changes in the US patent office
discussed in Griliches {1989). of course, time dummies will also remove
any variation due to aggregate technology shocks, which may bias my
results against technology shock models; fortunately, my results are
broadly similar if I omit time dummies. I use four lags; experiments
with other lag lengths yielded similar results.

Figures 2 through 4 present the complete set of estimated impulse
response functions, along with 1.65 Monte Carlo standard error bands,
for three-variable VARs estimated on the manufacturing sample. The VARs
are ordered as total input, TFP, and either own R+D (Figure 2}, own
manufacture patents (Figure 3) or own use patents (Figure 4). I enter
technology indicators one at a time for presentational simplicity;
results are similar if I enter multiple indicators simultaneously.
Placing technology last reflects my belief that shocks to R+D or
patenting are likely to affect industry activity only with lags.
Plac&ng technology first would generate a significant but small
expansionary initial impact of technology on inputs and TFP, but with
otherwise similar impulse responses and variance decompositions. Figure
S5 breaks the input responses to own technology into disaggregated
components, taken from five-variable VARs ordered capital, labor,
materials, TFP and technology. Figures 6 and 7 present the responses of
input, TFP, capital, labor and materials to upstream R+D and patents:
these estimates are similar if 1 control for input-output weighted
measures of upstream input demand, suggesting that upstream technology
is not merely proxying for upstream activity. I summarize these impulse

responses in Table 7, which 1lists the sign and horizon of every
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significant effect of technology shocks on non-technology variables.
Table 8 presents Granger causality evidence, while Table 9 presents
variance decompositions.

While the results vary somewhat across specifications, some robust
patterns emerge. First the impulse responses of TFP to technelogy are
not significantly positive at any horizon, and indeed are significantly
negative in the long run for all three upstream technology measures.
This result is reinforced in Table 8, which indicate that TFP is
Granger—caused only by upstream R+D and upstream use patents (and in
these cases with negative coefficlents).

Second, the impulse responses of total input to technology tend, 1if
anything, to be positive in the short run but negative in the long run.
I find that technclogy shocks significantly raise inputs 1in the short
run in three of six cases, while significantly decreasing long-run
inputs in four of six cases.

Third, the impulse responses of individual Iinputs {particularly
labor and materials) to technology are stronger than the responses for
total input, as the disaggregated impacts tend to wash out due to both
staggering and conflicting signs. This pattern is mirrored in the
Granger causality results, which show that technology shocks forecast
total input in only three of six cases, but forecast labor and materials
in five of six cases. Favorable technology shocks to increase short-run
labor use significantly in five of six cases, while decreasing long-run
materials use significantly in five of six cases. Note that shocks to
both own and upstream R+D significantly increase capital accumulation in
the short run. This result is consistent with Lach and Rob (1996), who
find that R+D Granger-causes physical investment in industry panel data,

and with Lach and Schankerman (1989), who find the same result in
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firm-level data. In my data, R+D does not Granger-cause capital, but it
does Granger—cause investment.

Fourth, technology shocks explain only a small fraction of input
and TFP variation at business cycle horizons. Technology explains less
than 2 percent of three-year volatility in all cases, and less than 5
percent of six-year volatility in all but one case. Technology has
somewhat more explanatory power at longer horizons, particularly for
upstream R+D and upstream use patents; recall, however, that the impulse
responses for these cases suggest significant long-run contractions of
inputs and TFP following favorable technology shocks. The fact that
technology explains a larger share of variance at longer horizons is
consistent with Jovanovic and Lach (1997), who model technology shocks
as having long diffusion lags and find that technology shocks
"underexplain" short-run but "overexplain" longer-run volatility.

Along with the results for technology shocks, two other features of
my estimates are worth noting. First, own R+D and own patents respond
positively and significantly to input shocks; moreover, R+D Iincreases
immediately, while patents increase only after five years. One possible
interpretation is that Iindustry expansions generate increased R+D
immediately, and that this investment eventually leads to an increased
flow of patentable inventions. Second, input shocks lead to short-run
increases but long-run decreases in TFP. A possible interpretation is
that industry expansions raise measured TFP in the short-run due to
increasing returns or cyclical utilization, but reduce long-run
productivity. An interesting question is how these two features of the
data can coexist--if expansions increase R+D and patents, then why don’ t
they increase productivity? One possibility is that expansions raise

inventive activity but also allow lower-productivity firms to enter and
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survive, generating a net decline in productivity.

Results for Input Mix, Worker Mix and Prices

While this paper is primarily concerned with the impact of
technology shocks on total input and TFP, technology shocks are likely
to affect other variables as well. Conventional models predict that
faverable technology shocks reduce the relative price of industry
output. Meanwhile, if technology shocks are permanent and the supply of
capital is more elastic in the long-run than the supply of 1labor or
materiale (as in the baseline RBC model), then favorable technology
shocks increase the long-run ratio of capital to other inputs. Finally,
some have hypothesized that technological advances have been biased
towards skilled workers during the postwar period, either because
skilled workers have an advantage 1in learning new technologies
(Greenwood and Yorukoglu (1996)) or because technology shocks are
investment-specific and capital is complementary with skill (Krusell,
Ohanian, Rios-Rull and Violante (1996)).

Figures 8 and 9 present impulse responses to own and upstream
technology shocks for three variables: the "worker mix", defined as the
ratic of nonproduction to total employment; the "input mix", defined as
the log of the ratio of capital’s product (capital raised to the power
Xy s where e is capital's share of revenue) to labor and materials’
product; and the industry’s relative price, defined as the implicit
gross output deflator divided by the GDP deflator. I assume that
increases in nonproduction employment are positively correlated with
changes in the ratio of skilled to unskilled employees, following
Berman, Bound and Griliches (1994). My input mix variable is one of

several ways I could quantify changes in capital relative to other
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variables; results are similar when I use more familiar measures such as
the capital-labor ratio. The impulse responses are taken from four
variable VARs in which the new variables are ordered after inputs and
TFP but before technology; data for nonproduction employment, total
employment and prices are taken from the NBER productivity database.

The results conform to prior intuition in two out of three cases.
Favorable technology shocks cause significant long-run substitution
towards capital in five of six cases; technology improvements also
significantly increase the ratio of nonproduction te total employment in
five of six cases, although these increases often occur in the short run
rather than the long run. However, the estimated impact of technology
shocks on price 1s neot robust: own R+D and own use patent shocks
significantly reduce price in the long run, but manufacture patent
shocks raise price in the medium run, while upstream use patent shocks
raise price in the long run. The fact that use patents (which should
reflect process innovations) reduce prices while manufacture patents
(which should reflect product innovations) raise prices suggests that
available price data might not accurately reflect product innovations,

an idea to which I return below.

Results for Nonmanufacturing

My empirical results to this point have relied exclusively on
manufacturing industries. However, technology shocks originating in
manufacturing, such as the introduction of the jet engine in the late
1950s, often have important downstream impacts in nonmanufacturing.
While disaggregated data on own R+D and own patenting in
nonmanufacturing industries is not readily available -—-in part because

virtually all R+D and patenting has occurred in manufacturing until very
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recently-— I can construct measures of wupstream technelogy for
nonmanufacturing using the techniques described in Section II. Figures
10 and 11 present impulse responses of inputs and TFP to upstream
technology shocks for a panel of 10 nonmanufacturing industries:
agriculture; mining; construction; transportation; communications;
electric utilities; gas utilities; trade; finance, insurance and real
estate (FIRE); and services. Data on inputs and TFP come from an
updated version of the KLEM database described in Jorgenson, Gollop and
Fraumeni (1987), generously provided by Susanto Basu. Although
Jorgenson et al’s preferred measure of labor 1nput corrects for
variations in labor force composition, I use man hours to be consistent
with the manufacturing data. The impulse responses for nonmanufacturing
are striking and robust: favorable upstream technology shocks
significantly increase capital, labor, materials and total input in the
short run, but reduce measured TFP in the short run; inputs and TFP
return to trend in the long run. The variance decompositions (available
from the author) assign technology a substantial share of volatility of
TFP and inputs at the six year horizon, particularly for upstream R+D;
however, technology has a much smaller role for output veolatility, as

the input and TFP effects cancel each other out.
Measurement Error in Frice Indices

The fact that favorable technology shocks do not significantly
increase measured TFP raises suspicions about the quality of the TFP
data. Much recent research has criticized BLS price data for not
registering implicit price changes due to quality improvements or new
product introductions (e.g. Gordon (1990)), or, in the case of many

nonmanufacturing sectors, for not registering price changes at all (e.g.
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Baily and Gordon (1988)). If product innovations do not reduce measured
prices, they are less likely to increase measured output or TFP; this is
especially troublesome given that roughly 30 percent of US R+D is
devoted to product rather than process innovation (Scherer (1984)).
Similarly, if nonmanufacturing prices are measured poorly or not at all,
then upstream innovations that reduce true prices and increase true
activity may not raise measured output; if measured inputs rise (perhaps
because inputs are easier to measure than output), then measured TFP is
likely to fall.

To examine whether measurement errors in prices are important for
my results, I divide the 19 sample manufacturing industries into
process—~innovating versus product-innovating sectors. Table 10 presents
the average percentage of R+D spending in gross output over the period
1959-1991, as well as the percentage of process R+D in total R+D
spending in 1974, as reported in Scherer (1984). The table indicates
that there is a fairly sharp break between process and product
innovating sectors, and that the most R+D-intensive industries are
typically product-intensive. I assign food, textiles, lumber, paper,
industrial chemicals, petroleum, rubber, stone and primary metals to the
process—innovating group, and the other ten industries to the
product-innovating group. Figures 12 and 13 present the responses of
total input, TFP and price to technology shocks for the two groups. The
results indicate a sharp distinction belween process-— and
preduct-innovating industries: for process-innovating secters,
favorable technology shocks induce a significant long-run increase in
TFP, a significant long-run decline in price, and a significant long-run
decline in inputs; for product-innovating sectors, favorable technology

shocks do not raise TFP in any instance, and reduce long-run inputs and
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prices in only one case. These results suggest that the failure of
technology to increase TFP in my full sample may be due to the failure
of available data to reflect price declines and productivity gains due
to quality improvements and new product introductions. Anocther
interesting result is that process-industry TFP declines gsignificantly
in the short run in two of three cases. This result is consistent with
models in which technological advances cause a short run productivity
decline, as workers move down the new technology’'s learning curve (e.g.

Greenwood and Yorukoglu (1996), Hornstein and Krusell {1996)).

CONCLUSION

This paper’'s key contribution 1is to estimate the impact of
technology shocks on the economy using R+D spending and patent
applications rather than observed total factor productivity to measure
technology. The most surprising finding is that favorable technology
shocks do not raise measured TFP at any horizon. Taken at face value,
this suggests that observed procyclical variation in TFP is entirely due
to factors such as increasing returns, cyclical utilization, and factor
reallocation, and not at all due to procyclical technology. It alseo
suggests that efforts to measure short-run changes in true technology by
"cleansing" measured TFP of movements due to cyclical utilization and so
on (e.g. Basu, Fernald and Kimball (1997): Burnside, Eichenbaum and
Rebelo (1996)) may be doomed from the start.

Of course, another interpretation of my results is that my R+D and
patent data are riddled with measurement error that biases me against
finding a significant impact of technology on TFP. While the R+D and
patent data are certainly vulnerable to criticism, my results cannot be

so easily dismissed. Measurement error should bias me against finding a
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significant impact of technology on anything. Yet I find that favorable
technology shocks have a significant short-run expansionary impact on
labor, a significant long-run contractionary impact on total input, and
a significant positive impact on capital and nonproduction worker
intensity. I also find that technology shocks raise long-run TFP and
reduce long-run prices in a subsample of industries dominated by process
R+D. These results suggest that the important measurement error is not
in R+D or patents, but in output prices. Most R+D in the United States
is devoted to product innovations, yet many observers believe that
available price data systematically ignore real price declines due to
quality improvements and new product introductions. Similarly, a good
deal of the impact of industrial R+D 1is felt in downstream
nonmanufacturing sectors, yet many observers argue that price changes of
any kind in nonmanufacturing are poorly measured.

It is quite possible, then, that technology shocks are more
important to actual output and TFP fluctuations than they are to
observed fluctuations. To paraphrase Ed Prescott (1986), theory may be
ahead of business cycle measurement. If real business cycle enthusiasts
want to convince the profession that technology shocks are genuinely
important to business cycles, their firgt order of business should be to
construct historical price series for manufacturing and nonmanufacturing
sectors that correct for «quality improvements and new preduct
introductions, following the painstaking work of Gordon (1990) on
durable goods. Such a project will surely require many hours of
research into the history of product innovations in particular sectors,
but imagine how different the profession would be today had Friedman and
Schwartz (1963) not devoted many hours of research into the history of

monetary institutions and monetary shocks.
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TABLE 1

Sample Means

Manu Use
R+D Manu Patent Use Patent
Industry R+D Growth Patents Growth Patents Growth
Food (SIC 20) 879.1 4.62 311.2 0.63 1085 0.06
Textiles (SIC 22-23) 185.5 3.57 620.9 1.17 994 -0.81
Lumber (SIC 24-25) 152.0 4.81 605.9 0.08 597 -0.05
Paper (SIC 26) 611.7 5.53 482.4 0.04 490 0.08
Industrial Chemicals 3211.7 2.80 3758.8 0.75 2518 0.47
(SIC 281-2, 286)
Drugs (SIC 283) 2629.4 7.75 825.5 5.90 1100 2.73
Other Chemicals 1053.0 5.27 2517.4 0.54 1261 0.70
(other SIC 28)
Petroleum (SIC 29) 1812 .4 2.82 1745.5 -1.30 1659 0.22
Rubber (SIC 30) 693.2 4.01 1586.0 1.03 1348 1.45
Stone (SIC 32) 574.5 3.05 506.8 1.60 557 0.76
Metals (SIC 33) 835.9 1.51 373.1 0.30 795 0.06
Metal Prods. (SIC 34) 684.1 2.06 3737.6 0.18 1979 0.24
Computers (SIC 357) 5172.6 6.66 1114.3 2.70 1333 3.09
Other Nonelec. Equip. 2102.3 5.08 10966.1 -0.15 4084 -0.33
(Other SIC 35)
Electronics & Commun. 5018.4 6.65 5629.4 1.51 4456 1.76
Equip. (SIC 366-7)
Other Electric Equip. 2043.7 0.99 4154.1 0.41 2779 0.43
{Other SIC 36)
Aerospace (SIC 372,6) 4022.4 4.81 276.9 -1.22 392 -0.77
Autos & Other Transp. 5701.8 4.37 1972.1 -0.28 2787 -0.09

Equip. (SIC 37)
Instruments (SIC 38) 3100.3 7.42 3626.7 2.33 1268 1.59



TABLE 2

Panel Unit Root Tests

Other 3
Alog(Xit) =7, + Deterministic + 8 1og(Xit_1} + ¥ aklog(Xit_k] ey
Terms k=1

—-0Other Deterministic Terms--—-

Time Dummies &

X Time Dummies Sectoral Trends
TFP -0.003 -0.174
(Q0.007) **(0.022)
Total -0.024 -0.193
Input (0.011) X*(0.026)
Capital -0.014 -0.244
(0.008) *(0.034)
Labor -0.107 -0.201
{0.018) **(0.028)
Materials -0.038 -0.218
(0.013) **(0.029)
R+D -0.017 -0.096
(0.004) **(0,011)
Manufacture -0.009 -0.092
Patents (0.003) **(0.011)
Use -0.014 -0.058
Patents (0.004) (0.010)

NOTES: this table presents estimates of B from Augmented Dickey-Fuller
tests of the null hypothesis that log(X) contains a unit root, using annual

panel data for 19 industries from 1959-1991. All regressions include
sector-specific intercepts and time dummies:; regressions in the right
column also contain sector-specific linear time trends. Standard errors

are in parentheses. A (*) indicates that g 1is gignificant at 10 percent,
while a (**) indicates significance at 5 percent. The critical values of
6.816 {10 percent) and 7.093 (5 percent) are taken from the asymptotic
formula provided in Levin and Lin {1992).



TABLE 3
Long-Run Evidence

Alog(TFPi] =3 + B Alog(Xi) + €

' B
X Estimate Estimate
R+D -D.005 0.328
(0.009) *(0.196)
Manufacture 0.006 0.426
Patents (0.004) *(0.233)
Use 0.003 1.082
Patents (0.003) **(0.275)
Upstream -0.023 0.732
R+D (0.021) (0.483)
Upstream -0.005 1.880

Manu Patents {0.004) **(0.768)

Upstream -0.006 2.345
Use Patents (0.006) **(0,837)

NOTES: this table presents estimates of cross-section relationships
between long-run total factor productivity growth and long-run growth in
technology indicators. Each variable is entered as a mean industry-level
growth rate over 1960-1991; the sample size is 19. Standard errors are in
parentheses. A (*) denotes significance at 10 percent, while a (**)
denotes significance at 5 percent.



TABLE 4

Contemporaneous Evidence: Log Levels

Other
log(TFPit) =75 + Deterministic + B log(Xit) + eit
Terms
~-Dther Deterministic Termg---
Time Dummies &
X Time Dummies Sectoral Trends
R+D 0.334 0.056
**(0.041) *{0.035)
Manufacture 0.39%6 -0.300
Patents **(0.055) **(0.063)
Use 1.102 0.121
Patents **(0.073) (0.078)
Upstream 0.773 -0.460
R+D **(0.095) **(0.126)
Upstream 2.121 -0.441
Manu Patents *¥¥(0.217) **(0.149)
Upstream 3.289 -0.784
Use Patents **(0.250) **(0.263)
NOTES: this table presents estimates of contemperaneous relationships
between log levels of total factor productivity and technology indicators,
using annual panel data on 19 industries from 1959-1991. All regressions
include sector-specific intercepts and time dummies; regressions in the
right column also contain sector-specific linear time trends. Standard
errors are in parentheses. A (*) indicates significance at 10 percent,

while a (**) indicates significance at 5 percent.



TABLE 5
Contemporaneous Evidence: Growth Rates
Other

Alog(TFPit) = oy + Deterministic + B Alog(Xit) ey
Terms

—-0Other Deterministic Terms—--

Time Dummies &

X Time Dummies Sectoral Trends

R+D 0.132 0.047

**(0.049) (0.050)

Manufacture 0.195 -0.070

Patents **(0.074) (0.101)

Use 0.512 0.052

Patents **(0.099) (0.124)

Upstream 0.235 -0.058

R+D **(0.123) (0.142)

Upstream 0.530 -0.291

Man. Patents *%(0.217) (0.254)

Upstream 1.140 -0.057

Use Patents **(0.280) {(0.367)
NOTES: this table presents estimates of contemporaneous relationships
between growth rates of total factor productivity and technology
indicators, using annual panel data on 19 industries from 1960-1991. All
regressions include a constant and time dummies; regressions in the right
column also sector-specific intercepts. Standard errors are in
parentheses. A (*) indicates significance at 10 percent, while a (*¥*)

indicates significance at S5 percent.



TABLE 6
Medium-Horizen Evidence: Sixteen Year Growth Rates
Other

Alog(TFPit] = y + Deterministic + B8 Alog(Xit) e
Terms

~-0Dther Deterministic Terms--—-

Time Dummy &

X Time Dummy Fixed Effect
R+D 0.285 0.140
*(0.154) (0.288)
-Manufacture 0.297 -0.347
Patents (0.166) (0.416)
Uge 0.960 0.614
Patents *¥((0.233) (0.451)
Upstream 0.462 -1.206
R+D (0.406) (0.872)
Upstream 1.209 0.149
Man. Patents **(0.572) (0.835)
Upstream 2.348 2.371
Use Patents **(0.729) (2.078)

NOTES: this table presents estimates of the relationship between

medium-horizon growth rates of total factor productivity and technology
indicators, using data on 19 industries for two sixteen year pericds,
1960-75 and 1976-91. All regressions include a constant and a dummy for
the second period; regressions in the right column also include a
sector-specific fixed effect. Standard errors are in parentheses. A (*)
indicates significance at 10 percent, while a (**) indicates significance
at 5 percent.



TABLE 7
Impulse Response Functions: Summary

Significant Impacts of Technology on Industry Activity

--3 Variable VAR-  --—-——- 5 Variable VAR————=-
Tech Indicator Total Input TFP Capital Labor Materials

R+D Y 7-10 -—- T4 T 2-3 v 4-10
v 7-10
Manufacture - - vog T 4-5 4 8-10
Patents ™ 8-10
Use T2 —_— v 3-10 T 2-7 ™2
Patents + 9-10 ¥ 8-10
Upstream v o9-10 Y 7-10 T 2-10 ¥ 810 VY 6-10
R+D
Upstream T 2-7 v 7-10 -— T 2-6 T 2-6
Manu Patents
Upstream *2,4-5 Y 6-10 Y o9-10 T 2-5 T 2-5
Use Patents v 8-10 + g8-10 ¥+ 8-10

NOTES: This table summarizes the VAR impulse functions by reporting all
cases of a significant (10 percent) impact of technology on industry
variables, along with the relevant horizons in vyears. The impulse
responses are calculated from VARs estimated using annual panel data for 19
industries from 1959-1991. The results in the first two columns are based
on three-variable VARs ordered as total input, TFP and technology, while
the results in the last three columns are based on five-variable VARs
ordered as capital, labor, materials, TFP and technology. All VARs are
estimated in log levels and include sector-specific intercepts and trends
as well as time dummies. The standard errors are computed using Monte
Carlo integration.



TABLE 8

Granger-Causality Tests: P-Values

Panel A: Does Technology Granger—-Cause Inputs or TFP?

--3 Variable VAR-  --»——- 5 Variable VAR----—-
Technology Indicator Total Input TFP Capital Labor Materials
R+D 0.21 0.95 0.42 0.01 0.02
Manufacture 0.85 0.51 0.04 0.05 0.13
Patents
Use ’ 0.05 0.92 0.01 0.01 0.00
Patents
Upstream R+D 0.12 0.07 0.02 0.12 0.01
Upstream 0.01 0.46 0.47 0.03 0.01
Manu Patents
Upstream 0.00 0.01 0.15 0.00 0.00

Use Patents

Panel B: Do Inputs and TFP Granger-Cause Technology?

~-3 Variable VAR-  —-————= 5 Variable VAR--———-
Technology Indicator Total Input TEP Capital Labor Materials
R+D 0.38 0.62 0.34 0.95 0.63
Manufacture 0.05 0.41 0.58 0.14 0.21
Patents
Use 0.11 0.56 0.72 0.25 0.01
Patents
Upstream R+D 0.00 0.35 0.04 0.06 0.00
Upstream 0.06 0.48 0.08 0.03 0.51
Manu Patents
Upstream 0.00 0.32 0.01 0.02 0.16
Use Patents
NOTES: this table presents p-values from Granger Causality tests from
technology to industry activity and vice-versa. The tests are based on

VARs estimated using annual panel data for 19 industries from 1959-1991.



TABLE 9
Variance Decompositions

Percent of Variance Due to Technology

--3 Variable VAR-  ————=-— 5 Variable VAR—————-

Tech Indicator Years Total Input TFP Capital lLabor Materials
R+D 3 0.05 0.07 0.23 0.66 0.04
6 0.38 0.06 1.08 0.95 2.06
9 2.42 0.07 1.20 3.89 4.06
Manufacture 3 0.19 0.16 0.31 0.27 0.37
Patents 6 0.22 0.60 0.53 1.22 0.42
9 0.23 0.97 1.60 1.25 1.32
Use 3 0.26 0.04 0.54 0.87 0.70
Patents 6 0.28 0.05 2.81 3.49 0.93
9 0.98 0.19 5.22 4.13 3.49
Upstream 3 0.76 0.44 1.47 0.22 0.16
R+D 6 1.15 2.17 8.04 0.99 2.23
9 8.21 12.51 20.33 8.01 14.10
Upstreamn 3 1.00 0.08 .03 1.38 1.34
Manu Patents 6 3.98 0.25 0.28 4.65 3.94
9 4,49 1.82 0.39 4.86 3.95
Upstream 3 0.60 0.08 0.09 1.09 1.19
Use Patents 6 2.11 1.48 0.23 3.69 2.97
9 5.35 10.13 1.38 5.27 5.57

NOTES: This table summarizes the VAR variance decompositions by reporting
the share of variance of industry activity variables accounted for by
shocks to technology at 3, 6 and 9 year horizons. The variance
decompositions are calculated from VARs estimated using annual panel data
for 19 industries from 1959-1991. The results in the first two columns are
based on three-variable VARs ordered as total input, TFP and technology,
while the results in the last three columns are based on five-variable VARs
ordered as capital, labor, materials, TFP and technology. All VARs are
estimated in log levels and include sector-specific intercepts and trends
as well as time dummies.



NOTES:

percentage of nominal gross output over the sample period 1959-1991.

TABLE 10

Process Versus Product R+D Intensity

R+D Percent
Industry Intensity Procesg R+D
Food (SIC 20) 0.2 56.1
Textiles (SIC 22-23) 0.1 61.3
Lumber (SIC 24-25) 1.5 59.0
Paper (SIC 26) 0.7 33.1
Industrial Chemicals 3.4 47.6
(SIC 281-2, 286)
Drugs (SIiC 283) 8.2 12.0
Other Chemicals 1.4 14.6
(other SIC 28)
Petroleum (SIC 29) 1.4 64.0
Rubber (SIC 30) 1.1 48.0
Stone (SIC 32) 0.9 52.5
Metals (SIC 33) 0.5 75.2
Metal Preds. (SIC 34) 0.4 14.6
Computers (SIC 357) 12.5 5.5
Other Nonelec. Equip. 1.2 4.1
(Other SIC 35)
Electronics & Commun. 5.4 21.2
Equip. (SIC 366-7)
Other Electric Equip. 2.3 11.5
{Other SIC 36)
Aerospace (SIC 372,6) 4.4 21.7
Autos & Other Transp. 2.6 4.8
Equip. (SIC 37)
Instruments (SIC 38) 5.0 8.0

The first column reports the average value of R+D spending as a

The

second column reports the fraction of 1974 R+D spending devoted to process
R+D, as reported in Scherer (1984).
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