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1 Introduction

Although textbooks continue to pay lip service to the expectations hypothesis of the
term structure of interest rates, experts have long regarded it a poor approximation of
the evidence. Most conclude, instead, that long interest rates contain both forecasts
of future interest rates and term premiums that vary through time. An enormous
body of research to this effect has been surveyed repeatedly, most recently by Bekaert,
Hodrick, and Marshall (1996), Campbell (1995), and Evans and Lewis (1994). The
most common evidence against the expectations hypothesis involves regressions of
future yields or forward rates on current interest rate spreads. Postwar US data
suggests that while current spreads are useful predictors of future interest rates, the
form of this prediction differs substantially from the expectations hypothesis.

The weight of the evidence motivates a search for models that might account
for observed patterns of predictability in interest rates. We study a subset of the
affine yield models characterized by Duffie and Kan (1996). Earlier work by Frachot
and Lesne (1994) documented the ability of the one-factor Cox-Ingersoll-Ross (1985)
model to account for observed departures from the expectations hypothesis with term
premiums that vary through time. We go farther in constructing models that account
for both predictable variation in term premiums and other salient features of interest

rates.

We make four contributions that concern both the nature of the evidence and
its theoretical explanation. The first is to cast the evidence in a new form based on
the martingale property of forward rates under the expectations hypothesis. In this
form, the largest differences from the expectations hypothesis are for maturities under
two years. This feature of the data conforms with a broad class of stationary bond
pricing models, but contrasts with more popular tests of the expectations hypothesis
based on yields (Bekaert, Hodrick, and Marshall 1996, Campbell 1995, and Evans
and Lewis 1994, for example). The second is to illustrate the difficulty of accounting
for this evidence with the one-factor Cox-Ingersoll-Ross model. The one-factor model
cannot account simultaneously for deviations from the expectations hypothesis and
the average upward slope of the yield curve. The third is to propose and estimate
a new model in the affine class in which the short rate depends negatively on one
or more “square-root” factors. We use this model to account for both the evidence
against the expectations hypothesis and other features of interest rates. We argue
that they approximate the data better than the two-factor Cox-Ingersoll-Ross models
studied by Roberds and Whiteman (1996). The fourth is to compare our forward



rate regressions (in which the largest deviations from the expectations hypothesis are
at short maturities) to yield regressions (in which the largest deviations are at long
maturities). We suggest that the large numerical differences between these two sets
of regressions masks a fundamental similarity in their information content.

2 Notation and Data

In what follows, the continuously-compounded yield on an n-period bond at date ¢ is
denoted y; and defined by

3

Y = _n_l 1Og b?v (1)

where b7 is the dollar price at date t of a claim to one dollar at ¢ + n. Forward rates
are defined by

fit = log(b7 /6;*1), (2)
so that yields are averages of forward rates:
n—-1
yp=n"" 2 Ji- (3)
1=0

The short rate is r; = y; = f2.

In practice, yields and forward rates are estimated rather than observed. From
prices of bonds for a variety of maturities, the “discount function” 4} (viewed as a func-
tion of n at each date t) is interpolated between missing maturities n and smoothed to
reduce the impact of noise (nonsynchronous price quotes, bid/ask spreads, and so on).
There is no generally-accepted best practice for doing this. We follow Bliss (1996)
in using four methods: Smoothed Fama-Bliss, Unsmoothed Fama-Bliss, McCulloch
Cubic Spline, and Extended Nelson-Siegel.

The estimation methods are described in detail by Bliss (1996). Fama and Bliss’s
unsmoothed method extracts forward rates from prices of bonds of successive matu-
rities using a relation analogous to (2) for coupon bonds. McCulloch approximates
the discount function with a cubic spline. Nelson and Siegel’s extended method
approximates the yield curve, rather than the discount function, with a smooth func-
tion that gives the long end of the yield curve a horizontal asymptote. Fama and
Bliss’s smoothed method applies a similar approximation to yields implied by their
unsmoothed forward rates. Among the four methods, Unsmoothed Fama-Bliss sticks
out in not smoothing the raw data in some way.
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We apply all four methods to bond prices collected by the Center for Research
in Securities Prices (CRSP) at the University of Chicago using computer programs
and data and supplied by Bliss. Academic research (Elton and Green 1996) and Wall
Street folklore suggest that CRSP bond prices have more noise in them than those
used in industry, but data of higher quality are not available over sufficiently long
sample periods. Elton and Green, for example, study just 3 years of intraday data.
Our sample extends from January 1970 to December 1995 (312 monthly observations).

3 Forward Rate Regressions

We use these four data sets to characterize the predictability of interest rates in a
new form that highlights the connection between the evidence and stationary theories
of bond pricing. Like others before us, we use the expectations hypothesis as a
benchmark against which to measure the evidence.

The most common statement of the expectations hypothesis is that forward rates
are expectations of future short rates:

[ = Eirign, (4)

a relation attributed to Hicks. Since this is easily contradicted by the data (average
forward rates vary systematically by maturity), most people now understand the
expectations hypothesis to include the possibility of a constant term premium p:

It = Ereyn +p" (4')
The generic alternative is that term premiums vary through time:
[t = Eirepn + 9} (5)

Evidence against the expectations hypothesis, as defined by equation (4’), is therefore
evidence that term premiums vary over time.

Equation (4) implies one of the most direct implications of the expectations hy-
pothesis, that forward rates are martingales:

fi = Efiq (6)



See Roll (1970, Chapter 4) or Sargent (1987, Section X.7). Given (6), or the weaker

(4'), the regression
ZL+—11 — r; = constant + cn(ft" — T't) -+ residual (7)

has slope ¢, = 1 for all maturities n. This “forward rate regression” is, as far as we
know, new to the literature, but is a close relative of Fama (1984). The role of the
term premium is apparent from the complementary regression,

r — f¢ = constant + (¢, — 1)(ff — r¢) + residual,

a linear transformation of (7). When term premiums are constant, E; tn_l__ll - =
p"~!—p", a constant, and ¢, —1 = 0. Values of ¢, different from one thus indicate that
term premiums vary through time. Whether or not the expectations hypothesis holds,
nonzero values of ¢, in (7) indicate that forward rate spreads contain information that
can be used to forecast future forward rates.

We report estimates of equation (7) in Table 1 and Figure 1 for all four sets of
forward rate data. It should be no surprise that the data differ substantially from the
expectations hypothesis. With the exception of the Unsmoothed Fama-Bliss data,
estimated regression slopes are about one-half for n = 1, increase monotonically with
maturity, and level off just below one.

Perhaps the most interesting feature of Figure 1 is that the largest deviations
from the expectations hypothesis come at short maturities: the slopes are close to
one for maturities of 24 months or longer. This feature of the data conforms well
with theory: in a broad class of stationary bond-pricing models, the variance of term
premiums approaches zero, and slopes of forward rate regressions approach one, as
maturity increases. Related propositions are proved in different settings by Backus,
Gregory, and Zin (1988, Proposition 2) and Dybvig, Ingersoll, and Ross (1996). Both
are corollaries of a property that is well known in the Cox-Ingersoll-Ross model: that
the variance of forward rates approaches zero with maturity. The evidence differs
somewhat from this theoretical ideal: estimated slope coefficients are about 0.96 at
long maturities, not the 1.00 suggested by the theory, with standard errors of 0.02 or
smaller.

Our summary assessment of the expectations hypothesis — that the largest de-
partures occur at short maturities — differs sharply in appearance from related work
by Campbell and Shiller (1991) with “yield regressions,” in which the largest depar-
tures are at long maturities. We suggest in Section 7 that the two approaches report
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similar information in different form. Note, though, that since yields are averages
of forward rates, yield regressions involve term premiums over a range of maturities.
For this reason, their slopes need not converge to one, even in theory.

Before turning to possible explanations, we consider two potential problems with
the evidence. One is measurement error; see, for example, Bekaert, Hodrick, and Mar-
shall (1996) and Stambaugh (1988). The effect of such error on estimated regression
slopes depends on its form. Error in the short rate would likely push slope estimates
toward one, but error in long forward rates would probably push them toward zero.
To make this concrete, suppose our observations of forward rates f differ from “true”
forward rates f in having measurement error 7:

fi=fl+n,

where 7! is independent of true forward rates, has variance o7, is uncorrelated with

errors at different dates (Corr(ni,n?) = 0 for all dates ¢ # s and all maturities z,j),
and has arbitrary correlation with contemporaneous errors (Corr(n,ni) = pi;). The

population regression slope for true forward rates is
Cov(frm' — fO. ft = 1)
Var(ff — f?)
Cov(fin' — f5 i = 1) = 10§ = pondo0y]

Var(fr — f2) — [02 + 02 — 2pgn0007)

Cn

(8)

Given estimates of error variances and correlations, we can estimate the impact on
estimated regression slopes.

The difficulty is quantifying the error. One source of estimates is provided by
McCulloch and Kwon (1993): standard deviations of each estimated forward rate.
In Table 2, we report mean square standard deviations for a number of maturities
for the period January 1970 to February 1991, the overlap of our samples. Standard
deviations vary between 9 and 21 basis points, depending on the maturity.

Another approach is suggested by Bekaert, Hodrick, and Marshall (1996): stan-
dard deviations for differences between forward rates estimated by different methods,
which are also reported in Table 2. Depending on its source, these numbers may
either under- or over-estimate the magnitude of measurement error. If measurement
error stems from the underlying data, and is therefore largely common across meth-
ods, we would expect the standard deviations computed this way to underestimate
the measurement error. But if the error stems from the method, we might expect
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the standard deviations to overstate the error in one method alone. For the most
part, the estimates point in the same direction as McCulloch and Kwon’s: to mea-
surement error with a standard deviation under 30 basis points for most maturities.
The Unsmoothed Fama-Bliss estimates are a striking exception, with very large stan-
dard deviations for long maturities. We find this a likely cxplanation of the erratic
behavior of regression estimates based on this data in Table 1.

We use (8) to estimate the impact of measurement error on estimated regression
slopes. Consider the effect on the first and last regression slopes, ¢; and ci50. For the
Smoothed Fama-Bliss data C’ov(ff_[f — fto, ft" - fto) = 0.0985 for n = 1 and 3.196 for
n = 120. Similarly, Var(ft” — fto) = 0.2162 for n = 1 and 3.317 for n = 120. If we use
the McCulloch and Kwon standard deviations from Table 2 and assume that errors
are uncorrelated across maturities, then the error-adjusted slope estimates are

a = 0.462
Cl0 = 0.968.

The impact is evidently small, particularly for long maturities. To get ¢120 = 1, for
example, we need a standard deviation of 35 basis points for the error of f12°, a value
more than double what we see in Table 2. Positive correlation between the errors
typically reduces its overall effect. The effect of error is greater at the short end,
largely because the relevant variances and covariances are smaller, but even here is
not large enough to change one’s interpretation of the evidence.

A second potential problem with the evidence is small sample bias. The methods
used by Bekaert, Hodrick, and Marshall (1996) imply that small sample bias tends
to push estimates of ¢, above one, however, not below. Suppose, as they do, that the
short rate is AR(1):

141 = constant + o1y + €441,

where {g,41} is a sequence of iid innovations in the short rate. The counterpart of
their Proposition 1 is

n—1

B =1- () £ - ol

where a “hat” again indicates an estimate of the underlying parameter. Since the
small-sample bias in ¢ is approximately

14 3¢
T 9

E(@)—p=-



where T' is the sample size, the bias in the regression slope under the expectations

hypothesis is approximately

B -1= (£ (FF%). Q

Thus the estimated regression slope &, is biased upward in small samples, in the
opposite direction of observed departures from the expectations hypothesis. Small
sample bias does not, therefore, appear to be the source of apparent predictable

variation in term premiums.

We conclude — as did Bekaert, Hodrick, and Marshall (1996) in a related context
— that both measurement error and small sample bias influence our estimated re-
gression slopes, but that neither leads us to doubt the evidence that term premiums
vary through time.

4 Affine Models

The next step is to consider models that might account for the time-varying term
premiums we seem to see in the data. Multifactor Vasicek (1977) models can be
ruled out immediately: they imply constant term premiums, and therefore cannot
account for the apparent correlation of term premiums with forward rate spreads.

We consider, instead, a subset of Duffie and Kan’s (1996) affine yield models in
which conditional variances, and hence term premiums, vary over time. Fisher and
Gilles (1996), Frachot and Lesne (1994), and Roberds and Whiteman (1996) study
similar models for the same reason. Bond prices in these models are based on a vector
of state variables z following

Zi41 — 2t — (I - @)(9 — Zt) + EV(Zt)l/QEH.l (10)
= I((O - Zt) + EV(Zt)l/zé:H_l,

where {g;} ~ NID(0,7), ® is a stable matrix with positive diagonal elements, K =
I — ®, ¥ is a diagonal matrix with elements o;, and V(z;) is a diagonal matrix with
elements v;(2;) = z;;. State prices are governed by a pricing kernel of the form

- log miy1 = 6 + ’)’TZt + /\TV(Zt)1/2€t+1. (11)



These models are a subset of Duffie and Kan’s affine-yield models in which we have
restricted ourselves to nonconstant volatility functions v; that depend only on the
ith state variable. Translation into discrete time is now standard; see, for example,
Campbell, Lo, and MacKinlay (1996, Chapter 11) and Sun (1992). The most common
examples of this class are versions of the Cox-Ingersoll-Ross model with one or more
factors: § = 0, ® is diagonal, and 4; = 1 + A\?/2. The choice of ~; is a normalization
that defines the short rate as r; = 3, z4.

As with the Cox-Ingersoll-Ross model, we generally restrict the parameters to
guarantee that the volatility functions v; remain nonnegative. Define the set D of
admissible states as those values of z for which volatility is nonnegative:

D ={z:viz) >0 for all ¢}.

In our class of models, D consists of the positive orthant. Duffie and Kan (1996,
Section 4) give sufficient conditions for z to remain in D. For each ¢ and all z € D
satisfying v;(z) = 0 (the boundary of positive volatility), the “drift” [the conditional
mean of (10)] must be sufficiently positive:

kidi + D kij(05 — 25) > 07/2 >0,
J#i
where k;; is an element of K. This implies the usual Feller condition

fiiig,’ Z 0'12/2 (12)

(set z; = 0;). It also implies that off-diagonal elements of K are nonpositive (consider
arbitrarily large values of z;) and

kil + Y Kiib; > 07/2, (13)
J#i
(set z; = 0), which puts a bound on their magnitude. These statements are exact in

continuous time, approximate in our discrete-time analog.

Conditions (12,13) are stronger than we need. Volatility functions and state vari-
ables remain positive under the weaker conditions

k:0; + Z ﬁ:,‘j((gj — Zj) > 0,
J#i
for all ¢ and z € D, which implies £;; = 1 — ¢;; > 0 for all 2 and &;; = —p;; < 0
for all 7 # 7. The weaker condition allows greater probability of values of the state
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variable and volatility functions near zero, but nevertheless requires the drift on the
boundary of D to push z back into the interior. Both versions rule out unit roots in

the state variables z: these models are stationary.
With this structure, bond prices are log-linear functions of the state variables z:
—logb? = A, + B, z (14)
for some parameters {A,, B,}. The parameters are derived using the pricing relation
bt = E, (mt+1b?+1) ) (15)
starting with 2 = 1. Application of (15) generates the recursions
App1 = A+ 6+ B, (I — )0
Biny1 = 7+ Z Bingii — (i + Bino:)?/2,
J
starting with Ag = 0 and By = 0.

We can now derive population values for the slopes of forward rate regressions.
For this we need the unconditional variance of z, the solution to

To=®ly®" + ZV(6)S7,
where £V(#)X7 is a diagonal matrix with positive elements ¢20;. The solution is
vec(To) = (I — ® @ ®) ™" vec[ZV(H)Z7],

where vec(A) is the vector formed from the columns of the matrix A. Forward rate
regression slopes in this setting are then

o = [By + By, — Bpy1] T [By — @7 (B, — Bny)]
" (Bi + Bn — Buy1]™lo [B1 + By, — Buy1]

(16)
which may take on values other than one.

Although (16) is relatively opaque, its limiting behavior is not. Since B, converges,
the population value of the regression slope approaches one:
B/ T, B,

lime, = ———— =1.

n—0o0 BITF() Bl N

This is a generalization of the property we noted earlier for the Cox-Ingersoll-Ross
model: The variance of forward rates falls to zero with maturity, so for long enough
maturities we are effectively regressing —r on itself.
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5 One-Factor Models

In this section and the next, we examine the ability of one-factor and multifactor
models, respectively, to account for the slopes of forward rate regressions. Although
the empirical weaknesses of one-factor models have been clearly documented, they
provide a useful source of intuition for more complex models. We show that while the
one-factor Cox-Ingersoll-Ross model can reproduce the estimated slope of the first
forward rate regression, it cannot simultaneously generate an upward sloping average
yield or forward rate curve. However, a different one-factor model, which we term
the “negative CIR,” can account for both features of the data.

Consider, then, the one-factor Cox-Ingersoll-Ross model, a special case of equa-
tions (10,11) in which z is a scalar, § = 0, and v = 1 + A?/2. Then A; =0, B; =1,
re = 2z, and By = 1+ ¢ — (X + 6/2). The population value of the first regression
slope is

_ l-¢
“a= l—p+o(A+a/2) (17)

Depending on the parameter values, this can take on values greater than, equal to,

or less than one.

We illustrate the consequences of different parameter choices with GMM estimates
based on different moment conditions. In each case, the parameters are estimated
by iterating on the weighting matrix (Campbell, Lo, and MacKinlay 1996, Appendix
A.2, or Ogaki 1993). We compute the weighting matrix by the method of Newey and
West with a maximum lag length of 12 (about which more will be said in the next
section).

We first choose (8, o, ¢, A) to reproduce four moments: the mean, variance, and
autocorrelation of the short rate, and the mean spread between the 10-year bond
yield and the short rate. We report these and other moments in Table 3. Estimated
parameter values are reported in Table 4 as Model A. These estimates provide a good
approximation to the empirical literature on one-factor Cox-Ingersoll-Ross models:
they approximate the properties of the short rate and the average upward slope of
yield and forward rate curves. They do not, however, generate realistic slopes of
forward rate regressions. The first one is ¢; = 1.426, which is the wrong side of one.
The complete set of regression slopes for these parameter values is contrasted with
the data in the upper panel of Figure 2 (solid line).
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Alternatively, we could replace the fourth moment condition (the mean 10-year
bond spread) with one based on the first forward rate regression slope (¢;). The
parameter values implied by these moments are reported as Model B. The problem
now is that the mean yield curve is decreasing (the dashed line in the lower panel of
Figure 2).

This difficulty is a general one for the one-factor Cox-Ingersoll-Ross model. For
the regression slope to lie between zero and one, we need o(A + ¢/2) > 0. This
implies, however, a downward-sloping mean forward rate curve. For example,

E(f' —f)=1-c(A+0/2)]0-0=—0(A+0/2)0,

which is negative when we choose parameters to reproduce the slope of the first
forward rate regression. The parameters reported by Frachot and Lesne (1994) are
similar: they reproduce various regression slopes but imply downward-sloping aver-
age yield and forward rate curves. The one-factor model cannot generate both an
increasing mean forward rate curve (hence yield curve) and a regression slope be-
tween zero and one. Model C makes the same point statistically: when we use both
moments (the regression slope and the mean 10-year bond spread) the J-statistic is
7.12, indicating substantial conflict between the model and these features of the data.

The source of this difficulty is the behavior of the term premium. Consider the
behavior of the first forward rate spread, f}! — r;. The spread has two components,
the expected change in the short rate and a term premium:

1 1,
fi —ri=Ergq — 1y + pis

see equation (5). If the two components move in the same direction, the implied
regression slope is less than one, as we see in the data. But if we estimate the
parameters to generate an upward-sloping average yield curve, as in Model A, the
term premium varies inversely with the expected change in the short rate. The first
term premium is

p; = constant + [o0(—=)\ + 0/2)] z.

The coeflicient of z is positive when the mean forward rate curve is increasing. A
decline in z raises the expected change in the short rate, but it reduces the term
premium. As a result, the implied regression slope is not between zero and one. With
our estimated parameter values it is greater than one (the solid line in Figure 2).

In a one-factor affine world, the regression slope requires a term premium that
varies inversely with the short rate. A relatively simple way to accomplish this while
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retaining a positively sloped average yield curve is with what we term the “negative
CIR model”: v = —1 4+ A\?/2. Then B; = -1, B, = =1 — ¢ — 0(A — 6/2), and the
short rate is r, = § — z;. The mean difference between the first two forward rates is

E(ff =f)=[+o(-A+0/2)]0-0=[o(=A+0/2)] 0,
which is positive when the term in brackets is. The first term premium is now

pi = constant + [o0(—=A + 0/2)] z.

Since r rises when z falls, the term premium varies inversely with » when the term in
brackets is positive. Under the same conditions, the first regression slope,
_ l-¢
Cl—p4o(-A+0/2)

is between zero and one. Thus the model seems capable of resolving the tension

C1

between the regression slopes and the average slope of the forward rate curve.

This possibility is born out in Table 4, where estimated parameter values for
the negative CIR model are reported as Model D. By design, the parameter values
reproduce the mean, variance, and autocorrelation of the short rate, the mean 10-year
bond spread, and the slope of the first forward rate regression.

In short, the one-factor Cox-Ingersoll-Ross model is incapable of accounting for
both the evidence against the expectations hypothesis and the average upward slope
of the yield curve. The negative Cox-Ingersoll-Ross model resolves this difficulty,
but for a variety of reasons cannot be the last word on the subject. One reason we
regard as relatively innocuous: since z takes on all positive values, the short rate is
negative with positive probability. In our example the probability is small — roughly
2%. Like Duffie and Singleton (1996) in a similar context, we regard the possibility
of negative interest rates a small price to pay for the convenience of a linear model.
A more compelling reason is the one-factor structure: the evidence suggests that
we need two factors, and possibly more, to explain the curvature of the mean yield
curve (Gibbons and Ramaswamy 1993) and the dynamics of interest rates (Garbade
1986, Litterman and Scheinkman 1991, Stambaugh 1988). We therefore turn next to
multifactor models.

6 Multifactor Models

We have seen that affine models can account for slopes of forward rate regressions, but
that some models have difficulty reconciling these regressions with other properties
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of interest rates. The question becomes, then, not whether affine models can account
for forward rate regressions, but rather what kinds of affine models provide the best
approximation to the behavior of interest rates overall. Like our predecessors, we find
that multifactor models provide better approximations than their one-factor counter-
parts. We find, in addition, that models with one negative factor approximate the
data better than pure CIR models containing only positive factors.

We report estimates of five affine models in Table 5. Each is estimated by GMM
using 11 moment conditions based, respectively, on the standard deviation and au-
tocorrelation of the short rate; the mean and standard deviation of yield spreads
for maturities 12, 60, and 120 months; and forward rate regression slopes for ma-
turities 1, 6, and 12 months. We use the same weighting matrix for each model:
the Newey-West covariance matrix implied by estimates of the three-factor Model I,
which includes each of the other models as a special case and thus provides a common
basis of comparison. The weighting matrix is approximately a fixed point for Model
I: it both produces and is produced by the parameters reported in the table. The
number of lags (12) is based on calculations suggested by Andrews (1991, equations
6.2 and 6.6): if residuals from the moment conditions are ARMA(1,1), the optimal
“lag truncation parameter” for Model I is 11.

The primary difficulty in computing estimates of multifactor affine models is in
identifying the separate mean parameters §;. We follow Chen and Scott (1993) in
computing these parameters separately with a grid search. In all five models, we set
the model’s mean short rate to equal the sample mean. For Models F through I, we
consider a grid of choices for #’s that satisfy this constraint. Given such a choice,
we compute the other parameters by minimizing the GMM objective function (the
J-statistic) in the usual way. We report estimates based on the #’s that produce
the smallest function value. The objective function is extremely flat with respect to
the 8’s in the neighborhood of the estimates, suggesting that the data are not very
informative about these parameters. Reported standard errors are conditional on the
choice of 8’s.

The five models in Table 5 indicate, we think, the benefits of a negative fac-
tor. Models E (CIR) and F (negative CIR) are the one-factor models from Table
4, estimated here with a larger set of moments. The J-statistics suggest that F ap-
proximates the data substantially better than E. If an estimated model generated the
data, its J has approximately a chi-square distribution in large samples. Although in
finite samples the distribution can be substantially different (Tauchen 1986), the J’s
for these two models highlight the weaknesses of the one-factor structure.
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A negative factor is equally helpful in a two-factor setting. Model G is a two-factor
CIR model like that studied by Roberds and Whiteman (1996). It fits substantially
better than the one-factor CIR model (Model E), but worse than the one-factor
negative CIR (Model F). Model H is a “mixed” model, with one positive and one
negative factor: 43 = —1+A2/2 and 42 = 14+ A}/2, making the short rate r; = z3;— 21,
Its J-statistic is significantly smaller than G’s. The clear implication of Models E to
H is that a negative factor permits a better approximation to the data, on the whole,
than traditional CIR models with comparable numbers of parameters. In this sense,
the negative CIR and mixed models are useful additions to the literature.

Model I is a three-factor model with one negative and two positive factors: v, =
~1+A2/2, 45 =14 A2/2, and y3 = 1 + A2/2, so the short rate is ry = 2z¢ + 23; — 214
Its primary role here is to provide a comprehensive “encompassing” model that we
can use to assess the others. The large standard errors suggest that we are close to
the limits of what this set of data and moment conditions can tell us. Its J-statistic
implies, nevertheless, that it cannot account for all of the moment conditions.

Although Model H’s J-statistic indicates that there remain significant tensions
between model and data, we think it provides an informative interpretation of the
evidence. Figure 3 compares the regression slopes implied by Model H to those we
estimated directly and reported in Table 1. The properties of the data are represented
by asterisks. The implications of the model are represented by three lines computed
from 1000 random draws of the parameters. In each one, we draw parameter values
from the asymptotic multivariate normal distribution for the parameters summarized
by the standard errors in Table 5. The solid line is the median from these 1000 repli-
cations and the two dashed lines are the 5% and 95% quantiles. Since the quantiles
are based on the asymptotic normal approximation, they likely understate the sam-
pling variability in the model. The message is that the model provides a passable
approximation to the estimated regression slopes at short maturities. At long matu-
rities the numerical differences between model and data are small, but the sampling
variability is even smaller.

The discrepancy between long-maturity regression slopes in the model and the
data is a robust feature of these models when their parameters are chosen to reproduce
observed properties of interest rates. Even when we add moment conditions for long-
maturity regression slopes, estimated models imply regression slopes that are closer
to one than we see in the data. We can reduce the rate of convergence of the slopes to
one by choosing autoregressive parameters ¢;; closer to one, but this invariably raises
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the unconditional standard deviation of the short rate or yield spreads well beyond

their sample values.

Model H also provides a new perspective on small sample bias. We estimate
the bias in regression slopes by simulating the model. Using estimated parameter
values, we generate 1000 samples of 312 observations each for the state variables z;
and zz, from which we calculate forward rates. For each sample, we use simulated
forward rates to compute regression slopes. We estimate the small sample bias by
the difference between the mean regression slope across the 1000 replications and the
population regression slope given by equation (16). Figure 4 suggests that this bias
(solid line) can be substantial, especially at short maturities. The methods proposed
by Bekaert, Hodrick, and Marshall (1996), summarized in our equation (9), give a
similar answer (dashed line). Both suggest that small sample bias can be an important
problem for samples of the size used in this paper. Curiously, the positive bias makes
the differences between theory and evidence even more striking.

We conclude that affine models with negative factors appear capable of reconciling
slopes of forward rate regressions with other properties of interest rates. The J-
statistics suggest that our best efforts leave some features of the data unexplained,
but nevertheless provide reasonable approximations to the dynamics of interest rates
and slopes of forward rate regressions at short maturities.

7 Other Regressions

We have focused our attention on regressions forecasting one-period changes in for-
ward rates [equation (7)]. Here we consider other regressions found in the literature.

Yield Regressions

Some of the most popular assessments of interest rate dynamics involve “yield regres-
sions” of the form

y?“ 7
yth _ y?+1 = constant + d,, (—) + residual, (18)
n

a relation that dates back at least to Roll (1970). Recent empirical studies include
Bekaert, Hodrick, and Marshall (1996), Campbell and Shiller (1991), and Evans and
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Lewis (1994) for the US and Bekaert, Hodrick, and Marshall (1995) and Hardouvelis
(1994) for other countries. The expectations hypothesis [equation (4)] implies d, = 1
for all maturities n, but the equation is otherwise quite different from the forward rate
regression (7) studied earlier. Since yields are averages of forward rates [equation (3)],
slopes for long maturities include information about short-maturity forward rates and

term premiums.

In Table 6 and Figure 5, we report estimates of the slope of (18) for maturities
between 1 and 120 months. Yield regressions look markedly different from forward
rate regressions (compare Figures 1 and 5). While slopes approach one with forward
rates, with yields the slopes get progressively more negative as we increase maturity.
Note, too, that the Unsmoothed Fama-Bliss estimates are broadly similar to those
based on other data sets. As we see in Panel B of Table 2, the averaging involved in
computing yields brings the estimated measurement error in this method closer to the
others than we saw with forward rates. The similarity of the estimates across data
sets suggests, moreover, that measurement error is not the source of the substantial
departures from the expectations hypothesis.

Comparison

Despite the obvious differences between yield and forward rate regressions, we think
they capture similar information. This claim deserves comment, since the relation
between them is not otherwise self-evident. For n = 1, the yield and forward rate
regressions contain exactly the same information: d; = 2¢; —1. Thus a value of 0.4557
for ¢; corresponds to -0.0886 for d;. These two numbers are equivalent ways of repre-
senting the same information. For other maturities, there is no exact correspondence.
Consider n = 2. The yield regression can be rewritten as

dy + 2
3

[(ftO_H ~ 1)+ (fp — rt)] = constant + ( ) [(ft1 —r)+ (ff - rt)] + residual,

which contains the elements of forward rate regressions for n = 1,2. However, d,
cannot be computed from the first two forward rate slopes, ¢; and c;, alone. We
need to know, among other things, the covariance between f! —r, and f? —r;. More
simply: yield and forward rate regressions do not contain identical information for
longer maturities.

To see the similarities between the regressions, we need to impose more structure
on the problem. Suppose, for the sake of approximation, that forward rates are linear
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functions of a single state variable z:
fi = constant + a2z, (19)

starting with the normalization ag = 1. Since our regressions involve future forward
rates and yields, internal consistency requires, in addition, a linear relation for the
conditional mean of z:

FEiz41 = constant + ¢z;. (20)

One-factor affine models are a special case of (19,20) in which the uncountable pa-
rameter set {@, a1, az,...} depends on a finite number of primitive parameters. The
most restrictive ingredient is probably the single factor. Although additional factors
are clearly called for, the first factor typically accounts for at least 80% of the variance
of yield changes (Garbade 1986, Litterman and Scheinkman 1991).

We view (19,20) as approximations that help us to clarify the relations between
regressions. With them, we can derive regression slopes as functions of the a’s and
@, and derive exact relations between regression slopes. With this structure, forward
rate and yield regression slopes are

o = pog_q — 1
a, — 1
(n+1)pA,_1 — nA,
dy, ;
A, —(n+1)
where A,, = 3" ; a;. The inverse relations are
ne1 — 1
Qo — .L’Q_a_l— + 1
Cn
o = Apifln+ Do —n—d,])+ (n+ 1)d,
n - dn + n ?

each of which is easily computed.

Given equations (19,20), we can infer the slopes of yield regressions implied by
forward rate regressions, and vice versa. In each case, we use slopes estimated with
Smoothed Fama-Bliss data, set ¢ = 0.959 (the autocorrelation of the short rate in
Table 3), and interpolate between missing maturities with a cubic spline. The forward
rate slopes implied by yield regressions (the line in Figure 6) are very similar to those
we estimate directly (the asterisks). Conversely, the yield regression slopes are similar
to those implied by forward rate regressions (the solid line in Figure 7). Apparently
forward rate and yield regressions contain approximately the same information.
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One striking by-product of this exercise is a new perspective on the long end of
the yield curve: that the large negative slopes of yield regressions for long maturities
seem to correspond to the numerically small difference in forward rate slopes from
one. Suppose, to the contrary, that forward rate slopes were one for maturities of 24
months or more. Then the implied slopes of yield regressions level off at about —1
(the dashed line in Figure 7). Apparently the increasingly negative slopes of yield
regressions at long maturities are closely related to the small difference from one of
slopes of forward rate regressions. Yield regressions simply report this information
in a way that magnifies the numerical difference from the expectations hypothesis at
long maturities.

Affine Interpretations

The next issue is how well affine models account for slopes of yield regressions. The
affine bond models of Section 4 imply regression slopes of

[Br — (n+ 1)_an+l]TF0 [Z7Bny1 — (DTBn]

n+1

[B1 — (n +1)7'Bnp1]TTo [Br — (n + 1)71 Boyi]

dn

The limiting value is
BTy (I-®")B
lim d, = — °£ ) ,
R=00 BIT, B,

where B is the limit of B,. Although the slope converges, it need not converge to

one.

As with forward rate regression slopes, the two-factor Model H provides a good
approximation at short maturities, but does less well at long maturities (see Figure
8). Both reflect, in our view, the same problem: the limiting features of this class of
models clash with the evidence. Whether this represents a difficulty with the theory
or a peculiar feature of a specific sample is hard to say.

Multiperiod Short Rate Regressions

Other popular approaches to interest rate dynamics are based on multiperiod forecasts
of the short rate. One example is

Tt4n — Tt = constant + e, (f}' — ;) + residual, (21)
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which generates a direct test of (4). Estimates are reported by Fama (1984), Fama
and Bliss (1987), and Mishkin (1988). Another example is

n+1

1

which has been estimated by Campbell and Shiller (1991) with US data and Bekaert,
Hodrick, and Marshall (1995) with data for the US, the UK, and Germany. If we

rewrite (22) as

(1 S ) (Pe4i — ripio1) = constant + g, (y*+! —ry) + residual, =~ (22)
=1

n I

(n+1)7'> (re4: — re) = constant + go(n + 1) > _(f; — r;) + residual,
i=1 =1
the similarity to (21) is apparent. The expectations hypothesis implies, in both cases,
regression slopes of one.

We report estimates of equations (21) and (22) in Tables 7 and 8. Both are
estimated over samples that leave room for future values used in constructing the de-
pendent variable. Like our earlier forward rate regressions, equation (7), multiperiod
short rate regressions exhibit pronounced differences from the expectations hypoth-
esis at short maturities. They differ, however, in two respects: the coefficients do
not increase monotonically with maturity and the standard errors are substantially
larger at long maturities. The former is the result of cumulating term premiums
over several maturities. With (say) n = 3, the regression incorporates the effects of
term premiums for maturities 1, 2, and 3. The latter is the consequence, primarily,
of the variability and overlap in multiperiod forecast errors: we do not have many
independent observations of (say) 120-month forecasts of the short rate.

The increased sampling variability in these regressions means we cannot make
any precise statements about the behavior of regression slopes at long maturities:
the point estimates are numerically different from one, but the standard errors are
0.25 or larger. In contrast, the standard errors in our earlier regressions were in the
neighborhood of 0.012. One advantage, then, of (7) over (21) is that we have more
precise information about changes over one period than n. As Hodrick (1992) notes
in a different context, it can be helpful for statistical reasons to divide multiperiod
returns into one-period components.
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8 Forecasting

The expectations hypothesis provides a clear (if counterfactual) rationale for using
current forward rates to forecast future values. Under it, forward rates are informa-
tionally efficient forecasts of future forward rates of shorter maturities. Although the
expectations hypothesis clashes with the data, we might nevertheless use estimated
forward rate regressions (7) to forecast the future:

P.fii' = 7+ constant + ¢, (f7" — ),

where P; denotes a forecast (“projection”) made at date ¢. These forecasts can then
be used to inform activist investment strategies. The estimates in Table 1 suggest
that when the forward rate curve is steeper than average, forward rates will rise by
less than implied by the expectations hypothesis, making investments in long bonds
attractive. Conversely, when the forward rate curve is flat, investments in short bonds
are attractive.

Without the expectations hypothesis, however, we have no reason to believe —
even on theoretical grounds — that these forecasts are informationally efficient. Fur-
ther, the multifactor models estimated in Section 6 suggest that two variables will
forecast better than one. However, theory does not tell us what these variables are:
in a two-factor model, any two linearly independent combinations of forward rates
are as good as any others. One of the simplest extensions of (7) is

t"+_11 — 1y = constant + ¢1,(f]' — 7¢) + c2n7¢ + residual. (23)
Our logic was to include the same variable for all maturities and to use a level, rather
than a spread, in the interest of diversification. Few of the details matter. We find,
in this version and several others that we do not report, that the additional variable
matters only at short maturities (see Table 9). Our interpretation mirrors Section 2:
the expectations hypothesis remains a reasonable approximation at long maturities,
but at short maturities there is some value in using an additional variable.

The effect of the extra variable is pictured in Figure 9 for the forward rate curve
of December 1994. We see in the top panel that the forward rate curve at that time
was humped: very steep at the short end then slightly decreasing. As a result, the
expectations hypothesis implied increasing forward rates for short maturities. The
regressions, on the other hand, imply more modest increases. The difference between
the two for long maturities reflects the non-unit estimated slope coefficients for long
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maturities. Estimates of the multivariate regression, equation (23), are somewhat
different. Since the short rate was below its mean, the negative estimates of ¢3, lead
to higher forecasts at very short maturities. The increase at long maturities reflects
a combination of the negative estimated values of ¢;, and the small reduction in ¢y,
relative to estimates of ¢, in Table 1. We infer from this that regressions based on
the expectations hypothesis may not be informationally efficient, and that we might

do better with multivariate forecasts.

9 Final Remarks

We join a long list of contributors in reconsidering the widely-documented evidence
of interest rate predictability. We summarize predictability in a new form that allows
direct comparison with the limiting behavior of a large class of theoretical models.
Like Frachot and Lesne (1994) and Roberds and Whiteman (1996), we construct
affine models that approximate this feature of the data. Unlike them, we argue that
models outside the Cox-Ingersoll-Ross class provide a better approximation to the
overall behavior of interest rates. We argue, more generally, that predictable changes
in yields and forward rates are an important source of information about interest rate
dynamics that can be used to guide investment strategies and estimate parameters of
theoretical models. Perhaps further work along the lines of Dai and Singleton (1996)
will tell us how important these features of the data are relative to others, and which
models account best for the many properties of interest rates.

The major outstanding issue is the economic interpretation of the interest rate
behavior we document in the data and approximate with affine models. One inter-
esting interpretation is provided by Zin (1997), who argues that dynamic responses
to innovations in the two factors of a generic bond-pricing model are similar to the
empirical responses of interest rates to monetary policy and the real economy, respec-
tively. What is needed to complete this story is a connection between these responses
and changes in the conditional variance of interest rates and the pricing kernel.
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Table 1
Forward Rate Regressions in Four Data Sets

Maturity Smoothed Unsmoothed McCulloch Extended
n Fama-Bliss Fama-Bliss Cubic Spline Nelson-Siegel
1 0.4557 0.5241 0.4984 0.5184

(0.1851) (0.1063) (0.1760) (0.1054)

3 0.7308 0.5758 0.7176 0.7979

(0.0916) (0.0872) (0.0875) (0.0932)

6 0.7971 0.6211 0.7833 0.8280

(0.0570) (0.0626) (0.0569) (0.0579)

9 0.8513 0.7594 0.8540 0.8703

(0.0457) (0.0524) (0.0461) (0.0461)

12 0.8913 0.7643 0.8916 0.9036
(0.0393) (0.0567) (0.0373) (0.0398)

24 0.9456 0.5843 0.9357 0.9500
(0.0239) (0.0591) (0.0270) (0.0251)

36 0.9576 0.6758 0.9544 0.9587
(0.0172) (0.0609) (0.0167) (0.0178)

48 0.9618 0.7630 0.9452 0.9612
(0.0141) (0.0313) (0.0183) (0.0143)

60 0.9635 0.5765 0.9565 0.9624
(0.0124) (0.0668) (0.0122) (0.0125)

84 0.9644 0.7086 0.9677 0.9636
(0.0109) (0.0639) (0.0090) (0.0108)

120 0.9634 0.6910 0.9655 0.9643
(0.0102) (0.0697) (0.0102) (0.0101)

Entries are estimated slope parameters ¢, from
t"+_11 — 7 = constant + ¢, (f* — 7¢) + residual,

where f™ is the n-month-ahead continuously-compounded one-month forward rate and r; =
f2 is the short rate, both expressed as annual percentages. Forward rates were computed
with data and programs supplied by Robert Bliss and come in four versions: Smoothed
Fama-Bliss, Unsmoothed Fama-Bliss, McCulloch Cubic Spline, and Extended Nelson-Siegel.
The data are monthly. For most entries, dates ¢t run from January 1970 to November 1995
(311 observations). The exceptions concern the McCulloch Cubic Spline data, for which
the starting dates are August 1971 for n» = 84 and November 1971 for n = 120. Numbers
in parentheses are Newey-West standard errors (6 lags).
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Table 2
Estimated Standard Deviations of Measurement Error

Difference from Smoothed-Fama Bliss

Maturity McCulloch Unsmoothed McCulloch Extended
n and Kwon Fama-Bliss Cubic Spline Nelson-Siegel

A. Forward Rates

0 0.11 0.16 0.22 0.19
1 0.13 0.23 0.19 0.15
3 0.17 0.30 0.12 0.09
6 0.18 0.46 0.18 0.07
9 0.15 0.45 0.16 0.08
12 0.21 1.13 0.18 0.08
24 0.16 1.71 0.24 0.07
36 0.13 1.62 0.21 0.06
48 0.13 2.03 0.26 0.07
60 0.09 2.01 0.24 0.08
84 0.10 2.91 0.30 0.12
120 0.13 3.52 0.65 0.18
B. Yields
1 0.11 0.16 0.22 0.19
3 0.05 0.07 0.10 0.03
6 0.04 0.06 0.06 0.04
9 0.05 0.08 0.07 0.03
12 0.04 0.09 0.07 0.03
24 0.03 0.08 0.06 0.04
36 0.02 0.07 0.06 0.04
48 0.02 0.09 0.07 0.03
60 0.02 0.08 0.08 0.03
84 0.02 0.12 0.09 0.04
120 0.03 0.17 0.12 0.06

Entries are estimated standard deviations of measurement error in forward rates and yields of dif-
ferent maturities, measured as annual percentages (the number 0.11, for example, corresponds to
11 basis points). The column labelled McCulloch and Kwon is the root mean square of the esti-
mated standard deviations reported by McCulloch and Kwon (1993) over the period January 1970
to February 1992. The remaining three columns are standard deviations of differences in forward
rates from Smoothed Fama-Bliss estimates. The sample period in most cases in January 1970 to
December 1995. The exceptions concern the McCulloch Cubic Spline data, which start in August
1971 for n = 84 and November 1971 for n = 120.
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Table 3
Properties of Forward Rates and Yields

Maturity Mean Std Deviation Autocorrelation

A. Forward Rates

0 6.683 ~ 2.703 0.959
1 7.098 2.822 0.969
3 7.469 2.828 0.968
6 7.685 2.701 0.966
9 7.812 2.487 0.966
12 7.921 2.495 0.969
24 8.274 2.264 0.977
36 8.498 2.135 0.979
48 8.632 2.059 0.980
60 8.714 2.013 0.980
84 8.802 1.967 0.980
120 8.858 1.946 0.980
B. Yields
1 6.683 2.703 0.959
3 7.039 2.781 0.971
6 7.297 2.774 0.971
9 7.441 2.725 0.970
12 7.544 2.672 0.970
24 7.819 2.495 0.973
36 8.009 2.373 0.976
48 8.148 2.287 0.977
60 8.253 2.224 0.978
84 8.398 2.141 0.979
120 8.529 2.073 0.981

Entries are sample moments of continuously-compounded forward rates and yields con-
structed with data and programs supplied by Robert Bliss (Smoothed Fama-Bliss method).
The data are monthly, January 1970 to December 1995 (312 observations). Mean is the
sample mean, St Deviation the sample standard deviation, and Autocorrelation the first
autocorrelation.
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Table 4
Estimates of One-Factor Affine Models

Parameter A B C D
0% 1+ A2/2 1+ A%/2 1+ A%/2 —1+ A%/2
) 0.00866
(0.00120)
0 0.00557 0.00557 0.00543 0.00309
(0.00043) (0.00043) (0.00043) (0.00114)
o 0.00854 0.00853 0.00641 0.01149
(0.00198) (0.00198) (0.00188) (0.00413)
Ao -0.0123 0.0489 -0.0111 0.0509
(0.00398) (0.0493) (0.00379) (0.0511)
@ 0.9590 0.9590 0.961 0.9586
(0.0180) (0.0180) (0.0182) (0.0180)
J-statistic 0.00 0.00 9.69 0.00
Deg of Fr 0 0 1 0
p — — 0.002 —
C1 1.426 0.448 1.401 0.449
C12 1.028 0.974 1.027 0.975
E(y** — ') 1.846 -3.366 1.689 1.849
Auto(r) 0.959 0.959 0.961 0.9586

28

Parameter values were estimated by GMM, as described in the text, using yields and forward
rates estimated by the Smoothed Fama-Bliss method. Numbers in parentheses are standard
errors. J is the Hansen’s J-statistic, Deg of Fr is its degrees of freedom, and p its marginal
significance level. The other statistics are regression slopes for n equal to 1 and 12, the
mean 10-year yield spread, and the first autocorrelation of the short rate. The sample
period runs from January 1970 to November 1995 (311 observations). Weighting matrices
were computed by the Newey-West method (12 lags). The moment conditions vary across
models. Model A (benchmark CIR): the mean, standard deviation, and autocorrelation of
the short rate, and the mean of the 10-year bond yield; Model B (regression-based CIR):
the mean, standard deviation, and autocorrelation of the short rate, and the slope of the
first forward rate regression; Model C (composite CIR): the union of the Models A and B;
and Model D (negative CIR): same as C.



Table 5

Estimates of Multifactor Affine Models

Parameter E F G H I
M L4+ X3/2  —1+42/2  1+4M/2 —1+X/2 —142A2/2
) 0.00857
0, 0.00557 0.00300 0.00307 0.00150 0.00155
6, 0.00250 0.00707 0.00442
03 0.00270
o1 0.00184 0.00274 0.00006 0.00190 0.00212
(0.00014) (0.00010) (0.00534) (0.00014) (0.00026)
o9 0.00163 0.00140 0.00154
(0.00028) (0.00014) (0.00151)
o3 0.00008
(0.0340)
Aoy -0.0118 0.00376 -0.0613 0.0748 0.0381
. (0.0021) (0.0020) (0.0168) (0.0180) (0.0093)
A203 0.0328 -0.0125 -0.0310
(0.0110) (0.0055) (0.165)
A303 —-0.000009
(0.569)
Y11 0.914 0.994 0.813 0.996 0.998
(0.0084) (0.0016) (0.0519) (0.0019) (0.0017)
Y22 0.916 0.653 0.758
(0.0221) (0.0811 (0.735)
¥33 0.145
(218.1)
J-statistic 221.25 53.80 125.98 17.54 7.58
Deg of Fr 8 7 5 3 2
P < 10716 10~° 10718 0.0036 0.0226
c 1.158 0.144 0.720 0.437 0.382
C12 1.008 0.945 0.989 0.956 0.943
By —yh) 0.937 2.498 0.892 1.838 2.149
Auto(r) 0.914 0.994 0.916 0.984 0.994
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Parameter values were estimated by GMM, as described in the text, using yields and forward
rates estimated by the Smoothed Fama-Bliss method. Numbers in parentheses are standard
errors. J is the Hansen’s J-statistic, Deg of Fr is its degrees of freedom, and p its marginal
significance level. The other statistics are regression slopes for n equal to 1 and 12, the mean
10-year yield spread, and the first autocorrelation of the short rate. The sample period runs
from January 1970 to November 1995 (311 observations). Models differ in number of factors
and choice of 7, (7; = 1 + A2/2 for i = 2,3). The same moment conditions and weighting
matrix were used to estimate all five models. The 11 moment conditions are based on: the
standard deviation and autocorrelation of the short rate, the mean and standard deviation
of the spreads between long yields and the short rate (y* — » for n = 12,60,120) and
the slopes of forward regressions (¢, for n = 1,6,12). The weighting matrix is based on
Model I and was computed by the Newey-West method (12 lags). All reported statistics are
conditional on the #’s, which were chosen by grid search to minimize the J-statistic subject
to the restriction that the model’s mean short rate equals the sample mean.
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Table 6
Yield Regressions in Four Data Sets

Maturity Smoothed Unsmoothed McCulloch Extended
n Fama-Bliss Fama-Bliss Cubic Spline Nelson-Siegel
1 —0.0886 0.0488 —0.0031 0.0369

(0.3702) (0.2127) (0.3519) (0.2107)
3 —0.4284 —0.6325 —0.4311 —0.1521
(0.4808) (0.6162) (0.4751) (0.3930)
6 —0.8828 —0.9305 —0.8305 —0.4979
(0.6398) (0.6911) (0.6324) (0.6252)
9 —1.2280 —1.3677 —-1.0717 —0.8000
(0.7380) (0.7801) (0.7512) (0.7499)
12 —1.4248 —1.4753 —-1.1255 —0.9901
(0.8249) (0.8109) (0.8513) (0.8440)
24 —1.7048 —1.9225 —1.4783 —1.3158
(1.1202) (1.1392) (1.1100) (1.1545)
36 —1.9100 —1.8528 —1.7818 —1.5482
(1.2954) (1.3005) (1.3176) (1.3508)
48 —2.1469 —2.6088 —2.1295 —1.8134
(1.4180) (1.3997) (1.4420) (1.4816)
60 —2.4333 —2.6205 —-2.5064 —2.1344
(1.5190) (1.5304) (1.5549) (1.5834)
84 —3.0959 —3.4028 —2.9845 —2.8455
(1.7047) (1.6684) (1.6534) (1.7594)
120 —4.1729 —4.3454 —3.7285 -3.9662
(1.9847) (1.9217) (2.0116) (2.0196)

Entries are estimated slope parameters d,, from

yn+l -1
yiy1 — yit! = constant + dy, (—f—— + residual,
n

where y™ is the n-month continuously-compounded yield and 7; = y} is the short rate,
both expressed as annual percentages. Yields were computed with data and programs
supplied by Robert Bliss and come in four versions: Smoothed Fama-Bliss, Unsmoothed
Fama-Bliss, McCulloch Cubic Spline, and Extended Nelson-Siegel. The data are monthly.
For most entries, dates ¢ run from January 1970 to November 1995 (311 observations).
The exceptions concern the McCulloch Cubic Spline data, for which the starting dates are
August 1971 for n = 84 and November 1971 for n = 120. Numbers in parentheses are
Newey-West standard errors (6 lags).
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Table 7
Multiperiod Regressions 1 in Four Data Sets

Maturity Smoothed Unsmoothed McCulloch Extended
n Fama-Bliss Fama-Bliss Cubic Spline Nelson-Siegel
1 0.4557 0.5241 0.4984 0.5184

(0.1772) (0.1431) (0.1638) (0.1062)

3 0.4108 0.2682 0.3790 0.5814

(0.1777) (0.1944) (0.1884) (0.1728)

6 0.3624 0.3877 0.4199 0.4833

(0.1835) (0.1474) (0.2014) (0.1969)

9 0.4100 0.4598 0.4213 0.4788

(0.1863) (0.1695) (0.1915) (0.1857)

12 0.4590 0.1649 0.4139 0.5310
(0.2092) (0.1248) (0.2049) (0.2015)

24 0.6097 0.2788 0.6496 0.6319
~ (0.3999) (0.1923) (0.3883) (0.3981)

36 0.8431 0.3545 0.7409 0.8129
(0.2942) (0.1623) (0.2867) (0.2915)

48 0.9773 0.3070 1.0079 0.9045
(0.2785) (0.1385) (0.2901) (0.2656)

60 0.8513 0.5097 0.7731 0.7784
(0.2825) (0.1754) (0.2618) (0.2731)

84 0.6261 0.0785 0.6023 0.5535
(0.5050) (0.1888) (0.4679) (0.4922)

120 0.5988 0.5028 0.7324 0.5492
(0.2538) (0.1038) (0.1286) (0.2532)

Entries are estimated slope parameters e,, from
Tt4n — Tt = constant + e, (f;* — ;) + residual,

where f" is the n-month continuously-compounded forward rate and r; = f? is the short
rate, both expressed as annual percentages. Forward rates were computed with data and
programs supplied by Robert Bliss and come in four versions: Smoothed Fama-Bliss, Un-
smoothed Fama-Bliss, McCulloch Cubic Spline, and Extended Nelson-Siegel. The data are
monthly. For most entries, dates ¢ run from January 1970 to n months prior to December
1995 (312 — n observations). The exceptions concern the McCulloch Cubic Spline data,
for which the starting dates are August 1971 for n = 84 and November 1971 for » = 120.
Numbers in parentheses are Newey-West standard errors (n lags).
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Table 8
Multiperiod Regressions 2 in Four Data Sets

Maturity Smoothed Unsmoothed McCulloch Extended
n Fama-Bliss Fama-Bliss Cubic Spline Nelson-Siegel
1 0.4557 0.5241 0.4984 0.5184

(0.1772) (0.1431) (0.1638) (0.1062)
3 0.4099 0.3625 0.4042 0.5602
(0.1833) (0.2283) (0.1913) (0.1441)
6 0.3848 0.4063 0.3831 0.5595
(0.1529) (0.1764) (0.1683) (0.1670)
9 0.3918 0.4184 0.4229 0.5384
(0.1704) (0.1904) (0.1899) (0.1876)
12 0.4280 0.4216 0.4621 0.5563
(0.1763) (0.1826) (0.1950) (0.1900)
24 0.5393 0.5423 0.5314 0.6230
(0.2437) (0.2562) (0.2360) (0.2347)
36 0.6102 0.5827 0.5733 0.6536
(0.2635) (0.2686) (0.2581) (0.2589)
48 0.6989 0.6433 0.6538 0.7123
(0.2475) (0.2496) (0.2520) (0.2415)
60 0.7622 0.7352 0.7255 0.7541
(0.2352) (0.2346) (0.2411) (0.2253)
84 0.6824 0.6741 0.6199 0.6592
(0.2524) (0.2712) (0.2356) (0.2459)
120 0.7191 0.7665 0.7086 0.6782
(0.2582) (0.2566) (0.2274) (0.2519)

Entries are estimated slope parameters g, from

n

Z <1 - ) (Tt4i — Tt4i—1) = constant + gy, (yt”“ — rt) + residual,
=1 n+ 1

where y" is the n-month continuously-compounded yield and r; = g} is the short rate, both
expressed as annual percentages. Forward rates were computed with data and programs
supplied by Robert Bliss and come in four versions: Smoothed Fama-Bliss, Unsmoothed
Fama-Bliss, McCulloch Cubic Spline, and Extended Nelson-Siegel. The data are monthly.
For most entries, dates ¢t run from January 1970 to n months prior to December 1995
(312 — n observations). The exceptions concern the McCulloch Cubic Spline data, for which
the starting dates are August 1971 for » = 84 and November 1971 for n = 120. Numbers
in parentheses are Newey-West standard errors (n lags).
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Table 9

Multivariate Forward Rate Regressions

Maturity n Constant Cin Can R?

1 0.1451 0.5118 —-0.0549 0.113
(0.1412) (0.1801) (0.0215)

3 0.0919 0.7322 —0.0048 0.326
(0.1475) (0.0882) (0.0211)

6 0.1951 0.7932 —0.0076 0.477
(0.1382) (0.0581) (0.0179)

9 0.2342 0.8389 —0.0150 0.614
(0.1305) (0.0462) (0.0166)

12 0.2213 0.8755 —0.0166 0.722
(0.1235) (0.0400) (0.0156)

24 0.1591 0.9324 —0.0126 0.897
(0.1050) (0.0265) (0.0123)

36 0.1528 0.9455 —0.0115 0.937
(0.1005) (0.0214) (0.014)

48 0.1643 0.9491 —0.0122 0.950
(0.0998) (0.0192) (0.0112)

60 0.1777 0.9498 —0.0131 0.956
(0.1000) (0.0182) (0.0112)

84 0.1954 0.9494 —0.0144 0.961
(0.0999) (0.0174) (0.0112)

120 0.2104 0.9476 —0.0153 0.962
(0.0961) (0.0165) (0.0107)

Entries are estimated parameters from the multivariate forward rate regression,

based on Smoothed Fama-Bliss estimates of forward rates.

ftn+_11 — ry = constant + ¢ (f{ — r¢) + Can¢ + residual,

Definitions are provided in

Table 1. Dates ¢ run from January 1970 to November 1995 (311 observations). Numbers in

parentheses are Newey-West standard errors (6 lags).
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Figure 1
Slopes of Forward Rate Regressions in Four Data Sets
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Lines represent the forward rate regression slopes ¢, reported in Table 1 for forward rates
estimated by four different methods. The solid line is based on data estimated by the
Smoothed Fama-Bliss method, the dashed line (the markedly different one) the Unsmoothed
Fama-Bliss method, the dash-dotted line the McCulloch Cubic Spline method, and the
dotted line the Extended Nelson-Siegel method.
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Figure 2
Properties of the One-Factor Cox-Ingersoll-Ross Model
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The two panels report forward rate regression slopes and mean yields in the data (the
asterisks) and in two versions of the one-factor Cox-Ingersoll-Ross model, Models A and
B from Table 4. Model A (the solid line) is estimated to reproduce the average 10-year
bond yield. Model B (dashed line) is estimated to reproduce the slope of the forward rate
regression with maturity n = 1.
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Figure 3
Properties of the “Mixed” Two-Factor Model
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The two panels report forward rate regression slopes and mean yields in the data (the
asterisks) and in the two-factor Model H (lines). The solid lines correspond to the point
estimates of Model H reported in Table 5. The dashed lines correspond to 5% and 95%
quantiles, computed by Monte Carlo as described in the text.
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Figure 4
Small Sample Bias in Regression Slopes
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Lines represent small sample bias in slopes ¢, of forward rate regressions. The solid line is
the estimated bias for the mixed two-factor Model H, computed by Monte Carlo as described

in the text. The dashed line is based on equation (9), adapted from Bekaert, Hodrick, and
Marshall (1996).
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Figure 5
Slopes of Yield Regressions in Four Data Sets
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Lines represent the yield regression slopes ¢, reported in Table 6 for yields estimated by
four different methods. The solid line is based on data estimated by the Smoothed Fama-
Bliss method, the dashed line the Unsmoothed Fama-Bliss method, the dash-dotted line the
McCulloch Cubic Spline method, and the dotted line the Extended Nelson-Siegel method.
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Figure 6
Forward Rate Regressions Implied by Yield Regressions
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Asterisks represent estimated slopes of forward rate regressions from Table 1 (Smoothed
Fama-Bliss data). The line represents slopes implied by a one-factor interpretation of the
analogous yield regressions in Table 6.
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Figure 7
Yield Regressions Implied by Forward Rate Regressions
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Asterisks represent estimated slopes of yield regressions from Table 6 (Smoothed Fama-
Bliss). The solid line represents slopes implied by a one-factor interpretation of the analo-
gous forward rate regressions in Table 1. The dashed line represents implied slopes when
forward rate slopes are set equal to one for maturities greater of 24 months or more.
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Figure 8
Other Regressions Implied by the “Mixed” Two-

Factor Model
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Asterisks represent slopes of yield regression slopes from Table 6 (Smoothed Fama-Bliss
data). Lines represent regression slopes implied by Model H, a two-factor model with one

positive and one negative factor. The dashed lines correspond to 5% and 95% quantiles,
computed by Monte Carlo as described in the text. The solid line corresponds to the

median.
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Figure

Forecasts
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The top panel reports the forward rate curve of December 1994 (solid line) and the mean
forward rate curve (dashed line). The bottom panel reports three forecasts of one-month
changes in forward rates between December 1994 and January 1995. The forecasts are

based, respectively, on the expectations hypothesis (solid line), estimates of equation (7)
(dashed line), and estimates of equation (23) (dash-dotted line).
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