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1 Introduction

The idea that transactions costs are important for understanding deviations from the law of one
price (LOP) is not a new one. Obstfeld and Taylor (1997) note that, as far back as 1916, Heckscher
argued that transport costs should create some scope for price discrepancies to arise without pre-
cipitating goods arbitrage. Notwithstanding its vintage, it is only recently that attention has been
devoted to developing the theoretical and empirical implications of this idea.

Williams and Wright (1991), Dumas (1992), Uppal (1993) and Coleman (1995) have shown
that, in the presence of proportional transport costs, the incentive to engage in goods arbitrage is
tempered.! Building on this, recent empirical work has noted that transport costs provide a viable
candidate explanation for the chimerical nature of mean-reversion in relative goods prices; if market
frictions such as transport costs are present, then the power of standard tests for mean-reversion
is diminished. O’Connell (1997a), Obstfeld and Taylor (1997) and Michael, Nobay and Peel (1997)
build this insight into their analyses of purchasing power parity.

In this paper we seek to extend the discussion of transport costs and their impact on goods
arbitrage along two dimensions. Along the theoretical dimension, we provide a simple continuous-
time model that highlights the relative importance of proportional and fixed costs of shipping. The
main implications of the model are as follows. First, if the only cost of arbitrage is a proportional
transport cost, then the process for LOP deviations is confined between reflecting barriers that
delimit a “range of no-arbitrage,” within which it is not profitable to engage in trade. In these
circumstances, when arbitrage does take place, the quantities traded are very small, sufficient to
prevent the LOP deviation from going outside the reflecting barrier, but insufficient to drive the
deviation back into the interior of the no-arbitrage band. Second, if transport costs are fixed rather
than variable, the process for LOP deviations is confined between “resetting” barriers. These too
delimit a band of no-arbitrage. However, when arbitrage does take place at the edge of the band, it
is sufficient to completely eliminate the LOP deviation. Thus the process for the deviation is reset
to zero through trade. Third, if both fixed and variable transport costs are present, an interesting

hybrid case emerges. There are two bands for LOP deviations, an inner band within which no

'In addition to proportional transport costs, Coleman (1995) assumes that shipping takes time.
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arbitrage takes place, and an outer band in which there is some arbitrage activity. Finally, the
magnitude of these bands is increasing in the variability of relative goods prices.

The second dimension along which we seek to add value is empirical. There are two shortcomings
of the extant empirical work. First, the choice of empirical specification is arbitrary. Second, the
data used are typically composite price indices which are subject to potentially serious aggregation
biases. We address the former by using our model to inform the choice of empirical specification,
and to interpret the results. To tackle the latter, we employ data on disaggregated commodity
prices, yielding a “pure” measure of the deviations from price parity. To summarize the results,
we find strong evidence to support the existence of market frictions that interfere with goods
arbitrage. Many relative price series that appear nonstationary using standard techniques exhibit
strong evidence of reversion once the deviation from LOP goes outside an estimated band of no-
arbitrage. When we test whether it is the fixed or variable component of market frictions that is
most important, the evidence indicates that the fixed component is dominant. This suggest that
fixed costs such as those associated with building production or distribution capacity are integral
to an understanding of U.S. goods prices.

The paper begins with a brief review of the extant theoretical and empirical work on relative price
behavior in the presence of market frictions. Then Section 3 sets out our model and its implications
for empirical analysis. Section 4 describes the data and the empirical strategy. Finally, Section 5

contains the results from the battery of empirical tests that we carry out.

2 Extant work on market frictions and relative prices

2.1 Theoretical work

As noted in the introduction, a number of papers have employed proportional transport costs to
support deviations from the law of one price. A simple example illustrates the likely effect of such
costs. Suppose that there are two countries, A and B, and that the price of a good is 1 in A and
P in B. Furthermore assume that there proportional transport costs of the “iceberg” form—if a
good is shipped from one location to another, a fraction [ melts en route, so that only (1 — () of

the good actually arrives. At what levels of P does it become profitable to ship goods from one
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country to another?

The profit from shipping one good from B to A is (1 — ) — P, which is positive for P < 1 — /.
The profit from shipping a good in the opposite direction is (1 — [)P — 1, which is positive for
p>1/(1 —1). Thus the “band of no-arbitrage”—the interval for P within which arbitrage doesn’t
pay—is (1 — 1) < P < 1/(1 — ). The assumption of proportional transactions costs renders this
interval symmetric about P in percentage terms.?

The models of Williams and Wright (1991), Dumas (1992), Uppal (1993) and Sercu, Uppal and
Van Hulle (1995) generate a similar band of no arbitrage. Such models carry specific implications
for the impact of arbitrage on the real exchange rate. For instance, if P reaches the upper threshold
generated by the transport costs, 1/(1 — {), the amount of trade that takes place is sufficient to
ensure that the P does not rise above this level, but not so large as to cause P to fall into the interior
of the band. In the jargon of continuous time, the thresholds (1 — () and 1/(1 —[) are “reflecting
barriers” for the real exchange rate process. This means that evidence of arbitrage activity will not
be reflected directly in prices, only in quantities. While the barriers render P stationary, it can be
difficult to detect this stationarity using standard techniques.®

In an important contribution to this topic, Coleman (1995) challenges the assumption of instan-
taneous trade, and builds a model that instead allows transportation to take time. In his model,
arbitrageurs engage in trade whenever the ezpected future price in one country exceeds the spot
price in the other country, plus the transport cost. The result is that the real exchange rate can
differ from 1 by more than the transport cost. Coleman shows that once P strays outside the band
of no arbitrage, it exhibits a tendency to revert to the band. Moreover the strength of this tendency

is increasing in the distance from the band. In this setting, arbitrage activity is reflected in both

20ne interpretation of iceberg transport costs is that they are costs incurred in the destination country. More
generally, per-unit costs could comprise {; in the export country and Iz in the import country, while still preserving
the symmetry of the band of no-arbitrage.

3It is worth noting that these models can also render predictions about the behavior of the real exchange rate
within the band of no arbitrage. In the models of Dumas (1992) and Uppal (1993), for instance, there is a single
good that can be consumed or invested. Each country is endowed with a production technology for the good that is
subject to white-noise shocks. Because agents in each country are risk averse, it is optimal to rebalance the (capital)
stock of the good in each country after each shock. However, if there are costs of shipping the good, no rebalancing
will take place until the marginal benefit of doing so exceeds the marginal cost. The relative shadow value of the
good across countries (the real exchange rate) can therefore deviate from 1. Dumas (1992) and Uppal (1993) show
that in the equilibrium, the real exchange rate is bounded between (1 — !} and 1/(1 — (). Interestingly, however, the
real exchange rate displays a centrifugal tendency within the band, in the sense that the conditional probability of
the deviation from parity widening is always larger than the probability of it narrowing. In consequence the ergodic
dist.ribt;t.ion for P is U-shaped: P spends most of the time away from parity, close to the boundary where arbitrage
takes place.
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prices and quantities, and hence it may be easier to detect using just prices.
In the model set out in Section 3, we consider an alternative modification to the basic iceberg
cost setup. Specifically, we add a fixed cost of arbitrage to the proportional transport cost. We

show that this supports interesting and realistic dynamics in the process for relative prices.

2.2 Empirical work

Some recent empirical work has sought to modify standard tests of the LOP and purchasing power
parity (PPP) to take account of actual or potential market frictions.* Parsley and Wei (1996)
add a higher-order term to the standard Dickey-Fuller regression in an effort to determine whether
mean-reversion is increasing in the size of LOP deviations. Using the same data that this paper
employs, they find that convergence is faster for large initial price differences.® Michael, Nobay
and Peel (1997), employing a substantially similar technique, find that the rate at which deviations
from PPP die out is increasing in the size of deviation for interwar CPI data, and for a 200-year
data set of UK and French real CPI exchange rates against the dollar. However, when O’Connell
(1997a) applies the same technique to post-Bretton Woods real exchange rates, both large and
small deviations from PPP appear equally persistent.

An alternative strategy is to fit a threshold autoregression model (described in more detail below)
to relative prices. O’Connell (1997a) fits such a model to real effective trade-weighted exchange
rates from the 1973-1995 period, and finds no evidence that large deviations from parity die out
relatively more quickly. Indeed, if anything, the opposite appears to be true: small deviations tend
to die out but large ones are apt to persist indefinitely. This finding may be related aggregation
biases in the composite traded goods prices used in the paper. Obstfeld and Taylor (1997) also
fit threshold autoregression models to detrended real exchange rates for the U.S. sampled from
1973-1995. They report evidence that large deviations from the linear trend of the real exchange
rate revert to parity quite quickly, while small deviations do not.

In the empirical analysis in Section 5, we fit a variety of what may be termed “nonlinear”

4Many “standard” tests for relative price stationarity have been carried out of late, especially in panel settings.
These include Abuaf and Jorion (1990}, Wei and Parsley (1995), Engel, Hendrickson and Rogers (1996}, Frankel and
Rose (1996), Jorion and Sweeney (1996), Papell (1996), Taylor (1996), O’Connell (1997b) and Papell and Theodoridis
{1997a). See Froot and Rogoff (1995) and Rogoff (1996) for surveys of the literature on PPP.

®See also Wei and Parsley (1995).
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reversion models to detailed commodity price data for the U.S. The hope is that the quality of
the data will circumvent some of the potentially serious aggregation biases that arise when using
aggregate prices indices. The analysis complements the earlier work of Parsley and Wei (1996),
and draws on some of the techniques used in O’Connell (1997a) and Obstfeld and Taylor (1997).
Before engaging in the empirical analysis, however, it is useful to set out a theoretical framework
for thinking about transport costs and other market frictions, and this is the purpose of the next

section.

3 A model of arbitrage with transport costs

In this section, we illustrate the relative importance of fixed and variable transport costs in de-
termining relative prices. The analysis is simplified by not modelling production or intertemporal
trade. In principle it would be straightforward to generalize the model to include production,
investment and changes in the economy’s net international investment position, but the minimal
specification is sufficient to highlight the major points. The model draws from the excellent general

discussion of optimal control and regulation in Dixit (1993).

3.1 The optimal pattern of trade

We examine the optimal trade strategy in a small open economy that is endowed with two non-
storable commodities, X and Y. The representative agent for this economy has the quasilinear
utility function

U(CX,c¥) = CX - %{-exp(—’yCY). (3.1)

Thus the marginal utility of X is fixed at 1. The economy is endowed with a nonstochastic supply
of X at each instant. This endowment is abundant, in the sense that there will always be some of

X consumed.® The endowment of Y is stochastic at each instant, with dynamics given by

dY = odz, (3.2)

®In this sense, the model is partial equilibrium. The endowment of Y is assumed to be insignificant in size relative
to the endowment of X.
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where dz is the increment of a standard Wiener process. Consumption CY is equal to the endow-

ment plus net imports of the good M from abroad:
cY =Y + M. (3.3)

We assume that X and Y are traded on world markets, and that both are priced at unity. Moreover

trade is always balanced.” Together these assumptions imply that
cX=X-M. (3.4)

Our ultimate interest is in the process for P, the price of good Y in this economy. Since the
marginal utility of X is one, P = exp(—yC").

The transportation technology available to the economy has the following features. First, in order
to facilitate imports or exports, trade capacity must be available. We assume that trade capacity
is unidirectional-—capacity installed for the purposes of exporting cannot be used for imports. The
per-unit cost of new capacity is {. Once installed, capacity must be utilized. Capacity may, however,
be decommissioned at a cost. To preserve symmetry, we assume that the per-unit decommissioning
cost is also [. Second, every time that trade capacity is adjusted, a fixed cost k£ must be expended.

In the absence of transport costs, the solution to the representative agent’s maximization problem
is straightforward. At each instant, the marginal utility from consumption of Y must equal 1, so
the agent simply sets M equal to —Y. In the presence of transport costs, however, CY can deviate
from 0. To obtain the solution, it is convenient to work with a utility loss function rather than the

level of utility itself. The loss function is defined as

1 1
LIC)=—=+C+ —e¢ (3.5)
Y Y

where C = CY (the Y superscript is dropped hereafter to economize on notation). L(C) captures
the relative gain in utility from consuming at 0 instead of consuming at C.8 It is a convex function
that attains a minimum Q at C' = Q. The reason for working with this loss function is that it is

invariant to the scale of the endowment Y'(¢). Clearly, total utility depends on this endowment, but

"Implicit here is the assumption that the economies rate of time preference is equal to the world interest rate. If
this were not the case, then there would be no well-defined equilibrium, as marginal utility is not diminishing in X.

8Consuming at 0 yields —1/+ plus Y export revenue, while consuming at C yields —exp(—~yC)/vy plus — M export
revenue. The difference between these is L(C).
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given quasilinear preferences and the abundance of X the marginal import decision is independent
of this endowment, and so nothing is lost by seeking to minimize L(C) rather than to maximize
U).

Holding M constant, the process for C =Y + M is simply

dC = odz. (3.6)
Define the value function
V(C) = min Ec / e P L(C)dt, (3.7)
{M} 0

where p is the discount rate. The problem is to solve for V(C), taking into account the costs
associated with trade. The Hamilton-Bellman-Jacobi equation for this problem is E[dV (C)]/dt +

L(C) = pV(C). Applying Ité’s lemma, this can be written as

£07Veo(C) — pV(C) + L(C) = 0. (3.8)

This differential equation has a well-known solution (see, for example, Dixit (1993)). The comple-
mentary function is

Ae™C + Be®C

where a = /2p/0, and A and B are constants to be determined. For the particular integral, try
the linear form

V(C) = Kie "¢ + Ko (C —1/v).

This implies that Voo(C) = Kyy2e~7¢. Substituting this into (3.8) and solving we obtain

1
K]:—l*; and K2=l.
Y (50272 - p) p
Thus the full solution is
-C 1 1
v (p - 50272> P Y

The solution for V(C) is made up of two parts. The last two terms on the right-hand side
comprise the present value of the loss function if net imports are fixed—they are the discounted

sum of expected losses L(C). The first two terms represent the change in value that accrues from
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the ability to control M: the value of the option to import is AC~%, while the value of the option
to export is BC®. These quantities are negative as they add to utility and hence subtract from
the loss function. It can be shown (see Dixit (1993), and the references cited therein) that the
optimal trade policy is characterized by four threshold levels of C, C; > Cy > C3 > C4, that have
the following features. First, if C rises to Ci, (Cy - —C_z) of net export capacity is installed at cost
k+(C, —C>3)t, and used to export an additional (C; —C3z) of Y to the world market.® Second, if C
falls to C4, (C3 — C4) of net import capacity is installed, and used to import an additional amount
(C3 — 64) from the world market. In other words, if C strays too far from it’s optimum of 0, the
representative agent “resets” it at a value that is closer to the optimum by raising or lowering net
imports.

To solve for the these threshold values, we employ some boundary conditions that tie down the
constants A and B. At the outer barriers C, and Cj, it must be true that the increment in value

that is brought about by trade equals the cost of trade. Thus

V(El) -k - l(51 - 62) = V(Cz)

In addition, it must be true that at both C; and Cj, the marginal increment to value from further

trade is just equal to the marginal cost, or
Vo(Ch) = Ve(Ch) = 1.
These are the smooth-pasting conditions.!® Similar conditions obtain at C3 and Cj:
V(Cy) —k—U(C3 —Cy) =V(Cs).

and

Vo(Ts) = Vo(CTy) = L.

These six boundary conditions can be solved for A, B and the four optimal thresholds. As they

are highly nonlinear, it is easiest to obtain the solution numerically. For a benchmark case, let the

UIf the country is already importing, then some of its import capacity will be decommissioned.

'“Given that Lo, the marginal utility loss, is monotonically increasing, it may appear surprising that Vo = { at
both the outer threshold C,; and the inner threshold C;. The reason is that the marginal value of the ability to
control C through trade is monotonically decreasing in C. If net import capacity is actually adjusted, then the drop
in the option value to carry out further adjustments contributes negatively to utility. This is illustrated in Figure 1.
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Figure 1. Optimal trade policy in the presence of fixed and variable transport costs
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coefficient of absolute risk aversion -y equal 1, the instantaneous variance of the endowment o equal
0.01, the rate of discount p equal 0.05, and the fixed and variable costs of transport be £k = 1 and
[ = 1. respectively. To solutions for A and B are —0.872 and —0.246, and the four threshold values
of C are Cy = 0.774, C» = 0.116, C3 = —0.068 and C4, = —0.655. Constantinides and Richard
(1978), Harrison, Sellke and Taylor (1983) and Dixit (1993) all use a simple graph of Vo (C) to
convey the nature of this type of solution, which is shown in Figure 1.

For C close to 0, the value of the options to adjust import capacity up or down are relatively
small, and V¢ (C) mimics Lo (C). As C departs from its optimum level, the trade options become
more valuable—the value of the option to export, Bexp(yC), is increasing in C, and the value
of the option to import, Aexp{—~C) is decreasing in C. It is variation in the value of these
trade options that gives the overall marginal utility curve its characteristic shape. The location of
the curve is determined by the value-matching and smooth-pasting conditions. In particular, the
smooth-pasting conditions require that the abscissae of the curve’s intersections with { are C; and

C,, and that the abscissae of the curve’s intersections with —/ are C3 and C4. The value-matching
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conditions require that the area below the curve between C| and C3 equals k + {(C| — C3), and

that the area above the curve between C3 and Cj equals k + [(C3 — Cy).

3.2 The behavior of relative prices

Having solved for the optimal trade policy, we are now in a position to examine the behavior P,

the relative price of good Y in the economy.

A. Costless trade
If all trade is costless (k = | = 0), all four trading thresholds collapse to zero. Trade takes place

instantaneously whenever the endowment of C differs from 0. P is therefore fixed at unity.

B. Infinite costs of trade

If there are infinite costs of trade, k — oo and/or I — oo. In this case, C;,Cs — oo, C3,Cyq — —00,
and no trade takes place. The relative price P will equal Uc(C) = exp(—~c) at all instants. By
Ité’s lemma,

1
dP = 5027213(11: — oy Pdz. (3.10)

This implies that p = In{P) follows a driftless arithmetic Brownian motion with instantaneous
variance 0272:

dp = ovydz. (3.11)

C. Proportional costs of trade

If the only costs of trade are proportional (i.e. k = 0), then C; coincides with Cj, and Cs
coincides with Cy4. In our benchmark case, the solutions for these thresholds are C; = 0.283, and
C4 = —0.256. The resulting process for consumption shares many of the features of the solution in
the Dumas (1992) model. In particular, C; and C4 become reflecting barriers for the consumption
process. If trade takes place, it will involve infinitesimal quantities at these barriers. The process
for Uc and hence P will inherit these properties. Thus P will follow the process (3.10) until such
time as C reaches one of the barriers, when sufficient trade will take place to hold P at its barrier
level, without driving it back towards parity. In our benchmark case, the reflecting barriers for P

are exp(—0.283y) = 0.753 and exp(0.256+) = 1.292.
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D. Fized costs of trade
If the only costs of trade are fixed (i.e. [ =0), then the middle two thresholds C, and C; coincide.
With the benchmark parameters, the threshold solutions are C; = 0.688, Cy = Cy = 0.019, and
C4 = —0.600. The resulting consumption process differs markedly from the case of proportional
trade costs. In particular, whenever C hits either C; or Cj, a discrete amount of trade will take
place that is sufficient to bring consumption back to 0.019.!' The intuition is that, once the fixed
cost has been expended, it would be suboptimal to reset consumption to a point that is away from
value-maximizing point close to 0.

The process for Uc and hence P inherit these resetting features. Thus P will follow the process
(3.10) until such time as C reaches one of the barriers, at which time P is reset to exp(—0.019v) =

0.981. The resetting barriers for P are 0.549 and 1.990.

E. Fized and variable costs of trade

Lastly, we consider the behavior of P in the presence of both fixed and proportional costs of
transportation. In the benchmark case, when P hits exp(—yC1) = 0.461, arbitrage moves it to
exp(—vC3) = 0.890. Correspondingly, when P hits exp(—yC4) = 2.168, arbitrage resets it to
exp(—vC3) = 1.070. The interesting aspect of this solution is that it generates two “bands” for
the deviations from the LOP. Whenever Y hits the outer barriers, it is reset by trade to the inner
barriers. This resetting behavior differs from the infinitesimal arbitrage that characterizes models

predicated solely on proportional transport costs.

3.3 Implications for testing the LOP

The model developed above has three important implications for the empirical analysis of the LOP.
First, in the presence of transport costs, the stationarity of relative prices may be difficult to detect
using conventional tests. Second, by taking advantage of the special structure of price behavior
that arises with transport costs, the power to detect stationarity can be increased. And third, the
different patterns of price behavior occasioned by fixed and variable costs provide some basis for

empirically distinguishing their relative importance.

Notice that the value-maximizing point is not actually 0. This is because of the asymmetry introduced by the
It6 or Jensen’s inequality term in the value function.
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A. Detecting stationarity in the presence of transport costs

Let the true process for the relative price of a good in two locations, p, be

pp=1{ if jp-1l < a
B = { b+ e 0 < b < a otherwise (3.12)

This is the discrete-time analog of the process for p that emerges from our model in the presence
of both fixed and flexible costs. The process is globally stationary, but because innovations to the
process are i.i.d. for a portion of the time (i.e. whenever |p;_1] < a), this stationarity can be
difficult to detect using standard techniques. For example, if a = 4, b = 3 and ¢ ~ 1.i.d.N(0, 1),
the power of the Dickey-Fuller test to reject the random walk null with 50 observations on this
process is 22 percent at the 5 percent significance level.!? This can be compared to the power of the
Dickey-Fuller test when the true process is AR(1) with the same total variance V(p;) as the process
(3.12). When @ =4, b = 3 and € ~ iid.N(0,1), V(p;) = 3.42. This is matched by an AR(1)
process with a disturbance variance of 1 and a root of 0.84.14 The power of the Dickey-Fuller test to
reject the random walk null under this AR(1) alternative is 37 percent at the 5 percent significance
level, 15 percent higher than for process (3.12).

It appears, then, that standard tests for stationarity have low power under the alternatives
generated by market frictions. This may account for the perennial difficulty of rejecting the unit

root null in relative price data.

B. Increased power to detect stationarity

There is, of course, a positive side to the particular structure that transport cost models imply
for relative price behavior. It is likely that the power of stationarity tests can be increased by
modifying them to take account of the fact that reversion in prices only takes place at certain
times. Transport cost models predict that small price discrepancies will not be arbitraged, but
that large ones will. This suggests conditioning reversion on the size of the deviation from LOP.
As discussed in Section 2, this strategy has been adopted in some very recent work. To illustrate,

suppose that only the observations on Ap; for which |p;—;| exceeds some threshold s are included in

2This power calculation is carried out by Monte Carlo simulation, using 1,000 observations on the distribution of
the test statistic under the alternative (3.12). The Dickey-Fuller regression run here includes an intercept.

13y (p,) is estimated from 1,000 simulations of the process (3.12).
“The total variance of an AR(1) process p; = ppi_1 + € is 02/(1 — p?).
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the Dickey-Fuller regression. In other words, small deviations from the LOP are excluded from the
regression. If the true process for p is (3.12), then these observations contain little or no information
on reversion in p; they just add noise to the estimation. It follows that a more precise estimate of
reversion is available from the test, which ought to increase power. This in fact turns out to be the
case. If, for example, we choose to look only at the upper quartile of LOP deviations, the power to

reject nonstationarity under the alternative (3.12) is 31 percent.!®

C. Distinguishing the importance of fired versus variable transport costs

The model suggests that fixed costs of transportation tend to lead to large discrete jumps in relative
prices back towards parity, while variable costs lead to small continuous changes in price that limit
the size of deviations from parity, but do not necessarily reduce them. The hybrid model in which
there are both fixed and variable costs predicts that relative prices will exhibit “band-reversion”—
large deviations from the LOP will be partially but not completely arbitraged away when they
reach a certain size. This different predictions offer a potential way to determine whether fixed or
variable costs of arbitrage are dominant. One simply tests whether observed reversion in relative

prices is towards parity, or towards some point that is away from parity.

4 Empirical strategy

In this section, we set out our empirical strategy for testing the model’s implications

4.1 Data

Our data set is substantially the same as that used in Parsley and Wei (1996). We sample the prices
of 48 final goods and services from 24 cities in the United States over the period 1975:1-1992:4. The
data is collected from the American Chamber of Commerce Researchers Association publication,
Cost of Living Indez (hereafter, Inder). Each quarterly issue of Inder contains comparative average
price data for a sample of urban areas, and a cost of living index computed from these data by the

Association. In this study we use only the raw price data.

15This power calculation is estimated from 5,000 simulations of the test statistic under the null, and 1,000 simula-
tions under the alternative.
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The actual data collection is done by the local Chamber of Commerce staff or volunteers for
the Chamber, and is voluntary. Explicit instructions and data forms are provided for each data
collector by the association. Some prices are obtained by phone and usually the respondents do not
know it is for a survey. Once collected, the data is sent to one of nine different regional coordinators
for checking. Finally, the data is sent to Houston where it is transferred to computer and subjected
to both computer and visual checks for outliers. Publication occurs approximately five and one
half months after the original data are collected.

The sample of cities included in each issue of Inder varies. At the beginning of our sample
period there were one hundred sixty six cities and forty four items priced. The number of cities
steadily increased to two hundred ninety seven in 1992.4; however each report contains a distinct
sample of cities. We choose a sample of 24 cities which appeared in roughly ninety percent of the
quarterly surveys.

For this study we select 48 goods and services (hereafter, commodities) with three criteria in
mind. First, for each commodity we want wide coverage in terms of availability across cities and
over time. Second, we want variation in the degree of tradability of the commodities included in
the data set. Finally, we want homogeneity in the definitions of the commodities over time. The
definitions of some commodities did change during the sample period, typically as a result of a
change in manufacturer packaging. These changes had only small effects on relative prices.

For this study, we classify the 48 goods into tradables (23), perishables (15) and services (10).
These categories were designed to facilitate discussion of how our results vary with the potential
“tradability” of the commodities under consideration. The goods included in each category are

described in the Appendix.

4.2 Construction of relative prices

Mindful of the problem of low power that afflicts many empirical analyses of the LOP, we conduct
our analysis in a panel setting. We construct two different sets of relative price panels. The first
set groups commodities by type. Thus for each of the 48 commodities in the data set, we construct
a panel that contains all the price series that are available for that commodity across the country.

The second set of panels groups commodities by location. In this case, the panels contain all the
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price series that are available for a given city. Within these two types of panels, we further subdivide
the goods into the categories “traded,” “perishables” and “services.” Cutting the goods this way
allows us to examine how the tradability of a good affects its price behavior.

The absolute prices that are included in each panel must be converted to relative prices in order
to test the LOP. This requires choosing a numeraire for each panel. For some of the tests run,
the choice of numeraire will prove immaterial, but for others it will make an important difference.
Accordingly we choose the numeraire with a eye to its economic meaning. For the panels which
group commodities by type, we choose the average price across all cities as the numeraire. So for

example, each series in the panel of aspirin prices is calculated as
1 M

JAspirin,jt = PAspirin,jt — “]\/7 Z PAspirin, jt, (4-1)
Jj=1

where pagpirin,j¢ is the price of aspirin in city j at time ¢, and M is the total number of cities for
which aspirin price series are available. One of the gaspirinj series is redundant, and we arbitrarily
choose this to be the series for Louisville, Kentucky in all of the panels. In addition, we demean
each relative price constructed. For the panels which groups commodities by location, we choose
prices in New Orleans as the numeraires. This is because the data for New Orleans are relatively

complete. So for example each series in the Houston panel is constructed as

qi,Houston,t = Pi,Houston,t — Pi,New Orleans,t- (4'2)

Here ¢ indexes each of the commodities. There will be three different panels for Houston, one for
traded goods, one for perishables, and one for services. Once again, we demean each relative price
series constructed.

In all panels, we delete series that have fewer than 43 quarterly observations. This yields

balanced panels, which simplifies the empirical analysis substantially.

4.3 Empirical tests

We carry out three types of tests on each panel of relative prices, a unit-root test, and two threshold

autoregression tests. Each is described in turn.

A. Panel unit-root test



How price differences across U.S. cities are arbitraged 16

The first test is a panel unit root test that takes the form
Agije = pije—1 + €ije, t = 1,..., 7T, (4.3)

where the panel is selected by fixing either 7 or j constant. The null hypothesis is that ¢ follows a
random walk—p = 0-—and the alternative is that p < 0. To counter the size biases that can arise
owing to the cross-sectional dependence that is typically present in panels of relative prices, p is
estimated by GLS (see O’Connell (1997b)). It is assumed that the data-generating process (DGP)

for the disturbance terms is a mean-zero V AR(p) process
€ = <I’16g-1 + ‘I’zet_Q + -+ Qpeg_p + g, (4.4)

where u; ~N(0, X). Clearly, it would be impossible to estimate all the parameters of an unrestricted
VAR such as this using only the short spans of price data that are available. For example, even
if the {®;}?_, are restricted to be diagonal, identification requires that the lag length p satisfies
Np < T—p—1.18 As aresult, we restrict the {®;}?_; to be scalar multiples of the identity matrix,
but place no restriction on the form of ¥. An appealing property of this choice of restrictions is
that it renders the test outcome invariant to the choice of numeraire (O’Connell, 1997b).17

¥ and the {®;}’_, are estimated by maximum likelihood under the null hypothesis that p = 0.8
A separate lag length is chosen for each panel using a data-dependent procedure. The process (4.4)
is fitted by maximum likelihood to the first differences of the relative prices for values of p from
0 to 12. Three different criteria are then used to choose the best characterization of the data:
the likelihood ratio test (LLR), the Akaike Information Criterion (AIC), and the Bayes-Schwartz

Information Criterion (BIC). The three statistics often select the same DGP, though when they

8 For p such that Np > T — p, the panel matrix of residuals will be of less than full row rank, precluding estimation
of €2.

"Papell (1997b) has recently suggested that this type of restriction is unwarranted in panel tests of the LOP and
PPP. His preferred specification allows for heterogeneous serial correlation in each relative price series. However he
does not address the problem of identification in short spans of data. He fits separate univariate AR(p) models to
each series, rather than estimating them in a multivariate setting. This is inconsistent with full identification of the
multivariate DGP for the disturbance terms when the time span of the data is short (see previous footnote). It would,
of course, be possible to allow for much richer forms of serial correlation if parsimony was instead achieved through
restrictions on . However O’Connell (1997b) has shown that serious size biases can arise if T is restricted in such
a way as to prevent GLS from controlling for the cross-sectional dependence that is normally manifest in relative
prices. This is not to dispute Papell’s (1997b) assertion that it can be important to allow for heterogeneous serial
correlation, but rather to point out that it is often infeasible to do so in a consistent way, given the short spans of
data typically available.

8 Even for panels of moderate size, estimation of these parameters under the alternative would be computationally
expensive. The presence of lagged endogenous variables precludes the use of iterative least squares techniques, and
therefore the likelihood function would have to be maximized numerically.
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differ, the LL R tends to favor less parsimony while the BIC favors more. For each panel, we choose
the “middle” estimate of p from these three tests as the best lag length to describe the DGP. These
estimates are reported for each panel in Tables 1-6.

Having estimated the serial correlation and cross-sectional dependence properties of the distur-
bance vector under the null, the test statistic is then formed in the usual fashion. That is to say,
the matrices of first differences Y and lagged levels X of g are each transformed by the estimated

VAR lag polynomial $(L) to yield Y* and X*, and the FGLS estimate of p is calculated as

praLs = tr(Y*Y Q) ar(X¥X*Q7), (4.5)
Critical values for this test statistic are tabulated by parametric bootstrap. This involves drawing
bootstrap samples of real exchange rate innovations from the fitted VAR processes (4.4), and

simulating the distribution of grgrs estimated from these samples.

B. AR, EQ-TAR and BAND-T AR tests

Having tested for stationarity, we examine whether the behavior of relative prices can be character-
ized by a band of no-arbitrage for small deviations from the LOP. We do this by fitting threshold
autoregressive (TAR) processes to the panels of relative prices. The T AR processes considered

have the following general form

p1(gi—1 — b) + & ifa < g1
Age =4 pogt-1 t e if —a<q-1<a (4.6)
p1(ge—1 +b) + € if g1 <—a

where pg <0, p1 < 0,0 < b < a and € ~ N(O,U?). Thus g; may revert to 0 whenever |g;—1| < a.
When |g;—1] > 0, g; reverts to the edge of a band around 0 defined by the range [—b, b].

We consider two important special cases of this general form. The first, known as an “equilibrium
TAR” (EQ-T AR) specification, constrains b to be 0. This is the model estimated in O’Connell
(1997a). If b = 0, then deviations from the LOP revert towards parity (zero) whenever they exceed
a in absolute value. The second nested model, known as a “band TAR” (BAN D-T AR) model,
constrains b to equal a. This is the form adopted by Obstfeld and Taylor (1997). With b = a,
reversion takes place towards the threshold a. We do not restrict pg to be zero, as Obstfeld and

Taylor (1997) do in their estimation. Finally, for comparison purposes, we also estimate the model
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subject to the constraints pg = p1 and b = a = 0. In this case the TAR reduces to an AR(1).
In this guise the specification is similar to the panel unit root test, though as discussed below the
treatment of serial and contemporaneous correlation will differ from that in the GLS panel unit
root test.

Estimation of these T AR specifications serves two purposes. First, if transport costs create a
band of no-arbitrage in relative price series, T AR models provide a more powerful way to detect
global stationarity of deviations from the LOP than the standard test run earlier. This is true even
if the true price behavior does not conform to the TAR specification. For example, it might be that
the tendency of g to revert to parity is a continuous increasing function of the distance from parity.

A process that gives rise to this behavior is!?

gt = N4e-1 + 72/ge-1|ge-1 + €. (4.7)

Even if this is the true model, the T'A R specification will provide a more powerful test of stationarity
than the Dickey-Fuller test. The second purpose served by the T'AR specifications is that, in view
of the model presented earlier, they might in fact offer a good characterization of the true process
for ¢;. In particular, if fixed costs are an important part of impediments to arbitrage, we might
expect to observe EQ-T AR behavior. On the other hand, if variable costs are predominant, then
BAND-T AR behavior is more likely to be observed. By estimating both types of model, we are
able to shed some light on which cost is more important.

The T AR specifications are estimated by maximum likelihood. For a given a, say @ we split the
observations into two subsamples, those for which |g.—1| < @, and those for which |g:—1| > @. po
and p; are estimated by least squares within each subsample. The maximized log-likelihood for the

model is then (up to a constant)
lnﬁ(po, 087 P1; U%)a) = _NO 111(0'8) - Nl 111(0'%), (48)

where 03 is the residual variance from the subsample associated with pg, 0% is the residual variance
from the subsample associated with p;, and Ny and N; are the number of observations in each

subsample. The value of @ that maximizes this function can then be found by grid search.

!9Similar functional forms have been assumed in Wei and Parsley (1995), Parsley and Wei (1996), Michael, Nobay
and Peel (1997) and O’Connell (1997a).
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One issue that arises is how to control for the serial and contemporaneous correlation that is
present in the data. If a GLS procedure is used, then it complicates the classification of observations
into the two subsamples. For this reason we estimate py and p) in each subsample by OLS, and
instead seek to control for the serial and contemporaneous correlation in our critical values.

To simplify the presentation, we focus on just two test statistics: (a) LLRpg = 2(InLgo —
In £ 4r), the likelihood ratio for the EQ-T AR model relative to the AR(1) model; and (b) LLRg4 =
2(In L4 — In L 4r), the likelihood ratio for the BAN D-T AR model relative to the AR(1) model.
These likelihood ratios cannot be used to perform a likelihood ratio test for the respective models
in the usual fashion, as the thresholds are not identified under the AR(1) null. Instead, following
Obstfeld and Taylor (1997), we derive appropriate critical values for the test statistics by Monte
Carlo simulation. Specifically, the distribution of LLRgg and LLRpg4 is tabulated under the null
that the true process for real exchange rates is AR(1), taking the OLS estimate of the first-order
autoregressive coefficient to be the true root. As in the case of the GLS panel unit root test,
the disturbance innovations used to simulate the AR(1) real exchange rates are derived from the

estimated DGP (4.4).

5 Empirical results

The empirical results are presented in six tables. Tables 1 and 2 look at “tradables,” Tables 3 and

4 at “nontradables,” and Tables 5 and 6 at “services.”?0

5.1 Tradable goods

Column 4 of Table 1 presents the test statistic for the GLS panel unit root test as applied to panels
of tradable goods grouped by commodity. The null that deviations from the LOP follow a random
walk can only be rejected for 7 of 23 commodities at the 10 percent significance level. The same
picture emerges from Column 4 of Table 2, which groups commodities by location: there, only 5 of
20 cities appear to have traded goods prices that exhibit reversion to traded goods prices in New

Orleans. These findings are surprising: we might have expected that the ostensible ease with which

Note that estimates of po are not shown to conserve space.
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these goods can be transported would have led to much stronger evidence against the random walk
null.

Could it be that this apparent nonstationarity is due to the presence of transport costs? The
answer appears to be, Yes. Fully 17 of the 23 commodities in Table 1 reject the AR(1) model in
favor of both the FQ-TAR and the BAND-TAR model, typically at better than the 1% level.
Only two commodities, beer and toothpaste, provide no support for either of the nonlinear models.
In Table 2, 18 of the 20 cities in Table 2 provide support for the BAN D-T AR specification. From
these results we might conclude that small deviations from the LOP for traded goods do not tend
to revert to 0, but that large ones do.

A second question worth asking is whether there is more support for the EQ-T AR or the BAN D-
T AR specification. Unfortunately, there does not appear to be enough statistical power in the data
to distinguish between the models on the basis of a likelihood ratio test. It does appear, however,
that the maximized value of the likelihood function is higher for the EQ-T AR model than it is for
the BAN D-T AR model. This is prima facie evidence that the EQ specification provides a better

characterization of the data. 2!

5.2 Perishable goods

Tables 3 and 4 give corresponding results for perishable goods. From Column 4 of Table 3, we see
that 8 of the 15 perishable commodities provide evidence against the random walk. From Column
4 of Table 4, the perishable goods in 9 of 20 cities appear to be stationary with respect to New
Orleans prices. If anything, these numbers may be higher than our priors might suggest, since the
defining characteristic of these goods is that they can be expensive to transport.

With perishable goods, there is resounding evidence of T AR behavior. 13 of the 15 goods reject
the AR(1) model in favor of both the T AR alternatives at better than the 1% level. McDonalds™

and Kentucky Fried Chicken™ (labeled “Fr. Chicken”) are the exceptions.?? For 12 of these 13

L However, it is also true that the p-values for LLRp4 are generally lower than those for LLRgqg. We thank Alan
Taylor for pointing this out.

221t is interesting that neither McDonalds ™ nor Kentucky Fried ChickenT™ (labeled “Fr. Chicken”) prices reveal
any evidence of stationarity. Both panels fail to reject the unit-root null with the GLS test, and neither shows
evidence of TAR behavior. This can be contrasted with Cumby's (1996) finding of mean reversion in the relative

international prices of McDonalds™ products. It also suggests that the price behavior of nationally branded goods
may differ substantially from that of more generic products. We aim to explore this conjecture in future work.
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commodites, the maximized likelihood for the EQ-T AR model exceeds the maximized likelihood for
the BAN D-T AR model, sometimes by a substantial margin. This lends credence to the EQ-T AR
model as a description of perishable goods price behavior.

Turning to Table 4, the evidence of T AR behavior in perishables grouped by location is quite
persuasive. All cities except Salt Lake City UT and Appleton WI evince TAR behavior. Once

again, the maximized likelihoods favor the E(Q) specification.

5.3 Services

Only for 3 of the 10 services in Table 5 can we reject the unit root null. The corresponding
proportion for Table 6, which groups the services by location, is 7 of 20 cities. These numbers are
in line with expectations, since it is difficult to arbitrage the prices of these products.?® Consistent
with this prior, the evidence of T AR behavior in services is more equivocal than for either tradables
or perishables. Only 6 of the 10 services panels in Table 5 support one of the T AR models over the
AR(1) specification, and only 4 services support both T AR specifications over AR(1). 14 of the
services panels grouped by location in Table 6 provide evidence of T AR effects. Overall, the results
leave one with the impression that nonlinear reversion is an important ingredient of the behavior of
some, but not all, services. Where services support both types of T AR behavior, it is the EQ-T AR
specification that produces the highest maximized likelihood in nearly all instances. However, the

excess margin over LLRp4 is on average lower than is true for perishables and tradables.

6 Conclusion

In this paper we have sought to develop the nascent literature on nonlinear commodity price
behavior along two dimensions. First, we set out a simple continuous-time framework to gauge
the importance of transport costs for relative price behavior. A useful feature of this framework is
its ability to distinguish between the impacts of fixed and variable transport costs. In particular,
the model shows that in the presence of fixed and proportional transport costs, we can expect to

observe “band reversion” rather than “mean reversion” in relative goods prices. That is, when

#33ervices would normally be called nontradables in an international context, for obvious reasons. Within a country
like the U.S., we might suspect that factor mobility contributes to price convergence.
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deviations from the LOP become large, goods arbitrage will cause these deviations to narrow, but
will not eliminate them completely.

Second, we employed a detailed data set on U.S. goods prices to canvas the pattern of reversion
exhibited by deviations from the LOP. The data, measured in 24 cities over the period 1975:1—
1992:4 afford a “purer” measure of deviations from price parity than is possible with aggregate
price indices. Three apparent facts emerged from this analysis. First, using standard tests, the
evidence that deviations from the LOP are stationary is weak at best. Second, when we look at
only large deviations from the LOP, the evidence of stationarity is very strong. The implication
is that small deviations from the LOP tend to be extremely persistent; it is only large deviations
that revert towards equilibrium. And third, the weight of evidence is in favor of reversion to
the equilibrium of zero—mean-reversion—rather than reversion to a band of no-arbitrage—band
reversion. Thus when adjustments in relative prices do take place, they tend to eliminate, rather
than reduce, price discrepancies.

There are a number of questions which warrant further attention, three of which are immediate.
First, What is the rate of reversion exhibited by LOP deviations at various distances from zero.?*
Second, Is there any relationship between the estimated thresholds and candidate explanatory
variables such as distance or price volatility, as suggested by Parsley and Wei (1996) and Taylor
and Obstfeld (1997). And third, Is it possible to impose more structure on the data to facilitate
direct testing of the model set out in Section 37 We aim to provide answers to these and other

questions in future research.

240wing to the serial correlation that is present in our data, the estimates of p; in Columns 7 and 11 in the tables
are biased estimates of the rate of reversion, and so alternative estimates must be developed.
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Table 1
Results for traded goods grouped by commodity type, 1975-1992:4
Full-panel AR(1) EQ-TAR model BAND-T AR model
Good p N T tp,s PoLs a h1 N1 LLRgq a p1 N1 LLRga
Aspirin 10 24 43 -5.21 -0.35 0.20 -042 79 67.81 0.18 -1.11 97 57.91
(0.58)  (0.52 (0.16) (0.00)
Babyfood 6 23 72 -4.61 -0.2 0.13 -0.36 171 310.38 013 -1.01 171 320.59
(0.89) (0.05) (0.00)7 (0.00)
Beer 12 24 43 -4.23 -0.40 0.10 -0.44 114 311.1 0.10 -0.79 114 289.36
(0.59)  (0.37 0.84 0.39)
Cigarettes 5 23 72 -7.39 -0.1 0.03 -0.18 707 13.4 0.03 -0.35 707 41.96
(0.02)  (0.09) (0.00 (;) .00)
Coffee 8 22 72 -6.76 -0.42 0.15 -0.49 108 121.0 0.10 -0.95 295 3.29
(0.06) (0.05) %0 .00 (0.00)
Cornflakes 12 21 55 -5.48 -0.53 0.12 -0.68 7 012 -1.93 77 63.61
(0.28)  (0.23) (0.02 (0.00
Game 8 24 43 -6.24 -0.42 0.15 -0.45 101 110 3 0.13 -1.05 142 112.9
(0.11)  (0.00 (0.00 (0.00
Jeans 12 24 43 -0.4 -0.5 0.09 -0.60 277 125.8 009 -115 277
(Lo0) (077 (0.00 (0.00
Liquor 6 22 72 -7.04 -0.2 0.07 -0.28 291 315.4 0.08 -0.58 256 290 8
(0.05)  (0.00) (;) .00 %0 00
Shirt 12 23 43 -0.81 -0.60 0.10 -0.65 270 009 -1.23 314
(1.00)  (0.16) (0. 00) (0. oog
Orange Juice 7 20 72 -6.70 -0.48 0.15 -0.52 148 136.32 0.13 -1.17 205 110.5
(0.05) (0.00) (0.00% (0.00)
Peaches 12 23 72 -7.02 -0.50 0.10 -0.59 218 377.9 0.10 -1.18 218 352.62
(0.02)  (0.00) (0.00) (0.00)
Shampoo 9 23 43 -2.07 -0.63 0.07 -0.66 330 211.20 0.07 -1.05 330 169.94
(1.00)  (1.00) (0.00) (0.00
Shortening 12 23 72 -6.42 -0.40 011 -0.44 227 164.73 0.10 -1.01 301 147.7
(01D (006 (0.00) (0.00)
Soda 9 22 72 -6.1 -0.5 0.21 -0.63 181 154.50 0.20 -1.52 213 117.61
021 (00 (0.00) %0 .00
Sugar 7 20 55 -6.98 -0.4 0.16 -045 57 117.72 0.16 -0.88 57
(0.02) (0.10 %0 45 %
Tennis 12 23 43 0.34 -0.4 0.19 -0.50 67 0.19 -1.58 67 6.8
(1.00 (0.8%) 0. 37) 0.01)
Tissue 8 22 72 -8.7 -0.4 0.13 -0.46 263 86.90 0.13 -0.80 263 71.81
(0.00)  (0.00) (0.00) (0.00)
Toothpaste 11 23 43 -1.00 -0.48 0.18 -0.55 49 186.48 0.18 -1.52 49 174.83
(1.00)  (0.57) (0.69) (0.14)
Tuna 11 23 43 0.02 -0.63 0.11 -0.62 213 128.04 0.11 -1.40 213 125.49
(1.00)  (1.00) (0.00 (0.00)
Underwear 12 23 43 -4.90 -0.47 0.20 -0.53 60 66.5 0.20 -1.89 60 61.21
(0.44)  (0.18) (0.14) (0.00)
Detergent 10 21 72 -5.83 -0.42 0.05 -0.41 767 120. 02 0.17 -1.55 97 131.09
(0.22)  (0.02) (0.00) (0.00)
Wine 12 23 43 -1.61 -0.60 0.12 -0.65 199 181.21 012 -1.71 199 188.40
(1.00)  (0.95) (0.00) (0.00)

Results from estimation of AR(1), EQ-TAR and BAN D-T AR panel models where relative prices are grouped by
commodity type.
series in each panel, T is the number of quarterly observations in each panel, ¢, . is the test statistic for the GLS
panel unit root test, pors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the
estimated threshold, p; is the OLS estimate of p; outside the threshold, N; is the number of observations outside
the threshold, and LLR = 2In(£/L ar) is the likelihood ratio statistic for that model against the AR(1) alternative.
p-values derived by parametric bootstrap for each test statistic appear in parentheses.

p is the order of serial correlation selected for the disturbance DGP, N is the number of data
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Table 2
Results for traded goods grouped by location, 1975-1992:4
Full-panel AR(1) EQ-TAR model BAND-TAR model
Location p N T tpq.s PoLs a f1 N1 LLREgq a J N1 LLRga
Mobile, AL 10 8 72 -4.10 -0.56 0.17 -0.60 73 289.48 0.17 -1.08 73 266.29
(0.18)  (0.00) (0.12 0.01)
Blythe, CA 6 7 72 -3.70 -0.42 0.23 -0.68 26 84.9 0.11 -1.00 157 6.71
(0.31)  (0.14) (0.32) (0.00)
Indio, CA 8 7 72 -3.32 -0.37 0.21 -0.39 75 125. 68 0.20 -0.79 81 122.12
(0.46)  (0.25) (0:20 (0.04
Denver, CO 8 8 72 -4.4 -0.33 0.21 -0.39 65 0.23 -0.77 59
(0.10)  (0.18) (0. 02) (0.01
Indianapolis, IN 9 8 72 -4.18 -0.53 0.26 -0.74 29 126.86 0.25 -2.36 30 116 7
(0.15)  (0.00) (0.84) (0.23)
Cedar Rap., IA 10 7 72 -4.61 -0.54 0.15 -0.58 76 178.99 0.15 -1.00 76 161.58
(0.04)  (0.01) (0.06 (0.01)
Lexington, KY 9 8 72 -4,11 -0.42 0.07 -0.43 274 128.7 0.07 -0.64 274 132.75
(0.18)  (0.04) (0.00 (70 .00
Louisville, KY 5 8 72 -5.13 -0.49 0.05 -0.50 305 7.72 0.14 -1.11 136
(0.02)  (0.01 (0.00) (0. 00)
St. Louis, MO 8 8 72 -4.19 -0.4 0.17 -0.53 100 167.99 0.10 -0.85 224 163.61
(0.18)  (0.00) (0.01) (0.00)
Hastings, NE 9 8 72 -4.06 -0.43 0.22 -0.55 48 109.42 0.22 -1.63 48 109.50
(0.20)  (0.01 (0.13 (0.01)
Omaha, NE 6 7 72 -5.41 -0.5 0.16 -0.57 84 119.0 0.16 -1.07 84 103.06
(0.00)  (0.00) (0.13) (0.02)
Rapid City, SD 9 8 72 -3.61 -0.36 0.11 -0.37 193 123.70 0.11  -0.57 193 122.26
(0.40)  (0.53 (0.00 (0,00
Vermillion, SD 7 8 72 -3.74 -0.5 0.16 -0.61 74 0.16 -1.28 74
(0.3? (0.01) (0.11 (0.01
Chattanooga, TN 6 8 72 -4.0 -0.44 0.19 -0.52 82 139 7 0.06 -0.66 327 127.5
(0.23)  (0.00) (0.10) (0.00)
El Paso, TX 8 7 72 -4.03 -0.27 0.17 -0.32 69 128.03 0.17 -0.57 69 122.70
(0.15) (045 (0.04) (0.01)
Houston, TX 7 8 72 -4.58 -0.3 0.16 -0.40 110 146.79 0.16 -0.64 110 116.81
009) (©47) (0.13) (0.02)
Lubbox, TX 9 7 72 -3.9 -0.3 0.27 -0.40 26 132.51 0.27 -0.85 26 124.58
(0.16)  (0.14) (0.74) (0.27)
S. Lake City, UT 8 8 72 -4.38 -0.33 0.09 -0.34 231 186.22 0.09 -0.54 231 195.80
(0.12)  (0.17) (0.00) (0.00)
Appleton, WI 6 8 72 -3.23 -0.38 0.15 -0.44 105 120.88 0.15 -0.97 105 127.66
(0.62)  (0.01) (0.00) (0.00)
Casper, WY 9 8 72 -4.03 -0.40 0.18 -0.49 70 116.40 0.10 -0.75 180 125.22
(0.20)  (0.32) (0.06) (0.00)

Results from estimation of AR(1), EQ-TAR and BAN D-T AR panel models where relative prices are grouped by
location. p is the order of serial correlation selected for the disturbance DGP, N is the number of data series in each
panel, T is the number of quarterly observations in each panel, t,, , is the test statistic for the GLS panel unit root
test, pors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the estimated threshold,
p1 is the OLS estimate of p; outside the threshold, N is the number of observations outside the threshold, and
LLR = 2In(L/L ar) is the likelihood ratio statistic for that model against the AR(1) alternative. p-values derived
by parametric bootstrap for each test statistic appear in parentheses.
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Table 3
Results for perishable goods grouped by commodity type, 1975-1992:4
Full-panel AR(1) EQ-TAR model BAND-T AR model
Good p N T tocLs pors a £ N LLREqg a M N LLRgBa
Bacon 8 24 67 -8.35 -0.71 0.19 -0.75 160 82.99 0.04 -0.89 1217 6.08
(0.00) 0.00) gO .00 (0.00)
Bananas 11 23 72 -8.21 -0.70 022 -0.72 114 0.02 -0.78 1430 12.69
(0.00)  (0.01) 0.00 (0.00
Bread 10 22 72 -6.04 -0.52 0.29 -0.64 109 6.6 0.09 -0.85 799 44.6
(0.24)  (0.06) (0.00 0.00)
Cheese 12 21 43 -4.16 -0.38 0.04 -0.37 304 58.3 0.04 -0.64 304 2.71
(0.70)  (0.93) (0.00) (0.00)
Eggs 11 23 72 -4.61 -0.32 0.18 -0.24 183 186.90 0.18 -0.51 183 167.64
(0.83)  (0.98) (0.00) (0.00)
Minced steak 9 23 72 -6.79 -0.58 0.11  -0.59 401 127.69 0.17 -1.58 156 24.91
(0.07)  (0.04) %0 .00 (0.00)
Lettuce 12 23 72 -7.4 -0.80 0.22 -0.79 261 0.01 -0.84 1556 0.79
(0.01)  (0.12) (0. 00) %0 .00
Margarine 9 23 72 -6.63 -0.51 0.22 -0.57 128 101.16 0.25 -1.59 83
(0.09)  (0.00) (0.00) (. 00)
Milk 7 23 72 -5.52 -0.34 0.06 -0.36 400 337.79 0.06 -0.67 400 338.10
(0.5{? (0.00) gO .00 (0.00)
Potatoes 11 23 72 -6.7 -0.73 0.30 -0.74 90 0.01 -0.77 1553 6.81
(0.07) (0.04) (0. 00% gO 00
Steak 11 22 72 -7.51 -0.52 0.11  -0.53 409 141.6 0.11  -1.11 409
(0.00)  (0.26) (0.00) (0. 00)
Chicken 8 23 72 -7.69 -0.61 0.13 -0.65 369 42.66 0.02 -0.74 1354 37.81
(0.01)  (0.04) (0.00) (0.00)
Fr. chicken 11 23 43 -4.59 -0.49 0.14 -0.58 111 350.16 0.14 -1.34 111 343.19
(0.40)  (0.02) (0.99) (0.90)
McDonalds 12 23 43 -0.33 -0.59 0.02 -0.61 519 338.34 0.02 -0.82 519 373.68
(1.00)  (0.64) (0.32) (0.24)
Pizza 12 23 43 -0.93 -0.32 0.06 -0.34 283 308.43 0.06 -0.56 283 302.28
(1.00)  (0.12) (0.00) (0.00)

Results from estimation of AR(1), EQ-TAR and BAND-TAR panel models where relative prices are grouped by
commodity type.
series in each panel, T is the number of quarterly observations in each panel, t,.,; is the test statistic for the GLS
panel unit root test, gors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the
estimated threshold, g, is the OLS estimate of p; outside the threshold, N; is the number of observations outside
the threshold, and LLR = 2In(£/L ar) is the likelihood ratio statistic for that model against the AR(1) alternative.
p-values derived by parametric bootstrap for each test statistic appear in parentheses.

p is the order of serial correlation selected for the disturbance DGP, N is the number of data
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Table 4
Results for perishable goods grouped by location, 1975-1992:4

Full-panel AR(1) EQ-TAR model BAND-TAR model

Location p N T tp,. PoLs a /1 N1 LLReq a /1 N1 LLRpa
Mobile, AL 9 8 72 -469 -0.82 009 -082 273 6623 003 -0.96 469  22.77
Blythe, CA 7 8 T2 (-91'.%61) (-% %%) 0.05 -051 431 %0 B oos 0.62 431 (502'.0802)
Indio, CA 78 T2 (-%'.2842) (-%%Z) 0.16 -048 212 (20907(2 0.16 -0.91 212 (20608(2
Denver, CO 4 8 T2 (%3233) G0 015 00 181 BY oor 094 357 SINE
Indianapolis, IN 9 8 72 (-91'%28) (-%.Q/%) 010 -0.73 270 gzO 0¢ 0.01 -0.76 542 (2) gg)
Cedar Rap.,JA 11 8 72 (-%%? (-%.(;17) 0.04 -0.78 416 (507%0 0.04 -098 416 (703'.0707)
Lexington, KY 9 8 72 (%%1 (-%.%7 027 -061 40 %0 ¥ 027 -1.76 40 (109}0(?
Louisville, K<Y 11 8§ 72 (-%'.%92) (-%'.%gé) 0.08 -0.68 300 063405) 0.08 -1.03 300 (80 -
St. Louis, MO 11 8 72 (-91'%12) (-%.%%) 021 -0.66 103 %0 ‘5 005 074 420 (1%.%0
Hastings, NE 11 8 72 (-%'.2818) (-%.%91) 006 -084 335 %0 00 0.00 -0.86 543 (1%070
Omaha, NE 10 8 72 (-91'.239 (-%'%19) 018 -0.87 127 %01900 010 -1.36 258 g{o ¥
Rapid City, SD 9 8 72 (-91'%%) (-%.%) 014 -078 222 (607'01(2 0.05 -0.94 405 0509(2
Vermillion, SD 11 8 72 (-%'91%) (-% Qzlo) 0.16 -0.76 141 550 0 007 -098 350 gzO ¥
Chattanooga. TN10 8 72 (-%'.L'lzs (-%.%17) 0.11 -0.67 246 30405? 0.11 -1.09 246 (207070
El Paso, TX 11 8§ 72 (-91'.%}1) (-%.%%) 0.11 -060 236 (606.000 0.11 -0.95 236 %0 6
Houston, TX 7 8 72 (-91'.%62) (-%.26%1) 0.09 -0.64 289 (4103060 008 -093 316 (10905? ')
Lubbox, TX o 8 2 917 oy 0.15 -069 174 go W o015 s 1me go 0
S. Lake City, UT 7 8 72 (-91'.19%) (-%.%%) 025 -0.64 88 1(1)50(8)21 013 -093 217 %9101)
Appleton, WI 7 8 72 (-91'.%%) (-%'%1 0.24 -0.80 67 %0 H oz w91 %0 X
Casper, WY 11 8 72 (-91'.12%) (-%%%) 0.16 -0.81 181 %0 S 006 103 371 401 o

(0.14)  (0.00) (0. 00 (0.00)

Results from estimation of AR(1), EQ-TAR and BAND-T AR panel models where relative prices are grouped by
location. p is the order of serial correlation selected for the disturbance DGP, N is the number of data series in each
panel, T' is the number of quarterly observations in each panel, t,, . is the test statistic for the GLS panel unit root
test, pors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the estimated threshold,
p1 is the OLS estimate of p1 outside the threshold, Ni is the number of observations outside the threshold, and
LLR = 2In(L/L ar) is the likelihood ratio statistic for that model against the AR(1) alternative. p-values derived
by parametric bootstrap for each test statistic appear in parentheses.
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Table 5
Results for services grouped by commodity type, 1975-1992:4

Full-panel AR(1) EQ-T AR model BAND-TAR model
Good p N T tpss PoLs a /M N1 LLRgq a A1 N1 LLRpa
App. repair 8 23 72 -6.78 -0.25 0.10 -0.26 561 424.42 0.16 -0.63 248 404.64
(0.07)  (0.00) (0.00) (0.00)
Auto maint. 12 22 55 -5.20 -0.43 0.10 -047 256 375.94 0.10 -0.94 256 368.03
(042)  (0.00 0.01 (0.00
Beauty 12 24 43 -0.50 -0.3 0.06 -0.35 537 50.4 0.06 -0.51 537 253.1
(1.00)  (0.00) (0.00) (0.00)
Bowling 12 22 72 -5.35 -0.35 0.16 -0.46 146 277.81 0.16 -1.16 146 304.91
(0.26) (0.00) 0.83 50.22
Dentist 7 23 72 -6.20 -0.28 0.14 -0.30 327 71.1 0.14 -0.68 327 54.2
(0.24)  (0.00) (0.00) (0.00)
Doctor 7 23 72 -5.74 -0.24 0.20 -0.28 132 189.31 020 -0.79 132 158.91
(0.42)  (0.00) 0.18) 0.02)
Dryclean 5 23 72 -6.73 -0.24 0.13 -0.30 94 20.44 0.13 -0.71 94 12.34
(0.11)  (0.00) (0.85) (0.40)
Hospital 12 23 72 -4.06 -0.13 0.16 -0.18 78 309.31 0.16 -0.49 78 306.79
(0.75)  (0.01) 0.80 {049)
Haircut 7 23 72 -7.1 -0.28 0.19 -0.40 100 05.5 0.07 -047 671 29.34
(0.03) (0.00) 9 00 %0 .00
Movie 7 23 72 -7.04 -0.26 0.17 -0.29 136 0.17  -0.51 136
(0.03)  (0.00) (1. 00) (1 00)

Results from estimation of AR(1), EQ-TAR and BAND-TAR panel models where relative prices are grouped by
commodity type. p is the order of serial correlation selected for the disturbance DGP, N is the number of data
series in each panel, T is the number of quarterly observations in each panel, t,., ; is the test statistic for the GLS
panel unit root test, pors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the
estimated threshold, g1 is the OLS estimate of p; outside the threshold, Vi is the number of observations outside
the threshold, and LLR = 2In(L/Lar) is the likelihood ratio statistic for that model against the AR(1) alternative.
p-values derived by parametric bootstrap for each test statistic appear in parentheses.
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Table 6
Results for services grouped by location, 1975-1992:4
Full-panel AR(1) EQ-TAR model BAN D-TAR model
Location p N T ty.,s poLs a /1 N LLReq a 1 Ny LLRga
Mobile, AL 9 8 72 -1.59 -0.24 0.24 -0.37 32 97.81 024 -097 32 97.05
(0.97) (0.13 (0.55) (0.21)
Blythe, CA 7 7 72 -3.9 -0.3 0.15 -0.38 106 210.34 0.15 -0.66 106 200.42
(0.16)  (0.01) (0.43) (0.31)
Indio, CA 7 7 72 -4.34 -0.32 0.12 -0.37 141 113.17 0.12 -0.73 141 103.99
(0.08)  (0.08) (0.00) (0.00)
Denver, CO 4 8 72 -5.32 -0.38 0.16 -0.44 112 110.24 0.16 -087 112 106.59
(0.01)  (0.00) (0.05 (0.01)
Indianapolis, IN 9 8 72 -3.39 -0.23 0.10 -0.24 179 130.3 0.08 -0.35 229 117.50
(0.49)  (0.29) (0.00) (0.00)
Cedar Rap., [A 11 7 72 -2.71 -0.16 0.17 -0.17 127 65.26 0.22 -0.46 84 62.95
(0.67)  (0.54) 0.00) (0.00
Lexington, KY 9 8 72 -2.51 -0.20 0.08 -0.19 285 5.51 0.08 -0.31 285 14.4
(0.80)  (0.14) (0.00) (0.00)
Louisville, KY 11 8 72 -3.45 -0.22 0.24 -0.19 38 72.27 0.24 -0.57 38 68. 98
(0.39)  (0.65 (0.20 (0.05
St. Louis, MO 11 8 72 -4.41 -0.1 0.12 -0.19 176 43.6 0.12 -042 176 40.0
(0.07 (0.15;) 0.00) (0.00
Hastings, NE 11 8 72 -3.0 -0.2 0.24 -0.24 31 8.91 0.24 -0.38 31 46.1
(0.60) (0.40) gO .95 %0 .75
Omaha, NE 10 8 72 -4.28 -0.33 0.10 -0.34 216 0.10 -0.56 216
(0.13)  (0.02) (0. 00) (0. 00)
Rapid City, SD 9 8 72 -3.89 -0.26 0.27 -0.38 50 84.73 0.25 -1.26 55 87.63
(0.23)  (0.25) go 38 (0.09
Vermillion, SD 11 8 72 -3.25 -0.21 0.18 -0.20 92 0.18 -0.40 92 40.6
(0.48)  (0.33) (0. 00) (0.00)
Chattanooga, TN10 7 72 -4.90 -0.30 0.07 -0.30 277 109.42 0.07 -043 277 109. 30
(0.016) (0.01) (0.00 (TO .00
El Paso, TX 11 7 72 -3.8 -0.23 0.20 -0.30 57 69.5 0.19 -0.75 67
(0.11) (0.01) (0.01) (90 00
Houston, TX 7 8 72 -4.43 -0.23 0.10 -0.24 173 107. 66 0.10 -0.38 173
(0.10)  (0.02 %0 .00 0. 00
Lubbox, TX 9 7 72 -3.72 -0.2 0.13 -0.30 157 0.12 -0.61 174
(0.24)  (0.09) (0. 00) (0 0
S. Lake City, UT 7 8 72 -4.67 -0.24 0.24 -0.28 58 72.68 0.23 -0.86 62 65.3
(0.06) (0.02) (TO .23 gO .08
Appleton, WI 7 8 72 -3.89 -0.19 0.11 -0.21 210 0.11 -0.33 210
(0.253) (0.25) (0. 00) (0. 00)7
Casper, WY 11 8 72 -4.7 -0.28 0.12 -0.27 157 109.91 0.12 -0.45 157 102.1
(0.03)  (0.31) (0.00) (0.00)

Results from estimation of AR(1), EQ-TAR and BAND-T AR panel models where relative prices are grouped by
location. p is the order of serial correlation selected for the disturbance DGP, N is the number of data series in each
panel, T is the number of quarterly observations in each panel, t,, , is the test statistic for the GLS panel unit root
test, pors is the OLS estimate of p for the full panel, and for each of the TAR models, a is the estimated threshold,

p1 is the
LLR =

by parametric bootstrap for each test statistic appear in parentheses.

OLS estimate of p) outside the threshold, N, is the number of observations outside the threshold, and
2In(L/L 4r) is the likelihood ratio statistic for that model against the AR(1) alternative. p-values derived
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Table A.1
Detailed description of traded goods data

Good Start  Description

Aspirin 82:2 Bayer; 325mg tablets, 100 count

Babyfood 75:1 Jar strained vegetables; 4.5 oz.

Beer 82:2 Miller Lite or Budweiser; 12 oz., 6 pack

Cigarettes 75:1 Winston, king-size, carton

Coffee 75:1 Maxwell House, Hills Brothers or Folgers; 2lbs, 1lb, or 130z.
Cornflakes  79:2 Kellogg's or Post Toasties; 18 oz.

Game 82:2 Monopoly; standard (No. 9) edition

Jeans 82:2 Levi's; straight leg, 501s or 505s

Liquor 75:1 Seagrams 7 Crown or A&B Scotch; 750ml

Shirt 82:2 Arrow or Van Heusen; white, long sleeve, cotton-poly blend
Orange Juice 75:1 Can, 6 oz. or 12 oz.

Peaches 75:1 Del Monte or Libby’s; #2.5 can (29 oz.), halves or slices

Shampoo 82:2 Johnson's or Alberto VOS5; bottle, 11 oz. or 150z.
Shortening  75:1 Crisco; all vegetable, 31lb. can

Soda 75:1 Coca-Cola; 1 quart or 2 litre

Sugar 79:2 Cane or beet, 4lbs. or 5lbs.

Tennis 82:2 Wilson or Penn; can, yellow, heavy duty, 3 count
Tissue 75:1 Kleenex; 1 roll, 4 rol} or box, 175 count
Toothpaste 82.2 Crest or Colgate; 6oz. or 7oz.

Tuna 82.2 Starkist or Chicken of the Sea; in oil, can 6.50z.

Underwear  82:2 Package of 3 briefs
Detergent 75:1 Giant Tide, Bold or Cheer; 420z. or 49 oz.
Wine 82.2 Paul Masson Chablis or Gallo Sauvignon Blanc or Gallo Chablis Blanc; 750ml or 1.5 litre

Description of American Chamber of Commerce data as published in Cost of Living Indez.
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Table A.2

Detailed description of perishable goods data

33

Good Start
Bacon 75:1
Bananas 75:1
Bread 75:1
]%‘heae _8/%%

gs :
l\/gnced steak 75:1
Lettuce 75:1
Margarine 75:1
Milk 75:1
Potatoes 75:1
Steak 75:1
Chicken 75:1

Ir. chicken 82:2
McDonalds 82:2
Pizza 82:2

Description
1ib package
11b

200z. or 24oz.

Kraft; Parmesan, grated, canister, 8oz.
Grade A, 1 dozen

11b.

1 head

11b.

Half-gallon

White or red, 10lbs.

Round steak or T-bone; USDA choice, 1ib.
Grade A frying, 11b.

Kentucky I?‘,rleg Chicken or Church'’s; breast and drumstick

Patty or patty with cheese, pickle, onion mustard and ketchup; 0.5]b.

Pizza Hut or Pizza Inn; 12h-13 crust, regular cheese

Description of American Chamber of Commerce data as published in Cost of Living Indezx.

Table A.3

Detailed description of services goods data

Good Start

App. repair 75:1
Auto maint. 79:2

Beauty 82:2
Bowling 75:1
Dentist 75:1
Doctor 75:1

Dryclean 75:1
Hospital 75:1
Haircut 75:1
Movie 75:1

Description

Service call for color TV or washing machine; excluding parts
Balancing; 1 or 2 front wheels, computer or spin balance

Shampoo, trim and blow-dry; women'’s visit

Evening price; per line

Office visit; cleaning and inspection, no X-ray or flouride treatment
Office visit; routine exam of existing patient

Man'’s suit; 2-piece

Hospital room; semiprivate cost, per day

No styling; man’s

First run; indoor evening price

Description of American Chamber of Commerce data as published in Cost of Living Indez.



