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1. Introduction

Although there is a vast literature on capital structure, economists do
not yet have a fully satisfactory theory of debt finance (or of the
differences between debt and equity). One of the reasons for this is that
debt is a security with several characteristics: a debtor typically promises
a creditor a noncontingent payment stream; provides the creditor with the
right to foreclose on the debtor’'s assets in a default state; and gives the
creditor priority in bankruptcy. It is unclear whether all these
characteristics are equally important, and whether they necessarily have to
go together. In this paper we develop a model based on the second
characteristic of debt -- the foreclosure right -- although our model

implicitly has something to say about the other two characteristics as well.

We consider an entrepreneur who needs funds from an investor (e.g., a
bank) to finance an investment project. The project will on average generate
returns in the future, but these returns accrue to the entrepreneur in the
first instance, and cannot be allocated directly to the investor. We
consider the stark -- and extreme -- case where the entrepreneur can "divert”
or "steal" the project returns on a one-for-one basis. However, the
entrepreneur cannot "steal" the assets underlying the project. Under these
conditions we show that a debt contract of the following form has value. The
entrepreneur promises to make a fixed stream of payments to the investor. As
long as he makes these payments, the entrepreneur continues to run the
project. However, if the entrepreneur defaults, the investor has the right
to seize and liquidate the project assets. At this stage the entrepreneur

and investor can renegotiate the contract.

Our model supposes symmetric information between the entrepreneur and
investor both when the contract is written and once the relationship is under
way. However, many of the variables of interest, such as project returns and
asset liquidation value, are assumed not to be verifiable by outsliders, e.g.,
a court; hence contracts cannot be conditioned (directly) on these. The
symmetry of information between the parties means that renegotiation of the
debt contract following default is relatively straightforward to analyze.
However, renegotiation does not necessarily lead to first-best efficlency.

The reason is that situations can arise where even though the value to the



entrepreneur of retaining assets exceeds their liquidation value, there is no
credible way for the entrepreneur to compensate the investor for not
liquidating the assets. The point 1s that the entrepreneur may not have
sufficient current funds for such compensation (particularly if his loan
default was involuntary), and, while he may promise the investor a large
fraction of future recelpts, the investor will worry that when the time
comes, she will not be able to get her hands on these: the entrepreneur will

default. Thus inefficient liquidation may occur in equilibrium.

To simplify matters, we restrict attention to the case where the
entrepreneur-investor relationship lasts for just two periods (or three
dates). That is, we suppose the entrepreneur requires funds at date 0, a
return is realized at date 1, and if the project is continued, a further
return is earned at date 2. We also assume that part or all of the project
can be liquidated at date 1 and that project returns can be reinvested. Let
the entrepreneur’s wealth be w and the cost of the project be I > w. Then a
debt contract is characterized by two numbers (P, T), T 2 0, where I - w + T
is the amount the entrepreneur borrows at date O and P is the promised
repayment at date 1. (It 1s easy to show that the entrepreneur will pay
nothing at date 2.)

In Section 3 we explore the trade-off between P and T. The more the
entrepreneur borrows at date 0, the more he must repay at date 1, i.e., there
is a positive relationship between the two variables. Each instrument has a
different role to play, however. The advantage of a low value of P is that it
strengthens the entrepreneur’s position 1n good states of the world by giving
him the right to continue using the assets in exchange for a small repayment.
This prevents the investor from using her bargaining power to liquidate
assets when they are worth a lot to the entrepreneur. The advantage of a
high value of T is that it strengthens the entrepreneur’s position in bad
states of the world, i.e., default states, by giving him additional
liquidity. This allows the entrepreneur to repurchase assets from the

investor in the renegotiation process.

In general, it is optimal to use both instruments. However, in
Propositions 1-3 we obtain sufficient conditions for just one instrument to
be used. We show that, depending on the stochastic structure of the problenm,

a "simple debt" contract or a "rental" contract will be optimal. A simple



debt contract is one where T = 0, that is, the entrepreneur borrows the
minimum amount necessary to finance the project (in other words, there is
"maximum equity participation"). At the other extreme, a "rental" contract
is one where the entrepreneur borrows the maximum amount possible at date O
and defaults with certainty at date 1, i.e., P is as high as possible (in

effect, the entrepreneur rents the assets between dates O and 1).

Sections 2 and 3 are based on the assumption that a debt contract is
optimal for the entrepreneur and investor. In Section 4 we examine this
assumption. Are there other contracts that can solve the cash diversion
problem with greater efficiency? In general the answer is yes. One
intepretation of a debt contract is that it provides the entrepreneur with
the right to continue the project if he makes a prespecified payment at date
1. An alternative contract would give the investor an option (or right) to
liquidate the project if she makes a prespecified payment at date 1. More
complicated contracts may alsc be useful. For example, the right to continue
the project could be a (stochastic) function of how much the entrepreneur
pays. More generally, the entrepreneur and investor could agree to play a
message game whereby the amount each party has to pay, and the allocation of
the right to control the project assets, are functions of verifiable messages

sent by the two parties at date 1.

In Section 4 we show that, under some reasonable assumptions, the
additional complexity provided by messages is unnecessary. That is, a debt
contract is optimal within a large class of (message-game} contracts. The
conditions required for this result are that reinvestment in the project at
date 1 yields the same rate of return as the project itself (i.e., the
project exhibits constant returns to scale at date }i; and that the project
returns at dates 1 and 2 and the liquidation value are positlvely related.
In fact, under these conditions, we show that simple debt is optimal, i.e.

within the class of debt contracts it is optimal to set T = 0.

There is a simple Intuition for the optimality of (simple) debt. Ex
post, every dollar that the investor receives is a dollar that the
entrepreneur cannot reinvest. Under the assumption that the project exhibits
constant returns to scale at date 1, and that the key return and liquidation
variables are correlated, it is desirable to maximize the entrepreneur’s

resources in "good" (high return) states of the world, and -- given that the



investor must be repaid -- maximize the investor’s payoff in "bad" (low
return) states of the world. The reason is that this enables the
entrepreneur to reinvest as much as possible when reinvestment 1s most
valuable. Debt does a good job of achieving this since it puts a cap, P, on
the investor’'s payoff by giving the entrepreneur the right to continue using
the assets if he pays P. This cap will be binding in good states of the
world, thus limiting the investor’s payoff and maximizing the entrepreneur’s
resources. In contrast, a contract that, say, gives the investor the option
to liquidate the project has exactly the opposite (and wrong) effect: the
investor will buy out the entrepreneur when the project assets are worth a
lot, which means that the investor’'s return is high in good states of the

world.

We have visited some of the themes of this paper in previous work.
Hart and Moore (1989) provides an early version of the model and also
contains a preliminary extenslon to the case of more than two periods.
Unfortunately, the multiperiod case is far from straightforward except when
there is perfect certainty. For an analysis of the multiperiod certainty
case, and a discussion of its implications for the maturity structure of debt
contracts, see Hart and Moore (1994) and Hart (1995); the former contains a
slight variant of the model presented here -- the entrepreneur can quit, that
is, withdraw his human capital from the project, rather than divert the

project returns.

The paper is organized as follows. The model is presented in Section
2. Section 3 analyzes the optimal choice of P and T. Section 4 considers
more general contracts. Section 5 allows for the possibility of variable
project scale at date 0. Finally, Section 6 discusses the relationship of

our work to the literature, and contains some concluding remarks.

2. The Model

We consider a risk neutral entrepreneur who requires finance for an
investment project. The project costs I and the entrepreneur’s initial
wealth is w < [. There is a competitive supply of risk neutral investors,
each of whom is prepared to finance the project as long as she breaks even.

The task for the entrepreneur is to design a payback agreement that persuades



one of them to put up at least (I - w) dollars.1

The project lasts two periods, as illustrated in Figure 1, with returns
being generated at dates 1 and 2. These returns, which will typically be
uncertain as of date 0, are specific to this entrepreneur; that is, they
cannot be generated without his cooperation. For simplicity, however, we
ignore any actions taken by the entrepreneur to generate them; that is, the

returns are produced simply by his being in place.

As emphasized in the Introduction, the project returns Rl’ RZ accrue tu
the entrepreneur in the first instance. Thus, the payback agreement must be
designed to give the entrepreneur an incentive to hand over enough of these
returns to the investor to cover her initial cost. We take the
entrepreneur’'s and investor’s discount rates both to be zero, which is also

the market interest rate.

The I dollars of investment funds are used to purchase assets which at
date 1 have a second-hand or liquidation value L > 0, whose expectation, EL,

is less than I. We suppose the assets are worthless at date 2.

We alsc assume that any funds not paid over to the investor at date 1
can be reinvested in the project. These funds earn a rate of return equal to
s between dates 1 and 2, where 1 = s = RZ/L' That is, at worst reinvestment
yields the market rate of interest and at best it ylelds the same rate of
return as the initial project itself. We allow both s and L to be random
variables as of date 0 (along with R1 and Rz). Note that the assumption 1 =
s s RZ/L implies that the project’'s going-concern value (RZ) is at least as

high as its liquidation value (L) at date 1.

We make some further assumptions. First, all uncertainty about Rl' R2,

1We ignore agreements with several investors. But see Section 6.



L and s is resolved at date 1.2 Second, as a result of their close
post-investment relationship, both parties learn the realizations RI' Rz, L
and s at this date (so they have symmetric information). However, these
realizations are not verifiable to outsiders, and so date O contracts cannot

be conditioned on them (at least directly).

Third, the assets are divisible at date 1. That 1is, if a fractlon
(1 - f) of the assets is sold off at date 1, then the date 1 liquidation
recelpts will be (1 - f)L and the date 2 project return will be fRZ.

Finally, we assume that the project is productive, in the sense that it
would be carrled out in a first-best world. If s > 1 with positive
probability, this is always the case since the project is a "money pump" at
date 1 (one dollar at date 1 yields s > 1 dollars at date 2). If s =1, then
the required condition is E[R1 + R2] > I, i.e., the project has positive

expected net present value in the absence of reinvestment.

Feasible Contracts

We assume that, as the cash flows R1 and R, accrue to the entrepreneur,

2
he can divert them for his own benefit.3 In contrast, the physical assets
(those purchased with the initial investment funds) are fixed in place and

can be seized by the investor in the event of default.4 In addition, seilzure

2This is without loss of generality since we can always replace ihe

realization of a random variable by its expected value.

3This (admittedly extreme) assumption is meant to capture the idea that the

entrepreneur has discretion over cash flows. One way the entrepreneur might
divert cash flows is by selling the output from this project to another firm
he owns at an artificially low price or by buying input from another firm at

an artificially high price.

4In practice the distinction between cash flows {which can be diverted) and

physical assets (which cannot) may not be as stark as we assume. What is



is the worst outcome that can befall the entrepreneur. That is, we rule out
Jail or physical punishment as ways of disciplining a nonperforming

S
entrepreneur.

Glven that the entrepreneur can divert the cash flows, but not the

project assets, it 1s natural to consider the following debt contract. The

entrepreneur (henceforth known as the debtor D) borrows B 2 I - w at date O
and agrees to make fixed payments at dates 1 and 2; and if he fails to do so
the investor (henceforth known as the creditor C) can seize the project

assets.

We will find it convenient to write B =1 - w + T, where T 2 O can be
interpreted as the “transfer" that D receives from C, over and above what he
needs to finance the project. It is assumed that D places this transfer in a

(private) savings account. That is, T represents non-recuursgwfinancing (it
6

cannot be seized by the creditor).

important for the analysis that follows is that the investor can get her
hands on something of value in a default state: the physical assets represent
this source of value. Obviously, if the entrepreneur can divert everything,
including the assets which generate future cash flows, then the investor has

no leverage at all.

5 A X
One justification for ruling out jail is that there is always erough
background uncertainty so that the entrepreneur can claim that R1 = R2 =0

(recall that R1 and R2 are not verifiable). Hence ir would be difficult to
persuade a judge or Jury to convict the entrepreneur of thett. A
Justification for ruling out (private) physical punishment -- apart from the
fact that it is probably illegal -- is that the investor has no incentive to
administer the punishment ex post If it is at all costly (she gains nothing

from it), i.e., punishing the entrepreneur is not credible.

6If T is put in a "public" rather than a "private" savings account, i.e., if
it can be seized by the investor, then a positive T is equivalent to a lower

value of P. Thus this case does not have to be considered.



It i1s clear that there is no way to persuade D to pay anything at date
2, since at that stage the assets are worthless and so C has no leverage over
D. Hence, we can set the date 2 payment equal to zero. From now on,
therefore, we write the date 1 payment as P and denote a debt contract by a
pair (P,T).

C and D’'s payoffs conditional on the state (Rl' R,, L, s)

2'

Suppose that a debt contract is in place and a particular realization
(Rl’ RZ’ L, s) of the return streams and liquidation value occurs at date 1.
How will D react? Note that D's wealth at date 1 is T + Rl' since he carries

over T from date 0 and the project has earned R moreover, all of this 1s in

1
a private savings account, i.e., it can be diverted. In contrast, the
project has assets, with a liquidation value of L, that can potentlally be

seized by C.

We will assume that D can pay C either from his private savings account
or by liquldating project assets. That is, even though D cannot divert or
steal project assets for his own purposes, he can use them for debt repayment
purposes. We discuss this assumption further in footnote 11 below. Note
that, since ¢ = RZ/L (i.e., the initial project has a higher rate of return
than does reinvestment), D will never liquidate assets if he has cash in

hand. That is, liquidation is a last resort.

Thus, 1f T + Rl + L 2 P, D has two choices: either he can make the
payment P, or he can default (voluntarily), i.e., pay zero.7 In contrast, if

T + R1 + L < P, D has only one cholce: to default (involuntarily).

In the event of default, C has the right to seize the project assets.

However, seizure is only a threat point. If the liquidation value L is low,

7It is easy to show that it is never in D's interest to make a partial

payment.



C may prefer to renegotiate the debt contract.

We will adopt a simple form of renegotiation. In the basic
renegotiation game, we suppose that with probability (1 - «) D makes a
take-it-or-leave-it offer to C and with probability « C makes a
take-it-or-leave-it offer to D.8 It turns out that, because the set of
feasible payoffs is convex, the randomness in this game can cause
inefficiency (this will be clear from Figure 2 below). Thus, we modify the
basic game in one respect: we allow D to make C an offer before the game

starts. The inefficlency is thereby eliminated.

We begin by computing C's payoff under renegotiation. If D makes a
take-it-or~leave-it offer to C, then C's payoff is L, which is what she would
get 1if she turned down D's offer and liquidated the assets. The situation
where C makes a take~it-or-leave-it offer is more complicated. We divide

this into two sub-cases, according to whether T + R1 < R2 or T + R1 > Rz.

Suppose first that T + Rl < RZ (D is "poor"). Then C will ask for all

T +R
of D's cash T + Rl' and will also insist that a fraction 1 - of the
R
2
assets be liquidated. In return D will be handed back the remalning fraction
T+ R
f = R 1. This makes D’'s payoff T + Rl’ which is what he would get if he
2

rejected C's offer. C’s return is given by

Suppose next that T + R1 z RZ (D is "rich"). Then C will agree

to sell back the project assets to D in return for a cash payment of

81n Hart and Moore (1989) a different bargaining process was considered.

This turned out to imply a« = 1.



T+R -R
rar [___1___2]
1
S

T+R, -R
This leaves D wlth cash equal to 1 2 , which, when reilnvested at

s
the rate of return s, and added to the project return RZ’ gives D a total

payoff of T + Rl' Again this is what D would get if he rejected C's offer.

We can combine these two subcases to write C's payoff, when C has all

the bargaining power, as

T + R T+ R, - R
mindT + R, + |1 - 1 L, T+ R, - —————l————g .9
1 R 1
2 s

To obtain C’s overall (expected) payoff, P, in the renegotiation game,

we weight C’s payoff when D has all the bargaining power and C’s payoff when

C has all the bargaining power by the probabilities with which they occur.
This ylelds

(2.1) ﬁ(Rl.R L,s; T) =

2)

T + R1 T ¢ R1 - R2
(1 - «)L + amin{T + R, + |1 - L, T+R, - |— —_—
1 2 1

R
s

9To understand the min formula, note that the two terms are equal when T + R1
= R2. and that the coefficient of T + Rl i{s smaller in the second term than
in the first. Hence, the second term 1s bigger than the first term when T +

R1 is low; however, this is when C’s payoff is given by the first term.

10



So far we have assumed that D defaults. However, if D can pay his debt
(l.e. 1f T + Rl + L < P), he may choose to do so, in which case C’s payoff is
P, as opposed to P. We will show later (following Figure 2) that D will
adopt the strategy that minimizes C's payoff. In other words, D will pay P
if and only if P s P. Note that this rule also covers the case where D is

+ L, which

forced to default (i.e. where T + R1 + L < P), because P s T + R
implies P < P.

1

Hence C's gross payoff is min{P, P}, and her payoff net of the initial

transfer T equals

(2.2) g(R ,R,,L,s; P,T) = min{P - T, P - T},

2!

where P is given by (2.1).

The final step is to calculate D’'s payoff. As we have noted, it 1is

always efficient for D to pay C in cash if he can. Thus, if T + R1 z min{P,

P}, D will pay C entirely in cash. Since D retains the project assets and

reinvests the remaining cash at the rate of return s, his payoff is

2

R + [T + R1

- min{P, P}]s.

On the other hand, if T + R1 < min{P, P}, then D will hand over all his cash

and liquidate a fraction (1 - f) = [min{?, P} - T - Rl]/L of the assets to

realize the remainder of C's payoff. In this case, D’'s payoff, fRz, equals

min{P, P} - T - R
1
1 - R,.

We can combine these two expressions and use (2.2) to obtain the following

formula for D's payoff:

11



2.3 ; = - - —>.
( ) h(Rl’RZ’L’S’ P,T) min RZ + (R1 g)s, R, + (R1 g)

The fraction of the project assets that D retains equals

Rl - g
(2.4) f(R,,R,,L,s; P,T) = min{1l, 1 + .
1’2 L

(2.1) - (2.4) summarize the situation at date 1, conditional on the
state (RI’RZ'L’S) and the debt contract (P,T). In particular, (2.3)
expresses the relationship between D's and C’'s payoff. For a glven state of
the world and a given value of T, Figure 2 graphs this relationship, as P

varies between 0 and ow.

Figure 2 justiflies our earlier assertion that D will pay P if and only
if P s P. The frontier is downward-sloping and so lower levels of C's payoff
imply higher levels of D's payoff. Hence D always wants to minimize C’'s
payoff. Note that, if P = P, it is always feasible for D to keep C's payoff
down to P: he can simply mimic the outcome of the renegotiation game but hand

over less cash and/or liquidate fewer assets.1

10To understand this min formula, note that the two terms are equal when T +
R1 = min{P, P} (i.e., when g = Rl)' and that the coefficient of g ls less
negative in the first term than in the second. Hence the first term is
bigger than the second term when g is high; however, this is when D’s payoff

is given by the second term.
11The assumption that D can liquldate project assets by himself to pay C is

12



We close the section with a numerical example. Suppose T = 3, R1 =9,
R2 =18, L =6, s =1 and « =1 (C has all the bargaining power). From
(2.1), P = 14: in a default state C, sells 2/3 of the assets, which are worth
18, back to D for 12 and liquidates 1/3 for an extra 2. Thus If P > 14, D
defaults; C receives 14 (or 11, net of T); and f = 2/3. On the other hand if
P s 14, D pays P; C recelves P (or P - 3, net of T); and f =1 if P = 12 (D
pays C entirely in cash), or f = (18 - P)/6 if 12 < P s 14 (D pays C partly

in cash and partly by liquidating assets).

We can use this example to stress the fundamental source of
inefficiency in the model. Take any case where P > 12, so that liquidation
occurs (f < 1). Then, relative to first-best, this 1s inefficient since both
parties could be made better off by setting f = 1 and compensating C out of
the additional revenues at date 2. The problem is that there is nec credible
way for D to compensate C at date 2: C knows that, whatever promises have

been made, D will default at date 2 since the assets are worthless then.

crucial here. If D could not self-liquidate, then a situation might arise
where T + R, < P < P, but C's payoff would be P rather than P since D would
be forced to default.

There are two justifications for the assumption that D can
self-liquidate. The first 1s that C's loan is secured on the general assets
of D’s company, rather than on specific assets, and that D can sell these
general assets for cash in the normal course of doing business (l.e., it
would be prohibitively expensive for C toc monitor every transaction in which
D is engaged). A second justification is the following. Suppose the loan is
secured on specific project assets (and these are registered and cannot be
sold). Then D could always rent the assets to a third party between dates 1
and 2. C would not need to be aware of this since the third party could
ensure that D used the proceeds to pay C at date 1, i.e., D would not be in
default. Moreover, if D defaults at date 2 and the assets (which are now
worthless) are handed to C, then this does not affect the third party since
he has already had the use of them between dates 1 and 2.

13



3. Analysis of the Optimal Debt Contract

We turn next to the optimal choice of P and T. Since D and C are risk
neutral, an optimal contract will maximize D’'s expected return subject to the
constraint that C’s expected gross return is no less than I - w + T (the

amount borrowed by D). In other words, an optimal contract solves:

(3.1) Max Eh
P, T20
s. t Egz1 - w,

where g and h (indexed by the state and the debt contract) are given by (2.2)
and (2.3), and the expectations are taken with respect to the joint
distribution of Rl' R2. L and s. Note that C’s break-even constraint will
hold with equality at the optimum since otherwise D’s expected payoff could

be increased by lowering P or raising T.

The following lemma is useful.

Lemma 1. (1) ﬁ(Rl,R ,L,s; T) - T is decreasing in T. (2) g(Rl,RZ,L,s; P,T)

2
is increasing in P and decreasing in T. (3) g(Rl’RZ’L'S; P,T) falls when P

and T rise by the same amount.

Part (1) follows directly from the formula for P in (2.1). It reflects
the fact that if C hands over an extra dollar at date 0, she will get only
part of this back at date 1 in debt renegotiation. Parts (2) and (3) follow
directly from part (1), given that g = min{P - T, P - 'I'}.12

zwe can use Lemma 1 to understand when the project will be undertaken in

a second-best world. A necessary and sufficient condition for the project to
be undertaken is that the constraint set in (3.1) is non-empty and the
maximized value of the objective function exceeds w {which is what D would

obtain if the project did not go ahead]. Since g is increasing in P and

14



We turn now to the optimal mix of P and T. An inspection of (2.2) and
(2.3) reveals that the two instruments P and T have distinct roles. On the
one hand, a dollar reduction in P increases D's payoff in nondefault states,
that is, in states where P s P (D's payoff increases by s if f = 1 and by
RZ/L if f < 1). On the other hand, a dollar increase in T Increases D's
payoff 1in all states (again by s if £ = 1 and by RZ/L if £ <1). In other
words, a reduction in P helps D in nondefault states exclusively; whereas an
Increase in T helps D in all states, and hence, in relative terms, helps D in

default states.

However, as part (3) of Lemma 1 shows, a dollar increase in T reduces
C’s payoff by more than a dollar decrease in P. So, from D’'s perspective,
the trade-off is between a relatively sma'l increase in T and a relatively

large decrease in P.

We now present some propositions showing how each instrument can be
useful in different circumstances. We will find it useful to define two

"polar" debt contracts.

Definition. A "simple debt" contract is a debt contract where T = 0. A

"rental" contract is a debt contract where P = .

decreasing in T, C's net return is maximized when P = w and T = 0, that is,

it equals EP. It follows that EP 21 - w, i.e.,

(*) (1 - «)EL + aEMin(R1 + (1 -R /RZ)L’ R, - (R1 - Rz)/s} z I -w

1 1

is a necessary condition for the constraint set to be non-empty; hence (*)
is a necessary condition for the project to take place. When w = 0, (*) is
also sufficient since D’'s participation constraint is non-binding. It is
clear from an inspection of (*) that some profitable projects will not be

carried out.

15



In a simple debt contract, D borrows the minimum amount necessary to
finance the project (to put it another way, D puts in all his wealth, so that
there is full equity participation). In a rental contract D has the right to
use the project assets for only one period; at date 1 control reverts to C
(in this sense he rents the assets). To put it another way, in a rental
contract, D borrows so much that he defaults with probability 1 (for this,
all that is required in the finite state case is that P be high; P does not

have to equal w).13

Proposition 1. Suppose either (1) Rl’ R., L and s are nonstochastic, or (2)

2’
L is nonstochastic and « = 0. Then all debt contracts that satisfy C's

break-even constraint with equality are equally good. In particular, a

simple debt contract is optimal.

Proposition 1 follows from the fact that, if (1) or (2) holds, P in
(2.1), and hence C's payoff g in (2.2}, are constants. Hence, given that C
breaks even, g = I - w, and so D's payoff h in (2.3) is independent of P and
T.

The next proposition relates to the special case s = 1. Here, the

total social surplus from the project -- i.e., the sum of D and C's ex post

13Another interpretation of a rental contract is that C is the owner of the

project at date 1 and so can make the decislion about whether to continue or
liquidate the project. In this case T can be understood as an upfront
payment C makes to D at date 0 in exchange for the ownership rights she

acquires.

As this interpretation makes clear, there is a role for outside
(voting) equity (or ownership) in the model. However, there is no role for
nonvoting equity, since D will never voluntarily pay a dividend to

shareholders (he prefers to divert all the cash flows).
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payoffs, g + h -- equals R1 + fRZ + (1 - f)L. Since the solution to (3.1)

must maximize Eg + Eh s.t. Eg 2 I - w (given that Eg = I - w at the optimum),

it follows that, when s = 1, an optimal contract solves:

{(3.2) Max E[f(R2 - L)}
P, Tz0
s. t. Eg = 1 -w.

In other words, an optimal contract as far as possible concentrates any

liquidation onto those states where R2 - L is low.

Proposition 2. Suppose s = 1. Then: (1) If only R1 is stochastic, a rental

contract is optimal. (2) If only R, ls stochastic, a simple debt contract is

2
optimal. (3) If only L is stochastic and « = 1, a rental contract is

optimal.

Proof. See Appendix.

The following two examples illustrate, and provide intuition fcr, parts

(1) and (2) of Proposition 2.

Example 1. In this example, only R1 is stochastic. Assume [ = 20, w = 7, R2

=18, L =6, s =1, Rl = 21 with probability 1/2 and 9 with probability 1/2.

Assume o« = 1 (i.e., C has all the bargaining power).

Consider first the rental contract which causes C to break even. This

is given by (P, T) = (w, 3). When R1 = 21, the debt is renegotiated down to

P = 18, and D pays this amount in cash. When R1 = 9, the debt lis
renegotiated down to P = 14; D pays his cash holding of T + Rl = 12, and 1/3

of the assets are sold to make up the difference. C's expected payoff, net
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of the transfer T = 3, is (15 + 11)/2, which covers her initial investment of
I -w=13. In the low R, state there is inefficient liquidation (f = 2/3).

1
D’s expected return = (1/2)[24 - 18 + 18] + (1/2){12 - 12 + (2/3)18] 18.

Now at the opposite extreme consider the simple debt contract (P, T) =
(14, 0). When Rl = 21, D pays the debt of 14 (his cash holding of 21 is
adequate to meet the debt payment; moreover, P = 18 > 14 and so D doesn’t
wish to default). When Rl = 9, the debt is renegotiated down to P = 12; D
pays his cash holding of 9, and 1/2 of the assets are sold to make up the
difference. C’s expected payoff is (14 + 12)/2, which covers her initial
investment. In the low R1 state there 1s inefficlent liquidation (f = 1/2)
-- more so than for the rental contract. D's expected return = (1/2)[21 - 14

+ 18] + (1/2)[9 - 9 + (1/2)18] = 17.

So the simple debt contract is Inferior to the rental contract (P, T) =
(o, 3). (Indeed, Proposition 2(1) tells us that the rental contract

dominates any contract with T < 3.)

The intuition behind this example (and behind Proposition 2(1) more
generally) is the following. When R1 is high, D is wealthy and so there will
not be much liquidation (f is increasing in R, from (2.4)). Thus f is likely

1
to equal 1 In high R, states and be less than 1 in low Rl states. Helping D

1
in high R1 states therefore does not contribute to social surplus (see

(3.2)). Thus it is important to target the low Rl states. But these are the
states where default occurs {(since P is increasing in le‘ Hence a rental
contract, which helps D in the default states through a high T, is more

effective than a simple debt contract.

Example 2. In this example, only R2 is stochastic. Assume [ = 20, w = 11,

Rl =12, L=6, s =1, R2 = 24 with probability 1/2 and 8 with probability

1/2. Assume a = 1.

The simple debt contract which causes C to break even is (P, T) = (10,
0). When Rz = 24, D pays the debt of 10 (his cash holding of 12 is adequate
to meet the debt payment; moreover P > 10). When R, = 8, the debt is

2
renegotiated down to P = 8, and D pays this amount. C’'s expected payoff is
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(10 + 8)/2, which covers her initial investment of I - w = 9. In both
states, D retains control of all the assets (f = 1). Thus the first-best is
implemented. D's expected return = (1/2)(12 - 10 + 24] + (1/2)(12 - 8 + 8] =
19,

Now, at the opposite extreme, consider the rental contract (P, T) = (e,
4). When Rz = 24, the debt is renegotiated down to P = 18. D pays his cash
holding of 16, and 1/3 of the assets are sold to make up the difference.
When RZ = 8, the debt is renegotiated down to P = 8, and D pays this amount.
C's expected payoff, net of the transfer T = 4, is (14 + 4)/2 = 9, which

covers her initial investment. However, in the high R, state, there is

2
inefficient liquidation. D’'s expected return = (1/2)[16 - 16 + (2/3)24} +

172(16 - 8 + 8] = 16.

So the rental contract 1s inferior to the simple debt contract.
(Indeed, Proposition 2(1) tells us that the simple debt contract dominates

any contract with T > 0.)

The intuition behind this example (and behind Proposition 2(2) more
generally) is the following. When RZ is high, C can use her bargaining power
in the renegotiation process to force a lot of liquidation since even a small
fraction of the assets is worth a great deal to D. This creates
inefficiency. The best way to prevent this inefficiency is to allow D to
keep C at bay by making a low debt payment P; in other words, to help D not
to default. But this is precisely what a simple debt contract achieves. In
contrast, a rental contract helps D in the default states, i.e. the low P
states, through the transfer T. However, the low P states are also the low

R, states (P is increasing in R, in (2.1)), where liquidation is nct socially

2 2
that costly (since R, is close to L -- see (3.2)).

2
We will not provide an example illustrating Proposition 2(3). However,
a similar intuition applies. When only L varies, the default states, i.e.,
the low P states, are the states where L is low. These are also the states

where liquidation is very costly (since R, - L is high). Therefore, a rental

2
contract, which helps D in default states, is good. In contrast, a simple
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debt contract, which helps D in nondefault states, is less effective.14

We conclude this section with a proposition relating to the speclal
case s = R2/L, l.e. where funds that are reinvested yleld the same rate of
return between dates 1 and 2 as the project itself. In this case, which will
be the focus of much of the rest of the paper, we will be able to show that,
under a slight strengthening of our assumptions, a simple debt contract is
optimal not only among debt contracts, but also relative to a large class of

non-debt contracts.

When s = RZ/L' the arguments of the min operator in (2.1) are equal.

It follows that C’'s payoff g, net of T, equals
(3.3) min{M - T[l - all - é)], P - T},

where we define the new, derived variable

1

(3.4) M L + aR, (1 - =).
1 S

i

And D's payoff equals sL + sR1 - sg. In effect, program (3.1) reduces to

14Proposltion 2(3) requires « = 1. When a < 1 another effect becomes
important. A fall in L may reduce P so much that D can buy back the assets
even when T = 0, i.e., there is no liquidation in low L states. (Consider,
for example, the case where ¢« = 0 and P = L.) But then a positive T does not
improve efficiency in default states and it is better to target the
nondefault states through a reduction in P (for an example along these lines,

see Example 3 in Chapter S of Hart (1995)).
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(3.5) Min Elgsl

In other words, an optimal contract as far as possible concentrates C's

payoff onto those states where s is low.

Proposition 3. Suppose s = (R2/L) and that a higher value of s lncreases the

distribution of M conditional on s, in the sense of first-order stochastic

dominance. Then a simple debt contract is optimal.

Proof. See Appendix.

Proposition 3 assumes not only that s = RZ/L’ but also that increases
in s go together with increases in M (and hence P). This implies that high s
states are the nondefault states. Given that high s states are also "good"
states where the project assets and reinvestment yield a high rate of return,
a simple debt contract, which helps D in nondefault states, works well. In
terms of program (3.5), a simple debt contract maximizes C’'s payoff g in

states where s is low.
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4. More general contracts

The analyslis in Sections 2 and 3 placed considerable restrictions on the
class of admissible contracts. We looked only at debt contracts, where D
borrows B =1 - w + T from C at date 0, and promises to repay a fixed amount
P at date 1. In this section we consider a much broader class of contracts.

The followling example illustrates the power of alternative contracts.

Example 3. Assume I = 33, w =30, L = 20 and s = 1. Both R1 and R2 are

stochastic; there are three, equally probable, states:

state 1 state 2 state 3
R1 43 0 0
R2 100 320 20

Assume a = 1/2 (i.e., C and D have equal bargaining power).

It is straightforward to show that the best debt contract is the simple
debt contract (P, T) = (3, 0). Under this contract, D never defaults, and
so C’s payoff in each of the three states is 3; i.e. the amount D needs &t
date O to finance the project. In state 1, D can pay the debt F = 3 from his
cash holding of 43, and so there is no liquidation. But in states 2 and 3, D
has to liquidate 15% of the assets in order to pay the debt P = 3. Although
there is no social loss in state 3 (since R, = L), there is inefficliency in

2
state 2.

The first-best can be achieved, however, by an option-to-buy contract

under which C has an option to buy the project assets from D at date 1 at a
price M = 47. If C exercises her option, the parties will renegotiate, and
C’s net payoff will be P - N, where P is given by (2.1) with T replaced by T
{reflecting the fact that in the renegotiation D has a total cash holding of
m+ Rl). If C doesn’'t exercise her option, then C gets nothing and D keeps
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control over the assets. In state 1, C's net payoff P - I = 56 - 47 = 9 > 0,
and so she will exercise her option. D can pay P = 56 from his cash holding
of M+ Rl = 47 + 43 = 90, and there is no liquidation. In states 2 and 3, P
i1s less than M, and so C will not exercise her option; D keeps control over
the assets, and, agaln, there is no liquidation. C’s net payoff in states 1,
2 and 3 equals 9, 0 and O respectively -- which i1s worth 3 to her at date O,

i.e., enough to finance D’s project.

The option-to-buy contract works well because C is repaid only 1n state
1, when D has cash; D keeps control in states 2 and 3 without having to pay
anything. By contrast, the simple debt contract forces D to pay out in

states 2 and 3, when he cannot afford 1t.15

Note that this is not an artifact of the assumption that s = 1 in all
three states. One can show that in the example an option-to-own contract
strictly dominates the simple debt contract (which is the best debt
contract), no matter what the values of s, provided s lies in the permitted

range [1, RZ/L].

The conclusion one draws from Example 3 is that debt contracts can be

strictly inferior to other kinds of contract.

To make further progress, we need to characterise the set of feasible
contracts. The option-to-buy contract can be viewed as a special example of

a message-game contract, where C sends one of two possible messages at date

1. "Exercising my option"” is one of C’'s messages, the upshot of which is
that she owes 1 to D, and if she pays she gets control over the assets. "Not

exercising my option" is the other message, which leads to D keeping control,

1SAt the other extreme, the best rental contract (which has T = 32) does no

better. It can be shown that, in net terms, D has to pay out 3 in state 2
under this contract too. The problem is that although raising P by enough
(and giving D the transfer T) serves to subsidize state 2 from state 1, C
loses money in state 3 -- which, in ex ante terms, is wasteful. C does not

lose money in state 3 under the option-to-buy contract.
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and nothing is owed by either party. It is important that the message ls
public, in that it can be verified by a court in the event of a dispute.

Notice that the contract is effective because the messages provide an
indirect way of conditioning on the state of the world. The contract is
designed so as to give C the incentive to send different messages in
different states. That 1ls, even though a court can’t directly verify which
state has occurred, C's behavior -- her choice of message -- reveals
information about the state.

Once publicly verifiable messages are admitted, the contractual
possibllities become rich. There 1s no reason to limit the set of messages
to Just two. Also, 1t needn’'t be the case that only C sends messages: C and
D have common information, and so in principle either of them is in a

position to inform the court (indirectly, at least) about the state.

In fact, almost all contracts can be interpreted as message-game
contracts. Consider again a debt contract where D owes the amount P. In
effect, D has the choice between sending the message "I will pay P and keep
control of the assets”, or sending the message "I will pay nothing and lose
control”. As we have seen in Section 2, his choice depends on the state.

Thereby, the allocation of control is determined endogenously at date 1.

A richer set of messages from D could make the allocation of control
more sensitive to the state. D could send a numerical message: the meaning
of message "¢", say, is that he will pay the amount P = ¢ and that, provided
he pays, there is then a probablility p = p(¢) that he retains control. The
lottery p(+), which is publicly held, is specified in the date 0 contract.
Clearly, there is no loss of generality in restricting attention to
nondecreasing functions p{(+), since D would have no incentive to pay more for
a lower probability of keeping control. The more famillar version of this
contract is a nonlinear pricing schedule, where D chooses how much to pay, P,
and p(P) is the probability that he then keeps control (the contract can be
thought of as "smoothed debt").

The most general message-game contract we consider is where both C and

D send abstract messages -- o and ops Say = at date 1, on the strength of
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which there is some amount P = P(vc,cn) that D owes C. (P may be negatlve,
in which case C owes -P to D.) If the money is paid, then D keeps control

over the assets with probability p = p(vc,o ). The mappings P(-,-) and

D
p(+,*) are specifled in the date O contract.

Crucially, however, we continue to assume that, even after message(s)
have been sent, D can refuse to pay and choose instead to default. The worst
sanction that can be imposed on him is that he loses control of the assets.
That is, whatever moves the parties may have made as part of a contractually
specified mechanism (whatever messages may have been sent), once some
terminal node (P,p) has been reached D in effect always has the cholice
between paying P (if he can afford to) or defaulting -- 1l.e. choosing the
pair (0,0). And if D does default, he can always then renegotiate with C.17

We will see in Proposition 4 below that the fact that D can default and
renegotiate a contract dramatically reduces the set of message-game contracts

that one needs to consider. For the rest of the paper, we look only at the

special case s = RZ/L'

For this case, we saw in (3.3} that C's net payoff under a debt

contract is a function of M and s only, where M is defined in (3.4). In

16There are yet other possible mechanisms, played in stages, which screen on

D’s cash holdings by requiring him to put up money before he plays a
particular branch of the game tree. Such mechanisms explcit infeasibility
off the equilibrium path. We postpone discussing these until the end of this

section.

17In this respect, we depart from much of the literature on implementation,

where it is tacitly assumed that agents can be forced to abide by the outcome
of a mechanism. It is also usually supposed that the agents can agree in
advance not to renegotiate once the mechanism has been played, even though
there is no asymmetry of information between them (a usual source of
breakdown in bargaining). For an Introduction to the literature on

implementation in environments with complete information, see Moore (1992).
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Lemma 2, we prove that under any message-game contract, C’'s equilibrium
payoff across different states of nature can be expressed in terms of M, s

and V, where V ls defined by

(4.1) V = L + R,.

Accordingly, we can write C's net equilibrium payoff as g(M,s,V). (The third
variable, V, separately enters C's payoff only if a« # 0 and, for at least one

pair of messages (¢ ¢D), the contract specifies 0 < p(oc,oD) <1.)

C’

Notice that M is the most that C can get in the event of D defaulting

(and the upper bound is attained only when T = 0). Since D can always
default, a corollary is that no message-game contract can give C a net
equilibrium payoff greater than M. We formally prove this in (4.2) of Lemma
2.

We actually prove more than this. C’s payoff is nondecreasing in each

of the three variables M, s and V: see (4.3) in Lemma 2.

Lemma 2. Assume s = R2/L. In any message-game contract, C's equilibrium
payoff, net of any transfer T, can be expressed as a function of the three
derived variables M, s and V (where M and V are given in (3.4) and (4.1)).

Moreover, C's payoff, g(M,s,V) say, must satisfy

(4.2) g(M,s,V) = M;
(4.3) g(M,s,V) is nondecreasing in M, s and V;
(4.4) g(M,s,V) is independent of V if « = 0.

Proof. See Appendix.
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As Lemma 2 1s a key result in what follows, we should sketch the
intuition behind it. In any given state, the two parties are playing a
“message/default" game -- after which they will, if necessary, renegotlate
their way on to the payoff frontier. The compound game (that is, including
the subsequent renegotiation) is akin to a zero-sum game, since the parties’
payoffs are perfectly negatively correlated. (It is not a zero-sum game per
se, because, unlike in a zero-sum game, the payoff frontlier has slope -s, not
-1. The reason for this is that as C's payoff rises, D has less cash to
reinvest and total surplus falls.) In any given state, one can think of this
compound game in terms of a reduced-form matrix, where the messages cc and GD
respectively ldentify the row and column, and the corresponding entry in the
matrix specifies a pair of payoffs lying on the frontier. Clearly, C's
equilibrium payoff in this compound game cannot be greater than her maximum
payoff, M, in any entry of the matrix: hence the upper bound constraint
(4.2). (4.3) and (4.4) relate to how C’s equilibrium payoff varies with the
state. Here we appeal to the fact that the value of the compound game is
given by the min-max formula for zero-sum games. Now C’s payoff in each
entry of the matrix can be shown to be nondecreasing in M, s and V: the point
is that an increase in any one of M, s or V increases the surplus, and, for a
given (P,p}, both partlies share in the increase. It follows immediately from
the min-max formula that C's equilibrium payoff in the compound game is also
nondecreasing in M, s and V: hence the monotonicity condition (4.3)

Likewise, since C's payoff in each entry of the matrix can be shown to be
independent of V if a = 0, the same is true of her equilibrium payoff in the

compound game: hence the independence condition (4.4).

To sum up what we have learned so far in this section: message-game
contracts can be both realistic (e.g. options to buy, or nonlinear pricing
contracts) and effective. However, D’'s ability to default and renegotiate
places considerable restrictions on C's equilibrium net payoff. In
particular, if s = RZ/L’ then C’'s payoff 1s a nondecreasing function of the
three derived variables M, s and V; 1s bounded above by M; and is independent

of V if a = 0.

Since D’s payoff equals sV -~ sg(M,s,V), and since E[sV] is independent

of g{«,+,+), an optimal message game contract solves the following progranm,
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which is akin to (3.5):

(4.5) Minimize El[sg(M,s,V)]
g(.,.,.)

subjJect to El[g(M,s,V)] =z I - w;
g(M,s,V}) s M;
g(M,s,V) 1s nondecreasing in M, s, and V;

and g(M,s,V) is independent of V if a = O.

The first constraint in (4.5) is C's participation constraint. And by Lemma
2, the last three constraints, (4.2)-(4.4), are necessary conditions on C's

equilibrium payoff arising from a message-game contract.18

Note that if s is deterministic then it can be seen directly from (4.5)
that any contract satisfying the expectation constraint with equality is
optimal. (This extends Proposition 1, in the case R2/L £ s.)

It is revealing to graph the g-functions that derive from the two
contracts which we considered earlier: a debt contract, and an option-to-buy
contract. First, consider a debt contract (P,T). C’s payoff g is given by
(3.3). 1In Figure 3(a) this g is graphed against M, holding s constant. As
we saw in sectlion 3, in order to satisfy C's participation constraint, if T
rises by a dollar, then P has to rise by more than a dollar. Accordingly, as
T rises, the flat portion of the graph rises, but the vertical intercept

18As we are about to prove that, in certain circumstances, a simple debt

contract yields a g function which solves (4.5), the question of sufficiency
will not detaln us here. In fact, however, one can use the methods of Maskin
and Moore (1987) to show that conditions (4.2)-(4.4) are in general
sufficient for the existence of a message game in which C's equilibrium

payoff is g(M,s,V).

28



falls. Roughly speaking, a rise in T makes the graph less flat.

Second, consider an option-to-buy contract where C can buy the assets
at date 1 by paying T to D. From (2.1), with s = RZ/L, we know that if C
exercises her option she can sell the assets back to D for P = M + all(1 - é).
Therefore C will exercise the option if and only if M + all(1 - é) > M, and
her payoff 1is given by

(4.6) g(M,s,V) = max{M - H[l - a1l - %)], 0t.

See Figure 3(b), where the function g in (4.6) is graphed against M, holding

s constant. Notice that this graph is less flat than the graph for a simple
debt contract in Figure 3(a).

Consider the minimand in (4.5). Given C's participation constraint, it
would best if her payoff, g, were to decrease in s -- because this would help
D in those states when s is high. Moreover, if s is affiliated with M, then
we would like g to decrease in M too.19 Unfortunately, we have to contend
with the monotonicity conditions in (4.5). In particular, g has to be
nondecreasing in M. The best we can hope for is a flat g, equal to I - w;
this corresponds to the riskless simple debt contract P = I - w. However, if
there are values of M which are less than I - w, we must respect the upper
bound constraint in (4.5). Figures 3(a) and 3(b) suggest that the flattest g

corresponds to a simple debt contract. This is confirmed in Proposition 4.

19For a definition and discussion of affiliation, see the Appendix of Milgrom
and Weber (1982).
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Proposition 4. Assume s = RZ/L. If M, s and aV are affiliated then (4.5) is
solved by g(M,s,V) = min{M, P}, where P satisfies E[min{M, P}] = I - w. That
is, a simple debt contract, with T = 0, is optimal in the class of

message-game contracts.

Proof. See Appendix.

A rough intuition for this result was given iIn the Introduction. Every
dollar that C receives at date 1 is a dollar that D cannot relnvest. Under

the assumption that s = R /L, and that the key varlables are affiliated, it

2
is desirable to minimize C’'s payoff, g, in "good" states of the world, since
this enables D to reinvest as much as possible when reinvestment is valuable.
A simple debt contract works well, since it puts a cap, P, on g, which binds

in good states.

The special case a = 0 is of independent interest:

Corollary. Assume s = RZ/L and « = 0. Then if L and s are affillated, a

simple debt contract is optimal in the class of message-game contracts.

Given a = 0, the Corollary tells us that when L and s = R2/L are
affilliated, simple debt ls optimal irrespective of R1. Note that affillation
is Implied if either varlable 1s deterministic. Thus, if L is deterministic,

then simple debt is optimal irrespective of Rl or RZ'

This section might be summarised by saying that our exploration of more
general contracts -- message-game contracts -- turns out to have been a
digression in the case s = R,/L, at least when M, s and aV are affiliated.

2
For this case, we can restrict attention to simple debt contracts after all.

There is a caveat. Although message-game contracts are quite general,

there are other forms of mechanism which are played in stages and which

screen on D’s date 1 cash holdings by requiring him to put up money early on,
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before he plays a particular branch of the game tree. In effect, these

mechanisms exploit infeasibility off the equillbrium path.

For example, suppose that I = 1 > w, and that at date 1 there are two
equally likely states 1 and 2: (L'RI'RZ'S) = (2,0,2,4) in state 1; and
(L'RI’RZ’S) = (2,1,10,20) in state 2. Also assume that a = 0. (Note that
M,s and aV are affiliated, so Proposition 4 applies.} Consider (4.5), but
without the constraint that g is nondecreasing in M and s. [t is easy to see
that the solution is g = 2 in state 1 and g = -2w in state 2. This solution
violates the constraint that g is nondecreasing in M and s, and hence cannot

be achieved by any of the message games descrlbed in this sectlon.

However, the following mechanism does achieve the above solution. Let
the contract specify that if D pays 3 to C at date 1, then C must pay 3 + 2w

to D. However, if D fails to pay 3, then C obtains control of the assets.

This contract achieves the desired outcome because in state 2 D can pay 3,

whereas 1n state 1 he cannot.

There is an obvious problem with a mechanism like this. In state 1, D
could approach a third party and borrow (short-term) using as collateral the
payment he is about to receive from C. We suspect that, if this kind of
borrowing is allowed, all that matters is the net amount, P, that D is
required to pay -- which brings us back to message games with final outcomes
(P,p), which we have considered. However, these matters require further

investigation.

31



S. Initial Project Scale

We complete our analysis by considering briefly the choice of project
scale at date 0. Until now, we have taken the size of the investment, I, to
be fixed. Suppose instead that the initial investment can be varied; in
particular, suppose that the project exhibits constant returns to scale. It
is easiest to think in terms of the "unit project”, costing 1 at date 0, with
cash returns ry and r, at dates 1 and 2, and with liquidation value ¢ at date
1. That is, R1 = Irl, R, = Ir_, and L = I£. Our concern in this section ls

2 2
with the choice of I.

Given constant returns at date 0, a natural case to consider 1s where

there are also constant returns to scale at date 1: s = rz/l. In addition,

assume:

(5.1) m, s and av are affiliated,

where m = { + arl(l - &/rz)
s = r2/8
and v = ¢ + r

We know from Proposition 4 that, glven assumption (5.1), simple debt 1is
optimal for any 1. Program (3.1), with T = 0, reduces to

(5.2) Max E[(Ivs - min{Im,P}s]
I,P
s.t. Elmin{Im,P}] = 1 - w

and 1 =z 0.

For any I that can be financed, there is some debt level at which C
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Just breaks even. Define P(I) to be the smallest:

(5.3) P(I) is the minimum P satisfying Elmin{Im,P}] = I - w.

The economics of the problem are revealed by separating D’s objective into
benefits and costs. Rewrite (5.2) as

(5.4) Max Ib - c(I),
Iz0

where b = El[vs]

c(Il) = Elwmin{Im,P(I)}s]

and P(I) is defined in (5.3).

Notice that D’s benefits are linear in I. We show in Proposition 5 below

that, among other things, his cost function c(I) is convex.

The case of perfect certainty is particularly simple, and illuminates

the stochastic case. From (5.3), P=1 -w s Im. I then solves:

(5.5) Max (Iv + w - I)s
1z0
s.t Im 2 [ -w

There are two cases to consider, m < 1 and m 2 1:
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(1) m < 1. In this case, the constraint in (5.5) eventually binds.

(1a) If v > 1, the objective function is increasing in I and

(1b)

there is an interior optimum, I = w/(1 - m). Notice the
multiplier if m > O: the optimal scale of the project is
proportional to D's initial wealth with a constant of

proportionality that exceeds one.

If v s 1, the objective function is decreasing in I and it
is optimal to set I = 0.

(2) m 2 1. In this case, the constraint in (5.5) never binds and, since

v 2 m, the objective function is (weakly) increasing in I. In

effect, every increase in I of one dollar increases C's potential

payoff by at least 1 dollar, so the project is a money pump and it is

optimal to set I = w.

We now see

how these findings generalize when there is uncertainty.

Proposition 5. Assume (5.1) holds, and that there are a finite number of

states.

(1) If Em < 1 the cost function c(I) defined in (5.4) is increasing,

plece-wise linear and convex in the interval w s I = w/(1 - Em),

with a slope no less than Es.

(1a) If Elvs] > Es then some I = w/(1 - m) 1s optimal, where m

(1b

(2) If Em 2

is the minimum of m.

) If Elvs] = Es, it is optimal to set I = 0.

1 then it is optimal to set I = w.
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Proof: See Appendix.

Proposition S tells us that, under assumption (5.1), the problem of
choosing I is well-behaved. As with the deterministic case, there is a
multipllier, provided m > 0: 1f D invests his initial wealth w in the project

then he borrows at least a multiple of w for additional investment.

If we were willing to assume a simple debt contract {(rather than prove
that it is optimal within the class of message-game contracts), assumption
(5.1) could be dropped. All the results of the proposition would hold if
E[s|m] were nondecreasing in m. The proof in the Appendix makes use of this

weaker assumption.

6. Summary, Relationship to the Literature, and Concluding Remarks

A brief summary of the paper may be useful. We have analysed the role
of debt in persuading an entrepreneur to pay out cash flows, rather than to
divert them. In the first part of the paper we studied the optimal debt
contract -- specifically, the trade-off between the size of the loan and the
repayment -- under the assumption that some debt contract was optimal. In
the second part we considered a more general class of (non-debt) contracts

and derived sufficient conditions for debt to be optimal among these.

Our paper can be seen as part of the recent literature that analyzes
financial declisions from an "incomplete contracting" perspective. This
literature starts with Aghion and Bolton (1992). Aghion and Bolton analyze
debt in terms of the allocation of residual control rights over assets (along
the lines of Grossman and Hart (1986) and Hart and Moore (1990)). They
consider a slituation where a project ylelds private benefits to an
entrepreneur as well as (verifiable) monetary benefits. It is assumed that
some project actions must be taken in the future, but these cannot be
contracted on initially. {One such action might concern the liquidation
decision.) If the entrepreneur has all the residual control rights he will

take actions that increase his private benefits, but at the expense of the

35



return to investors. On the other hand, if the investor has control she will
take actions that do not respect the investor's private benefits. Aghlion and
Bolton study the optimal balance of control between the entrepreneur and the
investor. Of particular interest, they show that the optimal allocation is
state contingent: the entrepreneur should have residual control rights in
states of the world where his private benefits are relatively high, and the
investor should have control in states where the entrepreneur’s private

benefits are relatively low.

There are two important differences between Aghion and Bolton’s work
and ours. First, although Aghion and Bolton show that control will shift
from the debtor to the creditor in certain states of the world, they do not
provide general conditions under which these states can naturally be
interpreted as "default" or "bankruptcy" states (for example, they could be
high-profit rather than low-profit states). Second, and related, Aghion and
Bolton ignore the role of debt as a mechanlism for getting a debtor to pay up.
That is, Aghlion and Bolton assume that control shifts are triggered by a
verifiable state of the world (e.g., the state might be that profits are
low). In contrast, in our model the shift in control is endogenous -- it

occurs because the debtor fails to make a promised repayment.

Our paper also has similarities to Bolton-Scharfstein's (1990) analysis
of predation and the costly state verification (CSV) models of Townsend
(1979) and Gale and Hellwig (1985). Bolton and Scharfstein develop a model
where the penalty for nonpayment of debt is that the creditor withholds
future finance rather than liquidating existing assets. They are more
concerned with how debt can be used strategically to influence competition in
product markets than with a general characterization of debt contracts. 1In
the costly state verification models there 1s also a penalty for nonpayment,
but it is that the debtor is inspected. The CSV models additionally assume
that information is asymmetric, tend to rule out ex post renegotiation, and
take the cost of bankruptcy as given (it is the cost of monitoring).zo In

contrast, our model is based on symmetric information, allows for ex post

20Gale and Hellwig (1989) does include a discussion of renegotiation, however.
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renegotiation and endogenizes the cost of default. For a further discussion
of the differences between the CSV models and the incomplete contracting
approach, see the Appendix to Chapter 5 of Hart (1995).21

There is also a parallel between this paper and the work of Bulow and
Rogoff (1989) on sovereign debt. Bulow and Rogoff analyze a model in which a
debtor country borrows from a creditor country for current consumption but
cannot commit to repay the loan out of future production. If the debtor
repudiates the loan, the creditor can retaliate by blockading the debtor
country's trade. In the Bulow-Rogoff paper, there is nothing corresponding
to irreversible liquidation, and, as a result, there is never any ex post
inefficlency (no blockade occurs in equilibrium). In contrast, in our model,
there can be inefficlent liquidation ex post. Also, because of their concern
with sovereign debt, Bulow and Rogoff do not study the role of legally

enforceable contracts in sustailning repayment paths.

We conclude by noting some directions for future research. Probably
the most interesting extension of the model is to the case of more than two
periods, which would permit an analysis of the maturity of debt contracts.

As noted in the Introduction, Hart and Moore (1994) and Hart (1995) carry out
such an extension, but only for the case of perfect certainty. A preliminary
discusslion of the uncertainty case was contalned in our earlier paper, Hart
and Moore (1989). However, the analysis in that paper was intricate; we were
unable to go beyond a three-stage model, and there were relatively few
clear-cut results. There were some general findings, however, which we

believe would broadly apply to any intertemporal model of debt based on

21The work of Allen (1983) and Kahn and Huberman (1988) should also be
mentioned. Allen studies a model in which the penalty for not repaying a
loan is the selzure of assets and future exclusion from the capital market.
However, Allen focuses on inefficliencies with respect to the initial size of
the project, rather than on control issues or the cost of default. Kahn and
Huberman (1988) investigate the role of asset selzure in encouraging a debtor
to repay a loan, but in a context where renegotiation always leads to ex post

efficiency.
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control. We found that a key tension between short-term and long-term debt
is the following. On the one hand, short-term debt gives the creditor early
leverage over the project’s return stream, which is good because it can keep
total indebtedness low. On the other hand, short-term debt may give too much
control to the creditor in certain states and lead to premature liquidation;
that is, the creditor may liquidate early because the debtor cannot credibly
promise to repay later. In this sense, long-term debt contracts protect the
debtor from the creditor. An important next step in the research is to

formulate a tractable, multiperiod model of debt with uncertainty.

Even in the two-period model there are a number of further avenues to
explore. In the first part of the paper we focussed on the trade-off between
P and T, and showed that T could be used to limit C's bargaining power in bad
states. However, as Section 4 makes clear, more general instruments may be
useful when the conditions of Proposition 4 do not hold. One possibility is
to give C the right to liquidate only a fraction of the project assets (that
is, only some of the project assets would serve as collateral for the loan
and the loan would be non-recourse). Another possibility is to give C the
right to liquidate the whole project with some probability (this may be
particularly useful if the project is 1nd1visib1e).22 The whole issue of the
role of "non-standard" contracts when the conditions of Proposition 4 do not

hold is a challenging topic for future research.

It would also be interesting to relax some of the assumptions we have
made about renegotiation. We have supposed that the parties can choose from
a large class of mechanisms for allocating control, but that the parties
cannot control the division of bargaining power in the renegotiation game.
We have also ruled out the presence of third parties to the contract. All
these assumptions are worth dropping. For an analysis of how the
renegotiation process might be designed to achieve a better outcome, see

Harris and Raviv (1995).

In addition, we have studied a one-shot situation. An interesting

generalization is to a repeated relationship where parties may acquire a

22The latter idea is explored in Bolton and Scharfstein (1996).
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reputation for repaying their debts, or for liquidating assets rather than
renegotiating. (A long-lived bank might acquire a reputation for
renegotiating only when a default is involuntary.) It would be interesting to
know whether under these conditions debt still has a role to play, or whether
other instruments might substitute for debt. For an analysis of this and
related issues, see Fluck (1996) and Gomes (1996), and, for a more general

discussion of debt and reputation, see Diamond (1989).

A further extension is to the case of multiple investors. If there are
multiple creditors, then it is plausible that the process of renegotiating a
debt contract becomes more difficult (e.g., because the creditors have
different information). This brings benefits as well as costs. The beneflt
1s that strategic default by the debtor is less attractive, which means that
it is easler to pay the creditor back. The cost is that, if default 1is
involuntary, the project may be liquidated when it should be continued. The
trade-off between the two effects is studied in Bolton and Scharfstein
(1996).

Finally, in a richer model where the entrepreneur cannot "steal" all
the cash flows, (non-voting) equity becomes a feasible claim as well as debt,
since dividends can be paid. Dewatripont and Tirole (1994) have shown that
under these conditions the entrepreneur’s budget constraint can be "hardened"
by allocating debt to one outside investor and equity to another. (In a
similar vein, Berglof and von Thadden (1994) have shown that it is sometimes
optimal to allocate short-term debt to one investor and long-term debt to
another.) Incorporating equity into a model like the one described here would

greatly enrich the analysis and is an important topic for future research.
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Appendix

Proof of Proposition 2

Consider the set of feasible transfers T. (T is feasible iIf there
exlsts a debt contract (P,T) satisfying C's particlipation constraint. We may
assume that T = 0 is feasible, otherwise the project could not be financed at
date 0.) For each feasible T, let P(T) denote the smallest debt level at
which C breaks even: E[g(Rl,RZ,L,s;P(T),T)] =1 - w.

Given s = 1, (2.1) reduces to

T+ R
’ P . _ - - 1
(2.17) P(Rl'RZ'L’T) = (1 a)L + amin{T + Rl + [1 [ R2 ]]L. RZ}'

Note that F(RI.R L;T) - T is nonincreasing in T. And by Lemma 1(3),

2’
P(T) - T is nondecreasing in T.

First we prove part (1) of the proposition, where only R1 is

1 So find R;(T) (which may be
infinite) such that ﬁ(Rl;T) = P(T) for R, s R}(T) and ?(Rl;T) = P(T) for R, 2
R;(T). R, - ?(Rl;T) is also nondecreasing in Rl; so from (2.2), the function

1
R, - g(R1;P(T),T) is nondecreasing in R And Rl - g(Rl;P(T).T) is

1
nondecreasing in T for R

stochastic. P = ?(Rl;T) is nondecreasing in R

1

s R;(T), and is nonincreasing in T for R, 2 RT(T).

1 1

By (2.4), f(Rl;P(T),T) is a positive affine transformation of Rl -
g(Rl;P(T),T), truncated above by 1 for high Rl' Without the truncation, Ef
would be independent of T, since E[R1 - gl = ER1 - 1 + w is independent of T.
Thus, with the truncation, Ef rises as T rises. Since E[f(R2 - L) =
(R2 - L)Ef, it follows from (3.2) that 1t is optimal to increase T. A rental

contract is optimal. Part (1) is proved.

Next we prove part (2) of the proposition, where only R2 is stochastic.

P = ﬁ(RZ;T) is nondecreasing in Rz. So find RE(T) (which may be infinite)

such that ?(RZ;T) < P(T) for R, = RE(T) and ﬁ(RZ;T) 2 P(T) for R, = RE(T).

2 2
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From (2.2}, g(RZ;P(T).T) is also nondecreasing in R And g(RZ;P(T).T) is

> R;(T).

2

nonincreasing in T for R, = R;(T), and is nondecreasing in T for R

2 2

By (2.4}, f(RZ;P(T),T) is a negative affine transformation of
g(RZ;P(T),T), truncated above by 1 for low R2. Without the truncation, Ef
would be independent of T, since Eg = I - w is independent of T. With the
truncation, Ef falls as T rises. Moreover, f falls as T rises when R2 - L is
high. And f rises as T rises when R, ~ L. is low. It therefore follows from

2

a standard stochastic dominance argument that E[{(R2 - L)] falls as T rises.
From (3.2), it is therefore optimal to reduce T. A simple debt contract is

optimal. Part (2) 1s proved.

Finally we prove part (3) of the proposition, where only L is
stochastic. P = P(L;T) is nondecreasing in L (when T + R1 > R2, the second
term of the min operator in (2.1’) is strictly less than the first.) So find
L*(T) (which may be infinite) such that P(L;T) = P(T) for L s L*(T) and
P(L;T) =z P(T) for L = L*(T). From (2.2), g(L;P(T),T) is also nondecreasing
in L. And g(L;P(T),T) is nonincreasing in T for L = L*(T)}, and is

nondecreasing in T for L = L*(T).

Given @ = 1, the only way that g(L;P(T),T) can vary with L is because,
for at least some L = L*(T), the first term of the min operator in (2.1’) is
strictly less than the second. In which case it follows that g(L;P(T),T) >
R, for all L. And so, from (2.4), f(L;P(T),T) < 1 for all L, and fL - L is a
negative affine transformation of g. E[fL - L] is independent of T, since Eg
= ] - w is independent of T. That is, E[fL] is independent of T. Moreover,
fL rises as T rises when L is low, i.e., when (R2 - L)/L is high. And fL
falls as T rises when L is high, l.e., when (R2 - L)/L is low. It therefore
follows from a standard stochastic dominance argument that E[f(R2 - L)} rises

as T rises. From (3.2), it is therefore optimal to increase T.

The other possibility is that g(L;P(T),T) is independent of L. In
which case g(L;P(T)},T) = I - w, which is independent of T.

In sum, a rental contract is optimal. Part (3) is proved.
Q.E.D.
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Proof of Proposition 3

Take some debt contract (P,T) for which T > 0, and denote C’'s payoff
from (3.3) by g(M,s). Consider replacing this contract by the simple debt
contract (;.0), where P is the smallest solution to E[min{M.ﬁ}] =1-w C's
payoff under the latter contract equals min{ﬁ,H} = ;(M), say, which is
independent of s. Gliven that (P,T) finances I,

ElgM,s)] =z I -w = ElgM].

This implies that

E[A(M,s)] = O, (1)

>

where A(M,s) = g(M) - g(M,s). It follows that P s P - T.

Now

T(1 - « + g) for M s P

>

U

A(M,s) = A -M+T{l - a+ g) for P <M <P - Ta(l - é)

0>

-P+T for M 2 P - Ta(l - é).

- +
By inspection, A(M,s) is nonincreasing in M and s. Hence taking any s = s ,

ElaM,s)|s’] s ElAM,s)|sT)

s E[A(M,s )]s’ ].
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Here, the first inequality follows from a standard dominance argument:

A(M.s+) is nonincreasing in M and, for all M, the distribution function of M
conditional on s 1is no less than the distribution function of M conditional
on s*. The second inequality reflects the fact that A(M,s) is nonincreasing

in s.

Thus we have shown that E[A(M.s)]s] is nonincreasing in s, and so there
exists some s*, say, where 1 s s* = w, for which E[A(M,s)|s] is nonnegative

for all s s s* and is strictly negative for all s > s*. This implies

(s - s*)E[A(M,s)]|s] = O for all s.

Taking expectations over s and appealing to the law of iterated expectations,

ElsA(M,s)] s s*E[A(M,s)],

which is nonpositive by (i). Thus Elsg(M)] = E[sg(M,s)). That is, from
(3.5), the simple debt contract (P,0) (weakly) dominates the debt contract

(P,T).
Q.E.D.

Proof of Lemma 2

We first need to calculate C's net payoff, 7 say, in some state
(Rl,L,s) if after having played some mechanism, the parties reach a
particular (P,p) node with 0 < p < 1. 1In what follows we suppose that D

carries over an amount of cash T z 0 from date O.

There are three reglons to consider, depending on the size of P: L + R1

+ T <P (region 1); L<P =L + R, + T (region 2); and P s L (region 3).

1
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In region 1, D does not have enough cash to pay P, and so must default.

From (2.1), C's payoff, net of T, is
M - T[l - all - é)] = 11. say.

In region 2, D can only pay P by augmenting L from his private cash

holdings R, + T. (It is clear that, given s = RZ/L and p < 1, D will always

use the fiim’s assets, L, In preference to hils own.) If D pays P, then with
probability p he keeps control over the assets, which is an efficlent
outcome. With probability 1-p, C gets control, in which case they may
renegotiate. The renegotiation starts from the status quo: (a) the
liquidation value of the remaining assets is zero (since D used them all to
contribute L towards the payment P); and (b) D's private cash holdings have
gone down to R, + T - (P ~-L) =V + T~ P. From (2.1), we deduce that,

1
provided D pays P, C’'s net payoff is

P + (l—p)[a(v +T-P)(1 - é)] - T = 5y, say.

If 72 > 71, D defaults and C gets y = 11.

In region 3, D can pay P from the firm's assets, L. Agaln, if D pays
P, then with probability p he keeps control over the assets, which is an
efficient outcome. And with probability 1-p, C gets control, in which case
they may renegotiate. The renegotiation starts from the status quo: (a) the
liquidation value of the remaining assets is L - P (since D used the

remainder to pay the P); and (b) D’s private cash holdings are intact at R1 +

23Notice that here we are appealing to the fact that the parties are risk

neutral and the technology is linear, so that there are no gains from

negotiating prior to the lottery.
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T. From (2.1), we deduce that, provided D pays P, C’'s net payoff ¥ is

P + (l-p)[L - P + a(R1 + T)(1 - é)] - T
= 1 3
= pP + (l-p)[M + aT(1 - E]] - T = 77, say.

If 73 > 11, D defaults and C gets 7y = 71.

Observe three things about C's net payoff 7y (in all three regions).
First, 7 is never more than M (since 7 = 71 s M). Second, ¥ is a function of
the three variables M, s and V, and is nondecreasing in all of them.24 Third,

If « = 0, ¥ is independent of V.

In effect, we can ldentify a state by the realization of the triplet
(M,s,aV) = z, say. For a given terminal node (P,p) of the message game,
denote C's payoff in state z by 7[(P,p)|z]. We have shown that 1[(P.p)|z] =
M and that 7[(P,p){z] is nondecreasing in z = (M,s,aV).

Consider two states z = (M,s,aV) and z'’ = (M’,s’,aV’), for which M’ =

M, s’ = s, and aV’ = V.

For a message-game contract, suppose C and D play strategies [GC,OD]
and [oé,vb] in states z and z’ respectively. And suppose the mechanism
. : ! ¢ ’ ’
speciflies respective (P,p) pairs (P[oc,oD].p[cc,cD]) and (P[oC,GD].p[GC,GD]).

Now since, in state z, C prefers GC to oé.

r(Plogagt plogopiiiz) = o(Plogoylplepehiz). )

24C1ear1y 7 is nondecreasing in M, s and V within each of the three regions.

Also, there are no discontinuities in y across the boundaries of the regilons:

at the boundary of regions 1 and 2, 71 s 72; and at the boundary of regions 2

and 3, 72 = 73.
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Equally, in state z’, D prefers 06 to OD. Remembering that all outcomes are

bilaterally efficient, we may view this in terms of C’s payoff:

7[(P[a‘(’:.c'l’)].9[0‘é,0‘1')])lz’] s 1[(?(%,«01.;»[%.001)|z'). (11)
Finally, since 1[(P.p)|z] is nondecreasing in z,
7[(P[o‘é,oD],p[0'(’:,o‘D])|z] z 7[(?[0‘&.0‘131.p[vé,O‘D])lz’). (111)

The LHS’s of (i) and (ii) are C's equilibrium net payoffs in states z and 2z’

respectively. Combining (i), (ii) and (iii) we obtain (4.3) and (4.4) in
Lemma 2.

(4.2) is an immediate consequence of the fact that 7[(P.p)|z] = M.

Q.E.D.

Proof of Proposition 4

In the light of (4.4), we may identify a state by (M,s,aV}. In this
proof, it helps to write C’s payoff as g(M,s,aV), rather than g(M,s,V).

Take any go(.,.,.) satisfying the three constraints:
ElgM,s,aV])] = I - w (1)
g(M,s,a¥V) = M (i1)

and g(M,s,aV) is nondecreasing in M, s and aV. (111)
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We proceed in two steps. First, we "flatten" go in the s-aV plane.

For each M, consider

gt ) = Eg®M,s,av)|M]. (1v)

gl(m) obviously continues to satisfy (11i) and, by construction, satisfles
(1). gl(M) is nondecreasing in M, thanks to affiliation.zs Moreover, the
minimand in (4.5) has (weakly) decreased. To see this, use the law of

iterated expectations:

Els(g®M,s,av) - gl (M))]

E(Els(g0(M,s,aV) - gl (M) |M]]

ELE(s|MIE[(g°(M,s,aV) - g} (M))|M]]

v

0 by (iv)

-~ where the inequality follows from affiliatlon.26

The second step in the proof is to replace gl(M) by

25See Theorem 23(i11) in Milgrom-Weber (1982), with their Z = (M,s,aV), their

g(2) = gO(M.s,aV), and, for Ml > MZ' their sublattice S = Alqu where AJ =
{(M,s,aV)|M = MJ). j =1,2. Taking A = AL and A = A, ve find gl(Ml) z

1
g (Mz).
26See Theorem 23(ii) of Milgrom-Weber (1982), with their Z = (M,s,aV), their
g(Z) = s, and their h(2) = gO(M,s,aV) - gl(M). conditioning on the sublattice
S = {(M,s,aV)\M}. On this sublattice, both their g and h are nondecreasing

functions.
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gZ(M) = min{M,P},

where P solves E[min{M,P}] =1 - w. This implies

Etgl)] = 1 -w =ElgZM)]. (v)

gz(M) obviously satisfies (1i) and (iii) and, by construction, satisfles (i).
To confirm that the minimand in (4.5) has (weakly) decreased, suppose M takes
the J values M, > ... > M, > ... > MJ. For 1 s j s J, let n (s) be the

1 J J

probability that M = MJ conditional on s. By linspection, there exists some

j*, where 1 = j* s J, such that

) > gZMy) for 1 s § s j*

1
M
g ( j

J

) = gZ(M ) for j*+1 = j = J.

and gl(M ]

J

Define

ats) = Elg o0 - gZm)|sl.

Then for s+ > s ,
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J

+ - + 1 _ 2
Als) ng uJ(s )(g (MJ) g (MJ)]
J n (s")
= T o (s) [ J ) gl - g2
=1 x,(s) J J
x,,(s") J
2 [_i‘__._] L =) 8"y - g2
uJ,(s ) 7 3=t

x,  (s)
= _i:____ Als )

IJ,(S )

-- where the inequality follows from affiliation.27 Hence A(s ) z 0 implies

Ats’) = 0. That i1s, A(s) exhibits single crossing: there exists some s* such

that

{s - s*)[A(s) - A(s*}] =z O for all s.
Taking expectations and applying the law of lterated expectatlions,

Els(glM) - g2M))] = s*Elg M) - g2,

27A direct consequence of Theorem 24 of Milgrom-Weber (1982) is that

nj(s+)

n.(s)

J

is nonincreasing in j.
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which is nonnegative by (v). Thus the minimand in (4.5) has (weakly)

decreased.
Q.E.D.

Proof of Proposition 5

Here we shall first prove that, without any distributional assumptlions,
c(I) is increasing and piecewise linear in the interval w s I s w/(1 - Em),
and that the slope of c(I) equals Es for w s I < w/(1 - m). Next, we will
prove that if E[slm] is nondecreasing in m, c(I) is convex. The rest of the

Proposition then follows directly from (5.4).

Let m take the values m1 > ... > mJ > ... 2> mJ, with associated
probabilities uJ >0, j=1,...,J. For j=1,...,d, define
J J
m = 1 - m ¥ - L mm.
J J =1 K k=)+1 K"k
= - . = - h
Now My < ... < “j < ... < My Note that My 1 m,; and My 1 Em, whic

is strictly positive by assumption. For notational convenience, let mye =0

and i = 1.

We partition [w, 5—] into J reglons RJU...URJU...URl where
1

R, = (X ", y=1,....J.
J i W

The regions RJ‘ 1 s j = J, are defined so that for I e RJ the P = P(1), say,

that solves E[min{P,Im}] =1 - w lles between ImJ+1 and Imj. The slope of

P(I) in the interior of region RJ is

All



1 - Y =
ke ge1 K"K
B, = isJs=J.
T
;¢
k=1 k
Notice that
Hy
BJ—mJ-% > 0. (1)
k8
k=1 k

And, for future reference, observe that, for 2 = j =< J,

j-1
J) kglnk - nJ(B

(B - B

J-1 j - mJ) 0, (ii)

which, from (i), implies that BJ-I > BJ.

Now for I in the interior of region RJ’ 1 s } = J, the slope of c(I)

equals
J J
B, L s + ¥ ns = ¢, say,

J &k ke K K"k J
where SJ = E[s|mJ]. Each ¢j is a positive constant for j =1,...,J. Hence,
since c(I) is continuous across the boundaries of the reglons, we deduce that
c(]) is increasing and piece-wise linear inw s 1 s E—. If m;=m > 0, then

1

J
w —
in the interval [w, T:E) the slope of c(I)}, ¢J, equals BJkglnksk = Es.
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If E{s|m] is nondecreasing in m then Sy 2 ... 2s;. Nowfor2sjsJ

J-1
¢J-1 - ¢J = (BJ_1 - BJ) k=1'ksk stJ(BJ - mJ). (111)
But since S, % ... x5 = ... 2 SJ' and BJ—I > BJ, the RHS of (1ii) is no

less than sJ times the LHS of (ii). That is, ¢J-1 z ¢J for all 2 s j = J,

and c{I) is convex.

Q.E.D.
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