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ABSTRACT

This paper reconsiders the empirical evidence connecting inflation to its higher order
moments, and in particular, its third moment-the skewness of the price change distribution.
Evidence on correlations between inflation and its moments goes back over thirty years, and was
first used to reject the independence of relative price changes and inflation that is assumed in
neoclassical models. More recently, New Keynesian macroeconomists have shown that the strong
positive correlation between inflation and the skewness of the price change distribution is consistent
with menu-cost models of price setting behavior. This is a fairly controversial result, prompting
other researchers to demonstrate that the same correlation can be found in a multi-sector, flexible-
price (real business cycle) model.

We examine the small-sample properties of the main empirical finding on which this work
is based: the positive correlation between the sample mean and sample skewness of price change
distributions. Our results show that this particular statistic suffers from a large positive small-sample
bias, and demonstrate that the entirety of the observed correlation can be explained by this bias. To
the extent that we find any relationship at all, it is that the correlation is negative. In other words,
we establish that one of the most accepted stylized facts in the literature on aggregate price behavior,

that inflation and the skewness of the price change distribution are positively linked, need not be a

fact at all.
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1 Introduction

Views of the sources, costs and consequences of inflation are often tied to evidence on
the relationship among the cross-sectional moments of inflation. For example, one often
hears the argument that higher inflation is more variable inflation (cross-sectionally),
and this is costly. Evidence on the statistical relationship between mean inflation and
its higher moments (variance and skewness) has been around for some time. Vining and
Elwertowski (1976) is the standard reference for the United States. They find a large
positive correlation between mean inflation and its higher-order moments.

More recently, Ball and Mankiw (1995) have revived interest in the relationship be-
tween the mean and skewness of inflation. It is their view that the positive correlation is
evidence for a particular sticky-price model of inflation. Balke and Wynne (1996a, 1996b)
propose an alternative theory for the correlation in which the same positive correlation
between mean and skewness can arise in a multi-sectoral flexible-price model.

The purpose of this paper is to examine the small-sample properties of the sample
statistics on which this work is based. We are interested in whether the observed sample
(time-series) correlation between the mean and skewness of the cross-sectional distribu-
tion of price changes is significantly different from zero. The intuition for the existence of
the small-sample bias is straightforward. To see it, consider a sample drawn from a zero-
mean symmetric distribution. Take a case in which the initial observations have a sample
mean of zero, and consider making one additional draw from the extreme positive tail
of the distribution. The sample mean and the sample skewness are now both positive.
And the further in the tail the added observation, the more positive both the sample
mean and the sample skewness — there is a small-sample bias in correlation between
the estimates of the first and third moments of a distribution. We show that the size of
this bias depends on the fatness of the tails of the distribution from which the sample
is drawn, that is, the higher the kurtosis of the distribution, the more positive the bias.
Using Monte Carlo methods, we also demonstrate that as one increases the number of
components in the cross-section used to calculate the sample moments, this bias dies out
very slowly. Samples of even 1000 are still small.

Using consumer and producer price data at both monthly and annual frequencies, we



estimate a large, positive small-sample bias in this statistic that accounts for virtually all
of the observed sample correlation. This leads us to conclude that there is no empirical
justification for either the Ball and Mankiw or the Balke and Wynne model.

Finally, insofar as there is any statistically significant correlation remaining after bias
adjustment, it is negative. We interpret this to suggest the possibility that there is a
nominal rigidity at zero. The rationale for this is simple. If price-setters are reluctant
to lower their nominal prices, then as aggregate inflation falls, it should lead to a larger
observed mass of prices changes near zero. This bunching at zero increases skewness in
the price-change distribution at the same time it lowers the mean.

The remainder of the paper is divided into five sections. Section 2 describes the models
in the literature. We follow with a preliminary examination of the data in Section 3.
In Section 4, we examine the statistical theory of the small-sample bias in the mean-
skewness correlation, and present results of Monte Carlo experiments. Section 5 reports
the application of these techniques to the consumer and producer price data. The final

section concludes.

2 Recent Models of Asymmetric Price Change

We begin with an overview of the theoretical models used to interpret the correla-
tion between the mean and cross-sectional skewness of inflation. There are two such
models in the literature. The first is a simple sticky-price model developed by Ball and
Mankiw (1995), and the second is a flexible-price model due to Balke and Wynne (1996a,
1996b). We consider each of these in turn.

2.1 The Ball and Mankiw Model

Ball and Mankiw (1995) begin by assuming that there is a single period, at the begin-
ning of which each firm in the economy fixes its price. Following this initial adjustment,
each firm is subjected to a mean-zero (real) shock and can pay a menu cost to change
its price a second time. Only some firms will experience shocks that are large enough
to make the second adjustment worthwhile. As a result, the observed change in the

aggregate price-level will depend on the shape of the distribution of idiosyncratic shocks.



In particular, Ball and Mankiw point out that if the distribution of real shocks is
skewed, this will move the aggregate price level in the same direction. A positively skewed
distribution, for example, will result in an aggregate price level increase. In general,
asymmetrical distributions of relative price shocks will cause transitory fluctuations in
the mean of prices, and so there will be a positive correlation between the mean and
skewness moments of the price-change distribution.

In Bryan and Cecchetti (1994), we noted how we could remove these transitory fluctu-
ations in aggregate prices by using limited-influence estimators, such as trimmed means
and the median.!

The Ball and Mankiw model has additional implications they do not explore. For
example, De Abreu Lourenco and Gruen (1995) note an implication for the relationship
between the level and cross-sectional variance of inflation and the level of expected infla-
tion. But in addition, the sticky-price model implies that the mean-skewness correlation
should die out in the long run. In the Ball and Mankiw model, the correlation arises
purely from short-run considerations. Once all the price-setters in the economy have had
the opportunity to adjust to their relative-price shocks, the correlation should disappear.
The implication is that as the length of time over which prices changes are measured
increases from months to quarters to years, the correlation should weaken and eventually

disappear.

2.2 The Balke and Wynne Model

Balke and Wynne (1996a, 1996b) build a multi-sector dynamic general equilibrium
model with money and flexible prices. In this approach, a productivity (or supply) shock
arising in one sector has two implications. First, it changes aggregate output. With the
quantity of money fixed and a cash-in-advance constraint, this induces a change in the
aggregate price level. Beyond this, the aggregate supply shock feeds through the input-
output structure of the economy to create differential impacts on different sectors. Prices
in the various sectors respond depending on the extent to which the supply shock affects

their average level of productivity. Since the input-output matrix is not symmetric, the

More recently, Cecchetti (1996) has extended this earlier analysis.



resulting price-change distribution is skewed.

Balke and Wynne show that their model implies a positive correlation between the
mean and skewness of inflation. The reason is straightforward. The larger the initial
supply shock, the larger the change in the aggregate price level. But since the coefhi-
cients of the input-output matrix are fixed, the larger the initial sectoral productivity
disturbance, the more skewed its impact will be on the distribution of price changes.

While both the sticky- and flexible-price models imply a positive correlation between
the mean and skewness of price changes, they differ in their predictions about the effects
at short and long horizons. In the Balke and Wynne model, the effects need not die out
in the long run. In fact, if the effect is predominantly a real one, it might become more
pronounced over time.

It is worth making one more observation before moving on to the statistical issues
involved in measuring the correlation between mean and skewness. A large and grow-
ing literature exists on the importance of inflation in facilitating relative price and wage
changes.? Research has focused on whether firms and workers are reluctant to lower
nominal wages and prices. If such a nominal rigidity existed at zero inflation, this would
have implications for the relationship of the mean to the skewness of price-change distri-
butions. Specifically, as inflation falls toward zero, one would expect the cross-sectional
distribution of price changes to have increased mass near zero, and consequently in-
creased skewness. The result is a negative correlation between the mean and skewness of

inflation.

3 Preliminary Analysis of the Data

Our analysis of data begins with the simple calculation of sample moments. We
study two data sets in detail. The first is composed of 36 components of the Consumer
Price Index, available monthly from January 1967 to April 1996. The second utilizes
27 components of the Producer Price Index, monthly from January 1947 to December
1995. In both cases, the number of components chosen is the maximum that enables us

to maintain a balanced panel over the entire sample period.

2See Akerlof, Dickens and Perry (1996) for one of the most recent contributions.
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We begin by computing the inflation in each component over horizon k:

1
= ;ln(Pit/Pu_k) , (1)

where p;; is the index level for component ¢ at time ¢. From this, we define the mean

inflation in each time period as
=Y WiPit (2)
i
where the w;’s are weights. The higher-order central moments are then just

mr(t) = Zw,-('/'rit - Ht)r . (3)

Skewness are kurtosis are the scaled third and fourth moments:

m3(t)
S = W (4)
and

m4(f)
T P

We compute two sets of moments for each data set that differ only in the weights (w;’s)
used in the calculation. The first is labeled unweighted, and for these we assume that
the weights are all equal. The second, called weighted, uses the actual 1985 expenditure
weights to aggregate the 36 components of the CPI and the 1982 output value weights
to aggregate the 27 components of the PPI.

Table 1 reports the results for weighted and unweighted moments of both indices
computed over horizons of one to 24 months. The most important thing to notice is
the kurtosis of these distributions. On average, monthly CPI inflation has a (weighted)
kurtosis of more than nine. The kurtosis declines substantially with horizon, falling
gradually to 4.7 for 24-month averages of monthly inflation. The PPI data show the
same general pattern; kurtosis is high for one-month changes, falling gradually as the

horizon increases.



Table 1: Sample Moments of Price-Change Distributions

36 Components of the CPI
Sample 1967:01 to 1996:04
k=1]k=3]k=12Tk=24
Mean
Unweighted | 5.015 | 5.021 | 5.068 5.137
Weighted 5371 | 5.383 | 5.445 | 5.519
Standard Deviation
Unweighted | 9.718 | 6.718 | 4.007 | 3.219
Weighted 7.953 | 5.631 | 3.455 | 2.807
Skewness
Unweighted | 0.390 | 0.383 | 0.400 | 0.465
Weighted 0.322 | 0.233 | 0.176 | 0.164
Kurtosis
Unweighted | 12.703 | 10.620 | 6.564 | 5.205
Weighted 9.169 | 8.069 | 5.460 | 4.709

27 Components of the PPI
Sample 1947:01 to 1995:12
k=1|k=3 |k=12]k=24
Mean
Unweighted | 3.385 | 3.388 | 3.336 | 3.328
Weighted 3.223 | 3.227 | 3.185 | 3.168
Standard Deviation
Unweighted | 15.718 | 10.164 | 5.205 | 3.451
Weighted 13.989 | 9.212 | 4635 | 3.192
Skewness
Unweighted | 0.083 | 0.133 | 0.017 | 0.021
Weighted 0.118 | 0.153 | 0.051 | 0.097
Kurtosis
Unweighted | 11.007 | 9.243 | 7.561 | 5.939
Weighted 8.554 | 7.958 | 7.067 | 6.051

Moments of price-change distributions are at annual rates.
k is the horizon, so k = 12 refers to 12-month changes.




4 Small-Sample Bias: Intuition

All evidence linking inflation and skewness comes from sample estimates. For exam-
ple, the correlation between the weighted mean and weighted skewness in the CPI, at
a monthly frequency, is 0.36. A standard test for whether this is statistically different
from zero yields an asymptotic t-ratio of 6.735, which implies rejection at any meaning-
ful level of statistical significance. But is such a conclusion warranted? What are the
small-sample properties of this correlation, and how might they affect such an inference?

Some simple intuition suggests why asymptotics might be very misleading in this
particular case. To see this, we begin with some definitions. First, take z; to be a
random draw from a symmetric distribution with mean zero and population moments

1. Then define the higher-order central sample moments as m.,., so that

1 n
m, == (z: —mi)" (5)
nia
for » > 1, and
1 n
my = — ZIE,’ . (6)
n =1

The important insight is that draws that deviate from the population mean of the
distribution, i.e., z; # 0, can move the sample first and third moments systematically
away from their population values, leading to a correlation. To see this, consider the
simple case depicted in Figure 1. The x’s represent draws from the symmetric distribution
in the figure. Note that when one of the draws comes from the extreme positive tail of
the distribution, it produces a positive sample mean and sample skewness: m; > p; (= 0)
and m3 > p3(= 0). Draws from the extreme negative tail have the opposite effect. In
both cases, however, the result is a positive correlation that arises from observing only a
small number of draws.

It is straightforward to compute the correlation between the first and third sample
moments analytically. Consider a set of n draws from a mean-zero symmetric distribution.
The relationship between the sample first moment is given by (6) and the sample third

moment,

Y (zi—my)?, (7)



FIGURE 1:

Sample Draw from a Symmetric Distribution
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can be inferred by expanding (7). This yields
3 2 2 3
; T — 3muxi + 3zym] —m
my = 1V 1 - 1 1 (8)
3 2
= = L —3my (%——’-) + 2m} 9)
¥z
= ;’ L. 3m1m2 — m?

Now consider the consequences of increasing the value of a particular draw z; to (z;+1),
for an initial sample with mean zero. Clearly this increases the sample mean, m;, by %;

that is, ‘fﬁf = % The impact on the sample third moment is

(3 —my) . (10)

dm3 _3_
dz; n

my =0

This is positive if the absolute value of z; exceeds the sample standard deviation, ,/ms.
In other words, the sample correlation between the sample mean and the sample third

moment is made more positive whenever there is a draw sufficiently far in the tail of the
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distribution.

What determines the likeliness it is that a sample will include extreme draws? The
answer is that the fatter the tails of the probability distribution from which the draws
are taken, the more likely that some of the z;’s will be outside one standard deviation.
In other words, the kurtosis of the distribution is crucial for the size of the bias in the
small-sample correlation of m,; and ms.

We can gain further insight into this issue by considering the case of the normal
distribution. This case is of particular interest since, for a set of independent draws,
the sample mean, m,, and any function of deviations from the sample mean, g(z; —
my, ..., Tn — M), are independent. Clearly, the sample third moment is a function of this
form, implying that when the underlying probability distribution has a kurtosis of three,
the sample correlation between m; and mg will be zero.

A simple Monte Carlo experiment helps to illustrate how large the small-sample bias
is in the correlation between the sample mean and sample skewness. (The empirical
work has focused on the sample skewness, not mg3.) All of our experiments are based
on mean zero symmetric distributions, and so there is no population correlation between
mean and skewness — both are zero. The discussion above suggests that the bias in the
sample correlation should depend on the kurtosis of the density from which the sample
observations are drawn; thus we should examine cases that differ depending on how
fat-tailed the distributions are.

We consider the following mixture of a standard normal and a uniform distribution:
sx N(0,1)+ (1 —s)U(-A,A), (11)
where
Pr(s=1)=p.

That is, first we draw from a binomial to determine which distribution to draw from,

then we draw from the distribution itself. The kurtosis of this distribution is

_p+(-p%
p+(1-p)&)

(12)



FIGURE 2

Correlation of Sample Mean and Sample Skewnoess
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For a given p, this increases with A, with a minimum at 1.8.

The first set of experiments involves drawing 250 samples of 50 each for a given A.
Throughout, p is set to 0.1. For each of the 250 samples, we calculate the sample mean
and sample skewness. Then, using these 250 estimates of mean and skewness, we compute
the sample correlation. This is repeated 2500 times for each value of A.

Figure 2 plots the mean and two-standard-deviation bands of the empirical distri-
bution for the correlation between sample mean and sample skewness, as a function of
the kurtosis of the distribution from which the simulated data are drawn. The results
are striking in that they imply bias that is significantly positive whenever the kurtosis
exceeds four! For kurtosis of 8.07, the mean of the sample value for the quarterly CPI
data, the bias has a mean of 0.42 with a standard deviation of 0.05, implying a 95-percent
confidence interval of approximately (0.32, 0.52).

But these results are for samples with only 50 cross-sectional observations and 250
time-series observations. If we increase either of these, what happens to the bias? To
answer this question, we examine one case in more detail. Table 2 reports the results

of a series of experiments, all of which are based on a distribution with a kurtosis of
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Table 2: Small-Sample Bias in the Correlation of the Mean and Skewness:

An Example
(Mean and standard deviation of small-sample distribution)

Time Number of Components
Periods 50 250 500 1000
25 0.4209 | 0.4112 | 0.4061 | 0.4054
0.1697 | 0.1703 | 0.1726 | 0.1776
50 0.4222 | 0.4162 | 0.4107 | 0.4071

0.1192 | 0.1181 | 0.1190 | 0.1242
100 0.4236 | 0.4170 | 0.4132 | 0.4102
0.0836 | 0.0832 | 0.0832 | 0.0850
250 0.4247 | 0.4192 | 0.4153 | 0.4113
0.0514 | 0.0518 | 0.0519 | 0.0525
500 0.4251 | 0.4190 | 0.4158 | 0.4130
0.0364 | 0.0365 | 0.0371 | 0.0366

Mean and standard deviation of the small-sample distribution of the correlation of the
mean and skewness of a distribution with kurtosis of 8.07. This matches the kurtosis
in the three-month changes of the CPI and PPI data. With the exception of the last
column, which has 2500 replications, all experiments have 5000 replications, where the
number of components are equally weighted.
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8.07. This matches the weighted kurtosis of the three-month changes in both the CPI
and the PPI (see Table 1). The table reports results from increasing the cross-section
to 1000 components with a time-series of up to 500 periods. The results are extremely
interesting, as they show that increasing the size of the cross-section, within reasonable
limits, reduces bias very slowly. The addition of time-series observations, on the other
hand, reduces the spread of the empirical distribution of the bias, resulting in more

precise estimates.

5 Small-Sample Bias: Price Statistics

The results of the previous example suggest that the estimates of the correlation
between the sample mean and sample skewness of inflation may have large positive biases
in them. We expect that these biases will become worse, as the tails of the price-
change distributions become fatter. It is worth noting that, in general, heteroskedastic
distributions will have fat tails. For example, a distribution constructed by mixing two
normal densities will have leptokurtosis.

We follow Balke and Wynne (1996a, 1996b) and examine the properties of the simple
correlation between the mean and the skewness of inflation. This avoids any need to
take a position on whether certain real shocks cause inflation. By contrast, Ball and
Mankiw (1995) focus on a regression with the mean on the left-hand side and skewness

on the right-hand side.

5.1 The Experiments

To examine the actual price-change data, we use a series of Monte Carlo experiments
to calculate the empirical distribution of the correlation between the sample mean and
sample skewness. Each experiment has the following components: First, we specify a
data-generating process from which to draw simulated inflation data. Each random draw
has the same size data matrix as the actual panel of inflation data, {Wft}, where i is the
component, ¢ is the time period, and j is the number of the draw.

Using these draws, we compute the sample moments of interest. These are the time-
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series mean inflation rates, given by
. 36 .
i=1
and the higher-order moments needed to compute the skewness,
. 36 . >
mi(t) = Y wi(r, — ) | (14)
i=1

The weights, w;, are equal either to the weights used in the price index itself or to the
inverse of the number of components. Using these, we compute the correlation, over
time, of sample mean and sample skewness.

We conduct two sets of experiments that differ according to the weighting scheme
used. In the first, the data are equally weighted; in the second we, use either the actual
1985 expenditure weights for the CPI data or the 1982 output-value weights for the PPI

data. There are four cases for each of the two sets:
1. I.I.D.: All data are drawn from i.i.d. N(0,1) distributions.

2. LN.I.D.: All data are drawn from ii.d. N(0,02) distributions, where o? is the

unconditional distribution of inflation in component i over the entire sample.

3. ILN.I.LD with serial correlation: For each of the 36 components, sequences are
built up in the following way. First, each is modeled as an AR(12) with innovations.
These autoregressions are estimated from the actual data, yielding 36 parameter
vectors and 36 time series of residuals. (Since inference is not an issue here, this is
done using equation-by-equation OLS.) The 36 time-series of residuals are used to
compute an estimated variance-covariance matrix for the system, which we call 3.
A sequence of draws are then taken from a multivariate N(0,%). These are used
recursively to construct 36 data series, starting with the first 12 actual values of

each series.

4. Bootstrap: This is the same as the previous experiment, with the exception that
the draws are taken from the actual innovation series themselves, not from a mul-

tivariate normal distribution.
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Finally, in addition to monthly changes, we consider overlapping 1-, 3-, 12-, and 24-
month changes. When the data-generating process is assumed to be heteroskedastic,
the actual p-values are constructed using robust methods. For simple i.n.i.d. cases,
White’s (1980) method is used. For the i.n.i.d. with serial correlation and bootstrap
cases, Newey and West’s (1987) procedure with bandwidth parameter set equal to 1.4k

is used.

5.2 Results

We present results for three data sets: (1) 36 components of the CPI, monthly, from
1967 to 1996; (2) 27 components of the PPI, monthly, from 1947 to 1996; and (3) the
Ball and Mankiw annual PPI data, which have a maximum of 301 components and a
sample period from 1947 to 1989. For each of these, we present a table that includes
the following results: the actual sample value of the correlation between the mean and
the skewness of inflation; the p-value computed from the standard statistic (i.e. t-ratio)
assuming that the asymptotic distribution is accurate; the bias-adjusted correlation value
minus the median of the empirical distribution; and finally, an empirical p-value for the
test that correlation observed in the data is equal to zero in the empirical distribution.

Table 3 includes the results obtained from the CPI data. Note that once we allow
for heteroskedasticity, the bias is large. To see this, compare experiments 1 and 2 for
k = 1. The sample correlation for the unweighted data is 0.548. If the data were truly
generated by an i.i.d. normal distribution, then there would be no small-sample bias,
and the null hypothesis that the correlation is zero would be rejected with a p-value of
0.00. However, once we introduce heteroskedasticity in experiment 2, the bias-adjusted
correlation is estimated to be —0.017, with a p-value of 0.63!

Tables 3 and 4 each contain 24 experiments that allow for heteroskedasticity in the
data-generating process for inflation (all but experiments 1 and 5). For the CPI data, 15
of the bias-adjusted correlation estimates are positive, but all of the p-values exceed 0.10.
In fact, for the short horizons k£ = 1 and k = 3, the estimates are generally negative.

Moving to the PPI data, there is some evidence of a negative correlation between
mean and skewness. All but two of the bias-adjusted correlation estimates are less than

zero, and a number of the p-values are less than 0.10. This is especially true when we

14



Table 3: Bias-Adjusted Correlation Between Mean and Skewness
Consumer Prices, 36 Components, Monthly, 1967 to 1996

Experiment | Statistic | k=1 ] k=3 [k=12]k=24
Unweighted
Sample Correlation 0.548 | 0.535 | 0.581 | 0.646
values p-value 0.00 0.00 0.00 0.00
iid Bias-Adjusted Correlation | 0.547 | 0.533 | 0.581 | 0.641
Empirical p-value 0.00 0.00 0.00 0.00
inid. Bias-Adjusted Correlation | —0.017 | —0.026 | 0.014 | 0.071
Empirical p-value 0.63 0.60 0.86 0.58
in.i.d. Bias-Adjusted Correlation | —0.068 | —0.087 | 0.051 | 0.158
w/ Serial Corr. | Empirical p-value 0.08 0.14 0.64 0.33
Bootstrap Bias-Adjusted Correlation | —0.087 | —0.098 [ 0.049 | 0.160
Empirical p-value 0.03 0.11 0.67 0.32
Weighted
Sample Correlation 0.360 | 0376 | 0.428 | 0.465
values p-value 0.00 0.00 0.00 0.00
iid. Bias-Adjusted Correlation | 0.801 0.818 | 0.876 | 0.914
Empirical p-value 0.00 0.00 0.00 0.00
in.id. Bias-Adjusted Correlation | 0.015 | 0.032 | 0.083 | 0.115
Empirical p-value 0.72 0.58 0.49 0.50
in.id. Bias-Adjusted Correlation | —0.018 | 0.014 | 0.203 | 0.347
w/ Serial Corr. | Empirical p-value 0.76 0.87 0.19 0.13
Bootstrap Bias-Adjusted Correlation | —0.057 | —0.007 | 0.181 | 0.318
Empirical p-value 0.33 0.91 0.23 0.16




Table 4: Bias-Adjusted Correlation Between Mean and Skewness
Producer Prices, 27 Components, Monthly 1947 to 1995

Experiment | Statistic | k=1 | k=3 [Jk=12 | k=24
Unweighted
Sample Correlation 0.522 0.399 0.329 0.294
values p-value 0.00 0.00 0.00 0.00
iid. Bias-Adjusted Correlation | 0.522 0.398 0.329 0.297
Empirical p-value 0.00 0.00 0.00 0.02
in.id. Bias-Adjusted Correlation | 0.007 —0.117 | —-0.191 | —-0.231
Empirical p-value 0.81 0.01 0.02 0.08
in.id. Bias-Adjusted Correlation | —0.081 [ —0.090 | —0.001 0.023
w/ Serial Corr. | Empirical p-value 0.00 0.06 0.99 0.87
Bootstrap Bias-Adjusted Correlation | —0.077 | —0.112 | —0.0337 | —0.0119
Empirical p-value 0.01 0.02 0.74 0.94
Weighted
Sample Correlation 0.428 0.372 0.283 0.299
values p-value 0.00 0.00 0.00 0.00
iid. Bias-Adjusted Correlation | 0.523 0.467 0.378 0.391
Empirical p-value 0.00 0.00 0.00 0.00
in.id. Bias-Adjusted Correlation | 0.046 —0.011 | —0.104 | —0.096
Empirical p-value 0.17 0.82 0.26 0.46
in.id. Bias-Adjusted Correlation { —0.008 | —0.045 | —0.030 | —0.033
w/ Serial Corr. | Empirical p-value 0.80 0.39 0.78 0.81
Bootstrap Bias-Adjusted Correlation | —0.0518 | —0.0671 | —0.0548 | —0.0505
Empirical p-value 0.13 0.17 0.59 0.73




Table 5: Bias-Adjusted Correlation Between Mean and Skewness
Producer Prices, 301 Components, Annual 1947 to 1995

Unweighted
Sample Correlation 0.4371
values p-value 0.00
iid. Bias-Adjusted Correlation | 0.4357
Empirical p-value 0.00
in.id. Bias-Adjusted Correlation | -0.0934
Empirical p-value 0.45
in.id. Bias-Adjusted Correlation | -0.1369
w/ Serial Corr. | Empirical p-value 0.00
Weighted
Sample Correlation 0.4308
values p-value 0.00
iid. Bias-Adjusted Correlation | 0.5091
Empirical p-value 0.00
in.id. Bias-Adjusted Correlation | 0.0076
Empirical p-value 0.96
in.i.d. Bias-Adjusted Correlation | -0.2808
w/ Serial Corr. | Empirical p-value 0.00

Results are from experiments with 2500 replications. All data are from Ball and
Mankiw (1995), restricted to include only those series with non-zero weight in 1982,
and with at least six years of data. Experiments 3 and 6 presume that each inflation
series is a first-order autoregression.

use the unweighted data.

As is suggested by the experiments at the end of Section 4, increasing the number of
components from 27 to 301 is of virtually no help in eliminating the small-sample bias in
the correlation between mean and skewness. Once again, only negative estimates of the
bias-adjusted correlation are significantly different from zero.?

Collectively, these results allow the following conclusions. First, the empirical impli-

cations of the Ball and Mankiw sticky-price model are not borne out in the data: No

3We use a restricted set of the components used by Ball and Mankiw. First, throughout the analysis,
we use only those components with nonzero weights in 1982. Second, we employ only series with six or
more years of data. Finally, we do not report results for bootstrap samples, as the gaps in some of the
data series make their construction conceptually difficult.
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evidence of a positive correlation between mean and skewness is more pronounced at short
horizons. The failure to find a correlation that is both positive and significantly different
from zero is also evidence against the mechanisms suggested by Balke and Wynne.

QOur finding of a significant negative correlation in the monthly changes of the un-
weighted data, as well as in the annual changes in Ball and Mankiw’s PPI data, is
intriguing. It suggests the possibility that price-setters may face a rigidity at zero.

The rationale for this might be something like the following: If price-setters are
reluctant to lower their nominal prices, then as aggregate inflation falls, it should lead
to larger observed mass near zero in the distribution of price changes. This bunching at
zero increases skewness in the price-change distribution at the same time it lowers the
mean.

We caution, however, that our results are not robust across the data sets we examine.
We observe no statistically significant negative correlations in the CPI data. And our
strongest results are for the unweighted PPI data. Insofar as there is any pattern in the
bias-corrected correlation estimates, it is that they become more positive as the horizon
lengthens. This is exactly the opposite of what is implied by the menu-cost approach,

which predicts that they should diminish over time.

6 Conclusions

Based on the evidence presented here, we believe that the recent focus on the corre-
lation between the mean and skewness of the cross-sectional distribution of price changes
i1s unwarranted. The positive small-sample bias explains the entire correlation observed
in the data. The evidence is overwhelmingly against both the Ball and Mankiw model
of inflation and the Balke and Wynne model of real supply shocks.

To the extent that we are able to document any statistically meaningful relationship
between mean and skewness, it is a weak negative one. We view these results as suggestive

and worthy of further study.
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