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This paper develops a model of the process generating subsequent citations to patents as a lens for

viewing knowledge diffusion. We find that the probability of patent citation over time after a patent
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diffusion and obsolescence functions, The results indicate that diffusion is geographically localized.
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than those that cross country boundaries.
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I. INTRODUCTION

The rate at which knowledge diffuses outward from the institutional setting and

geographic location in which it is created has important implications for the modelling of

technological change and economic growth, and for science and technology policy. Models of

endogenous economic growth, such asRomer(1990) or Grossman and Helpman (199 1), typically

treat knowledge as completely diffused within an economy, but implicitly or explicitly assume

that knowledge does not diffuse across economies. In the policy arena, ultimate economic

benefits are increasingly seen as the primary policy motivation for public support of scientific

research, Obviously, the economic benefits to the U.S. economy of domestic research depend

on the fruits of that research being more emily or more quickly harvested by domestic firms than

by foreign firms. Thus for both modeling and policy-making purposes it is crucial to understand

the institutional, geographic and temporal dimensions of the spread of newly created knowledge.

In a previous paper with Rebecca Henderson (Jaffe, Henderson and Trajtenberg, 1993)

we explored the extent to which citations by patents to previous patents are geographically

Iocdized, relative to a baseline likelihood of localization based on the predetermined pattern of

technological activity. This paper extends that work in several important dimensions. First, we

use a much larger number of patents over a much longer period of time, This allows us to

explicitly introduce time, and hence diffusion, into the citation process. Second, we enrich the

institutional comparisons we can make by looking at 3 distinct sources of potentially cited

patents: U.S. corporations, U.S. universities and the U.S. government. Third, the larger number

of patents allows us to enrich the geographic portrait by examining separately the diffusion of

knowledge from U.S. institutions to inventors in Canada, Europe, Japan and the rest of the world.

Finally, our earlier work took the act of citation as exogenous, and simply measured how often

that citation came from nearby. In this paper we develop a modelling framework that allows the

generation of citations from multiple distinct locations to be generated by a random process

whose parameters we estimate.

II. THE DATA

We are in the process of collecting from commercial sources a complete database on all



U.S. patents’ granted since 1963 (approximately 2.5 million patents), including data for each

indicating the nature of the organization if any, to which the patent property right was assigned;2

the names of the inventors and the organization, if any to which the patent right ww resigned;

the residence of each inventor;3 the date of the patent application and the patent grant;’ a detailed

technological classification for the patent; and miscellaneous other information. The data on

individual patents are complemented by a file indicating all of the citations made by U.S. patents

since 1977 to previous U, S. patents (approximately 9 million citations). Using the citation

information in conjunction with the detailed information about each patent itself, we have an

extremely rich mine of information about individual inventive acts and the links among them as

indicated by citations made by a given patent to a previous one.

We have discussed elsewhere at great length the advantages and disadvantages of using

patents and patent citations to indicate inventions and knowledge links among inventions (Jtie,

Henderson and Trajtenberg, 1993; Trajtenberg, Henderson and Jaffe, 1992; See also Griliches,

1990), Patent citations perform the legal function of delimiting the patent right by identi~ing

previous patents whose technological scope is explicitly placed outside the bounds of the citing

patent. Hence the appearance of a citation indicates that the cited patent is, in some sense, a

technological antecedent of the citing patent. Patent applicants bear a legal obligation to disclose

any knowledge that they might have of relevant prior inventions, and the patent examiner may

also add citations not identified by the applicant.

Our basic goal in this paper is to explore the process by which citations to a given patent

arrive over time, how this process is affected by characteristics of the cited patent, and how

different potentially citing locations differ in the speed and extent to which they “pick up”

1. By “U.S. patents,” we mean in this context patents granted by the U.S. patent office. All of our research
relies on U.S. patents in this sense. Currently about half of U.S. patents are granted to foreigners. Hence, later
in the paper, we will use the phrase “U.S. patents” to mean patents granted to residents of the U. S., as opposed
to those granted to foreigners.

2. Patents are reported as unassigned, or else assigned to one of U.S. corporation, non-U.S. corporation, U.S.
individual, non-U. S. individual, U.S. govemrnent, non-U. S. government.

3. city and state for U.S. inventors, country for non-U.S. inventors

4. We have data only on successful patent applications. Unsuccessful applications are not public information,
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etisting knowledge, as evidenced by their acknowledgement of such existing knowledge through

citation. Because of the policy context mentioned above, we are particularly interested in

citations to university and government patents. We recognize that much of the research that goes

on at both universities and government laboratories never results in patents, and presumably has

impacts that cannot be traced via our patent-citations-bwed research. We believe, however, that

at least with respect to relatively near-term economic impacts, patents and their citations are at

least a useful window into the otherwise “black box” of the spread of scientific and technical

knowledge.

The analysis in this paper is based on the citations made to 3 distinct sets of “potentially

cited” patents. The first set is a 1-in-10 random sample of all patents granted between 1963 and

1990 and assigned to U.S. corporations (88,257 patents). The second set is the universe of all

patents granted between 1965 and 1990 to U.S. Urtiversities, based on a set of assignees identified

by the Patent OffIce as being universities or related entities such as teaching hospitals (10,761

patents),’ The third set is the universe of patents granted between 1963 and 1990 to the U.S.

government (38,254 patents), Based on comparisons with numbers published by NSF, these are

overwhelmingly coming from federal labs, and the bulk come from the large federd labs. The

U.S. government set also includes, however, small numbers of patents from diverse parts of the

federal government. We have identified all patents granted between 1977 and 1993 that cite arty

of the patents in these three sets (479,861 citing patents). Thus we are using temporal,

institutional, geographic and technological information on over 600,000 patents over about 30

years.

Some simple statistics from these data are presented in Table One. On average, university

patents are more highly cited, despite the fact that more of them are recent.b Federal patents are

fess highly cited than corporate patents. But it is difficult to know how to interpret these

averages, because many different effects all contribute to these means. First, the differences in

timing are important, because we know from other work that the overall rate of citation has been

5. There are, presumably university patents before 1965, but we do not have the ability to identi& them as
such.

6. IO previous work (Henderson, Jaffe and Trajtenberg, 1995), we showed that university patents applied for up
until about 1982 where more highly cited than corporate patents, but that the difference has since disappeared,
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rising over time (Caballero and Jaffe, 1993), so more recent patents will tend to be more highly

cited than older ones. Semnd, there Me significant differences in the composition of the

different groups by technical field. Most dramaticdly, university patents are much more highly

concentrated in Drugs and Medical Technology, and less concentrated in Mechanical Technology,

than the other groups. Conversely, the federal patents are much more wncentrated in Electronics,

Optics and Nuclear Technology than either of the other groups, with less focus on Chemicals.

To the extent that citation practices vary across fields, differences in citation intensities by type

of institution could be due to field effects. Finally, as shown in Table Two, different potentially

citing locations have different field focuses of their own, with Japan more likely to cite

Electronics patents and less likely to cite Drug and Medical patents. The main contribution of

this paper is the exploration of sn empirical framework in which all of these different effects can

be sorted out, at least in principle.

III. THE MODEL

We seek a flexible descriptive model of the random processes underlying the generation

of citations, which will allow us to estimate parameters of the diffusion process while controlling

for variations over time and technological fields in the “propensity to cite.” For this purpose we

adapt the formulation of Caballero and Jaffe (1993), in which the likelihood that any particular

patent K granted in year T will cite some particular patent k granted in year t is assumed to be

determined by the combination of an exponential process by which knowledge diffuses and a

second exponential process by which knowledge becomes obsolete. That is:

Aw=a(m’P[-P,(m(~-~)l[l -xP(-P,(~-~))1 (1)

where J3, determines the rate of obsolescence and ~z determines the rate of diffusion. We refer

to the likelihood determined by Equation (1) as the “citation frequency,” and the citation

frequency as a function of the citation lag (T-t) as a citation fuction, The dependence of the

parameters a and ~1 on k and K is meant to indicate that these could be functions of certain

attributes of both the cited and citing patents. In this paper, we consider the following as

attributes of the cited patent k that might affect its citation frequency: t, the grant year of the

potentially cited patent; i=l ..3, the institutional nature of the assignee of the potentially cited
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patent (corporate, university or government); and ~1 ..5, the technological field of the potentially

cited patent. As attributes of the potentially citing patent K that might affect the citation

likelihood we consider: T, the grant year of the potentially citing patent, and L=l ..5, the location

of the potentially citing patent.

To illustrate the plausibility of this formulation, we plot the average citation fmctions

(citation frequency as a function of time elapsed from the potentially cited patent), for each of

the 5 geographic regions (Figure One) and each of the 3 institutional groups (Figure Two).’

These figures show that citations show a pattern of gradual diffusion and ultimate obsolescence,

with maximal citation frequency occurring after about 5 years. The contrasts across groups and

countries in these raw averages are striking: U.S. patents are much more likely to cite our 3

groups of U.S. patents than are any other locations, with an apparent ranking among other regions

of Canad% “Rest of World,” E,E,C., and then Japan. Figure Two shows that universities are

much more highly cited than corporations, at least up until lags of about 20 years, and federal

labs are less highly cited throughout. While many of these contrasts will survive more careful

scrutiny, it is important at this point to note that these comparisons do not control for time or

technical field effects, In ptiicular, the coutry comparisons are distorted by differences in

technical field focus, and the university/corporate comparison is distorted by differences in

timing. me relatively high frequencies associated with the longest lags are also distorted by the

fact that these long lags can only be observed for the most recent citing years, and the intensity

of citations made is higher in these years than earlier in the data.

Additional insight into this parmeterization of the diffusion process can be gained by

determining the lag at which the citation function is maximized (“the modal lag”), and the

maximum value of the citation frequency achieved. A little calculus shows that the modal lag

is approximately equal to 1/~1 ; increases in ~, shift the citation fuction to the left. The

maximum value of the citation frequency is approximately determined by ~z/~l ; increases in ~2

holding ~1 constant increase the overall citation intensity.g Indeed, increases in ~z , holding

7. For convenience, we will refer to the citation frequency as a function of citation lag as a ‘citation function. ”

8. The approximation involved is that log(l + ~~~1)= ~J~, , Our estimations all lead to ~+~1 on the order

of 104, and indeed the approximation holds to 5 significant figures for lags up to 30 years.
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~, constant are very close to equivalent to increasing the citation frequency proportionately at

every value of (T-t). That is, variations in ~z , holding ~, constant are not separately identified

from variations in a. Hence because the model is somewhat easier to estimate and interpret with

variations in q we do not allow variations in ~z .

Consider now a potentially cited patent with particular i,t,g attributes, e.g. a university

patent in the Drug and Medical area granted in 1985. The expected number of citations that this

patent will receive from a p~icular T,L combination (e.g. Japanese patents granted in 1993) is

just the above likelihood, as a fmction of i,t,g,T and L, times the number of patents in the

particular T,L group that are thereby potential citing patents. Even aggregating in this way over

T and L, this is still a very small expected value, and so it is not efficient to carry out estimation

at the level of the individual potentially cited patent. Instead we aggregate across all patents in

a particular i,t,g cell, counting all of the citations received by, e.g., university drug patents

granted in 1985, given by, e.g., Japanese patents in 1993, The expected value of this total is just

the expected value for any one potentially cited patent, times the number of potentially cited

patents in the i,t,g cell. In symbols:

~c@#=(~J(~Ja@nexp[-( p,)@n(R~(~-t)l[l -exp(-P2(~-t))l

or

“@d =a@mexp[-(~l)@m(~M(T-t)][l -exp(-p2(~-t))l
(nJ(n&J

(2)

(3)

implying that the equation

can be estimated by non-linear least squares if the error e~i~~ is well-behaved, The data set

consists of one observation for each fewible combination of values of i,t,g,T and L, The

corporate and federal data each contribute 9275 observations (5 values of g times 5 values of L

times 28 values of t times either 17 (for years before 1977) or 1993-t (for years beginning in



1977) values of T.g Because the university patents start only in 1965, there are only 8425

university cells, for a total number of observations of 26,975. Of these, about 25°/0 have zero

citations ;’” the mean number of citations is about 18 and the maximum is 737. The mean value

of P*TL is 3.3x104.

Iv. MODEL SPECIFICATION AND INTERPRETATION

The first specification issue to consider is the difficulty of estimating effects associated

with cited year, citing year ad lag. This is analogous to estimating “vintage,” time, and age

effects in a wage model or a hedonic price model. If lag (our “age” effect) entered the model

linearly, then it would be impossible to estimate all three effects, Given that lag enters our model

non-linearly, all three effects are identified, in principle. In practice, we found that we could not

get the model to converge with the double-exponential lag fuction and separate a parameters

for each cited year and each citing year. We were, however, able to estimate a model in which

cited years are grouped into 5 year-internals. Hence we assume that a(t) is constant over t for

these intervals, but allow the intervals to differ from each other.

All of the estimation is carried out including a “base” value for ~1 md ~2, with all other

effects estimated relative to a base value of unity. 11 The various different effects are included

by entering multiplicative parameters, so that tie estimating equation looks like:

(5)

where i=c,u,f (cited institution type); t= 1963-1990 (cited year) tp=l ....6 (five year intervals for

cited year, except first interval is 1963-65); g=l ....5 (technological field of cited patent);

T=1977... 1993 (citing year); and L=l ....5 (citing region). In this model, unlike the linear case,

9. We exclude cells for which t=T, where the model predicts that the number of citations is identically zero. In

fact, the number of citations in such cells is almost always zero.

10. About two-tids of the zero citation observations are for cells associated with either Canada or Rest of
World.

11. As noted above, a is not separately identified from ~1 and ~2. Hence we do not estimate a “base” value

for the parameter a, it is implicitly unity.
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the null hypothesis of no effect corresponds to parameter values of unity rather than zero. For

each effect, one group is omitted from estimation, ie. its multiplicative parameter is constrained

to unity. Thus the parameter values are interpreted as relative to that base group. The base

group for each effect is w follows:

Cited time period (tp) 1963-65
Cited field (g) “All Other”
Type of Cited Institution (i) Corporate
Citing year (T) 1977
Citing region (L) Us.

The estimate of any particular a(k), say a(g=Drugs and Medical), is a proportionality

factor measuring the extent to which the patents in the field “Drugs and Medical” are more or

less likely to be cited over time v-is a vis patents in the base catego~ “AI] Other.” Thus, an

estimate of a(k=Drugs) = 1.4 means that the likelihood that a patent in the field of Drugs and

Medical will receive a citation is 40% higher than the likelihood of a patent in the base category,

controlling of course for a wide range of factors. Notice that this is true across all lags; we can

think of an a greater than unity as meaning that the citation fimction is shifted upward

proportionately, relative to the base group Hence the integral over time (i.e. the total number

of citations per patent) will also be 40°4 larger.

We can think of the overall rate of citation intensity measured by variations in a to be

composed of two parts, Citation intensity is the product of the “fertility” (Caballero and Jaffe,

1993) of the underlying ideas in spawning future technological developments,12 ~d the average

“size” of a patent, i.e. how much of the unobservable advance of knowledge is packaged in a

typical patent. Within the formulation of this paper, it is not possible to decompose the a-effects

12. The “fertility” label for differences in the likelihood of citations is just evocative language suggesting that
cited patents can be thought as “giving birth” to ftier technological developments, or as providing the grounds

on which such subsequent applications grow. ‘Importance” is a term that we have used in this context in

previous work, and refers to the fact that patents that collect more citations over time are deemed on that basis
to be more “important”, Since differences in a are time-independent, the integral over time would also be higher

or lower by the same factor, and hence the equivalence with this notion of “importance.”

8



into these two components. 13

In the c=e of a(K), that is, when the multiplicative factor varies with attributes of the

cifing patents, variations in it should be interpreted as differences in the “propensity to cite” (or

in the probability of making a citation) of patents in a particular category vis a vis the base

category of the citing patents. If, for example, a(K=Europe) is 0.5, this means that the average

patent granted to European inventors is half as likely as a patent granted to inventors residing in

the US to cite any given US patent.

Variations in ~1 (again, by attributes of either the cited or the citing patents) imply

differences in the rate of decay or “obsolescence” across categories of patents. Higher values of

~1 mean higher rates of decay, which pull the citations function downwards and leftward. In

other words, the likelihood of citations would be lower everywhere for higher ~1‘s, and would

peak earlier on. Thus a higher a means more citations at all lags; a lower ~1 means more

citations at later lags.

When both a(k, K) and ~1(k, K) vary, the citation function can shift upward at some

lags while shifting downward at others. For example, if a(g=Electronics) = 2.00, but

~l(g=Electronics) = 1.29, then patents in electronics have a very high likelihood of citations

relative to the bme category, but they also become obsolete faster. Because obsolescence is

compounded over time, differences in ~1 eventually result in large differences in the citation

frequency. If we compute the ratio of the likelihood of citations for patents in electronics relative

to those in “all other” using these parameters, we find that 1 year after being granted patents in

electronics are 89°/0 more likely to be cited, but 12 years down the road the frequencies for the

two groups are about the same, and at a lag of 20 years Electronics patents are actually 36°A less

likely to be cited than patents in the base category.

v. RESULTS

5.1 Benchmark results

Table 3 shows results for a “benchmark” specification where we allow a to vary but hold

13. Caballero and Jaffe (1993) attempt to identi& the size of patents by allowing exponential obsolescence to

be a function of accumulated patents rather than elapsed calendar time. We intend to explore this possibility in
future work.
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~1 constant. We carry out all estimation weighting the observations by nn=(ng,*n,,)**0.5, the

square root of the product of the number of potentially cited and potentially citing patents

corresponding to the cell. This weighting scheme should take care of possible heteroskedasticity,

since the observations correspond essentially to “grouped data”, that is, each observation is an

average (in the corresponding cell), computed by dividing the number of citations by (nQi*nti).14

The parameters for the citing years (~), show a clear upward trend, reaching a peak in

1989, with a slight decline thereafter. The estimates imply that citations made per patent,

mntrolling for other factors, was twice as high in 1989 as in 1977.’5 This reflects a well known

institutional phenomenon, namely, the increasing propensity to make citations at the patent office,

apparently associated with the computerization of the patent file and of the operations of patent

examiners. Thus, these coefficients serve strictly as controls, and as very important ones for that

matter, given the magnitude of the changes over time. Without these controls, obsolescence

would appear to be much slower (since our only observations on long lags come from recent

citing years), and foreign countries would appear to make more citations (relative to U.S.), since

the foreign share of patents has increased dramatically over the time period.

Turning to the effects of the cited time period, because we include interaction effects

between the cited period and the source institution (discussed below), the “pure” cited time period

estimates in Table 3 correspond to variations in a over cited year for the base group of corporate

patents. The citations received by this group, as implied by the parameter estimates, declined

steadily, relative to the normalized value of unity in the base period 1963-65, to 0.65 in 1981-85,

somewhat recovering in 1986-90 to 0.73. As discussed above, this means either that idem

underlying corporate patents declined in fertility, that the average “package size” of corporate

patents fell, or both.

The number of patents granted per dollar of R&D fell from the 1960s through the mid-

1980s, recovering slightly since then. Because of this, it is typically assumed that patents have,

14. The qualitative results are essentially the same if we run an unweighed model, or if we weight just by ~.
Weighting increases the fit of the regression dramatically, suggesting that the model does not fit very well for

those cells with few potentially citing patents, which frequently produce zero citations,

15. This difference is even greater than the raw change in average citations per patent, which is an increase by
about 60°/0.
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in some sense, been getting “bigger” rather than smaller, at least until the mid- 1980s, In and of

itself, this would tend to cause our ~ to rise up until the mid-1980s, and perhaps fall after that.

Since what we found was the exact opposite, it seems unlikely that our results are due to chages

in the “size” of patents. Hence they suggest that “fertility” fell from the 1960s until the mid

1980s, with a mild recovery thereafter. While we would not push this very hard, this

interpretation of our results would be consistent with a technology-driven slowdown in

productivity in the 1970s and early 1980s.16

The variations in a by technological fields indicate that patents in Drugs and Medical and

in Electronics are 36-40°/0 more likely to be cited than in other fields. In addition to the fertility

and patent-size effects discussed above, it may also be the cme that differences across fields stem

in part from variations in citation practices (of the patentees and/or of the patent examiners)

across fields. As we shall see in the next section, the results of the model where ~1 is also

allowed to vary by field are more telling, and correspond quite closely to what is known about

these fields. Thus, there is reason to believe that the findings here do reflect real differences

across fields, but that the fixity of ~1 does not allow for the full picture to emerge.

We turn now to the parameters associated with institutional vmiations, starting with

universities. Ignoring 1965,17 we see that university patents became increasingly more “fertile”

than corporate ones in the 1970’s and early 1980’s, but their relative citation intensity declined

in the late 1980’s. We have previously gotten similar results using a model that did not explicitly

deal with the time path of citations (Henderson, Jaffe and Trajtenberg, 1994).1’ Government

patents, on the other hand, are significantly less fertile than corporate patents at each of the

16. If the base period reached further back (say into the 1950’s), and if we could observe a longer period of
“recovery” of fertility post-1985, then one could argue perhaps that the drop in “fertility” during the 1970’s and

1980’s was associated with the transition between different “general purpose technologies.” As it is this remains
only a conjecture that camot be substantiated with these data.

17. We have university patents starting only in 1965, not in 1963, and there were a very small number of such
patents that year. Not surprisingly, the university effect for the first cited time period is estimated with relatively

little precision.

18. OrI the other hand, the earlier paper utilized a much finer set of technology field controls, at the level of
about 400 distinct patent classes.
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sub-periods, with a moderate upward trend overtime in their relative citation intensity (from 72°/0

of mntemporaneous corporate in 1963-66 to 75°A in 1981-85), except for a decline in the last

period. Their overall lower fertility level may be due to the fact that these labs had been

traditionally quite isolated from mainstream commercial innovations, and thus those innovations

that they did choose to patent were in some sense marginal. By the same token the upward trend

in the fertility ratio may be due to the increasing “openness” of federd labs, and their efforts to

reach out and make their innovations more commercially oriented. However, for the time being,

and until we gather additional evidence, this interpretation must be regarded as conjectural.

The region coefficients show very significant “localization” effects. That is, US patents

are much more likely to cite previous US patents than are patents granted to inventors of other

countries. Furthermore, the extent to which patents granted to foreign residents are likely to cite

US patents seems to depend upon a metric of geographic and cultural proximity: Canada is

highest with a coefficient of 0.65, followed by Europe with 0.5, and Japan with 0.44. (The fifth

category, ROW, contains a small number of patents from a large number of other countries, and

hence it is difficult to interpret.)

Thus these data do not support the claim that Japan is particularly apt at exploiting

technological advances made in the US (as has been often suggested), In fact, patents granted

to Japanese inventors are less than half as likely to make citations to US patents than patents

granted to U.S. residents. Once again, if we interpret a citation as an indication that the citing

patent “builds upon” the cited patent (or as evidence of a spillover from the cited to the citing

patent), then our results indicate that, at least in the realm of patented inventions, Japanese

inventors draw from US inventions much less than do U.S. residents. 19

Finally, the estimate of ~1 = 0.2 means that the citation functions reaches its maximum

at about 5 years. This estimate is not surprising, given the empirical citation distributions shown

in Figures One and Two. The R2 of 0.52 is fairly high for models of this kind, suggesting that

the postulated double exponential combined with the effects that we have identified fit the data

19. From a purely statistical perspective, one cannot rule out the interpretation that Japanese inventors rely on

U.S. inventions as much as their U.S. counterparts, but somehow manage to avoid citing them, Since the

examiners are the ultimate arbiters of what citations appear on the patents, this would require that U, S, patent

examiners are differentially lax in their duties vis A vis Japanese inventors, This seems unlikely.
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reasonably well.20

5.2 The Full Model:

We present in

Allowing ~1 to vary

Table 4 the results from the estimation of the full model, including

variations in ~1. We discuss below each set of results sepmately,2]

Technofo&”caf Fief& In addition to the multiplicative factor, a~, we allow now for

variations in ~ 1 according to the technological field of the cited patent. Thus, for example, field

3, Electronics, Optics and Nuclear technology has a coefficient a(g=3) = 2.00, meaning that

patents in this field are likely to get twice as many citations as in the base field “All Other”, and

70-88% more than in the four other fields. However, its ~1 is 30% higher than that of the base,

which means that the rate of citations to these patents decays faster than for others, and thus the

initial “citation advantage” fades quickly over time.

The effect of allowing these joint variations in a and ~1 is shown graphically in Figure

Three. This Figure shows the predicted citation function for potentially cited patents in the

Electronics, Optics and Nuclear Technology field. The Figure shows that both models yield

parameters that predict a greater overall rate of citation of these patents than the base group.

Allowing ~1 to vary shows, however, that this greater overall citation intensity is not uniform

over time. These patents are much more highly cited in the first few years, but also show faster

obsolescence, so that in later years they are actually less highly cited than the base group.

Figure Four shows the citation functions for each of the Technological Fields. Because

the relative frequencies are difficult to see on the graph at higher lags, Part (A) of Table Five

also gives the value of the ratio of the citation probability of each of the technological fields to

the citation probability of the base field, at different lags, i.e. 1, 5, 10, 20 and 30 years after the

granting of the cited patents. Looking once again at Electronics, we see that the ratio starts

indeed very high, 1.89, but after 12 years it is the same as the base field, after 20 years it

20. It is interesting that the fit of the unweighed model is considerably poorer, with an R2 of about 15 percent.
Recall that there are a significant number of observations with zero observed citition frequency, for which the

model canot tit for plausible parame~r values. These observations correspond, however, to cells with few

potentially cited and/or citing patents, and hence they get reduced weight in the weighted regression, thus
improving the overall fit.

21. The results for cited time period and citing year are virtually the same as for the benchmark model and
hence are excluded from the Table and not discussed here.
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declines to 0.64, and further down to 0.36 after 30 years. This implies that this field is extremely

dynamic, with a great deal of “action” in the form of follow-up developments taking place during

the first few years after an innovation, but also with a ve~ high obsolescence rate: a decade

down the road the wave of further advances that built upon the original innovation subsides and

is not very different from what happens in most other fields (it is even lower than in Drugs and

Medical). Thirty years later citations have virtually ceased, relative to the rate in some other

fields. Commonly held perceptions about the technological dynamism of this field are thus

amply confirmed by these results, and given a precise quantitative expression.

For other fields the results are perhaps less dramatic but still interesting. Drugs and

Medical starts off at 133Y0, of the base citation frequency, but due to the low obsolescence rate

it grows over time (at a slow pace), so that 10 years later it stands at 150°/0, and 20 years down

the road it has grown to over 170% relative to the base field, and more than that relative to all

other fields. The conjecture here is’ that due to the long lead times in pharmaceutical research,

including the process of getting approval from the FDA, follow up developments are slow in

coming. In other words, whereas in Electronics a given innovation has very little impact 10-2O

years later because the field is evolving so fast, in pharmaceuticals a new drug may prompt

follow-up innovations much later, after its medical and commercial viability have been

established.

As to the Chemical field, we see that it starts off at 127% of the base field, but due to

a high obsolescence rate the advantage fades over time (though not as fast as in Electronics),

falling behind the base field in less than a decade. The Mechanical field is similar to the base

field, slowing loosing ground over time. Note that after 20 years the ranking of fields changes

dramatically compared to the ranking at the beginning. In all, we see that these results present

a much more complex picture than having just multiplicative factors for fields, and that there is

a great deal to learn from them, beyond serving just as controls.

Location. The most interesting result in this context, beyond those already discussed in

the benchmark model, is that all foreign countries except Japan have significantly lower ~1’s

than the US. The interpretation of a lower ~1 for a category of the citing patents is that their

propensity to cite (i.e. to “absorb spillovers”) increases over time relative to patents in the base
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category. In the present context this means that the localization effects that we found, m reflected

in the lower a’s for foreign countries, fade over time.22 As shown in Figure Five, the citation

rates for European and Canadian patents eventually catch up to those for U.S. patents. That is,

at first the spillovers from USpatents flow mostly to inventors residing in the US: the probability

that a foreign inventor would cite a patent of a U.S. inventor is 42-56% lower than that of a

US-resident inventor 1 year after grant. However, the relative citation probabilities for foreign

inventors grow over time (due to the lower ~1’s for foreign countries), so that 20 years down the

line the difference has shrunk to 20-36Y0. This is not true of Japan: the “receptiveness” of

Japanese inventors to US inventions remains low, 56% lower than that of U.S. inventors, and

tier a while significantly lower even than that of other foreign inventors.

This “fading” effect in the geographic dimension corresponds to the intuitive notion that

knowledge eventually diffuses evenly across geographic (and other, such as institutional)

boundaries, and that any initial “local” advantage in that sense will eventually dissipate. Once

again, these results offer a quantitative idea of the extent of the initial localization, and the speed

of fading.

Institutional Type The results in this context do not change much vis a vis the

benchmark model: the a’s for universities are slightly lower for most periods relative to the

model with a fixed ~ 1, while a slightly smaller ~1(U) compensates for that to some extent. The

same holds for government patents, but the change for them is more significant. In fact, the

upward trend is now significantly steeper, with the citation intensity relative to contemporaneous

corporate going from 0.59 in 1963-66 to 0.68 in 1981-85, then declining then slightly to 0.66

in the last period. Figure Six shows the citation functions for selected university and federal

cohorts; the picture shows that the government inferiority gradually fades away. This can also

be seen in Table 5.C, but it takes thirty years for the government citation rate to completely

catch up.

22. We have anticipated this result, in a cruder way and only for a small sample of patents, in Jaffe,

Trajtenberg, and Henderson, (1993). Notice that here we discuss only localization effects at the national level,

However, the data would permit analogous analysis at lower levels of geographic aggregation.
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VI. CONCLUSION

The computerization of patent citations data provides an exciting opportunity to examine

the links among inventions and inventors, over time, space, technology and institutions. The

ability to look at very large numbers of patents and citations allows us to begin to decompose

overall citation flows in ways that better reflect reality. This paper represents an initial

exploration of these data. Many variations that we have not explored are possible, but this initial

foray provides some intriguing results, First, we confirm our earlier results on the geographic

localization of citations, but now provide a much more compelling picture of the process of

diffusion of citations around the world over time, Second, we find that federal government

patents are significantly less cited than corporate patents, although they do have somewhat greater

“staying power” over time. Third, we confirm our earlier findings regarding the importance or

fertility of university patents. Interestingly, we do not find that university patents are, to any

significant extent, more likely to be cited after long periods of time. Finally, we show that

citation patterns across technological fields conform to prior beliefs about the pace of innovation

and the significance of “gestation” lags in different areas, with Electronics, Optics and Nuclear

Technology showing very high early citation but rapid obsolescence, while Drugs and Medical

Technology generates significant citations for a very long time.

The list of additional questions that could be examined with these data and this kind of

model is even longer. First, it would be interesting to examine if the geographic localization

differs across the corporate, university and federal cited samples. Second, the interpretation that

we give to the geographic results could be strengthened by examining patents granted in the U.S.

to foreign corporations. Our interpretation suggests that the lower citation rate for foreign

inventors should not hold for this group of cited patents. Third, we could apply a similar model

to geographic regions within the U. S., although some experimentation will be necessary to

determine how small such regions can be and still yield reasonably large numbers of citations in

each cell while controlling for other effects. Fourth, it would be useful to confirm the robustness

of these results to finer technological distinctions, although our previous work with citations data

lead us to believe that this will not make a big difference. Finally, we would like to investigate

the feasibility of modelling obsolescence as a function of accumulated patents. Caballero and
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Jaffe (1993) implemented this approach, but in that analysis patents were not distinguished by

location or technological field.
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TABLE ONE
Summary Statistics by Institutional Subsample

Range of Cited Patents
Range of Citing Patents
Total Potentially Cited Patents

Total Citations

Mean Citations

Mean Cited Year

Mean Citing Year

Percent Cited Patents by Field
Drugs & Medical
Chemical exc.Drugs

Electronics, Optics & Nuclear

Mechanical

Other

Percent Citations bv Retion
Us.
Canada
E.E.C
Japan
Rest of World

Us.
Corporations
1963-1990
1977-1993
88,257
(1 in 10)
321,326

3.6

1973

1986

4.89
30.37
26.16
28.18
10.39

70.6
1.6

14.5
11.3

1.9

Us.
Universities
1965-1990
1977-1993
10,761
(Universe)
48,806

4.5

1979

1987

29.12
28.71
27.39

9.51
5.28

71,8
1.7

13.2
11.0

2.4

U.S. Government

1963-1990
1977-1993
38,254
(Universe)
109,729

2.9

1973

1986

3.36
20.73
45.40
17.09
13.42

70,8
1.7

16.8
8.6
2.1
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TABLE THREE

Weighted Non-linear Least Squares Estimation of Base Model

Citing Year Effects (Base= 1963-65)

1966-70

1971-75

1976-80

1981-85

1986-90

Cited Year Effects (Base= 1977)

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

Technological Field Effects (Bas&’’All Other”)

Drugs and Medicd

Chemicals Exe. Drugs

Electronics, Optics and Nuclear

Mechanical

Citing Country Effects (Base=U,S.)

Caada
E.E,C,

Japan

Rest of World

Parameter Asymptotic t-statistic for

Standard Error m: Paramete~l

0.747

0.691

0,709

0.647

0.728

1.115

1.223

1.308

1.400

1,511

1,523

1.606

1.682

1.753

1.891

1.904

2.045

1.933

1,905

1,994

1.956

1.409

1.049

1.360

1.037

0,647

0,506

0.442

0.506

Universi~/Corporate Differential by Cited Time Period

1965 1.191

1966-70 0.930

1971-75 1.169
1976-80 1.216
1981-85 1.250
1986-90 1.062

Federd Government/Corporate Differential by Cited Time Period

1963-65 0,720
1966-70 0,739
1971-75 0,744
1976-80 0.759

1981-85 0.754

1986-90 0.709

BETAl* 0.213

BETA2* 3.86E-06

26,975 observations; R-squar~.5 161

*t-statistic is form: parameteFO

0.02871

0.02820

0.03375

0,03647

0,04752

0.03449

0.03795

0.03943

0.04217

0.04637

0.04842

0.05209

0,05627

0,06073

0,06729

0.07085

0.07868

0.07795

0.07971

0,08627

0.08918

0,01798

0.01331

0.01601

0.01370

0.00938

0.00534

0,00542

0,00824

0,12838

0.04148

0,02419

0.01765

0.01718

0.01746

0.04592

0.02498

0.01531

0.01235

0,01284

0,01551

0.00247

1.97E-07

-8,82

-10.97

-8.62

-9.69

-5.72

3,32

5,88

7,80

9,48

11.01

10.80

11.64

12.12

12.40

13.24

12.76

13.29

11,97

11,36

11.52

10.73

22.73

3.65

22,51

2,69

-37,59

-92.49

-102.99

-59.93

1.49

-1.70

7.00

12.26

14.55

3,57

-6,11

-10.45

-16.71

-19.51

-19.15

-18.78

86.28

19.61



TABLE FOUR

Weighted Non-linear Least Squares Estimation of Model with Va@g Betal

Parameter -ptotic t-statistic for

Standard Error ~: paramete~l

Technological Field Effects (Bas&’’All Other”)

Drugs and Medical 1,308

Chemicals Exe, Drugs 1.308

Electronics, Optics and Nuclear 2,003

Mechanical 1.120

Citing Country Effects (BaseU, S.)

Canada 0.567

E.E.C. 0.433

Japan 0.444

Rest of World 0.434

University/Corporate Dtierential by Cited Time Period

1965 1.199

1966-70 0,853

1971-75 1,110

1976-80 1.161

1981-85 1.225

1986-90 1.075

Federal GovernmentiCorporate Differential by Cited Time Period

1963-65 0.593

1966-70 0.634

1971-75 0,654

1976-80 0,678

1981-85 0,684

1986-90 0,658

BETA1” 0.198

BETA2” 3.54E-06

Betal Multipliers by Technological Field (Base is “MI Other”)

Drugs and Medical 0.932

Chemicals Exe, Drugs 1.158

Electronics, Optics and Nuclear 1,288

Mechanical 1,054

Betal Multipliers by Cited Institution Class (Base is Corporate)

University 0,978

Federd Govermnent 0.932

Betal Multipliers by Citing Country (Base is U. S.)

Canada 0.914

E.E.C. 0.899

Japan 1.002

Rest of World 0.900

26,975 observations; R-squared=.5338

0.03348

0.03338

0.04734

0.02971

0.01626

0.00907

0.01069

0,01399

0,12180

0.04600

0.03494

0.02800

0.02469

0.02013

0,04435

0,03030

0,02150

0.01788

0.01592

0.01578

0.00345

1,95E-07

0,01422

0.01702

0.01779

0.01588

0.01195

0.01231

0.01542

0.01113

0.01409

0.01711

9,18

9,22

21,18

4,04

-26,61

-62.54

-52.02

-40.46

1.64

-3.20

3.15

5,74

9,12

3.74

-9.18

-12.07

-16.11

-18.02

-19.88

-21.68

57,50

18.13

-4.76

9.29

16.20

3.38

-1,88

-5,55

-5.59

-9.09

0.16

-5.82

Estimation also inclu&d cited time period and citing year effects as in Table Three,

*t-statistic is for ~: parameter==



TABLE FIVE

(A) Citation Probability Ratio by Technological Field

Betal Lag

Technological Field Multiplier 1 5 10 20 30
DRUGS & MEDICAL 0.932 1.33 1,40 1.50 1.71 1,96

CHEMICAL 1.158 1.27 1,12 0.96 0,70 0,51

ELECTRONICS ETC. 1.288 1.89 1.50 1.13 0,64 0.36

MECHANICAL 1.054 1,11 1.06 1.01 0.91 0,81

OTHER 1.000 1,00 1.00 1,00 1,00 1.00

(B) Citation Probability Ratio by Geographic Area

Betal Lag

Location Multiplier 1 5 10 20 30

CANADA 0.914 0,58 0.62 0.67 0,80 0.95

EUROPE 0.899 0.44 0,48 0.53 0.65 0.79

JAPAN 1.002 0.44 0,44 0.44 0,44 0.44

REST OF WORLD 0,900 0.44 0.48 0.53 0,64 0.78

us 1,000 1.00 1.00 1.00 1.00 1,00

(C) Citation Probability Ratio by Institution

Betal Lag

Research Institution Multiplier 1 5 10 20 30

UNIVERSITIES 1981-1985 0.978 1,23 1.25 1,28 1.34 1.40

UNIVERSITIES 1986-1990 0.978 1.08 1.10 1.12 1,18 1.23

FEDERAL LABS 1981-1985 0.932 0.69 0,73 0.78 0.90 1.03

FEDERAL LABS 1986-1990 0.932 0.67 0.70 0.75 0,86 0.99

CORPORATE 1.000 1.00 1.00 1,00 1.00 1.00
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