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I. Introduction

Over the course of the past several decades there have been significant changes in the structure

of wages and employment in the U.S. economy. Rising wage inequality has been accompanied by an

increase in the return to experience over the 1970s and 1980s and an increase in the return to education

over the 1980s. Conformable changes in relevant quantities suggest that these price changes reflect

changes in the relative demand for skilled workers: employment, participation, and unemployment for

workers in the upper half of the wage distribution have been relatively stable while unemployment and

withdrawal from the labor force have increased substantially for workers in the lower part of the wage

distribution. These changes in the overall U.S. labor market are particularly evident in changes in the

structure of the workplace in U.S. manufacturing. Relative to the 1960s, the typical manufacturing

worker in the late 1980s is more educated and is more likely to be a professional, manager or technical

worker and less likely to be an operator or laborer.’

The most prominent current explanation for the changing relative demand for skilled workers is

that the adoption of new sophisticated capital equipment and the introduction of flexible manufacturing

“ methods has raised the demand for more highly educated and skilled workers. An alternative competing

explanation is that there have been product demand changes towards goods requiring more skilled labor

(at least in part stemming from an increasingly integrated world economy). While there have been

numerous studies in the recent literature seeking to identify the sources of these labor market changes,

the verdict is still out since most of the evidence to date is indirect. Much of the existing analysis

exploits household data which does not permit direct examination of the alternative explanations of

technology adoption or detailed product demand changes. In contrast, in this paper we exploit

longitudinal establishment-level data for the U.S. manufacturing sector covering 1970s and the 1980s

which contains a wealth of information about the changing characteristics of individual establishments:

employment and wages by worker type (production and nonproduction workers), capital intensity, R&D

intensity, detailed indicators of advanced technology adoption, and detailed industry.2 These data permit

‘ Recent research investigating these changes includes Juhn, Murphy and Topel (1991), Davis and Haltiwanger
(1991), Katz and Murphy (1992), Juhn, Murphy and Pierce (1993), and Berman, Bound and Griliches (1994).
Note that the return to education fell during the 1970s but this has been attributed to the changes in the relative
supply of college educated workers over this period (see, e.g., Katz and Murphy, 1992 for extensive discussion of
these issues).

2 Several aspects of our study distinguish our analysis from the relatively few recent studies that exploit the
establishment-level data to investigate the comection between technology, wages and employment (see, e.g., Davis
and Haltiwanger, 1991; Dunne and Schmitz, 1995; Doms, Dunne and Troske, 1995; and Bernard and Jensen,

1



a much more direct examination of the possible explanations for the change in the relative demand for

skilled workers.

While our data has a wealth of information about employer characteristics, the primary

information on worker characteristics are employment and wages broken out separately for production

and nonproduction workers. Using this information, Figure 1 graphs the nonproduction labor share in

terms of employment and wage shares and illustrates two key features of the aggregate data. The first is

the striking upward trend in the nonproduction labor share. This increase has been interpreted in the

recent literature (e.g., Berman, Bound and Griliches, 1994; and Gold in and Katz, 1996) as an important

indicator of the overall changes in the structure of the workplace in manufacturing.’ The second key

feature of the nonproduction labor share series seen in Figure 1 is that it exhibits an asymmetric pattern

over the business cycle. Sharp increases in the share of nonproduction labor during economic downturns

are only mildly offset by decreases during recoveries. Consequently, almost all of the long run increase

in nonproduction labor share that occurs over the 16 year period, occurs in periods that manufacturing

sector employment is contracting, The strong connection between the structural changes and the cyclical

patterns in the aggregate data has been neglected in the recent literature but is a fundamental part of our

analysis.4

Throughout this paper, we follow this recent literature and focus on the nonproduction labor

share (both in terms of employment and in terms of wages) as our variable of interest. Although this is

dictated by data limitations, we think the use of this variable for this purpose is appropriate for a number

forthcoming, First, we provide a comprehensive characterization of the timing, heterogeneity and concentration of
plant-level changes in the employment and wage structure in the context of investigating the contribution of
observable changes in technology. As part of this, a key feature of our study is the documentation and analysis of
the strong connection between the low frequency structural changes in the employment and wage structure at the
plant with the cyclical dynamics. Second, we investigate the respective contributions of continuing plants and entry
and exit. Consideration of the role of entry and exit is important in this setting since many models of technology
adoption hypothesize that new technology will be introduced primarily by entering plants that in turn displace
exiting outmoded plants.

‘ The use of industry-level data on production and nonproduction workers to analyze the relative demand for
skilled workers has a long history in labor economics. Table 3.7 in Hamermesh (1993) lists over 20 studies using
such data for this purpose.

4 In this regard, our approach and analysis are in the spirit of the ideas stressed in the recent literature that
restructuring and reallocation are concentrated in economic downturns (e.g,, Davis and Haltiwanger, 1990; Hall,
1991; Caballero and Hammour, 1994; Mortensen and Pissarides, 1994; and Campbell, 1995. However, in this case,
we focus more on the nature of within plant restructuring at business cycle frequencies than on the between plant
reallocation of jobs that has been the focus of this recent literature.
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of reasons. First, as in the recent literature, we view the nonproduction labor share variable as a basic,

though admittedly imperfect, measure of plant-level workforce skill. It is well documented that

nonproduction workers are more highly paid and more educated than production workers (Davis and

Haltiwanger, 1991; Bemdt, Morrison, and Rosenblum, 1992). In addition, the growth in nonproduction

labor in manufacturing has been in the higher skill occupations such as professionals (including

scientists, engineers, and computer programmers) and managerial occupations, while the decline in

production labor has been primarily in lower skill occupations such as operatives and laborers (Davis

and Haltiwanger, 1991; Berman, Bound and Griliches, 1994). Second, we view changes in the

nonproduction worker share as more broadly reflecting changes in the way plants produce goods, Goldin

and Katz (1996) document a variety of changes in the production process over the twentieth century and

their effect of the types of workers used in manufacturing production. Similarly, Ichniowski and Shaw

(1995) document and analyze changes from assembly-lines to team production and the impact of this

change on workplace organization. In addition, Kremer (1993) argues that changes in the complexity of

goods produced in turn affects the workforce requirements of the plant. In short, we recognize that

plant-level changes in the nonproduction labor share may represent more than simply skill changes in the

workforce and we attempt to take this broader perspective into account in interpreting our results.

With these alternative interpretations in mind, this paper examines a number of issues

concerning both the macroeconomic dynamics of nonproduction labor share changes and the relationship

between technology and changes in the skill of the workforce. The first issue we address empirically is

whether the observed aggregate changes in the nonproduction labor share at high and low frequencies

reflects a general upward shifi in workforce skill (a within plant effect), a reallocation of the employment

from continuing low skill to high skill plants (a between plant effect), or entering high skill plants

displacing exiting low skill plants (a net entry effect). The results of such basic decompositions can

potentially shed considerable light on a variety of competing hypotheses. The hypothesis that trade and

other factors have generated a shift in demand towards products that are skill intensive implies that the

observed change should primarily be a be~een plant phenomenon. Demand shifis towards high skill

intensive products also potentially have implications for the contribution of net entry. The skill biased

technical change hypothesis implies that the observed changes are driven by individual plants retooling

their production processes (a within plant phenomenon) ~ that new technology is introduced by entering

plants that displace outmoded exiting plants (a net entry phenomenon). Further, understanding whether

new technology is introduced via retooling of existing plants or via the entry of new plants is of

fundamental importance in distinguishing between alternative classes of technology adoption models.
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The second set of issues we address concerns the timing, heterogeneity and concentration of

plant-level changes in the nonproduction labor share. We document the magnitude, concentration,

persistence, and cyclicality of the distribution of the plant-level nonproduction share changes. In

addition, we document the underlying job creation and destruction dynamics within and between plants

by worker type. While we know from recent studies of plant-level employment dynamics that there is

tremendous dispersion in the employment growth rate distribution, this need not translate into dispersion

in nonproduction share changes. More generally, the characterization of the distribution is important for

understanding the underlying forces driving plant-level changes in nonproduction share. Recent

characterizations of plant-level investment (e.g., Doms and Dunne, 1994; Cooper, Haltiwanger and

Power, 1995; and Caballero, Engel and Haltiwanger, 1995b) document the importance of lumpy

investment spikes in a manner consistent with nonconvexities in capital adjustment costs. For our

purposes, nonconvexities in the adjustment costs for adopting new technology (which may be associated

with capital adjustment) in the presence of biased technical change in turn imply lumpy adjustment in

worker mix at the plant level. In addition, we are interested in the respective contributions of positive

and negative changes in nonproduction labor share at the plant level in accounting for the observed

aggregate changes. As will become apparent, the observation of very large positive and negative

changes in workforce skill, as measured by nonproduction labor share, raises a variety of questions

regarding the nature of the bias in technical change.

The last and most important issue we address is the comection between plant-level indicators of

technology adoption and changes in the employment structure at both high and low frequencies. We

evaluate the contribution of observable factors such as changes in equipment, structures, R&D, and the

adoption of advanced manufacturing technologies to high and low frequency changes in the

nonproduction labor share. Of particular interest is whether these observable factors can account for the

concentration of the long run changes in economic downturns.

The outline of the paper is as follows. The next section considers theoretical issues that help

frame the empirical analysis that follows. The intent here is to characterize the relevant driving forces as

suggested by the existing theoretical literature. Section III briefly characterizes the data we use. In

addition, in this section we characterize the available evidence on the relationship between the

nonproduction labor share measure and workforce skill. Sections IV, V and VI provide a detailed

characterization of the high and low frequency plant-level production and nonproduction worker

dynamics. Section VII reports the results from our examination of the connection between observable
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indicators of technology adoption and changes in the nonproduction worker share. Section VIII

summarizes our main findings.

II. Theoretical Considerations

A. Within Plant Chances in Workforce Skill

In considering the connection between technical change and workforce skill, we focus on the

role of observable indicators of plant-level technology adoption. This focus is motivated by both recent

research and the popular perception that the demand for skilled workers has increased relative to that for

unskilled workers as manufacturing plants have installed sophisticated capital equipment. While this

perspective motivates much of our analysis, we interpret the adoption/retooling decision in a very broad

sense. Beyond considering technology adoption via the purchase and installation of sophisticated capital

equipment, we view technical change as encompassing a broad range of changes in the production and

organizational structure of the plant. The broader interpretation is closely linked to the concept of

organizational capital stressed by Hall (1991). Organizational capital reflects the myriad of factors that

characterize the production process of an individual plant including the amount and type of capital used,

the design and layout of the production process, and the organization of the workforce in teams of

managers, office workers, and production workers.

Given this broad definition for changes in “capital,” consider the implications for changes in the

skill of the workforce at the plant. Treating skilled and unskilled labor as variable factors of production,

the optimal “skill mix” can be determined by short run cost minimization for given output and a given

state of technology (where the latter is treated as a quasi-fixed factor for this purpose).5 That is,

producer i minimizes ~L;, + w:~, subject to yit = F(Zit,Q[,L~~. Production, ~,, is an increasing finction

of three factors: the “capital” in which the adopted state of technology is embodied, Zi~)and two labor

inputs (skilled, L~~,and unskilled labor, L;,, --treated as variable factors of production). F(”) is assumed to

~ This specification of short,run cost minimization is consistent with a fully specified dynamic profit
maximization model in which individual producers endogenously adopt new technologies. All we are doing here is
characterizing how the variable factors of production are determined for a given state of technology and output. In
a filly specified dynamic model determining Z (our index of the state of technology), incurring costs of adoption in
the current period would (perhaps with some probability) yield an updated Z in the subsequent period. The costs of
adoption may be proportional to current output so that times of adoption affect the scale of operations and in turn
the demand for skilled and unskilled labor. This is captured in the short run cost minimization since we are
controlling for the level of output. See the discussion below for alternative models of the dynamics of Z.

5



be strictly concave.b The producer takes wages of skilled workers, w:, and unskilled workers, WY,as

given.

Optimal skilled and unskilled labor inputs are determined by the standard condition equating the

ratio of the marginal products to the ratio of the wages of skilled to unskilled labor, along with the

production relationship for given output and Z. For our purposes, it is useful to express the implied

optimal skill mix, Mi~,irr a form familiar in empirical analysis:

M,, = Li:/(Li; +L,;) = m(Z,t)w,’/w,”J,,) (1)

While the skill mix is decreasing in the relative wages of skilled to unskilled workers, the sign and

magnitude of the Z-skill complementarily (m~ depends on the nature of the skill bias in technology

adoption. Short run nonhomotheticity (mY) reflects changes in the skill mix induced by changes in the

scale of operations for given Z.

Given non-zero Z-skill complementarily, a key question is, what determines the dynamics of Z.

A large recent literature is devoted to endogenizing the technology adoption decision, One important

class of models are vintage capital models as in Solow (1960), Chari and Hopenhayn (1991), Cooper and

Haltiwanger ( 1993), Cooley, Greenwood and Yorukglu (1994), and Cooper, Haltiwanger and Power

(1995). In these models, Z is characterized as physical capital in which technological progress is

embodied. A closely related but distinct class of models characterizes the dynamics of Z via the

endogenous innovation and imitation of technologies (e. g., Jovanovic and MacDonald, 1994; Andolfatto

and MacDonald, 1993). In all of these models, individual producers must incur costs (both direct and

indirect) to acquire and implement new technology. In addition, individual producers are subject to

idiosyncratic shocks (e. g., demand, cost, productivity and possibly shocks in the success of adoption). It

is the presence of adoption costs, along with idiosyncratic shocks, that implies variation in technology

across producers.

A number of factors influence the frequency and timing of adoption at the plant level. First, as

noted in the introduction, recent studies of plant-level investment dynamics provide support for the

hypothesis that there are nonconvexities in the adjustment costs for capital. In the presence of

(potentially related) nonconvexities in the costs of adopting new technologies, technology adoption at the

plant level will be lumpy (i.e., infrequent and large changes will be observed). Fixed costs of adoption

6 The underlying assumption is that there is some additional fixed factor other than Z.
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imply that even with steady improvements in the leading available technology, individual producers

only infrequently update their technologies. In this spirit, Cooper, Haltiwanger and Power ( 1995)

demonstrate in a model in which plants periodically lock-in at a particular state of technology by

will

installing a specific vintage of capital, the probability of retooling will be increasing in the time since the

prior retooling.7

An additional source of lumpy technology adoption is erratic improvements in the leading

available technology. Major technological breakthroughs in individual industries may be infrequent.g

The presence of fixed costs in an environment with erratic improvements in the leading edge technology

implies that individual producers may forego minor improvements (or at least delay until improvements

have sufficiently accumulated).

A second key factor influencing the timing of adoption is the nature and persistence of the

demand and cost shocks that generate fluctuations in profitability for a given state of technology. One

reason these shocks are important is that the adoption costs may take the form of lost output or

productivity due to the disruption in activity during retooling and reorganization.9 The most natural

interpretation of these disruption costs is that the plant (or parts of the plant) may need to be shutdown

during retooling. Alternatively, in interpreting the problem more broadly, these costs could be thought of

as the substitution of managerial talent (or other resources) away from production activities to

reorganization/retooling activity, The presence of such disruption costs provides a potential rationale for

retooling (and associated skill mix changes) to be concentrated in economic downturns since the

opportunity cost from the disruption in activity induced by the retooling process is low at such times.’0

Even in the presence of such disruption costs, there still maybe incentives for procyclical technology

7 This prediction is derived in a setting with an exogenous constant pace of technological progress in the leading
available technology. Even in this setting, the adoption cycle will not be deterministic given that plants are subject
to idiosyncratic and common shocks. See Proposition 2 in Cooper, Haltiwanger and Power (1995) for a formal
derivation of this prediction.

u See Andolfatto and MacDonald (1993) for a discussion of large, infrequent technological improvements. In
addition, they incorporate a related source of discrete adjustment by speci~ing that the probability of successfully
innovating is less than one. Thus, individual producers may attempt to innovate for several periods prior to
achieving success.

9 Formally, this can be modeled as a cost of adoption that is proportional to current output.

10 Arguments along the5e l~es we developed in Hall (1991), Cooper ~d Haltiwanger (1993)> ~d CooPer~

Haltiwanger and Power (1995) in terms of characterizing the response of retooling/reorganization to exogenous
aggregate shocks. Andolfatto and MacDonald (1993) make a related argument in a model with endogenous
aggregate fluctuations.
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adoption if aggregate shocks to profitability are serially correlated. In the presence of positively serial]Y

correlated aggregate shocks, a high current shock to profits will imply higher future profits. This can

yield procyclical retoolhg if the disruption costs are sufficiently small since a producer would prefer to

have a new technology available when other factors are generating high profits .11

In short, plant-level skill mix changes will reflect changes in the state of technology, relative

wages, and changes in the scale of operations (nonhomotheticity). Changes in the state of technology

may be lumpy in the presence of nonconvexities in adjustment costs or erratic improvements in the

leading available technology, The timing of lumpy technology adjustment (and associated skill mix

changes) will be influenced by a number of factors including the rate of advance of the leading

technology, the rate of depreciation of the installed technology, the nature of the costs of adoption and

the nature and persistence of shocks.

B. Within Plant vs. Between Plant Chances in the Skill Mix

The discussion thus far has emphasized changes in the skill mix within a plant driven by a

variety of possible forces. In the aggregate (total economy or industry level), observed changes in the

skill mix will reflect within plant changes as well as changes in the employment shares across plants.

That is, using the notation from the previous section, changes in the aggregate skill mix can be

decomposed as follows:

W, = ~ (Li,.,/L,_,)Mi, + ~ (M,,_, -Mt_,)A(Li/L,) + ~ A(Li/L)M,,
cont8nuer6 continuers continuers

+ x (~,/~,)(~,,-~t-,) - x (~i,-,/~,-,)(~,,_, -~,-,)
entering plants eritlng plantJ

(2)

where (consistent with the notation used above) M, represents the aggregate skill mix in period t (in

practice, we use the ratio of nonproduction worker employment to total employment in the exercises

which follow), L, represents aggregate total employment and the corresponding plant-specific terms are

defined accordingly. The first term represents the within plant component for continuing plants between

period t-1 and t, the second the between plant component for continuing plants, the third term a

covariance component for continuing plants and the last two terms reflect the contribution of entry and

‘‘ See Proposition 5 in Cooper, Haltiwanger and Power ( 1995).
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exit, respectively. 12 Much of our discussion thus far has referred to the first component of this

decomposition: the within plant component of changes in the skill mix.

The between plant component arises from the job reallocation across plants induced by sectoral

and idiosyncratic cost, demand, or productivity shocks. The above decomposition makes clear that

between plant job reallocation is only relevant for changes in the aggregate skill mix if the underlying

forces changing total plant-level employment are correlated with the skill mix at the plant. Thus, for

example, if the demand for products produced by technologies that are skill intensive increase

disproportionately then this can lead to an increase in the aggregate skill mix even if there are no changes

in within plant skill intensities. This may have arisen from increased international competition that

shifted U.S. production away from low skill intensive products to high skill intensive products.

The process of technology adoption itself is a factor linking between and within plant changes in

the skill mix, For example, if adoption is skill biased and adoption leads to an increase in employment,

then these combined effects will produce a positive covariance. More generally, however, the adoption -

of technology will have indus~ and general equilibrium effects that generate both between and within

plant skill mix changes. First, consider the implications for changes in relative wages induced by biased

technical change. Suppose for the moment that most industries exhibit skill biased technical change.

This skill biased technical change will increase the demand for skilled labor and potentially increase the

relative wages for skilled workers. For plants in industries without skill biased technical change or for

plants that have not adopted the latest technology, the change in the relative wages will induce a decrease

in the skill mix. For plants that are adopting new technology that is skill biased, the relative wage

change will dampen their skill mix change.

Another relevant industryl equilibrium effect to consider is that with stable industry demand,

technological progress will yield a falling industry price. Depending on the elasticity of industry

demand, this may yield a decrease in indust~ employment. In terms of the within industry dynamics,

IZ~is decomP~sition is closelY related to, but distinctly different from, the decomposition used by Be~anJ

Bound and Griliches (1994) among others. Their decomposition involves no covariance term since they used
average (across time) employment shares in the within component and average skill intensities in the between
component. We have chosen to represent the decomposition in this alternative fashion for two reasons. First, our
decomposition easily incorporates the role of entering and exiting plants while the alternative does not. Second, we
think it is interesting to consider separately the contribution of the covariance component. Note that in our
decomposition, for the between and the net en~ terms, each component is deviated from the overall initial average
skill mix. ~us, the increase in the employment share of a plant contributes positively to the overall change only to
the extent that it has higher than the average initial skill mix.
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the impact is analogous to the between plant effects discussed above (e.g., plants that have not adopted

will decrease their employment share).

In short, there will be an endogenous evolution of the cross sectional distribution of technologies

(or equivalently, a cross sectional distribution of vintages of “capital”) within the same indust~ in this

class of models. The presence of idiosyncratic shocks and adoption costs imply that not all plants will

have adopted the latest technology in any given period. Further, common aggregate shocks as well as the

distribution of idiosyncratic shocks affect the evolution of the cross sectional distribution. 13 The

evolution of the cross sectional distribution of technologies in the presence of biased technical change in

turn generates rich dynamics in the cross sectional distribution of skill mix changes (the within plant

component) and employment shares (the between plant component) which we attempt to characterize

empirically.

C. Entrv and Exit

Another potentially important contributing factor that appears in the above decomposition is the

role of entry and exit. The contribution of net entry may reflect a variety of alternative factors. First, a

large class of relevant models (e.g., Campbell, 1995; Caballero and Hammour, 1994; Lambson, 1991)

point towards entry as being the primary way in which new technology is introduced into the economy.

This class of models is similar in spirit to the within plant technology adoption models discussed above.

In this type of model, new plants incur a fixed cost to adopt the latest technology and in turn old plants

with outdated technologies are induced to exit. If technology is skill biased, then skill mix changes will

be observed via the entry and exit process,

A second factor influencing the contribution of the net entry component of equation (2) is that

changes in product demand will imply differential patterns of net entry across industries. If product

demand changes are correlated with the skill intensities of the production processes (e.g., demand for

high skill products increases), then this will yield a systematic contribution of net entry to the aggregate

skill mix change. In our empirical analysis, we characterize the respective contributions of entry and exit

to changes in the skill mix and attempt to distinguish between the various interpretations of the

contribution of entry and exit.

D. Other Frictions

‘3Andolfatto and MacDonald (1993) emphasize learning externalities that may act to induce bunching of
technology adoption as another factor influencing the evolution of the cross sectional distribution.
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The models discussed thus far emphasize one type of friction, retooling costs associated with

introducing a new technology or fixed costs of opening a new plant. Since we are interested in exploring

the implications of technological adoption for job dynamics, it is important to emphasize other frictions

that may be relevant for these changes. The above discussion treats both skilled and unskilled labor as

variable factors of production. This assumption seems reasonable given that our data are at an annual

frequency but even at an annual frequency some labor adjustment costs (e.g., search, hiring, firing) may

still be relevant. 14 This is especially important to the extent that these frictions differ by the skill type of

workers. Since it is often presumed that adjustment costs are higher for skilled workers, any high

frequency changes that we observe in the skill mix may reflect these differential employment adjustment

costs rather than the factors we have emphasized. In terms of our analysis, these adjustment costs act as

a form of nonhomotheticity in the high frequency fluctuations in the skill mix.15 In our empirical work,

we attempt to distinguish between these alternative explanations of changes in the skill mix at high

frequencies.

JII. Data Description, Measurement Issues and An Empirical Road Map

The data used in this study come from the Longitudinal Research Database (LRD) which is a

compilation of the plant-level data from the Census of Manufactures (CM) and the Annual Survey of

Manufactures (ASM) for the period 1972 to 1988. For each plant-year observation, the data contain

detailed information on production and cost variables such as employment, shipments, and capital

investment.

A. NonDroduction Labor Share as a Measure of Skill

As we briefly discussed in the introduction, a key issue in this paper is how we measure

workforce skill. The data allow us to disaggregate employment into two types of workers -- production

workers and nonproduction workers. Production workers include workers “engaged in fabricating,

processing, assembling, inspecting, receiving, storing, handling, packaging, warehousing, shipping,

maintenance, repair, record keeping, janitorial, and guard services up through the line-supewisor level. ”

Nonproduction employees are all other workers including “sales, sales delivery, clerical, management,

professional, technical employees and construction employees.” (U.S. Census Bureau (199 1), p. A- 1).

‘4 Although the.empirical work on labor adjustment costs suggests they are most relevant for monthly and
quarterly data (e.g., Hamerrnesh, 1993; and Caballero, Engel and Haltiwanger, 1995a).

‘5 A closely related form of nonhomotheticity could arise if there is overhead labor that consists mainly of
nonproduction workers.
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Given these worker classifications, we construct two different plant-level measures of skill. The first is

the ratio of nonproduction workers to total employment. The second, is the ratio of wages paid to

nonproduction workers to total payroll. This latter measure is of interest for a number of reasons. First,

the changes in the demand for more skilled labor maybe reflected in changes among production and

among nonproduction workers rather than in shifis between production and nonproduction workers.

Examining the nonproduction worker wage share provides some perspective on this problem. Second, a

shift in demand towards skilled workers will be understated in examining the ratio of nonproduction

workers to total employment given that the implied increase in the skill premium will dampen the

employment changes. Third, the cost share emerges as the relevant dependent variable when considering

specific fictional forms (e. g., translog) of the cost function. Since we exploit such specifications in the

analysis in section VII it is usefil to characterize the skill mix changes from this perspective as well.

One obvious question is whether these two alternative measures (employment and cost share

based) of the nonproduction labor share are reasonable measures of skill. One piece of evidence that

suggests the production/nonproduction worker distinction is closely linked to skills is the wages paid to

these workers. To the extent that the labor market in U.S. manufacturing can be viewed as competitive,

then workers with a higher marginal product (more skill) should receive higher wages. Davis and

Haltiwanger (1991), using data from the LRD from 1963 to 1986, show that the average wage of

nonproduction workers is $12.86 per hour, while the average wage of production workers is $8.56 per

hour. Davis and Haltiwanger also show that the difference between nonproduction worker and

production worker wages rises by 29 percent between 1975 and 1986. These numbers suggest that, at

least based on wages, nonproduction workers are more skilled than production workers, and also the

return to being a nonproduction worker has increased over this period (which may reflect either an

increased skill premium or increases in the relative skills of nonproduction workers).’b

A alternative, commonly used, measure of skill is education. To see whether plants with

relatively more nonproduction worker labor also employ more educated workers, we use data from the

Worker-Establishment Characteristics Database to examine the educational distribution of workers

16One factor that maY be fipofl~t in considering these wage differences is if workers use different means to

acquire human capital. For example, if nonproduction workers acquire most of their human capital by attending
school, while production workers purchase training from their firm through lower wages, then these wage
differentials may simply reflect the difference in how workers pay for human capital. However, evidence from the
training literature suggests that this is not the case. First, white collar workers are more likely to receive training
than blue collar workers (Amirault, 1995; Altonji and Spletzer, 1991). Second, even among production workers, it
is the most educated production workers who are the most likely to receive training (Lynch and Black, 1995).
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within plants, The WECD is a cross-sectional employee-employer matched database created at the U.S.

Census Bureau (see Troske (1995) for details). Using these data we find that only 7.4 percent of workers

in plants in the lowest nonproduction share quartile have Bachelors degrees while 21.1 percent of

workers in plants in the highest nonproduction share quartile have Bachelors degrees. In addition,

Berman, Bound and Griliches (1994) using data from the 1987 CPS show that only 17 percent of blue

collar workers have more than a high school degree, compared with 35 percent of clerical workers, 70

percent of sales workers and 78 percent of managers and professionals. Finally, Davis and Haltiwanger

(1991), using data from the CPS from 1973 to 1987 show that, in U.S. manufacturing, the percent of

hours worked by individuals with less than a high school diploma falls from 33 percent to 20 percent,

while the percentage of hours worked by individuals with a college degree rises from 11 percent to 18

percent.

Another means of evaluating the link to skill upgrading is to consider the occupational changes

within these groups. Using CPS data for the 1970s and 1980s, Berman, Bound and Griliches (1994)

show that, both in levels and changes, the white collar share of total manufacturing employment in the

CPS is very similar to the nonproduction labor share generated from the ASM. The discrepancy betieen

the white collar share and the nonproduction worker share is never greater than two percentage points

over the 1970s and 1980s. It is striking that asking establishments to classi~ workers and asking

workers to classify themselves yields such similar results. 17 Given the tight link between the

production/nonproduction and blue collar/white collar distinctions, Berman, Bound and Griliches (1994)

show that within the white collar occupations there was an increase in the percentage of managers,

professional and technical workers, and a decrease in the percent of clerical workers. They also show

that within the blue collar occupations there was an increase in the percentage of craft workers and a

decrease in the percentage of operatives, laborers and service workers. Thus, the shifis among white and

blue collar workers that accompanied the overall shift towards white collar workers are consistent with

skill upgrading on an occupational basis. ‘g

IT These results also somewhat alleviate concerns that it has become increasingly difficult for establis~ents to

classify workers into production and nonproduction categories.

lE Davis ~d Haltiwanger (1991), also using CpS data, document that much of the secular decrease in blue collar

workers in the 1980s is accounted for by a shap decrease in operatives and laborers concentrated in the 1979 to
1982 period. This latter finding is significant given that much of the overall secular increase in the nonproduction
labor share depicted in Figure 1 is concentrated in the 1979 to 1982 period.
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B. Data Sets

Our study uses three main subsets of the LRD. The first subset is the linked ASM which is an

unbalanced sample of manufacturing plants for the years 1972 to 1988. This is the same data set used in

Davis and Haltiwanger (1 992) and Davis, Haltiwanger and Schuh ( 1996). The advantage of this data set

is that it is a representative sample of plants in U.S. manufacturing including entering and exiting plants.

The disadvantage of this. data set is that the ASM is a five year rotating panel which makes longitudinal

analysis across ASM panels difficult. Accordingly, the second data set we use is a subset of the linked

ASM data and includes plants that appear in the ASM in all years. We refer to this data set as the

balanced panel. This data set has 11,239 plants and covers approximately 38 percent of average annual

manufacturing employment over the period 1972 to 1988. Figure 2 shows the nonproduction labor share

in terms of employment and payroll for total manufacturing and the balanced panel over the 1972 to

1988 period. In both graphs, the basic trend in the balanced panel is virtually identical to total

manufacturing. The third data set is based on the 1972, 1977, 1982 and 1987 CM’S. It is a linked data

set of the universe of plants which appear in each census year. T’his data set is similar to that used in

Dunne, Roberts, and Samuelson (1989) and is used hereto measure entry and exit. Appendix A provides

detailed explanations and formulas for all variables used in the study.

In addition to the above data sets, we also utilize supplementary data on research and

development expenditures (R&D), technology adoption, and central administrative office (CAO)

employment. The R&D data come from the National Science Foundation’s Annual R&D Survey which

is a firm-level sumey of all major R&D performers in the U.S. Using these data, we construct measures

of the change in the R&D stock of the firm and match this firm-level information to the plant-level data.

The information on technology use comes from the 1988 Survey of Manufacturing Technology. This

survey contains data on the use of 17 manufacturing technologies including robots, local area networks,

computer-automated design and flexible manufacturing cells. Both of these data sources are used to

generate proxies for plant-level technology adoption that, combined with our data on workforce

composition, output, and capital, are used to model capital-skill complementarily. Finally, the CAO data

contain information on the employment of nonproduction labor in nonmanufacturing facilities that

support the manufacturing establishments of the firm. These include headquarters, research and

development laboratories, and other nonmanufacturing facilities. We use these data to examine whether

changes in nonproduction labor share in manufacturing plants are related to changes in the share of firm

employment in CAOS.
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C. An Empirical Road Map

Our empirical analysis of the connection between plant-level technological adoption and

employment dynamics proceeds in two stages. First (in sections IV-VI), we undertake a comprehensive

examination of the time series evolution of the plant-level distribution of employment changes across

worker types. Second (in section VII), we investigate the connection between observable dimensions of

plant-level changes in technology and the nonproduction labor share. Our motivation for the first stage

is twofold. First, the aggregate (industry-level) changes in employment across worker types may provide

a misleading characterization of the plant-level dynamics. Second, a change in the workforce

composition at an individual plant is itself an index of a change in the state of technology at the plant.

As such, we can potentially learn much about the dynamics of technology adoption by focusing on the

within and between plant dynamics of workforce restructuring.

IV, Decomposition of Nonproduction Labor Share Changes

In this section, we present basic decompositions of the changes in the nonproduction labor share

focusing on the relative contributions of within plant changes, between plant changes, and net entry, to

the aggregate change in the nonproduction labor share. The top half of Table 1 presents the results from

the decomposition given in equation (2) for the 1972-87 long difference change in nonproduction labor

share using the Census of Manufactures in these two years as well as the intervening intercensal changes.

The largest component is the within plant component which accounts for 43 percent of the total change

in the nonproduction labor share from 1972 to 1987. The dominance of the within plant component is

maintained for each of the intercensal changes, although the between plant component becomes

somewhat more important in the 1977 to 1982 period (accounting for more than 25 percent). The

contribution of the covariance is small and sometimes negative (less than 10 percent on average). As

will become clear, underlying this relatively small covariance term is tremendous heterogeneity in the

nature of the covariation between changes in nonproduction labor share and changes in employment

shares. The net entry component exhibits a somewhat different pattern in the long difference (1972-87)

than in the five year changes. In the long difference, the impact of net entry is positive and substantial.

In contrast, in the five year changes, the contribution of net entry is much smaller and the impact of net

entry is actually negative in the 1972-1977 period. We provide a more detailed discussion of the role of

entry and exit below.

The lower half of Table 1 reports summary statistics for the decomposition of annual changes in

the nonproduction labor share over the period 1972-88 using the entire ASM sample and our balanced
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panel of continuing plants. ‘9 The results for both the ASM sample and the balanced panel echo those

from the intercensal analysis. Both the within and the between components contribute on average

positively to the overall annual average change in the nonproduction labor share with the within plant

component dominating. The dominance of the within plant component is especially dramatic for the

analysis using the entire ASM sample. The covariance term is negative and relatively small.

Turning back to the contribution of entry and exit, at an annual frequency, the net entry effect is

positive but very small. On average, entering plants tend to have a slightly lower nonproduction labor

share than the initial nonproduction labor share for all plants in the year prior to entry (the average

difference is -0.0038) and exiting plants have a substantially lower nonproduction labor share than the

average nonproduction labor share of all plants in the year prior to exit (the average difference is -

0.0 119). Since entering plants have a higher nonproduction labor share than exiting plants, net entry

contributes positively to the overall change. However, entering plants only constitute about 1.4 percent

of employment and exiting plants only about 2.1 percent of employment at an annual frequency. These

small shares imply that the overall contribution of net entry at an annual frequency is small.

In the long difference, however, entry and exit play a substantial role. To examine this issue in

more depth, Table 2 reports the employment share and nonproduction labor share for entering and

exiting plants for the three intercensal periods and the long difference. Three main points emerge. First,

in the three intercensal periods, the employment shares of entering and exiting plants average about 12

percent, However, in the long difference, these shares rise to above 30 percent. Second, comparing the

nonproduction labor share across entering and exiting plants, entering plants generally have a higher

‘gA recent study by Bernard and Jensen (forthcoming) has also analyzed plant-level changes in the
nonproduction labor share using a balanced panel of plants with somewhat different conclusions so it is worthwhile
to discuss the sources of the differences. Their methodology and data for calculating what they denote as between
and within effects are quite different from ours which makes comparisons difficult. To overcome these difficulties
of comparability, we have examined the Berman, Bound and Griliches (1994) (BBG for the remainder of this
footnote) type of decomposition for our balanced panel since the methodology used by Bernard and Jensen is closer
in spirit to the BBG type of decomposition (although not the same given their treatment of ASM sampling weights
and measurement of employment and wage shares). Using our balanced panel, the magnitudes and the time series
variation in the between and within effects are very similar across the two decomposition (whether one uses an
employment-based or cost-based measure). We have, however, noted some important sensitivity to the subperiods
over which one examines the decomposition. Bernard and Jensen focus on two subperiods: 1973-79 and 1979-87.
They argue that the between plant effect is particularly important for the latter period when one uses a cost-based
measure. We fmd a similar result for this subperiod and for the cost-based measure as well, although unlike their
results, we always find that the within plant component dominates. Over the entire 1972-88 period, we find that the
annual average contribution of the between plant component to the overall change is about 1/3 using the cost-based
measure and the BBG type of decomposition. For the 1979-87 period, the contribution of the between plant
component is about 40 percent using the cost-share measure and the latter decomposition.
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nonproduction labor share than exiting plants. In the long difference, the nonproduction labor share of

entering plants exceeds that of exiting plants by .0577. This fact combined with the fact that entrants

accumulate a substantial share over the 15 year period explains why the net entry component is relatively

large in the long difference.

Third, as is true in the annual data, entering and exiting plants have a lower nonproduction labor

share than continuing plants. In the case of entering plants, this may be a bit surprising since, as

discussed in section 11.C, it is often conjectured that entering plants will have the latest technologies and

therefore should use more skilled workforces. This hypothesis neglects the fact that entrants are much

smaller than continuing operations and small plants generally have a lower nonproduction labor share

than large plants. In results not reported here, we compared similarly sized entering plants to continuing

plants, controlling both for industry and location. 20 In the case of large plants (more than 1000

employees), large entrants had a higher nonproduction labor share than large incumbents. This was

particularly evident in 1982 where the nonproduction labor share of large entering plants exceeded the

nonproduction labor share of large continuing plants by .0456. However, smaller entrants still had a

lower nonproduction labor share than smaller incumbents.

How do these findings relate to plant-level technology adoption and workforce skill? As we

discussed in section II, if the aggregate nonproduction labor share change is being driven by

technological upgrading of plants either through the entry-exit process or through the

retooling/reorganization of existing plants, then either the within plant component and/or the net entry

component should contribute heavily to the observed rise in the nonproduction labor share. Over the

long run, the within and the net entry components jointly account for 80 percent of the nonproduction

labor share change. However, it is important to look more closely at the net entry component. If the

difference in the nonproduction labor share between entrants and exiters arises because entry is

concentrated in high nonproduction labor share industries while exit is concentrated in low

nonproduction labor share industries, then changes in product demand (that induce entry and exit in this

particular fashion) could generate the net-entry effect. To explore this possibility, we decomposed the

change in skill due to entry-exit over the 1972 to 1987 period into a within industry component, a

10We estfiate a sfiple descriptive regression of the nonproduction labor share with controls for four-digit

industry, state, whether the plant is in an SMSA, and size interacted with a dummy variable indicating whether a
plant is a recent entrant. The results of these regressions are available upon request.
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between indust~ component and a covariance term. 21 We find that the within industry component

accounts for 55 percent of the change while the between component accounts for 35 percent of the

change (the remainder is the covariance component). Given this result and the generally large within

plant component, it is tempting to conclude that the observed change in the aggregate nonproduction

labor share reflects skill-biased technological adoption. However, as will become apparent in the

succeeding sections, while this conclusion may be appropriate, the story is considerably more

complicated once one considers the timing and heterogeneity in the nonproduction labor share changes

across plants,

V. Cyclical Dynamics of Nonproduction Labor Share Changes

A. Between vs. Within Decom~osition

We now turn our attention to investigating the cyclical patterns of the nonproduction labor share

changes. We begin by investigating the respective contributions of the between and within plant

components to the aggregate cyclical changes in the nonproduction labor share. The top panel of Figure

3 depicts the annual aggregate changes and the components of the annual changes from the

decomposition for the balanced panel.” Four results stand out. First, the dominance of the within plant

component is clearly evident. Second, the nonproduction labor share change exhibits sharp increases in

economic downturns in manufacturing. The sharp increases in economic downturns are only partially

offset by mild decreases in the nonproduction labor share at the begiming stages of recovery (e.g., 1976

and 1984). Third, the pronounced countercyclicality of the nonproduction labor share change is

primarily a within plant phenomenon. Fourth, the most pronounced positive increases in the

nonproduction labor share are concentrated in the 1979 to 1982 period.

The lower panel of Figure 3 depicts the equivalent decomposition but uses the ratio of

nonproduction worker wages to total wages as the measure of the nonproduction labor share. The results

for the cost-share measure are very similar to the employment-share measure. The volatility of the cost-

share based variable is somewhat higher than the employment-share based measure but the time series

patterns are virtually identical. Again, the within plant component of the nonproduction labor share

21 sPeci~ca]]Y, we decOmPO~ed the difference in &e nonproduction labor share between enter~g and exiting

plants in the long difference (1972 to 1987) into the within industry, between industry, and covariance components,
The unit of analysis for this exercise is a four-digit industry unlike the decomposition given in (2) where the unit of
analysis is the plant, Thus, for example, the within component is the difference in nonproduction labor share
between entrants and exiters at the industry level weighted by the initial exiters’ share.

“ Obviously, when we consider the balanced panel we miss the role of entry and exit. However, given the small
role that net entry plays in accounting for annual changes, this is not too great of a problem.
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changes dominate the overall changes, The pronounced countercyclicality and the key role that the

1979-82 period play remain evident.

One obvious explanation for the countercyclicality of the nonproduction labor share change is

the well known result that production worker employment is more cyclically sensitive than

nonproduction worker employment, As discussed in section 11.D, higher labor adjustment costs for

nonproduction workers are likely to be relevant in this context even though we are using annual data.

While this may be part of the explanation, it is far from the complete explanation of the

countercyclicality. This is already evident from the asymmetry in the changes in the nonproduction labor

share over the cycle. To investigate the importance of transitory changes in the nonproduction labor

share more directly, we compute persistence rates for the annual within plant nonproduction labor share

changes for one, two and three year horizons. The persistence rate for an individual plant over a one year

horizon represents the fraction of the change from year t- 1 tot that remains in year t+l .23 The two and

three year persistent measures are defined accordingly although we require the two year (three year)

measure to be less than or equal to the one (two) year measure,

The average (across plants) annual one, ~o and three year persistence rates for the employment

based nonproduction labor share changes are depicted in the top panel of Figure 4. About 60 percent of

the plant-level changes persist for one year, about 45 percent persist for 2 years and about 40 percent

persist for 3 years. Further, the persistence rates are relatively stable over time and do not exhibit any

systematic cyclical pattern, These high and relatively stable plant-level persistence rates imply that a

large fraction of the overall within plant changes reflects relatively permanent changes in the

nonproduction labor share at the plant. The lower panel of Figure 4 depicts the one, two and three year

persistent components of the employment-weighted, within plant, nonproduction labor share changes.24

The important result that emerges is that the persistent component of the within plant changes exhibits

pronounced countercyclicality. This result indicates that the countercyclicality of the within plant

changes does not simply reflect the within plant shedding of production workers in recessions and then

the same plant hiring production workers back in the recovery.

2’ The precise formulas for these persistence measures are presented in Appendix A.

24 These are generated by calculating the persistence rate at the plant level for each year and then multiplying the
persistence rate by the within plant change. The plant-level persistent components are then aggregated using the
relevant employment shares. Thus, these measures reflect the persistent components of the fust term in the
decomposition in (2).
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Even though the persistent component of the within plant changes are concentrated in downturns,

the degree to which this is true varies across business cycle episodes. In the lower panel of Figure 4, the

fraction of the large positive spikes in the within plant changes that persists is greater in the early 1980s

than in the mid 1970s recession. This is consistent with the intercensal analysis which indicates that

most of the long run changes over the 1970s and 1980s is concentrated in the 1977-82 period.

B. Job Creation and Destruction. by Worker TvDe

In this section, we examine job creation and job destruction by worker type. By job creation for

a specific worker type, we mean the aggregate employment gains for the worker type by plants that are

expanding employment of that worker type. Similarly, by job destruction, we mean the aggregate

employment losses for the worker type by plants that are contracting the employment of that worker

type. We convert these measures to rates by dividing the relevant flow by the average aggregate

employment for that worker type for the prior and current period .25 While the between plant job flows

based on total plant-level employment have been studied extensively in the recent literature, there has

been comparably little analysis of the job flows by worker type. For current purposes, the latter flows

underlie not only the between plant total employment flows but also the within plant changes in the

nonproduction labor share.

Table 3 presents the job creation and destruction rates by worker type at annual and five year

frequencies. The rates for the annual flows are reported for the entire ASM sample (for all years) and for

the balanced panel of plants. 26 The rates for the five year changes are based on the Census of

Manufactures. Some key correlations and other summary statistics are reported for the annual

tabulations in Table 4, Somewhat surprisingly, the rates of job creation and destruction for

nonproduction workers are roughly on the same order of magnitude as the equivalent rates for production

workers. This finding holds at both annual and five year frequencies. While the magnitudes of the rates

are very similar, the magnitudes of the time series volatility are quite different across worker types. At

an annual frequency, the time series standard deviations for both creation and destruction are

substantially higher for production than nonproduction workers. For both worker types, job creation is

25 Precise formulas for our measures of job creation and destruction are presented in Appendix A. Using the
average of employment in the current and prior period is consistent with the methodology used by Davis,
Haltiwanger and Schuh (1996). See the latter for motivation and further discussion.

‘b Unlike other measures reported here (e.g., those in Table 1) using the entire ASM sample, we are able to
report job flows for all years. For this purpose, we exploit the methodology developed by Davis, Haltiwanger and
Schuh (1996) to construct job flows for the fust years of each ASM panel.
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procyclical, job destruction is countercyclical, the variance of job destruction is about twice that of

creation, and the job reallocation (for the specific worker type) is countercyclical. Thus, the well known

cyclical properties ofjob creation and destruction for total employment hold for both production and

nonproduction worker employment. In addition, the average persistence rates (constructed in an

analogous manner to the persistence rates for the nonproduction labor share changes -- see Appendix A)

reported in Table 4 indicate that the job creation and destruction patterns largely reflect permanent

changes. The persistent job flow dynamics underlie the persistent nonproduction labor share changes

depicted in Figure 4.27

Within vs. Between Plant Job Reallocation

Decomposing job flows by worker type permits evaluating the contribution of within plant job

reallocation to nonproduction labor share changes. 28 That is, the extent to which nonproduction labor

share changes are undertaken via the simultaneous increase in employment of one worker type and the

decrease in employment of the other worker type within the same plant. Within plant job reallocation

can be measured directly at the individual plant level by summing the job creation and destruction of

both worker types and then subtracting the absolute value of the net change in total employment at the

plant. Along with a measure of between plant job reallocation (the sum of creation and destruction using

total plant-level employment), total job reallocation is simply the sum of between and within plant job

reallocation.29

Table 5 presents estimates of between plant, within plant, and total job reallocation. Results are

reported at the annual frequency for the entire ASM sample, our balanced panel and average intercensal

27Though we do not present the detailed analysis herein, we also examined the time series patterns of the
persistence rates for job creation and job destruction for both production and nonproduction workers. Our basic
finding is that the persistence rates are not strongly correlated with the cycle but are especially high in the 1980s.
Accordingly, the high persistence rates in the 1980s underlie the especially high persistent component of the
nonproduction labor share changes in the early 1980s.

2EIt is fipo~t to avoid confis~g the between/within nonproduction labor share decomposition components

with between and within plant job reallocation. A plant can exhibit large within plant changes in the nonproduction
labor share with no within plant job reallocation. Similarly, a plant can contribute significantly to between plant
reallocation via a large change in total employment while making no contribution to the overall change in the
nonproduction labor share (e.g., if the plant has the average nonproduction labor share and makes no change in the
nonproduction labor share).

29 Between plant job reallocation is the job reallocation measure used in Davis and Haltiwanger (1992). For the
purposes of constructing measures of between, within and total reallocation, creation and destruction for all worker
types and total employment are measured as a fraction of total employment (again, using the average of the current
and prior period). See Appendix A for precise definition of these measures.
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rates from the Census of Manufactures. Annual between plant reallocation for 1972-88 is 19.2 percent of

employment, within plant job reallocation is 2.7 percent, and thus total job reallocation is 21.9 percent.30

Surprisingly, the relatively modest role for within plant job reallocation also holds for five year changes.

Plant-level changes that involve increasing the employment of one worker type and decreasing the

employment of the other worker type are relatively unimportant in accounting for total job reallocation.

One issue that Table 5 does not directly address is the importance of within plant job reallocation

to changes in the nonproduction labor share. Plants can change their worker mix by either swapping one

type of worker for another or by changing the scale of operations and simultaneously increasing or

decreasing production and nonproduction workers at differential rates. We decomposed the change in

nonproduction labor share into these two components -- the percent due to changes in scale and the

percent due to swapping, 3] This decomposition shows, that on an employment weighted basis, about 30

percent of the within plant change in nonproduction labor share is accounted for by replacement of one

worker type for another (swapping) and 70 percent is accounted for by scale effects. These results

suggest, to the extent that the nonproduction labor share changes reflect technology adoption, this

typically does not simply involve the simultaneous shedding of one type of worker and hiring of the

other type of worker but rather is more likely accompanied by a change in the size of the establishment.32

C. The Connection Between Long Run Structural Change and Cvcl ical Dvnamics

In characterizing plant-level changes in the nonproduction labor share thus far, we have explored

both long run changes and high frequency changes but we have not linked the two together. In this

section, we consider some simple empirical exercises to characterize the connection between the long

run structural changes and the cyclical dynamics.

30 While we do not report the details of the results, we have also examined the cyclical behavior of within plant
job reallocation. Unlike the strongly countercyclical between plant job reallocation, the annual within plant
reallocation is essentially acyclical. The acyclical nature of within plant job reallocation implies that it plays little
role in the cyclical volatility of nonproduction labor share changes.

3’Of course, plants maybe changing scale and swapping workers simultaneously (e.g., increasing one type of
worker, decreasing the other type and changing scale simultaneously). Our calculations on the contribution of
swapping and scale changes are thus based upon the following decomposition. For plants with employment
changes of both worker types in the same direction, the swapping component is equal to zero. For plants with
employment changes of each worker type in opposite directions, the swapping component is equal to the fraction of
the within plant change due to pure swapping effects. The latter is calculated at the plant level from the minimum
absolute value of the two employment changes.

3Z The small con~ibution of within plant swapping of one worker type for another also implies that the within

plant changes in the nonproduction worker share that we observe are not associated with simple relabeling of
worker titles within the plant.
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We begin our analysis by examining the heterogeneity in the long run structural changes across

plants. For this purpose, plants are divided into four quadrants based upon their long run changes (from

1972 to 1988) in nonproduction labor share and long run changes in their share of manufacturing

employment (e. g., quadrant I includes plants that increased their nonproduction labor share and their

share of total manufacturing employment). For all of the exercises considered in this section we use only

the balanced panel of continuing plants. Table 6 presents summary statistics of the long run changes by

quadrant. The last row of the table characterizes the relative contribution of each of the quadrants to the

total change based upon a modification of the decomposition given in equation (2).33

Plants that increased both nonproduction labor share and employment share (quadrant I)

accounted for almost all of the aggregate change by themselves (almost 85 percent). This result reflects

the large change in nonproduction labor share and the interaction of the large change in employment

share with a high initial nonproduction labor share. Plants that increased nonproduction labor share but

decreased employment share (quadrant II) accounted for another 52 percent of the aggregate change.

Even though quadrant II plants exhibit almost the same nonproduction labor share increase as quadrant I

plants, quadrant II plants contribute less to the total because of the negative covariance (rising

nonproduction labor share but falling employment share). Quadrants I and II together account for more

than the total increase as their contribution is offset by plants that decreased their nonproduction labor

share (quadrants III and IV). Quadrant IV’s negative contribution is muted somewhat since it exhibited a

large increase in employment share along with a relatively high initial nonproduction labor share. The

sharply different patterns across quadrants along with the nontrivial fraction of employment in each of

the quadrants highlights the tremendous heterogeneity in the nonproduction labor share changes and in

the covariation between nonproduction labor share changes and changes in employment share. The

finding of large scale changes (measured in terms of employment) that accompany nonproduction labor

share changes helps account for the low contribution of within plant job reallocation to total reallocation

reported in the previous subsection.

A primary motive for examining the behavior by quadrants is to understand the connection

between the long run changes exhibited by an individual plant and the cyclical patterns of the

nonproduction labor share changes for the plant. Figure 5 depicts the annual nonproduction labor share

33we ~e-fom the decomposition ~ equation (2) in which the unit of analysis is the aggregated data by quadrant.

The contribution of each quadrant to the total is given by the sum of the components of each of the three terms
(between, within and covariance) for each quadrant. Given that we are using the balanced panel for this exercise,
the contribution of net entry is zero.
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changes and employment share changes for plants in each of the quadrants. A striking feature of this

figure is that quadrant I plants have positive nonproduction labor share changes in 15 of the 16 years and

positive employment share increases in all years. Even with this remarkable upward consistency,

quadrant I plants exhibit a pronounced countercyclicality in their nonproduction labor share changes.

While there are some rough similarities in the cyclical patterns of the nonproduction labor share changes

across quadrants, the experience in the early 1980s recession and subsequent recovery is very different

across quadrants. Quadrants I and II concentrated much of their long run increase in the nonproduction

labor share in the early 1980s recession. In contrast, quadrants III and IV concentrated much of their

decrease in the nonproduction labor share in the post-1982 period. Since there are distinct groups of

plants accounting for the upward vs. the downward movements and the different groups exhibit different

cyclical patterns, these results reinforce the conclusion that the observed countercyclicality of the

changes in the nonproduction labor share are not driven simply by plants shedding production workers in

recessions and then the same plants rehiring production workers in booms.

The different cyclical patterns across quadrants prompt us to look even deeper at the nature of

the nonproduction labor share job dynamics across quadrants. Figure 6 depicts job creation and

destruction rates by worker types across quadrants. Summary statistics for these job flows are reported

in Table 7. The magnitudes and cyclical dynamics of the job flows vary dramatically across quadrants.

In quadrant I, on average, job creation for both production and nonproduction workers substantially

exceeds job destruction. The substantial increase in the nonproduction labor share and employment

share in quadrant I is generated by very high rates of job creation for both types of workers with

especially high rates for nonproduction workers. The volatility of destruction is about the same as that

for creation for production workers in quadrant I and for nonproduction workers there is actually greater

relative volatility of creation. In quadrant II, the picture is almost reversed. The substantial increase in

the nonproduction labor share (and the accompanying decrease in the employment share) is generated by

very high rates of job destruction for ~ worker types with especially high job destruction rates for

production workers. The job destruction for both types of workers and especially production workers is

concentrated in the early 1980s and overall there is much greater volatility of destruction as compared to

creation. In quadrant III, the decrease in the nonproduction labor share and accompanying decrease in

employment share is accounted for by high rates of job destruction for both worker types and enormous
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rates of job destruction for nonproduction workers in the 1980s.34 Quadrant III also exhibits a

pronounced asymmetry in the cyclical volatility of destruction relative to creation. In quadrant IV, the

decrease in the nonproduction labor share and the accompanying increase in employment share is

generated by high rates of job creation for both worker types and especially high job creation rates for

production workers. The volatility of creation and destruction are about the same in quadrant IV.

Overall, then, two distinct patterns emerge. First, we see that the long run changes in the nonproduction

labor share are largely driven by individual plants increasing or decreasing both types of workers.

Second, the overall cyclical asymmetry in the volatility of job creation and destruction (i.e., job

destruction is more volatile than creation) is mostly driven by long run downsizers. For long run

upsizing plants, the volatility of creation is about the same as the volatility of destruction.

D. Putting the Pieces Together

Decomposing the aggregate changes in the nonproduction labor share reveals that the cyclical

patterns are dominated by within plant changes in the nonproduction labor share. Several aspects of the

results point towards an important component of the latter reflecting permarient reorganizations of plant-

level workforces being concentrated in downturns rather than the alternative hypothesis that the cyclical

nonproduction labor share changes reflect a short run nonhomotheticity given greater cyclical flexibili~

of production worker employment. First, the changes are asymmetric over the cycle. Second, a large

fraction of the increases in the nonproduction labor share in downturns reflect persistent changes in the

within plant component of the aggregate change in the nonproduction labor share. Third, plants with a

long run increase in the nonproduction labor share concentrated their increase in the recession of the

early 1980s. In contrast, plants with a long run decrease in the nonproduction labor share concentrated

their decrease afier 1982.

VI. The Concentration and Timing of Plant-Level Changes in Nonproduction Labor Share

A. The Distribution of Plant-Level Changes in the Nonuroduction Labor Share

Lumpy technology adoption models (like those discussed in section II) along with skill biased

technological adoption imply that plants will experience large, abrupt changes in their nonproduction

labor share in periods when they retool and reorganize their production process. To begin examining this

hypothesis, the top panel of Figure 7 plots the distribution of annual plant-level changes in the

‘4 In evaluating these high rates, it must be emphasized that these rates are based on the balanced panel. Recall
from Table 3 that the balanced panel exhibits substantially lower rates of creation and destruction than the entire
ASM panel, Thus, the rates of job destruction of nonproduction workers for quadrant III in the 1980s are
astoundingly high.
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nonproduction labor share for all plants in the ASM from 1972-88 who have non-zero employment in

adj scent years. 35 me distribution is weighted by total employment at the plant in the initial year of each

change so that each bar represents the fraction of employment in the pooled plant-year observations with

a given nonproduction labor share change. Summary statistics for the distribution are reported in

appendix Table A. 1. There are three striking features of this figure. First, there is a very large spike at

zero.3d Plants with essentially no change in the nonproduction labor share in a given year constitute

about 23 percent of employment. Second, while the distribution is slightly skewed to the right, reflecting

the overall increase in the nonproduction labor share over this time period, there is tremendous

heterogeneity in the distribution of nonproduction labor share changes. The relatively small mean annual

change (0.0048) is generated by large annual positive gross changes (average equals 0.0231) in the

nonproduction labor share by one group of plants and simultaneously large annual negative gross

changes (average equals -0.0 183) in the nonproduction labor share by another group of plants. Third, the

distribution exhibits fat tails (excess kurtosis is very high -- see Table A. 1) and the fat tails account for

most of the gross changes. Plants with positive nonproduction labor share changes in excess of 0.05

(evaluated at the average nonproduction labor share this constitutes almost a 20 percent change) in a

given year account for more than 70 percent of the overall aggregate positive nonproduction labor share

change, while plants with a negative nonproduction labor share change of less than -0.05 account for

more than 70 percent of the overall negative nonproduction labor share change.

The lower panel of Figure 7 depicts the distribution of long differences in the plant-level

nonproduction labor share for all plants with positive employment in both the 1972 and 1987 Census of

Manufactures. Not surprisingly, a much smaller percent of employment is found in plants with little or

no change in the nonproduction labor share (about 6 percent). The most striking feature again is the

important role of both positive and negative changes in accounting for the overall change.

One possible explanation for the changes in the nonproduction labor shares, and in particular the

large negative tails observed in both panels in Figure 7, is that firms are shifting their nonproduction

employment between their manufacturing facilities and into central administrative offices (CAOS). We

‘5 First ASM panel years, 1974, 1979 and 1984, are excluded from the tabulations used in constructing this
figure because of panel rotation. Note that the distribution for the balanced panel looks essentially the same as the
top panel, as does the distribution of annual nonproduction labor share changes measured by the share of
nonproduction worker wages divided by total wages.

36 me spike at zero is the fraction of employment with nonproduction labor share changes 1e55th~ 0.005 in

absolute value.
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explore this possibility by examining changes in nonproduction employment in both the manufacturing

facilities and CAOS of the same firms.” Overall, there is a negative, but quite weak, correlation between

changes in nonproduction labor share in manufacturing facilities and the change in employment share of

CAOS (-.06). In addition, we examine whether firms with large negative changes (less than -.05) in

nonproduction labor share in their manufacturing facilities had large offsetting increases in CAO

employment. If one factors in the change in CAO employment into the overall change in nonproduction

labor share for firms experiencing large declines in nonproduction labor share, the impact on the overall

change is quite modest (the employment-weighted average decline for such firms is -0.12 without the

CAO change and -0.09 with the CAO change). Our conclusion is that the large negative change in

nonproduction labor share cannot be accounted for by firms simply shifiing nonproduction labor from

manufacturing facilities to CAOS.

B. The Timing of Large Plant-Level Nonuroduction Labor Share Changes

While the findings depicted in Figure 7 are consistent with lumpy adoption models, there area

number of alternative explanations for this lumpiness. As discussed in section II, fixed costs of adoption

and lumpy technological improvements are two (not mutually exclusive) possible explanations. Yet

another explanation is an extreme form of short run nonhomotheticity associated with plants with large

changes in the scale of operations (induced by factors other than changes in technology). One way to

help distinguish among these hypotheses is to examine the timing of large scale changes in the

nonproduction labor share at the plant. As discussed in section II, one prediction of lumpy technology

adjustment models based upon a vintage capital specification is that the probability of retooling should

be increasing in the time since the last retooling. We investigate this prediction in an indirect manner by

examining whether the probability of having a large nonproduction labor share change is increasing in

the time since the last large nonproduction labor share change.

For this purpose, we divide plants into two groups in a manner similar to our quadrant analysis in

section V. Plants with long run increases in the nonproduction labor share are in one group and plants

with long run decreases in the nonproduction labor share are in the second group. The motivation for

this grouping is that plants with positive long run changes in the nonproduction labor share likely

37The analysis we undertake examines all multi-plant fins. Note, that the vast majority of manufacturing
establishments are single plant operations with no separate headquarters facilities, In addition, most multi-plant
operations also do not have separate headquarter facilities. Roughly, 90 percent of all manufacturing establishments
are owned by fms with no CAOS. However, those furns with CAOS are quite large and account for approximately
55 percent of total manufacturing employment over the 1977 to 1987 period.
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adopted different types of technology than plants with negative long run changes. For plants with

positive long run changes, we define a nonproduction labor share spike to be equal to one (zero

otherwise) in any year in which the change in the nonproduction labor share exceeds 0.05. For plants

with negative long run changes, we define a nonproduction labor share spike to be equal to one (zero

otherwise) in any year in which the change in the nonproduction labor share is less than -0.05.39

We estimate variants of the following simple specification:

h,, = Ui + ~ apkit + ac*cYc,, + E,,

k
(3)

where hit = 1 (=0) if plant i has (does not have) a nonproduction labor share spike in period t, ~i

represents a possible plant-fixed effect, Dtit represent “age” dummies reflecting the number of years since

the prior nonproduction labor share spike (e.g., D~il= 1 if the plant last had a nonproduction labor share

spike k years ago, zero otherwise), and CYCit represents a cyclical indicator. The indicator we use for

this purpose is a downstream demand indicator specific to the four-digit industry to which the plant is

assigned (this measure is developed in Bartelsman, Caballero, and Lyons, 1994). The downstream

indicator is the change in an index of activity of other industries and service sectors which purchase

output from the industry in question.39

We consider two alternative specifications of (3). First, we estimate (3) via OLS without any

fixed effects. We denote the results from this estimation as the Kaplan-Meir estimates since, in the

absence of controlling for the cyclical indicator, the coefficients on the age dummies reflect the simple

empirical hazard. Second, we attempt to control for unobsemed heterogeneity that lead some plants to

have systematically high probabilities of spikes while others have low probabilities of spikes. We do this

because failure to control for such systematic unobserved heterogeneity will bias the hazard downwards.

One method of addressing this problem is to estimate a first difference specification of(3) in order to

eliminate fixed effects. However, by taking first differences, we induce a correlation between the

difference of the age dummies and the difference in the errors. To overcome this problem, we estimate

3SThese threshold values for spikes are arbitrary but from Figure 7 clearly represent very large changes relative
to the typical change. We have considered alternative thresholds (0,03 and O.10) and have obtained very similar
results for the hazards.

‘9The use of this downstream demand cyclical indicator is motivated by the arguments made by Shea (1993) that
downstream demand is arguably a good instrument for industry-level demand variation. Of course, as Shea argues,
the downstream demand indicator is a better exogenous instrument when the material share of the output horn the
upstream industry in the total costs of the downstream industry is relatively low.
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the first difference specification with instrumental variables where we use twice (and greater) lagged

dependent variables and other twice (and greater) lagged plant-specific variables as instruments.40

For this purpose, we exploit the balanced panel data from 1972-88. In order to construct the age

dummies for several periods, we commence the estimation of(3) in 1978 and consider the variation

across 5 age groups, Specifically, the groups are plants that last had a large nonproduction labor share

change in the prior year (age= 1), two years prior (age=2), three years prior (age= 3), four years prior

(age=4) and five or more years prior (age=5 -- the omitted group in the estimation). For plants with

positive long run nonproduction labor share changes, the average number of spikes is 1.75. The

equivalent mean for plants with long run negative nonproduction labor share changes is 1.70.

The results from this estimation are reported in the panels of Table 8 and the hazards for plants

with long run positive nonproduction labor share changes are depicted in Figure 8. In the latter, the line

labeled “boom” reflects the hazard that results by allowing the industry-specific cyclical indicator to be

one standard deviation above its mean for each plant and then averaging across plants. The line labeled

“recession” is the equivalent one standard negative deviation case. For the Kaplan-Meir estimates, the

estimation yields not only the slope and cyclical sensitivity but also the appropriate level (the intercept)

for the hazard. For the first difference specification, we obtain only the slope and cyclical sensitivity so

some caution needs to be used in comparing the results.

The results for both the positive and negative long run changes are qualitatively similar so we

focus our discussion on the positive long run changes, For the Kaplan-Meir estimates, we observe a

hazard that rises initially but ultimately decreases. Although the slope is not steep, the first difference

hazards are upward sloping throughout. Thus, even this crude control for selection effects yield results

that are qualitatively consistent with the prediction of an increasing hazard in a lumpy adjustment model.

Plants are more likely to experience a large positive spike in their nonproduction labor share the longer it

has been since the prior positive spike.

The results also indicate that positive spikes in the nonproduction labor share are countercyclical.

This finding echoes the results reported in the previous sections regarding the pronounced

countercyclicality of within plant nonproduction labor share changes. The additional result here is that

40 In addition to the mice (and greater) ]agged dependent variables the instrument list includes mice lagged

capital growth (equipment and structures), output growth, indicators of changes in ownership and industry, and the
downstream industry demand indicator. The capital and output growth are interacted with two digit industry
dummies.
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this countercyclicality is driven in part by the countercyclicality of spikes in the nonproduction labor

share.

The large spike at zero in the distribution of nonproduction labor share changes, the fat tails of

the distribution, and the rising hazard, are all consistent with lumpy adjustment models. Further, the

countercyclicality of the positive nonproduction labor share spikes is consistent with the idea that

recessions may be good times to reorganize and retool since the opportunity cost of foregone output is

low at suchtimes.41 Nevertheless, these results on the distribution of nonproduction labor share changes

raise a variety of questions. The large positive and negative gross changes in the nonproduction labor

share that are dominated by large (absolute) spikes in the nonproduction labor share raises questions

about the nature of bias in technical change. One obvious specific question is: What is occurring at

plants experiencing large decreases in their nonproduction labor share? One possible explanation is that

the technology-skill complementarily varies (in sign and magnitude) across different types of

technologies. If technology that is primarily used in production is complementary with unskilled

workers then plants which adopt this type of technology will decrease their nonproduction labor share.42

The challenge, then, is to find observable plant-level variables that can account for both the lefi and right

tails of the distribution of nonproduction labor share changes. We turn to this challenge in the next

section.

VII. The Relationship BeWeen Obsenable Measures of Technology Adoption and the

Nonproduction Labor Share

We now turn to investigating the connection between observable measures of technology

adoption and changes in the nonproduction labor share at the plant level. Our empirical methodology is

similar in spirit to Bartel and Lichtenberg (1987) and Berman, Bound, and Griliches (1994). We start by

assuming that firms minimize a cost function that contains both variable and quasi-fixed inputs. In our

case, we specify a translog cost function with two variable factors of production (skilled and unskilled

workers) and a number of possible quasi-fixed factors. Applying Shepherd’s Lemma and taking first

differences yields:

4’Although the results for plants with negative long run nonproduction labor share changes indicate that the
latter plants do not concenhate their changes in recessions. Based upon the magnitudes of the coefficients on the
cyclical indicator, the procyclicality of the latter group is less strong than the countercyclicality of the plants with
long run positive changes in the nonproduction labor share.

42 We explore this idea further in section VII when we look directly at the effect of different types of plant-level
technology adoption on the nonproduction labor share in the plant. See Dunne and Troske (1995) for further
evidence on this issue.
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M,, = a, + aoAln(w,’/w,”) + ~ ajAzU, + ayAln(Y,f) + Ei,
/

(4)

where in this case Mi[ is measured as the share of nonproduction workers wages in the total wage bill for

plant i in period t.43 The Zij~s include the quasi-fixed factors. Real output, Yit, is included to capture

possible nonhomothetic~. at captures a common time effect such as the common unobsemed

component of the bias in technological change and ~i, captures unobserved idiosyncratic biased technical

change (including unobsemable ZO~s). For a particular quasi-fixed factor Z, the coefficient on the Z

represents the Z-skill complementarily. In what follows, we estimate (4) using both the change in the

cost-share based measure of the nonproduction labor share and the change in the employment-share

based measure of the nonproduction labor share as the dependent variable. While the latter does not

emerge from the translog cost fictional, it is consistent with the general form of the nonproduction

labor share characterized in equation(1).

There are a number of issues that must be addressed before estimating the model. First, we must

determine the variables in Zijt. In all of our specifications, Zijl includes plant-level log of capital

equipment (beginning of period) and log of capital structures (begiming of period). In an attempt to

capture any change in organizational structure, we also control for whether the plant changes ownership

or industry in the period in question. In some specifications, we include a firm-level measure of the log

of the stock of R&D as well as direct plant-level measures of the type of technology adopted at the plant

from the 1988 Survey of Manufacturing Technology. In both of the latter cases, inclusion of such

variables restricts the sample andor the time period of the analysis in important ways (details below) and

thus these variables are not included in all specifications.”’”

A second issue is the treatment of relative wages. There is likely little directly measurable

exogenous cross sectional variation in relative wages that we can exploit for this purpose. The problem

is that wage changes for a given worker type are confounded with unobserved labor quality differences.

Extensive analysis of the plant-level wage variation (e.g., Davis and Haltiwanger, 199 1; Troske, 1994;

Doms, Dunne and Troske, 1995) indicates that much of the between and within plant wage variation by

43 This specification is formally derived in Brown and Christensen (1981) and Bartel and Lichtenberg (1987)
amongst others. Note also, that equation (4) closely resembles the relative factor demand equation (equation. (l))
derived in section II.

““ The details of the construction of these variables is discussed in Appendix A.
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worker type reflects differences in labor quality between and within plants. Even though we cannot

directly measure changes in relative wages, to the extent that relative wages for skilled workers are

equalized across the economy, such economy wide variation in relative wages will be captured through

our time effects. We attempt to improve upon this by interacting the time effects with region dummies.

The region-time effects are included in all of the specifications discussed below.

A third issue is endogenei~ bias for the various measures of the Zij~s. Abstracting from

measurement error for the moment, the error term in (4) reflects the current period idiosyncratic shock to

biased technological change.’s This shock is likely to be correlated with the current growth rate of output

so there are clear endogeneity problems here. Since the change in the log of capital in (4) represents the

change from the bezinning of the prior period to the beginning of the current period, at annual

frequencies it is reasonable to argue that last period’s investment is not correlated with the current period

technology shock. However, in what follows, we consider not only one year differences but also three

year and long differences (1978 to 1988). In the latter cases, it is much more likely that the cumulative

changes in the capital stocks are correlated with the cumulative technology shocks.

A related issue is measurement error in the Zij~s. Following Griliches and Hausman ( 1986), part

of the motivation for considering three year and long differences is to mitigate the effects of

measurement error (in addition, the longer differences are interesting in their own right). However, as

just discussed, this in turn generates problems with endogeneity. Putting these concerns together, in

what follows we estimate our specifications both via OLS (as a benchmark and to compare to the results

of the recent studies that have used OLS in related settings -- e.g., Berman, Bound, and Griliches, 1994;

Bernard and Jensen, forthcoming; Goldin and Katz, 1996) and via an instrumental variables procedure

where we treat the changes in equipment, structures and output as endogenous (as well as other relevant

Z measures as appropriate). We instrument for these variables using appropriately lagged plant-level

measures. Given our concerns about measurement error and again following Griliches and Hausman

(1986), for the difference between t-k and t we use plant level variables from period t-k-1 (and earlier) as

instruments.’b In all of our specifications the initial t-k is 1978 (e.g., the first one year difference is 1978-

45 Since our specification is in fust differences, this is really the innovation to the current shock.

46 The precise instrument list for the difference between t-k and t are plant level variables dated t-k-1 (and
earlier) including linear, quadratic, cubic and quartics in the log of output, the log of capital equipment, and the log
of capital structures as well as quadratic, cubic and quartic terms in the growth rates of each of tiese lagged
variables. The motivation for including the nonlinear terms is based on the recent literature indicating that plant-
level dynamics in employment and capital exhibits significant nonlinearities (see, e.g., Caballero, Engel and

(continued...)
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1979, the long difference is 1978 to 1988). Since much of the within plant changes occur over the 1978

to 1988 period, we are able to include the most interesting period of variation in our sample period. We

estimate the instrumental variables specification via GMM to improve efficiency and to generate

consistent standard errors.

In all cases we prefer to estimate the model separately for plants in each two-digit indust~. An

obvious advantage of using plant-level data is the ability to let parameters vary across observable

dimensions of differences in technology such as industry. Even in the specifications estimated separately

for two-digit industry, we interact three-digit industry effects with the time effects to capture differences

across industries within two-digit industries.

A. Base Specification -- The Contribution of Ca~ital-Skill Comulementaritv

Table 9 presents estimated coefficients for the pooled OLS and IV-GMM specifications. While

we ultimately draw our inferences from results that are estimated separately for plants in each two-digit

industry, we present the results in Table 9 to provide a benchmark for comparison across alternative

specifications and for comparability with the existing literature. Several aspects of these results deserve

mention. First, there is clear evidence of capital-skill complementarily with the complementarily

between skill and equipment generally stronger than the complementarily between skill and structures.

Second, the IV-GMM results generally yield higher absolute magnitudes of coefficients especially in the

one year difference specifications. This latter finding is consistent with measurement error in our Zij~’s.

Third, the OLS results yield generally higher magnitudes of the capital-skill complementarily in the long

differences as opposed to the one year differences which is again consistent with measurement error in

our right hand side variables. This pattern is less pervasive in the IV-GMM results which makes sense if

one interprets the one year differences with IV-GMM as being purged of measurement error.47 Fourth,

we find clear evidence of short run negative non-homotheticity in the one and three year difference

results. However, this negative nonhomotheticity diminishes in the longer differences. Fifth, the change

in ownership and change in industry affiliation variables exhibit somewhat erratic patterns in these

(...continued)
Haltiwanger, 1995a, 1995b). We also include the contemporaneous and lagged downstream cyclical indicator used
in section VI as additional instruments in all specifications. For alternative specifications including additional Zij~s
(e.g., R&D), the appropriate t-k- 1 lags (and earlier) for these additional variables are included as instruments as
well.

47Our IV approach is much less successful in our long differences specification than in our one or three year
specifications. This is because, given the limited time dimension of our data, we are unable to construct instruments
which accurately predict the long run changes in the endogenous variables.
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specifications. However, in the long run it appears that both events are associated with increases in the

nonproduction labor share.46 Sixth, the low overall R-squared’s indicate the dominance of unobserved

factors in accounting for the pooled cross-sectional and time series variation. Given the inclusion of both

year effects and year effects interacted with industry and region, it is clear that there is tremendous

heterogeneity in the nonproduction labor share changes in a given year across plants in the same industry

or region. Finally, the results for the employment-share based specification and the cost-share based

specification are qualitatively very similar. This pattern holds throughout the remainder of the

subsequent analysis and for the sake of brevity we focus on the employment-share based results for the

remainder of the paper.

As we stated above, one advantage of the macroeconomic data is that it allows us to estimate the

above model separately for each two-digit industry. Table 10 reports these results from the one year

difference specification using IV-GMM. We report coefficient estimates as well as the employment-

weighted average plant- level growth rates for net investment and output. It is evident that there are

tremendous differences across two-digit industries in the nature and magnitude of the equipment-skill

and the structures-skill complementarily and in the short run nonhomotheticity. For example, the

equipment coefficient varies from -0.013 in Printing to 0.068 in Instruments. While the industries with

negative equipment-skill complementarily are imprecisely estimated, there is nevertheless a wide range

of values across industries. mere are also striking differences in the grotih rates of net investment and

output across industries. Given the large differences in the coefficients and the large differences in the

growth rates of these variables across industries, there are clearly problems in using the pooled estimates

(which constrain the coefficients to be the same across industries) to make inferences about the

contribution of the relevant variables to the variation in nonproduction labor share changes .49

Our main objective in this exercise is to understand the contribution of our observable factors to

the time series and cross sectional variation in the within plant changes in the nonproduction labor share.

For this purpose, we present a simplified version of the full distribution accounting framework used by

Juhn, Murphy and Pierce ( 1993). That is, we decompose the employment-weighted distribution of

4E me ~du5~ Chmge ad ownership change indicators are much better predictors of changes in the absolute

nonproduction labor share than the nonproduction labor share itself. We estimated alternative specifications of (4)
with the same right hand side variables but with the dependent variable being the absolute change in the
nonproduction labor share. The coefficients on these two indicators (results not reported) increased substantially in
magnitude and statistical significance.

49 ~u5 s~die5 based upon aggregate (industry-level) data that constrain the Coefficientsto be the same across

industries &e potentially misleading.
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nonproduction labor share changes into the changes in the distribution accounted for by the observable

and the changes in the distribution accounted for by the unobservables.50 By observable, we mean the

predicted plant-level changes in the nonproduction labor share in each year based upon all of the

explanatory variables except the common year effect, By unobsemables, we mean the plant-level

changes in the nonproduction labor share in each year accounted for by the estimated common year

effect plus the estimated plant-level residual. We treat the estimated common year effect as

unobsemable since it represents the unexplained common bias in technological change.

Decomposing annual employment-weighted mean changes in the nonproduction labor share

simply involves computing the annual employment-weighted mean change in the nonproduction labor

share from the observable and the annual employment-weighted mean change in the nonproduction

labor share from the unobsemables, However, we expand the standard mean decomposition (or the

standard variance decomposition) by decomposing the entire distribution of nonproduction labor share

changes into the contribution of the observable and unobservable factors. Consider, for example, the

decomposition of the difference between the 95th and 5th percentile of the employment-weighted

nonproduction labor share change distribution. In a given year, we measure the contribution of the

observable as the difference between the 95th and 5th percentile of the distribution of plant-level

predicted changes in the nonproduction labor share, The marginal contribution of the unobservable is

then given by the difference between the actual 95-5 and predicted 95-5 percentile differences.51

Figure 9 depicts the decomposition of the annual mean changes in the nonproduction labor share

as well as the decompositions of the annual 95th-5th percentile difference, the annual 95th-50th

percentile difference and the annual 50th-5th percentile difference. In each case, we present the statistic

from the actual distribution, the contribution to this statistic by the observable and the marginal

contribution to this statistic by the unobsemables. For the contribution of the observable, we also

present the contribution from the observable minus the effect of plant-level changes in output. For this

exercise we use the estimates from the IV-GMM one year difference specification estimated separately

for plants in each two-digit industry.

50 me relevmt emP]Owent weights h each year are the initial(prior year) employment shares. ~us, this

exercise decomposes the within plant component of equation (2).

“ Unlike the decomposition of the mean change or the analogous variance decomposition, the ordering of the
decomposition potentially matters in this context. That is, one could start with the contribution of the unobservable
to the 95-5 difference and then consider the marginal contribution of the observable.
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The upper left panel of Figure 9 depicts the decomposition of the employment-weighted annual

mean nonproduction labor share changes. Over the period, observable account for about 40 percent of

the average annual change in the nonproduction labor share. Excluding the contribution of plant-level

output changes, the capital component of the observable accounts for about 30 percent of the average

annual change.

While the observable account for a sizeable fraction of the average annual change, the

observable (and in particular capital-skill complementarily effects) do not track the timing of the

nonproduction labor share changes well. For example, in 1981 the observable account for only 27

percent of the sharp increase in the nonproduction labor share and capital-skill complementarily accounts

for only 10 percent of the increase. More generally, capital-skill complementarily predicts a positive

nonproduction labor share change in all years and relatively modest time variation.52

Changes in output account for some of the cyclical variation in the nonproduction labor share

consistent with short run nonhomotheticity induced (at least in part) by the greater cyclical flexibility of

production workers. Nevertheless, unobservable factors dominate the cyclical variation. Further,

unobsemable factors account for most of the secular increase in the nonproduction labor share. Putting

the two results together implies that unobservable factors are generating most of the long run increase in

the nonproduction labor share and that the long run changes generated by these unobservable factors are

concentrated in recessions. It should not be surprising that capital-skill complementarily cannot account

for these cyclical patterns. There is an inherent tension in trying to account for sharp increases in

nonproduction labor share changes in downturns with capital-skill complementarily since net investment

is procyclical.

Turning now to the decompositions of the percentile differences, several interesting patterns

emerge. First, the actual 95-5 percentile difference indicates a secular increase in the dispersion of

nonproduction labor share changes over the 1980s. This secular increase is again accounted for entirely

by unobservable factors. In addition to the secular increase in dispersion, there is an increase in

dispersion in the cyclical downturn in the early 1980s that is again primarily accounted for by the

unobsemables. Looking at the 50-5 and the 95-50 differentials in the nonproduction labor share change

52 In examining the precise timing of the contribution of capital-skill complementarily in Figure 9 it is important
to recall that it is beginning of period capital stock that affects the current period nonproduction labor share.
Accordingly, in fwst differences it is the change in the capital stock in the prior period that affects the change in the
nonproduction labor share from the prior to the current period. Thus, for example the equipment investment boom
in 1985 yields an increase in the nonproduction labor share in 1986.
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distribution shows that there is a greater secular increase in the dispersion in the left tail of the

distribution (the 50-5 difference) but greater cyclical volatility in the dispersion in the right tail of the

distribution (the 95-50 difference). Observable account for very little of either the secular or cyclical

variation in the left tail or the secular change in the right tail. However, observable account for a

relatively larger fraction of the cyclical volatility in the right tail.

B. The Contribution of R&D Investment

We now consider the additional contribution of net changes in the stock of R&D capital at the

plant level. Essentially, we follow a methodology similar to that used by Adams and Jaffe ( 1994) by

building stocks of R&D at the firm-level using a perpetual inventory method (details discussed in

Appendix A). The firm level R&D stocks are matched to individual plants using the firm identifiers in

our plant-level data set. We restrict our sample to those plants for which we have a continuous series on

R&D, which reduces our sample by about 40 percent.

Table 11 reports the coefficient estimates with the inclusion of the net investment in R&D for the

pooled OLS, IV-GMM and the employment-weighted, two-digit industry, for the both the one year and

three year difference specifications. 53 The results for net investment of equipment and structures are

largely similar to those reported in Tables 9 and 10. We find evidence of significant R&D-skill

complementarily in the IV-GMM results for both the one and three year difference specifications.

The decomposition of the employment-weighted nonproduction labor share distribution into

observable and unobservable components when we include R&D is presented in Figure 10.54 The results

are qualitatively similar to those presented in Figure 9. Observable account for 45 percent of the

average annual change and observable absent the output growth effect account for 42 percent of the

average annual change. Including net R&D investment does not help in accounting for aggregate

cyclical changes in the nonproduction labor share or to the secular increase in the dispersion in the

nonproduction labor share changes. This finding is again not surprising given the essentially acyclical

nature of R&D investment. There is a modest improvement in the contribution of the observable to the

cyclical volatility in dispersion (especially for the right tail). In short, however, the main conclusion of

the prior section still holds: unobservable factors account for most of the nonproduction labor share

53We treat changes in the R&D stock as endogenous in our IV-GMM specifications. Once again, we do not
report the long difference estimations because, given our small sample size, we do not feel we can use IV to
estimate the model.

~ The results in Figure 10 are based on the one-year difference IV-GMM specification estimated separately for
plants in each two-digit industry.
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increases in cyclical downturns and the cyclical increases generated by unobservable account for most

of the long run secular increase in the nonproduction labor share.

C. The Contribution of Indicators of Adoution of Advanced Technolo~v

We now consider the influence of direct measures of the type of technology adopted at the plant.

For this purpose, we exploit the 1988 Survey of Manufacturing Technology (SMT). As discussed in

section III, the 1988 SMT surveyed 10,590 plants in SIC industries 34 to 38 on their use of seventeen

recent manufacturing innovations. The innovations include such technologies as robotics, computers on

the factory floor, local area networks, computer-aided design and automatic sensors. We match the data

from the SMT with our balanced panel of continuing plants which results in a sample of 1820 plants.

Following Dunne and Troske (1995), we divide the technologies into two main groups -- information

technologies including computer automated design (CAD), computers and lans, and production

technologies including flexible manufacturing cells, lasers, and pick and place robots. The distinction

between information technologies and production technologies is that the former are technologies that

aid in the management and design of products and the production process while the latter aid directly in

production.

Our analysis exploiting the SMT data has a number of important limitations. First, we only have

the information at one point in time for our balanced panel (1988). Thus, we cannot exploit the precise

timing of adoption. To get around this problem, we use the SMT variables in the long difference

specification and presume that if a particular technology is present at an individual plant then the

adoption of the technology occurred between 1978 to 1988. Second, we estimate the specification by

OLS and IV-GMM both with and without instrumenting for technology adoption using the same

instrument set as in the base specification. Since the need (at least for measurement error reasons) to

instrument in the long difference specification is limited and because we do not have any reasonable

instruments for the SMT variables, we have more confidence in the OLS results in this case and focus

our discussion on these results. Third, the results are restricted to a narrow set of industries (SIC 34 to

38) which restricts the sample size and the relevance of the analysis for total manufacturing and makes

comparisons to the preceding analyses more tenuous.

The results for the long difference specification including the SMT variables are reported in

Table 12. For both the information and production technologies, we break plants into two groups based

upon whether the plant is using at least one of the relevant technologies. The results for capital-skill-

complementarity and nonhomotheticity are quite similar to those generated in the base case. We find

that adoption of information technologies yields a positive impact on the change in the nonproduction
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labor share while the adoption of production technologies generates a negative impact on the change in

the nonproduction labor share. 55 Since these results reflect the influence of the type of technology

adopted after already controlling for output and capital growth, these results do not necessarily imply

that plants that have adopted information technologies exhibit increases in their nonproduction labor

share or that plants that have adopted production technologies exhibit decreases in the nonproduction

labor share. Important in this regard is that plants that have adopted either type of advanced technology

generally have much higher net equipment investment rates. For example, the employment-weighted

mean net investment rate for plants that have adopted advanced production technologies is 0.48 while

plants that have not adopted such technologies have a rate of 0.297 (both rates over the 10 year period).s’

In terms of the contribution of the observable to the long run nonproduction labor share change,

in a manner consistent with our above annual analysis we treat the constant as an unobservable. The

actual employment-weighted average nonproduction labor share change for the 1820 plants over the

1978-88 period is .035. The predicted change in nonproduction labor share when we include our SMT

variables is .017, so the observable account for about one-half of the change in the nonproduction labor

share in this sample of plants. However, even after controlling for whether or not a plant adopts new

technologies, unobservable still account for 50 percent of the secular employment-weighted average

change in the nonproduction labor share.

55Theresults reported in Table 12 should be viewed with some caution, First, the sample of plants is dominated
by very large producers and 91 percent of plants in the sample use information technologies. Second, Doms, Dume
and Troske (1995), using a larger sample of plants, a more recent SMT, and employing the number of technologies
used as their main index of technology adoption, fmd little correlation between technology use in 1993 and the
change in nonproduction labor share over the 1977 to 1992 period. In results not reported here, we estimated the
nonproduction labor share regression using a count-based measure and found little correlation between the number
of technologies used and the change in nonproduction labor share. Finally, Doms, Dunne, and Troske also estimate
a model similar to that reported in Table 12. They fmd a negative relationship between production technology use
and the change in nonproduction labor share (as we do), but fmd a much weaker positive correlation between
information technology use and changes in nonproduction labor share than we fmd in our more restricted sample.

5’ The employment-weighted aggregate change in the nonproduction labor share for plants that adopted
information technologies is 0.0353 while the aggregate change for those that have not is 0.0139. The predicted
aggregate change for those that have adopted information technologies is 0.0319 while the predicted aggregate
change for the other plants is 0.0256. The employment-weighted aggregate change in the nonproduction labor share
for plants that adopted advanced production technologies is 0.0333 while the aggregate change for those that have
not is 0.0434. The predicted aggregate change for those that have adopted production technologies is 0.0293 while
the predicted aggregate change for the other plants is 0.0461. Thus, we observe that on average plants in all four of
these groups exhibit substantial increases in their nonproduction labor share but particularly high changes for plants
that have adopted information technologies and have not adopted production technologies.

39



VfII. Concluding Remarks

Our main empirical findings are summarized as follows:

1. Aggregate changes in the nonproduction labor share at both annual and longer

frequencies are dominated by within plant changes in the nonproduction labor share. The

contribution of between plant changes in the nonproduction labor share is relatively modest peaking

(around 25 percent) in the 1977-82 period. Net entry reinforces the effects of the within plant changes

since the nonproduction labor share differential between entering and exiting plants is similar to the

within plant changes in the nonproduction labor share that we obseme for continuing plants. Taken

together, the contribution of within plant changes and net entry jointly account for more than 80 percent

of the long run change in the nonproduction labor share.

2. The distribution of annual within plant changes exhibits a spike at zero, tremendous

heterogeneity and fat left and right tails. The aggregate net change in the nonproduction labor share is

driven by large gross positive and negative changes in the nonproduction labor share that are an order of

magnitude larger than the net change. Most of the large gross changes are accounted for by plants with

very large (in excess of .05 in absolute value annually) lumpy changes, The probability of a plant

experiencing a large change in the nonproduction labor share is increasing in the time since the previous

large change in the nonproduction labor share.

3. Within plant job reallocation is small in magnitude and accounts for only a small

fraction of total job reallocation (between plus within plant job reallocation). Additionally, most

changes in the within plant nonproduction labor share are driven by individual plants either

simultaneously increasing both skilled and unskilled workers or simultaneously decreasing both

types of workers. Annually, the rate of within plant job reallocation is only 2.7 percent. This compares

to a between plant job reallocation rate of about 20 percent. Most changes in within plant nonproduction

worker shares are accounted for by plants changing scale but disproportionately via employment of one

type of worker. Plants that exhibit long run secular increases in the nonproduction labor share

accomplished through long run upsizing account for most of the long run secular increase in the

nonproduction labor share. This group of plants accomplishes this with large rates of job creation for

both skilled and unskilled workers and especially high rates of job creation for skilled workers. Another

group of plants that increase their nonproduction labor share through long run downsizing also contribute

significantly to the long run secular increase in the nonproduction labor share. This latter group of plants

accomplishes this with high rates of job destruction for both worker types and especially high job

destruction rates for unskilled workers.
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4. The long run secular increases in the nonproduction labor share are concentrated in

recessions, particularly the recession in the early 1980s. The aggregate nonproduction labor share

rises sharply in economic downturns and falls only mildly in economic recoveries. The persistent

component of within plant nonproduction labor share changes increases sharply in recessions. Plants

with long run increases in their nonproduction labor share concentrated much of their increase in the

recession in the early 1980s. Plants with long run decreases in the nonproduction labor share account

concentrated much of their decrease after 1982.

5. Observable indicators of changes in technology account for a significant fraction of the

long run secular increase in the average nonproduction labor share but account for little of the

cyclical variation. Unobsemable factors account for most of the long run secular increase and the

changes generated by these unobservable factors account for most of the cyclical variation in the

aggregate nonproduction labor share. Putting these results together, the factors that are

generating the long run secular increase in the nonproduction labor share are closely linked to the

factors generating the cyclical increases in the nonproduction labor share in economic downturns.

Capital-skill complementarily (including detailed measures of the type of advanced technologies

adopted) and R&D-skill complementarily contribute significantly to the employment-weighted average

secular change in the nonproduction labor share. However, capital investment and R&D investment

account for little of the cyclical variation in the average within plant nonproduction labor share changes.

Even after controlling for plant-level net investment of physical capital, net investment in R&D capital

and output growth, the residual average within plant changes in the nonproduction labor share exhibit

significant countercyclical ity. Further, the increases in the average within plant nonproduction labor

share generated by unobsemable factors in downturns are much larger than the modest decreases in

recoveries, so that the cumulative effect is positive. Indeed, more than half of the long run secular

increase in the average nonproduction labor share is accounted for by these unobservable.

These results, in general, point to the conclusion that the aggregate change in the nonproduction

labor share reflects some form of technical change (broadly defined) inducing individual continuing

plants to retool and reorganize and new more skill intensive plants to displace exiting less skill intensive

plants. The results are consistent with models that predict that retooling and reorganization will be

lumpy and that the latter will imply similar lumpiness in nonproduction labor share changes. Further, the

results are consistent with models that predict that retooling and reorganization of the workforce will be

concentrated in recessions since the opportunity cost of the disruption from undertaking

retooling/reorganization is low during recessions.
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Viewed from the broad perspective of changes in the manufacturing workforce, our results

indicate that there have been striking changes within individual manufacturing establishments in the type

of workers used at operating production establishments. While on average the shifi has been towards

nonproduction workers, the underlying plant level changes reflect tremendous heterogeneity in the

within plant changes in the structure of employment. Our results do not provide much support for simple

product demand and related trade explanations for the change in the mix of jobs in U.S. manufacturing.

Instead, our results are consistent with the view that individual plants have fundamentally changed the

way they produce goods in terms of the mix of workers employed at production establishments.

There are, however, more questions raised than answers provided by our analysis. The dominant

role that unobservable factors play in accounting for most of the secular and cyclical variation in the

nonproduction labor share raises questions about what these unobsenable factors represent. In a similar

vein, the tremendous heterogeneity in within plant changes in the nonproduction worker share (with large

positive and negative gross within plant changes) raise questions about the nature of the bias in technical

change. We have argued that one label to put on the factors generating these patterns of plant-level

changes is organizational capital. Viewed from this perspective, our results indicate that organizational

capital has on average been skill biased over this period and that permanent reorganizations of the

production process at the plant are concentrated in recessions. Organizational capital need not be skill

biased in general and indeed we find that unobsemable factors account for most of the tremendous cross

sectional variation in plant-level nonproduction labor share changes.

The dominant role of unobse~ables is not inherently in conflict with the recent interpretations

from related aggregate analyses (e.g., Berman, Bound and Griliches, 1994) that the aggregate increase in

the nonproduction labor share reflects skill biased technical change. However, our findings suggest that

it will be difficult to find observable indicators of this skill biased technical change that account for the

observed strong connection between the long run structural changes and cyclical dynamics. At least it

will be difficult to find observable indicators from measures of investment in new capital goods (even

very detailed indicators of the type of capital investment that the plant is undertaking) or R&D. The

reason for this is that the latter indicators are procyclical and we find that the permanent changes in the

nonproduction labor share are countercyclical.

An alternative but related interpretation of our results is that we have not fully captured the

complex dynamic interactions between plant-level changes in the nonproduction labor share and plant-

level changes in observable indicators like physical capital and R&D, For example, results from Dunne

and Troske (1995) indicate that the probability of adopting advanced information technologies is
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increasing in the initial nonproduction labor share of the plant. We have not investigated the idea that

plants may find it optimal to change their employment structure prior to changing their technology.s’

This latter possibility suggests that we may need a much richer characterization of the dynamic

interactions of the various components of what constitutes the organizational structure of the plant.

57 Note, however, that our long difference specifications relating long run changes in the nonproduction labor
share to long run changes in output growth, physical capital growth and R&D capital growth do not depend on such
precise timing considerations and these results still leave most of the aggregate and cross-sectional variation in the
nonproduction labor share unexplained,
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Appendix A: Definition of Measures

This appendix provides precise definitions for various measures used in the paper.
To begin with we define our job creation and destruction measures.

Job Creation bv Worker Tvue

Where:
AL~, = Change in employment of worker type k at plant i in year t: (L:, - L:,., )
X!, = l/2(L!t + L!,.1 )

L+= the set of all plants with AL!, z O.
A = All plants

Job Destruction bv Worker TvDe

Where:

L = the set of all plants with AL!, < O.

Job creation and destruction rates for total employment are calculated by letting L:, be the total
employment in plant i in year t.

Given these measure of job creation and destruction, between plant job reallocation is simply the
sum of total job creation and destruction:

BPR, = C, + D,

_ iEA—

~xi,

16A

Total job reallocation (both within and between plant) is given by:
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x,’
u

TR, = ~ (C,’ + D,s) + ; (C,” + Dt”)

f t

Finally, within plant reallocation is given by

WPR, =

—

Persistence Rate for NonProduction Labor Share Change

Define:

e~(k)=max[minlz:+’e~(k-,)llo)fork

O~,(k) i’sthe k-year persistence rate for plant i in year t. Then the k year persistent component of
employment weighted, within ‘plant nonproduction labor share change is given by:

W,(k) = ~ (L,,.,lL,.,)O;(,) w,,.
iEA

Persistence Rate for Job Creation
Define:
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minlg::e(k-l)lo!forko

where again 0~~(0)=1 and calculated for plants with ALi>O. Then the persistent component of aggregate
job creation is given by:’

Rates and components for job creation by worker type, for total job destruction and for job destruction by
worker type are defined in an analogous fashion.

Capital Stock Measures
Our capital stock measure is:

where:
ks;l = total stock of type r capital in plant i in period t

~j, = depreciation rate for type r capital in industry j in period t (includes retirements).
1{,= Investment in type r capital in plant i in period t.

We construct capital stocks for t=l 972 to 1988. For 1972, ks~,is computed as:

ksj:,,
= bks,r72 *—ksi:72 ,

bksj:72

where:

bks{.,, = the book value of type r capital in plant i in 1972
ksj,,, = the real value of type r capital in industry j in 1972
bksj,,z = the book value of type r capital in industry j in 1972.

The depreciation rate in period t along with the real and book value of capital for indust~ j in 1972 come
from BEA. j refers to a two-digit industry.

R&D Stock Measure
Our R&D stock measure is:
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rdk,, = (1 -6) *rdki,., +rd,,

where:
rdkit = the r&d stock of firm i in period t

6 = the depreciation rate for r&d
rdil = the investment in r&d by firm i in period t.

We set 6=.15 (Adarns and Jaffe, 1994). We compute r&d stocks for *1972 to 1988. In 1972 we set
rd~~=rdil.

Technolo~v Adoution Measures
Our plant-level measure of technology adoption come from the 1988 Survey of Manufacturing

Technology (SMT), The 1988 SMT surveyed managers of over 10,000 plants about their use of 17
different advanced technologies. ‘B We merge these data with our sample of continuing plants to create a

sample of 1820 plants, We then use the information from the 1988 SMT to construct our two measures
of technology adoption: information, which equals 1 if a plant adopts any of one of eight information
technologies, and production which equals 1 if a plant adopts any one of six production technologies.
The eight information technologies are: computer aided design (CAD), CAD controlled machines, digital
CAD, technical data network, factory network, intercompany network, programmable controllers,
computers on the factory floor. The eight production technologies are: flexible manufacturing
system/cell, materials working lasers, pick/place robots, other robots automatic storage/retrieval system,
automatic guided vehicle systems, automated sensor based inspection and/or testing equipment used on
incoming or in process materials, automated sensor based inspection and/or testing equipment used on
final product.

Changes in Ou~ut. OwnershiTJ and Indus~:
Change in output is simply the log of the real value of shipments of plant i in year t minus the log

of real value of shipments of plant i in year t-1. We deflate the reported value of shipments from the

plant using the four-digit industry shipments deflator in the NBER productivity database (Bartelsman
and Gray, 1995). In principle, the appropriate measure to use would be changes in value-added, or at
least changes in shipments minus changes in inventories. However, given measurement error problems
in the inventories and materials variables in the LRD and in the materials deflator, we feel that changes

in shipments is the better variable. Similar arguments are made by Berman, Bound and Griliches (1994)
and Bernard and Jensen (forthcoming) to justifi their use of this variable.

The change in ownership variable equals one if the firm identification variable in the LRD
changes between year t and year t-1. The change in industry variable equals one if a plant’s four-digit
SIC code changes be~een year t and t-1.

‘aSee Dunne (1994) for a more complete description of the 1988 SMT.
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Table 1
Decomposition of Nonproduction Labor Share Changes, 1972-88

(Employment Share Based)

Sample Used

1972-87

1972-77

1977-82

1982-87

Annual Average
for 1972-88
(excluding 74,79
and 84)

Annual Average
for 1972-88

~ Within Between Covariance Net Entrv

Census of Manufactures

.0592 .0254 .0099 .0023 .0216

.0108 .0096 .0015 .0004 -.0007

.0434 .0282 .0108 -.0015 .0059

.0049 .0059 -.0031 -.0002 .0023

Annual Survey of Manufactures

.0040 .0044 .0003 -.0008 .00003

Balanced Panel of Continuing Plants

,0036 .0031 .0009 -.0005 NIA



Table 2
Employment Flows and Nonproduction Labor Share of Entering and Exiting Plants

Emulovment Share Nonuroduction Labor Share

Exiting Entering Continuing
Census Exiting Plants Entering Plants Plants Plants Plants
Period (t-1) (t) (t- 1) (t) (t- 1) (t)

1972-1977 .1145 ,1225 .2311 .2260 .2522 .2655

1977-1982 .1157 .1170 .2314 .2779 .2644 .3075

1982-1987 .1461 .1015 .2817 ,2896 .3079 .3112

1972-1987 .3336 .3111 .2291 .2868 .2602 .3190



Table 3
Job Creation and Job Destruction Rates for Production and Nonproduction Workers,

Annual and Five Year Rates

Annual Survey of Manufactures Balanced Panel of Continuers

Prod. Workers

1974 9.9

1975 6.9

1976 13.3

1977 12.2

1978 12.0

1979 11.2

1980 8.4

1981 6.9

1982 7.5

1983 9.2

1984 16.4

1985 8.4

1986 8.7

1987 9.6

1988 9.8

Mean 10.2

Std Dev 2.7

~

6.9

10.3

19.5

10.8

9.7

8.4

7.7

11.0

13.3

16.6

17.8

8.7

13.1

14.5

8.6

9.5

11.7

3.8

Nonurod. Workers

m

12.3

11.4

8.9

10.0

12.5

12.8

12.5

11.5

9.1

9.4

10.5

11,9

11.1

11.7

10.9

10.5

11,1

1.2

N-

8.5

9.3

12.7

10.1

10.5

9.2

8.3

8.5

10.7

13.9

14.4

10.2

10.9

12.3

10.0

11,3

10,7

1.8

Prod. Workers

m

10.0

6.9

4.0

10.2

7.7

7.3

7.5

4.9

4.4

3.7

4.8

11.7

5.5

4.8

5.0

6.2

6.5

2.4

N=

3.3

6.7

15.6

6.7

4.5

3.9

3.9

8.5

8.7

11.7

13.1

4.5

7.3

8.0

7.3

6.3

7.5

3.5

Non~rod. Workers

7.6

5.6

5.8

7.4

8.0

8.3

8.0

6.2

5.4

4.9

7.2

7.0

6.0

5.6

6.3

6.8

1.2

~

4.3

5.0

8.0

5.9

4.9

4.5

4.3

4.2

5.6

7.4

9.1

6.5

5.6

7.3

8.6

7.3

6.2

1.6

Five Year Changes from Census of
Manufactures:

1972-77 28.5 26.7 33.0 26.0

1977-82 27.0 32.1 36.5 24.9

1982-87 28.2 32.1 31.7 31.9

Notes: POS=job creation; NEG=job destruction.



Table 4
Summary Statistics on Annual Job Creation and Destruction Rates

Measure

Production
Workers

Non-
Production
Workers

Total
Employment

Production
Workers

Non-
production
Workers

Total

Mean 2-year
Corr(SUM, Var(NEG)/ persistence

Corr(POS,NEG) NET(TE)) ~ rate for POS

-0.68

-0.62

-0.69

-0.71

-0.91

-0.78

Annual Survey of Manufacturers

-0.49 2.02 NIA

-0.36 2.19 NIA

-0.49 2.22 54.4

Balanced Panel of Continuing Plants

-0.52 2.09 52.6

-0.31 1.88 58.7

-0.52 2.11 55.8

Mean 2-year
persistence
rate for NEG

N/A

N/A

73.6

61.3

66.0

63.3

Notes: NET(TE) = net employment growth rate for total employment (TE);SUM = POS + NEG = Job
Reallocation (for a worker type).



Table 5
Decomposition of Total Job Reallocation

(Between Plant and Within Plant Components)

Between Plant
SamDleUsed Job Reallocation

ASM plants, 19.2
Annual Average,
1972-88

Balanced panel, 12.0
Annual Average,
1972-88

Census of 54.8
Manufactures,
5 year averages
from 1972-87

Within Plant
Job Reallocation

2.7

1.7

4.2

Total Percent of Total
Job Reallocation Accounted

(Behveen+Within) for bv Within

21.9 12.2

13.7 12.3

59.0 7.1



Table 6
Decomposition of Changes in the Long Run Nonproduction Labor Share, by Long Run

Quadrant
(Employment Share Based)

Measure ~ ouadrant I Ouadrant II C)uadrant111 Ouadrant IV

Employment Share, 1.00 0.24 0.39 0.22 0.15
1972

Employment Share, 1.00 0,38 0.24 0.13 0.25
1988

Nonproduction 0.27 0,30 0.22 0.28 0.31
Labor Share, 1972

Nonproduction 0.33 0.42 0.32 0.20 0.26
Labor Share, 1988

Contribution to 1.00 0.85 0.52 -0.21 -0.16
Aggregate
Nonproduction
Labor Share Change

Note: This table is based on the balanced panel of continuing plants.



Table 7
Summary Statistics on Gross Job Flows, by Long Run Quadrant

Measure

Production Workers:

Mean POS

Mean NEG

Std Dev POS

Std Dev NEG

Nonproduction Workers:

Mean POS

Mean NEG

Std Dev POS

Std Dev NEG

Total Employment:

Mean POS

Mean NEG

Std Dev POS

Std Dev NEG

6.5

7.5

2.4

3.5

6.8

6.2

1.2

1.6

5.8

6.3

1.9

2,8

7.4

6.0

2.5

2.8

8.5

4.1

1.7

1.0

6.8

4.3

2.1

2.0

Ouadrant 11

5.2

9.4

2.6

4.4

5.6

7.0

1.3

2.5

4.6

8.0

2.1

3.7

Quadrant III

5.6

8.6

2.3

3.9

4.9

10.8

1.1

4.7

4.6

8,3

1.7

3.4

Ouadrant IV

8.7

5.9

3.1

3.3

7.0

5.9

1.6

1,7

7.4

5.0

2.4

2.6

Notes: POS=job creation; NEG=job destruction. This table is based on the balanced panel of
continuing plants.



Table 8
Coefficient Estimates from Simple Hazard Models

ExD]anatow Variables Kau]an-Meir First Difference. IV

Dependent Variable: Spike = 1 if Change in Nonproduction Labor Share >0.05, 0 otherwise
Sample: Plants with Long Run Positive Changes in Nonproduction Labor Share

Constant .0955 .0014
(.0013) (.0018)

Age = 1 Dummy .0247 -.0447
(.0036) (.0147)

Age = 2 Dummy .0456 -.0157
(.0037) (.0133)

Age = 3 Dummy .0469 -.0141
(.0039) (.0113)

Age = 4 Dummy .0445 -.0066
(.0042) (.0079)

Cyclical Indicator -.5887 -.7375
(.0260) (.0433)

Dependent Variable: Spike = 1 if Change in Nonproduction Labor Share <-0.05, 0 otherwise
Sample: Plants with Long Run Negative Changes in Nonproduction Labor Share

Constant .0900 .0083
(.0016) (.0021)

Age = 1 Dummy .0209 -.0653
(.0045) (.0170)

Age = 2 Dummy .0319 -.0571
(.0048) (.0154)

Age = 3 Dummy .0419 -.0316
(.0051) (.0131)

Age = 4 Dummy .0336 -.0299
(.0053) (.0096)

Cyclical Indicator .3741 .2203

Notes: Standard errors in parentheses.



Table 9
Changes in Nonproduction Labor Share: Pooled Regressions

One Year Differences Three Year Differences Long Differences
Employment Share Based Employment Share Based Employment Share Based

Change in
Equipment

Change in
Structures

Change in
output

Change in
Ownership

Change in
Industry

Dep. Var.
Mean

R-square

n

m

,0075
(.0012)

.0050
(.0013)

-.0361
(.0007)

.0003
(.0008)

-.0008
(.0012)

,002

.060

109120

IV-GMM

.0228
(.0053)

.0148
(.0055)

-.0484
(.0068)

-.0001
(.0010)

-.0005
(.0015)

.002

.055

109120

m

.0108
(.0010)

.0067
(.001 1)

-.0343
(.0007)

-.0031
(.0008)

.0023
(.0012)

.007

.072

87063

IV-GMM

.0165
(.0034)

.0099
(.0033)

-.0157
(.0053)

-.0023
(.0009)

.0030
(.0013)

.007

.063

87063

m

.0099
(.0024)

.0076
(.0024)

-.0212
(.0018)

.0044
(.0023)

.0039
(.0034)

.023

.052

10704

IV-GMM

.0100
(.0052)

.0041
(.0045)

.0242
(.0083)

.0077
(.0026)

,0084
(.0037)

.023

.014

10704

One Year Differences Three Year Differences Long Differences
Cost Share Based Cost Share Based Cost Share Based

m IV-GMM m IV-GMM m IV-GMM

Change in ,0046 .0145 .0104 .0095 .0069 -.0023
Equipment (.0014) (.0063) (.0012) (.0039) (.0027) (.0056)

Change in .0014 .0109 .0023 .0095 .0036 .0071
Structures (.0015) (.0067) (.0013) (.0038) (.0027) (.0051)

Change in -.0322 -.0417 -.0347 -.0157 -.0206 .0161
output (.0008) (.0078) (.0008) (.0059) (.0020) (.0095)

Change in .0016 .0015 -.0003 .0003 .0066 .0103
Ownership (.0009) (.0011) (.0009) (.0011) (.0026) (.0029)

Change in .0016 .0013 .0028 .0035 .0046 .0067
Industry (.0013) (.0018) (.0013) (.0015) (.0039) (.0040)

Dep. Var .003 .003 .009 .009 .030 .030
Mean

R-square .048 .046 .061 .055 .045 -.012

n 109120 109120 87063 87063 10704 10704

Note: Standard errors in parentheses.



Table 10
One Year Differences IV-GMM Two-Digit Regression Results:

Changes in Nonproduction Labor Share (Employment Share Based)

Net Net
Equipment Structures output Equipment Structures Growth

Industry Coefficient Coefficient Coefficient Investment Investment in Output

Food & Tobacco
(20&21)

Textiles (22)

Apparel (23)

Lumber (24)

Furniture (25)

Paper (26)

Printing (27)

Chemica!s (28)

Petroleum (29)

Rubber (30)

Leather (31)

Stone, Clay,
Glass (32)

Primary Metals
(33)

Fabricated Metals
(34)

Machinery (35)

Electronics (36)

;0306
(.0131)

.0100
(.0092)

-.0023
(.0138)

.0107
(.0133)

-.0048
(.0137)

.0252
(.0113)

-.0134
(.0123)

-.0021
(.0168)

.0067
(.0112)

.0363
(.0152)

.0255
(.0128)

.0045
(.0138)

.0364
(.0166)

,0403
(.0154)

.0245
(.0176)

.0249
(.0161)

-.0056
(.0122)

.0001
(.0084)

.0080
(.0121)

-.0088
(.0144)

.0122
(.0099)

.0113
(.0073)

.0073
(.0129)

.0423
(.0163)

.0049
(.0149)

-.0047
(.0124)

-.0034
(.0123)

.0193
(.0185)

-.0068
(.0170)

.0162
(.0089)

.0381
(.0158)

.0179
(.0141)

-.0347
(.0140)

-.0215
(.0071)

.0051
(.0124)

-.0359
(.0111)

-.0131
(.0134)

-.0685
(.0123)

-.0153
(.0262)

,0030
(.0132)

-.0340
(.0163)

-.0446
(.0136)

-.0405
(,0072)

-.0556
(.0116)

-.0440
(.0114)

-.0680
(.0100)

-.1005
(.0163)

-.0134
(.0123)

.0309

-.0067

.0124

-.0190

,0081

.0235

.0399

.0156

.0454

.0012

.0167

-.0047

-.0043

.0253

.0577

.0751

.0125

-.0082

.0150

.0014

.0146

-.0033

.0226

.0067

.0145

.0015

.0006

-.0113

-.0251

-.0049

.0204

.0377

.0109

.0047

-.0014

.0014

-.0075

.0125

.0071

-.0026

-.0093

-.0024

-.0159

-.0167

-.0527

-.0171

-.0022

.0198



Table 10 (Continued)

Net Net
Equipment Structures output Equipment Structures Growth

Industry Coefficient Coefficient Coefficient Investment Investment in Output

Transportation .0224 -.0050 -.0472 .0628 .0366 -.0049
(37) (.0118) (.0124) (.0085)

Scientific ,0679 -.0229 -.0399 .0569 .0167 -.0070
Equipment (38) (.0249) (.0248) (.0189)

Miscellaneous .0185 -.0089 -.0255 .0237 .0013 .0002
(39) (.0199) (.0177) (.0147)

Employment .0224 .0091 -.0410 .0370 .0143 -.0041
Weighted Means

Note: Standard errors in parentheses.



Table 11
Regression of Nonproduction Labor Share Changes Including Change in R&D

(Employment Share Based )

One Year Differences Three Year Differences

m

.0087
(.0016)

.0049
(.0017)

-.0381
(.0009)

.0011
(.0012)

.0014
(.0011)

.0009
(.0015)

.002

.085

60690

IV-GMM Two-Di~it

.0223

u

.0124
(.0014)

.0065
(.0015)

-.0342
(.0009)

.0044
(.0009)

-.0011
(.0012)

.0026
(.0015)

.007

.094

48457

IV-GMM Two-Di~it

.0050Change in
Equipment

Change in
Structures

Change in
output

Change in
R&D Stock

Change in
Ownership

Change in
Industry

Mean Dep.
Var.

R-squared

n

.0116
(.0068)

.0030
(.0044)

.0200
(.0070)

.0039 .0114
(.0043)

.0076

-.0444
(.0079)

-.0356 -.0149
(.0062)

-.0279

.0071
(.0033)

.0054 .0089
(.0024)

.0045

.0007
(.0015)

.0007 -.0000
(.0015)

.0014

.0001
(.0020)

.0013 .0033
(.0017)

.0048

.002 .004 .007 .010

.083

60690

.085

48457

----

60690

---

48457

Note: Standard errors in parentheses.



Table 12
Regression of Long Difference (78-88) Nonproduction Labor Share Changes

Including Measures of Technology Adoption
(Employment Share Based)

m IV-GMM

Instrumenting for Not Instrumenting
Technology for Technology

Change in Equipment .0159
(.0064)

,0178
(.0119)

.0204
(.01 13)

Change in Structures ,0121
(.0057)

,0035
(.0088)

.0053
(.0084)

Change in Output -.0259
(.0044)

-.0027
(.0121)

.0000
(.0114)

Adopt Information Technologies .0218
(.0121)

-.0081
(.0429)

.0145
(.0106)

Adopt Production Technologies -.0181
(.0064)

-.0214
(.0200)

-.0204
(.0065)

Change in Ownership .0042
(.0058)

.0022
(,0064)

.0038
(.0055)

Change in Industry .0029
(.0083)

.0036
(.0076)

.0031
(,0074)

Mean Dep. Var.

R-squared

n

.032 .032 .032

.070 .051 .048

1820 1820 1820

Note: Standard errors in parentheses.



Appendix Table A.1
Summary Statistics on Distributions of Nonproduction Labor Share Changes

(Employment-Weighted)

Annual Nonproduction Labor Long Run Nonproduction
Measure Share Changes, Labor Share Changes,

1972-88 (ASM) 1972-87 (CM)

Mean .0048 .0396

Standard Deviation .0830 .1586

Skewness .3480 .5735

Kurtosis 26.6311 6.2368

Interquartile Range .0357 .1270

Fraction with “zero” change .2264 .0575

Fraction in excess of 0.05 .1296 .4031

Fraction less than -0,05 .0981 .1844

Employment weighted average .0231 .0728
positive change

Employment weighted average -.0183 -.0333
negative change

Fraction of positive change ,7192 .9271
accounted for by changes in
excess of 0.05

Fraction of negative change .7156 .8805
accounted for by changes less
than -0.05

Notes: The ASM annual distribution statistics are based upon the employment-weighted distribution
for all plants in the period 1972-88 (excluding 74, 79 and 84) who have positive employment in
adjacent years. The CM long difference distribution statistics are based upon all.plants in the 1972
and 1987 Census of Manufactures who have positive employment in both years.



Figure 1: Nonproduction Labor Share in Manufacturing
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Figure 2: Nonprodudion l-abor Share. Balanced Panel and Published Total
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Figure 3: Decomposing Change in Nonproduction Share
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Figure 4: Within Plant Changes in Nonproduction Share
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Figure 5: Change in Nonproduction Share, Quadrant Employment Share
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Figure 6: Job Flows By Long Run Quadrant
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Figure 7: Nonproduction Share Change Distribution. Employment — Based
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Figure S: H~ards for I_arge Positive Nonproduction Share Changes
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Figure 9:
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Figure 10: Observable
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