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Perhaps the most puzzling feature of currency prices is the tendency for high interest rate

currencies to appreciate, when the expectations hypothesis suggests the reverse. Some have

attributed this foward premium anomaly to a time-varying risk premium, but theory has been

largely unsuccessful in producing a risk premium with the requisite properties. We characterize
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1 Introduction

Perhaps the most puzzling feature of currency prices is the tendency for high interest

rate currencies to appreciate, when the expectations hypothesis suggests the opposite:
that investors will demand higher interest rates on currencies expected to fall in value,
This departure from uncovered interest parity, which we term the ~oru)ard premium
anomaly, has been documented in dozens — and possibly hunclreds — of studies, and
has spawned a second generation of papers attempting to account for it. One of the

most influential of these is Fama (1984), who attributed the behavior of forward and
spot exchange rates to a time-varying risk premium. Fama showed that the implied
risk premium must (i) be negatively correlated with the expected rate of depreciation
and (ii) have a greater variance.

We refer to this feature of the data as an anomaly because asset pricing theory to
date has been notably unsuccessful in producing a risk premium with the requisite
properties. Attempts include applications of the capital asset pricing model to cur-
rency prices (Frankel and Engel, 1984; Mark, 1988), statistical models relating risk

premiums to changing second moments (Cumby, 1988; Domowitz and Hakkio, 1985;
Hansen and Hodrick, 1983), and consumption-based asset pricing theories, includ-

ing departures from time-additive preferences (Backus, Gregory, and Tehner, 1993;
Bansal, 1991; Macklem, 1991), from expected utility (Bekaert, Hodrick, and Ylar-
shall, 1992), and from frictionless trade in goods (Hollifield and Uppal, 1995). We

address more recent attempts to account for the anomaly with affine models later in
the paper.

We study the anomaly in both a general theoretical framework and in the more
limited class of affine models. We express our general framework in terms of prici~ig
kerrlels: stochastic processes governing prices of state-contingent claims, In this
framework, we relate the spot exchange rate to pricing kernels in the two currencies
and describe the properties the kernels must have to account for the puzzling behavior

of forward and spot exchange rates. The anomaly implies, in general, an inverse
relation between differences in conditional means and differences in conditional higher
moments of pricing kernels,

We then turn to specific models that might account for the anomaly and other
features of currency prices and interest rates. Natural candidates are affine models,
in which conditional means and variances of logarithms of pricing kernels are linear
functions of state variables. Affine models have been widely used in pricing fixecl
income securities, their linear structure makes them relatively transparent. Indeed,

affine models of currency pricing have become increasingly popular in recent years,



with notable applications by Ahn (1995), Amin and Jarrow ( 1931), Bakshi and Chen

(1995), Bansal (1995), Frachot (1994), Nielsen and SaA-Requejo (1993), and Sa4-
Requejo (1994). We describe, for the Duffie-Kan (1993) class of affine models, the
conditions needed to reconcile the anomaly with strictly positive interest rates.

We begin with a summary of the properties of dollar exchange rates and one-month
eurocurrency interest rates, which serves as an anchor to the theoretical modeling that
follows.

2 Properties of Currency Prices and Interest Rates

The properties of exchange rates and eurocurrency interest rates have been wiclely
documented, but a review serves to focus our attention on the issues to be addressed
and provides a quantitative benchmark for theoretical developments. Accordingly,
we summarize the properties of spot and forward exchange rates for the LTSdollar
versus the remaining G7 currencies and interest rates for the same currencies, Here

and elsewhere, st is the logarithm of the dollar price of one unit of foreign currency
and ~~is the logarithm of the dollar price of a one-month forward contract: a contract
arranged at date t specifying payment of exp(jt) dollars at date t + 1 and receipt of

one unit of foreign currency.

In Table 1 we report sample moments for depreciation rates of the dollar, St+l –

~$t,continuously-compounded one-month euro currency interest rates, rt, and forward

premiums, ~t – st. Panel A is concerned with depreciation rates. For the currencies
in our sample, mean depreciation rates are smaller than their standard deviations,
typically by a factor of about eight. In this sense, volatility is one of the most striking

features of currency prices. There is also weak evidence that depreciation rates exhibit

greater kurtosis than one would find with the normal distribution, but none of our
estimated measures of skewness or kurtosis exceeds twice its estimated standarcl error,

Earlier work — Kritzman (1994), for example — suggests that kurtosis may be more
apparent over shorter time intervals. There is little evidence of autocorrelation in
depreciation rates for any of the six currencies we examine. Panels B and C are
concerned with interest rates and interest rate differentials. Unlike currency prices,
both interest rates and their differentials are highly persistent. They also exhibit

less variability, both absolutely and relative to their means. As with currency prices,
none of the measures of skewness and kurtosis are more than twice as large as their
standard errors.
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One way to think about this evidence is to relate it to the expectations hypothesis:
that forward rates are expected future spot rates, We express this in logarithmic forlm

as ~t = EtSt+I or ~t — st = Etst+l — St, where Et denotes the expectation conditional
on date-t information. Although we do not observe expected future spot rates, we can
get an indication of the accuracy of the expectations hypothesis by comparing mean

forward premiums with mean depreciation rates across currencies. We see in Figure
1 (based on entries from Table 1) that while the two means are not the same, their

differences are small relative to their cross-sectional variation. Currencies with large

forward premiuins, on average, are also those against which the dollar has depreciated
the most. In other words, currencies with average interest rates higher than the dollar

have typically fallen in value relative to the dollar.

This sanguine view of the expectations hypothesis changes dramatically when we
turn from cross-section to time-series evidence — that is, from unconditional mo-
ments to conditional moments. A huge body of work has established, for the extant

flexible exchange rate period, that forward premiums have been negatively correlated
with subsequent depreciation rates for exchange rates between most major currenc-

ies. Canova and Marrinan (1995), Engel (1995), Hodrick (1987) provide exhaustive
references to the literature. The most common evidence comes from regressions of
the form

St+l — st = al + a2(~~ — St) + residual. (1)

The expectations hypothesis implies a regression slope Qz = 1, yet most studies
estimate az to be negative. Thus they find not only that the expectations hypothesis
provides a poor approximation to the data, but that its predictions of future currency
movements are in the wrong direction. We report similar evidence in Table 2, where
estimates of az range from –0.073 for the lira to –1.840 for the pound. All these
estimates are at least two standard errors from the value of one indicated by the
expectations hypothesis. Although the R2S are small (the largest, for the Canadian
dollar, is 0.034), equation (1) can be used to construct profitable investment strategies.

One might invest, for example, in the currency with the higher interest rate. Bekaert
and Hodrick (1992) show that while such strategies are not riskless, they have positive

and statistically significant average excess returns.

Evidence of negative correlation between forward premiums and depreciation rates

has survived, so far, a number of attempts to reverse it. One issue is stability. Al-
though estimates of az vary substantially over time, they remain consistently neg-

ative. Bekaert and Hodrick (1993), for example, find that estimates based on data
subsequent to Fama’s ( 1984) sample are more strongly negative than those based on

the entire sample. Data from the early 1990s moderates this conclusion, but does

not invalidate it. A second issue concerns measurement error and bid/ask spreads.
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Bossaerts and Hillion (1991) and Bekaert and Hodrick (1993) argue, however, that
neither of these factors has a material effect on the sign or magnitude of estimates
of az. A third issue concerns the exchange-rate regime. Flood and Rose ( 1994) find
that negative slope parameters are less apparent for currencies covered by the Ex-

change Rate Mechanism of the European Monetary System. In fact, the evidence for
exchange rates in the ERM is mixed: estimates of az are close to one for the Ger-

man mark and the French franc, but large and negative for the mark and the Dutch
guilder, Flood and Rose estimate a typical ERM slope parameter of 0.,58, which is

significantly different from one but nevertheless positive. For floating exchange rate

regimes they estimate, as others do, negative values for az.

The anomaly has motivated a large and growing number of studies suggesting ex-
planations. Foremost among these is Fama (1984), who labels the difference between
the forward rate and the expected future spot rate a risk premium and proceecls to

document its properties. In Fama’s interpretation, the forward premium, f~ – St,

includes a risk premium pt as well as the expected rate of depreciation qt:

f, – St = (f, – Etst+l) + (Etst+, – St)

= pt + qt. (2)

The cross-section evidence (Table 1 and Figure 1) suggests that risk premiums are
small on average, but the time series evidence implies they are highly variable, Since

the population regression coefficient is

co~(~,P + q) ~ Cov(q, p) + Var(q)
~2= Var(p + q) Var(p + q) ‘

(3)

it is clear that a constant risk premium p generates a2 = 1. To generate negative
values of a2 we need C’ov(q, p) + Var(q) < 0. Fama notes that this requires (i)
negative covariance between p and q and (ii) greater variance of p than q. W’e refer to
these requirements as Fama’s necessary conditions. They serve as hurdles that any
theoretical explanation of the anomaly must surpass.

In summary, Fama interprets the evidence as suggesting a highly variable risk
premium that reverses the sign of the slope parameter a2 in the forward premium

regression relative to what it would be under the expectations hypothesis. We refer
to this feature of the data as an anomaly because of the large number of unsuccessful
attempts to account for it with risk-based theories. In this sense, the term “risk
premium “ is more a convenient label than an explanation.
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3 A Theoretical Wamework

The challenge of currency pricing is to account simultaneously for currency prices
and prices of fixed income securities denominated in both currencies. A model of the
dollar/pound rate, for example, must account for the properties of interest rates in
dollars and pounds, as well as those of the exchange rate between the two currencies.
From a theoretical perspective, this challenge places demands on a model’s internal

consistency. It gains greater force in quantitative applications, when parameter val-

ues chosen to imitate (say) movements in exchange rates must be reconciled with
properties of interest rates.

Before turning to specific models, we find it useful to consider currency prices in a
fairly general theoretical setting. We characterize asset prices with a pricing kernel:
a stochastic process governing prices of state-contingent claims. Existence of such a

process (or equivalently, of risk-neutral probabilities) is guaranteed in any economic
environment that precludes arbitrage opportunities. The beauty of this result is its

simplicity. It requires only that market prices of traded assets not permit combina-
tions of trades that produce positive payoffs in some states with no initial investment

— a departure from covered interest rate parity, for example. The framework encoTn-
passes, among other things, the possibility that agents trade on different information,

or that some agents harbor ‘[irrational” beliefs.

In the rest of this section, we adapt this approach to the pricing of currencies, relate
the volatility of currency prices to the variability of pricing kernels in two currencies,
and examine the relation between pricing kernels and the forward premium anomaly.

3.1 Pricing Kernels

We begin with assets denominated in domestic currency ( “dollars”), then move on
to those denominated in foreign currency ( “pounds”). With respect to dollar assets,
consider the dollar value vi of a claim to the stochastic cash flow of d~~l dollars one

period later. The price v and cash flow d satisfy the pricing relation,

vt = Et (mt+l~t+l), (4)

or

1 = Et (mt+I~t+I), (!5)

where Ri+l = dt+l/v~ is the gross one-period return on the asset. We refer to m as

the dollar pricing kernel. In economies with a representative agent, ~~1is the nominal
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intertempora] marginal rate of substitution and (5) is one of the agent’s first-order

conditions. More generally, there exists a positive random variable nL satisfying the

pricing relation (5) for returns R on all traded assets if the economy admits no pure

arbitrage opportunities. When the economy has a complete set of markets for state-
contingent claims, rn is the unique solution to (5), but otherwise there is a range of
choices of m that satisfy the pricing relation for returns on all traded assets. These

issues, and the relevant literature, are reviewed by Duffie (1992).

The pricing kernel ?n and the pricing relation (5) are the basis of modern theories
of bond pricing: given a pricing kerne], we use (5) to compute prices and yielcls for

bonds of all maturities. Denote by ~ the price of an n-period zero-coupon bond:
the claim to one dollar at date t + n in all states. Since the one-period return on an

(n+ 1)-period bond is b~+l/b~+l, we can compute bond prices recursively from

starting with b; = 1 (a dollar today costs a dollar). The price of a one-period bond,
for example, is b: = Etmt+l. Continuously-compounded bond yields y are related to

prices by b: - exp (–y~n). The short rate r~ is the yield y} on a one-period bond:

rt= —log b; = — log Etm~+l. (7)

We return to this equation when we examine exchange rates.

When we consider assets with returns denominated in pounds, we might adopt
an analogous approach and use a random variable m“ to value them. Alternatively,

we could convert mark returns into dollars and value them using m. The equivalence

of these two procedures gives us a connection between exchange rate movements and
pricing kernels in the two currencies, m and m*. If we use the first approach, pouncl
returns ~ satisfy

)1 = Et (m;+lm+l “ (8)

If we use the second approach, with S = exp(s) denoting the dollar spot price of one
pound, then

11 = Et [mt+l (St+l/St)R;+l

If the pouncl asset and currencies are both traded, there are obvious arbitrage oppor-
tunities unless the return satisfies both conditions:

This equality ties the rate of depreciation of the dollar to the random variables m and

m“ that govern state prices in dollars and pounds. Certainly this relation is satisfied
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if m;+l = m~+l St+l /St. This choice is dictated when the economy has a complete

set of markets for currencies and state-contingent claims. With incomplete markets,
the choices of m and m“ satisfying (5,8) are not unique, but we will see that we can

choose them to satisfy the same equation.

We summarize the connection between pricing kernels and currency prices in

Proposition 1 Consider stochastic processes for the depreciation rate, St+l/St, and

returns Rt+l and ~+1 on dollar and pound denominated assets. If these processes do

not admit arbitrage opportunities, then we can choose the pricing kernels WL and Trt*

for dollars and pounds to satisfy both

m:+l/m,+, = s,+,/s, (9)

and the pricing relations (5, 8).

Proof.

dollar
admit

Consider dollar returns on the complete set of traded assets, including the
returns (St+l /St)~+l on pound-denominated assets. If these returns do not
arbitrage opportunities, then there exists a positive random variable 7Tt~+lsat-

isfying (5) for dollar returns on each asset (Duffie 1992, Theorem 1A and extensions),

For any such m, the choice rnj+l = m,+l St+l /S, automatically satisfies (8). ■

The intuition is straightforward: if we know prices of state-contingent claims in
dollars and pounds, we can compute the implied exchange rate from their ratio.
The only ambiguity stems from combinations of state-contingent claims that are not
traded.

The proposition tells us that of the three random variables — nZ~+l, nt~+l, and

S’t+l/St — one is effectively redundant and can be constructed from the other two.
Most of the existing literature uses the domestic pricing kernel ?n (or its equivalent
expressed as state prices or risk-neutral probabilities) and the depreciation rate. We

start instead with the two pricing kernels, which highlights the essential symmetry of
the theory between the two currencies.

One implication of this symmetric perspective is that pricing kernels appear to be
highly correlated. To see this, note that equation (9) implies

Var(s,+~ – .st) = Var(log m~+l) + Var(logmt+~) – 2Co~(log mi+l, log ~~t+l) (10)

Estimates of Var(st+l – St) are in the neighborhood of 0.032 for most of the exchange

rates in Table 1, smaller for the Canadian dollar. Estimates of Var(log ~n) are typi-
cally larger: Backus and Zin (1994, Section 6) suggest that 0.152 is a conservative esti-

mate for monthly dollar returns. Estimates from closely related Hansen- Jagannathan
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( 1991) bouncls are similar. If pricing kernels for other currencies exhibit, comparable
variability, then equation (10) implies that the correlation between the logarithms of

the two kernels is 0,98. Larger estimates of Var(log m) and Var(log m“) and smaller

estimates of Var(st+l — St) imply larger correlations. The strong correlation between
pricing kernels is not an indication of international capital mobility — capital mo-
bility was, in fact, a premise of Proposition 1, We find it striking nevertheless, since

it implies that state prices are more highly correlated across currencies than returns.

Roughly speaking, the two pricing kernels appear to be more highly correlated than
their conditional means.

3.2 Forward Rat es and Risk Premiums

Given pricing kernels for two currencies and equation (9) for spot exchange rates,
we can derive the forward premium and its components from the pricing relation
(4). Consider a forward contract specifying at date t the exchange at t + 1 of one

pound and Fi = exp(~t) dollars, with the forward rate Ft set at date t as the notation
suggests. This contract specifies a net dollar cash flow at date t + 1 of Ft – ,$~+1.

Since it involves no payments at date t,the pricing relation implies

o = E, [m~+,(F, – S,+l)].

If we divide by St and apply Proposition 1, we find

(~t/st)~t(~t+l) = Et(~t+lst+l/st) = ~t(~:+,).

Thus the forward premium is

This equation and the definition of the short rate, equation (7), give us

f,–s, =r, –r; , (12)

the familiar covered interest rate parity condition.

Now consider the components of the forward premium, The expected rate of
depreciation is, from (9),

qt = ~t~t+l – St = Etlog ~;+l – Etlog ~t+l. (13)
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Thus we see that the first of Fama’s components is the difference in conditional means

of the logarithms of the pricing kernels. The risk premium is, from (2,11),

pt = (log Etm:+l – Et log m~+l) – (log Etmt+l – Et log mt+l) , (14)

the difference between the “log of the expectation” and the “expectation of the log”
of the pricing kernels m and m*.

With additional structure we can be more specific about the factors that affect
the risk premium. Many popular models of bond and currency prices, including the

affine models we examine later, start with conditionally log-normal pricing kernels:
log mi+l and log m~+l are conditionally normal with (say) means (plt, p~~) ancl vari-

ances (P2~)pj~). With this structure, one-period bond prices are

and the risk premium is

Pt = (P;t - P2t)/2. (15)

Fama’s conditions require, in this case, (i) negative correlation between differences in
conditional means and conditional variances of the two pricing kernels and (ii) greater
variation in one-half the difference in the conditional variances. We need, in short, a

great deal of variation in conditional variances.

If the conditional distributions of log m and log m* are not normal, the risk pre-
mium depends on higher moments. For an arbitrary distribution, equation (13) tells

us (again) that only the means affect the expected rate of depreciation. The risk
premium is given, in general, by (14), but if all of the conditional moments of log ?n

exist, log Etmt+l can be expanded

log Etmt+l = ~Kjt/j!, (16)
j=l

where ~jt is the jth cumulant for the conditional distribution of log m~+l. Equation

(16) is an expansion of the cumulant generating function (the logarithm of the moment
generating function) evaluated at one; see, for example, Stuart and Ord (1987, chs

3,4). Cumulants are closely related to moments, as we see from the first four: ~lt =

Pit, ~2t = p2t, ~st = pst, and ~qt = pqt — 3(p2t)2. The notation is standard, with plt
denoting the conditional mean of log m~+l and pjt, for j > 1, denoting the jth central

conditional moment. For the normal distribution, cumulants are zero after the first
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two, so equation (16) gives us a way of quantifying the impact of departures from

normality. If the foreign kernel has a similar representation, the forward premium is

m
f, – s, = ~(~;t – ~jt)/j!,

j=l

and the risk premium is

Pt = ~:l,t – ~–l,t,

where m m

J=2

We refer generically to the sums ~-1,~ and ~ll,t as

With equations (17) and (13) describing risk
depreciation, we have

j=2

“higher moments .“

premiums and expected rates of

Remark 1 If conditional moments of all order exist for the logarithms of thr two

pricing kernels, m and m“, then Fama’s necessary conditions for the forward premium

anomaly imply (i) negative correlation between differences in conditional means, p~t —

pit, and differences in higher-order cumulants, K?l,t – ~-l,t, and (zi) greater variation
in the latter. A necessary and suficient condition is a negative covariance between

qt = P;t – Plt and ft – st = p;t – Plt + ~Il,t – K-l,t.

Our characterization of the risk premium suggests an interpretation for the failure
of GARCH-M models, which model the risk premium as a function of the conditional
variance of the depreciation rate. Studies by Bekaert (1995), Bekaert and Hodrick
(1993), and Domowitz and Hakkio (1985) document strong evidence of time-varying
conditional variances of depreciation rates, but little that connects the conditional
variance to the risk premium p. One view of this failure is that GARCH-M models

violate our sense of symmetry: an increase in the conditional variance of the deprecia-
tion rate increases risk on both sides of the market, and hence carries no presumption

in favor of one currency or the other. Our framework indicates why. The conditional
variance of the depreciation rate is

Vart(st+~ – st) = Vart(log m~+l – log ~t),

the conditional variance of the difference between the logarithms of the two kernels.
The risk premium, on the other hand, is half the difference in the conditional variances
[equation (15)] and possibly higher moments [equation (17)], which need bear no

specific relation to the conditional variance of the depreciation rate. GARCH-M
moclels, to put it simply, focus on the wrong conditional variance.
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4 Affine Models with Independent Factors

Remark 1 suggests that it should be relatively easy to construct examples that re-
produce the anomaly: we simply arrange for differences in first and second moments
of pricing kernels to move in opposite directions. Consider a model like Engel and
Hamilton’s (1990) in which the conditional distributions of two pricing kernels al-

ternate between two log-normal regimes. If the difference in conditional means of

the pricing kernels is higher in regime 1, and one-half the difference in conditional
variances is higher in regime 2, and varies more than the difference in lmeansl then

the model will reproduce the anomaly.

A greater challenge is to construct a model that mimics the properties of currency
prices and interest rates more generally. We approach this problem with affine mod-
els. Affine models have a number of clear advantages. First, conditional means and
variances of logarithms of pricing kernels are linear functions of a vector of state vari-

ables. Second, we have, as a profession, more than a decade’s experience with these
models in pricing fixed income securities; much of this experience can be transferred
directly to currency pricing. Finally, we will see that many of the moclels in this class

automatically generate the contrary movements in the conditional mean and variance

of pricing kernels suggested by Fama’s condition (i) in log-normal settings.

In this section we consider specific examples of affine models motivated by related

work. In the next section we consider the general class of affine currency models.

4.1 A Cox, Ingersoll, and Ross Model for Two Currencies

An obvious starting point is a two-currency version of Cox, Ingersoll, and Ross ( 1985)

like Bakshi and Chen (1995). Our version is adapted from Sun’s (1992) discrete-time
translation.

In discrete time, the Cox-Ingersoll-Ross model can be expressed in two equations,

one specifying a “square-root” process for a state variable, the other relating the

pricing kernel to the state. Let us say that the state variable z follows

z,+, = (1 – y)o + p.zt + Oz;’’ct+l, (18)

NID(O, 1). The unconditional mean of z is 0, thewith O<y<l, d> O,and{c~} W.

auto correlation is ~1 the conditional variance is cr2.zt,and the unconditional variance

is a20/(1 – p2). With the substitution K = 1 – ~, we can write (18) as



a direct analog of the continuous-time original. The critical ingredient of (18) is

the square-root term in the innovation, whose conditional variance falls to zero as z
approaches zero. In continuous time, this feature and the Feller condition.

(1 - p)o = K6’ > u2/2, (19)

guarantee that z remains positive.
enough negative realization of &.
probability approaches zero as the

In discrete time, z can turn negative with a large
This happens with positive probability, but the
time interval shrinks (Sun, 1992).

The pricing kernel for the discrete-time Cox-Ingersoll-Ross model can be expressed

– log mt+l = (1 + A2/2)2t + A2;’2Et+1. (20)

The coefficient of z is a normalization, chosen to make z the one-period rate of

interest; see Appendix A.1, The parameter A controls the covariance of the kernel
with movements in interest rates and thus governs the risk of long bonds and the
average slope of the yield curve. Note that equation (20) builds in an inverse relation
between the conditional mean and variance of the logarithm of the pricing kernel.

This structure is an example of the conditionally log-normal pricing kernels de-
scribed in Section 3. The conditional mean and variance,

Et logm~+~ = –(1 + A2/2)zt

Vart log mt+l = A2z~,

are both linear in the state variable z. The short-term rate of interest is

( 1
r~ = — log Etmt+l = —

)
Et log mt+l + ~ Vart log mt+l = Zt, (21)

as claimed earlier.

If nl is the dollar pricing kernel, we complete the model by considering a second
pricing kernel, m“, for pounds. If the pound pricing kernel is based on an analogous
state variable z“ following an identical but independent process, then the pound short
rate is r; = z;. The forward premium is

with expected depreciation qt = (1 + A2/2) (zt–z~) and risk premiumpt = –A2/2(z~ –
z;). Thus the linearity of the conditional mean and variance translate into forward
premium components that are linear functions of the differential z – z*. More impor-

tant, this structure automatically generates the negative correlation between p and
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q of Fama’s condition (i): since equation (20) implies an inverse relation between

the conditional mean and variance of log mt+l, and the two pricing kernels are inde-
pendent, the difference in conditional means is inversely related to the difference in

conditional variances. Bakshi and Chen (199,5, eq 47) make a similar observation.

This model cannot, however, reproduce the anomaly. If we regress the depreciation

rate on the forward premium in this model, the slope is

az = 1 + A2/2.

The slope is not only positive, and therefore inconsistent with the anomaly, it exceeds
one, and is therefore inconsistent even with the Flood ancl Rose (1994) evidence for
the ERM.

There is a simple solution to this problem, but it has a cost. Suppose we replace
(20) with

– log mt+l = (–1 + A2/2)zt + Az:’2Et+l, (22)

so that the coefficient of z contains —1 rather than +1. Short-term interest rates
are then rt = —zt and r; = —z; and the forward premium is —(z~ — z;). Expected
depreciation is (– 1 + ~2/2) (z~ – z;). The regression slope is therefore

0!2 = 1 – A2/2,

which is always less than one, and negative for large enough values of A. We have
lost, however, the trademark positive interest rates of the Cox-Ingersoll-Ross model.

4.2 Models with Independent Factors

The two-currency model that accounts for the anomaly has two properties that clearly
differ from the evidence: interest rates are uncorrelated across currencies and negative
with probability one. We consider a generalization in an attempt to resolve, or at

least mitigate, both problems.

our generalization extends the model in two directions: we replace the indepen-
dent uuivariate Cox-Ingersoll-Ross models for each currency with independent general

affine models, and we introduce a common state variable, independent of currency
prices, that affects interest rates in both currencies. The latter allows us to reproduce
the positive correlation of interest rates across currencies. The former offers the po-
tential to reduce or eliminate the possibility of negative interest rates. An additional

13



benefit of this class ofmodels is that they use factors parsimoniously. To model the
dollar/pound rate, for example, we need only the dollar, pound, and common factors:

factors for other currencies are irrelevant. And since the exchange rate between two

currencies depends only on the factors governing the two currencies, these models are
easily extended to additional currencies by introducing additional currency-specific.
factors. Perhaps for this reason, Bakshi and Chen (1995) and Bansal (1995) examine
models in this class.

Consider, then, a two-currency world based on three independent vectors of state
variables: a common state variable Z. and currency-specific state variables Z1 and 22)

say. (In an effort to streamline the notation we have replaced z and z* with Z1 and

22.) Our class of independent factor models consists of laws of motion

Z;t+l = (J - @;)o, + @~z,, + v’(z,t)’/’&,t+l (23)

for each state variable i and pricing kernels

– log mt+l = 6 + VJzot + V:zlt + A:vO(zot)l’2Eo,+l + A:v1(21t)1’2Elt+l

– log m;+l = 6* + ~:zot + ‘y;z’t + A:v”(zot) 112&I),+~+ ~;V2(Z~,)l/2E’,+,, (~~)

with {Eit} independent standard normal random variables. The autoregressive matri-
ces Q, have stable roots with real parts between zero and one and positive diagonal

elements. The volatility matrices v“ have typical elements

v;(z) = a;+ p;Tz; .

We define admissible values of the state variables as those for which volatility functions
are nonnegative. Readers will recognize this model as an example of the affine class
characterized by Duffie and Kan (1993), who report sufficient conditions for keeping
state variables in the admissible set (Condition A, described in Appendix A.2 below).

This model builds a lot of structure into asset prices. Since the common factor
Z. and its innovation co affect both pricing kernels the same way, they have no effect
on currency prices or interest differentials. They therefore have no effect on the slope

parameter a2 that characterizes the forward premium anomaly. We find, as result
of this structure, that these models retain one of the weaknesses of the two-currency

Cox-Ingersoll-Ross model:

Proposition 2 Consider the Du&e-I{an class of afine models with independent cuT-

rency factors summarized by equations (Z~,Z4). If such a model implies positive bond

yields for all admissible values of the state uariables, then it cannot generate a Tzegative

value of the slope parameter Q2 from forward premium regressions.
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A proof is given in Appendix A.3. The intuition is similar to the two-currency (~ox-

Ingersoll-Ross model. The affine models permitted in Proposition 2 are based on st,ate
variables that are unbounded in one direction. In our version of Cox-Ingersoll-Rossl

for example, the state variable z assumes all positive values with positive probability.
This state variable has two effects on the short rate, one operating through the mean
of the pricing kernel, the other through the variance. An increase in the conditional
mean tends to raise the short rate, while an increase in the conditional variance lowers

it. If the mean effect is larger, as it is in the Cox-Ingersoll-Ross model, then the short
rate is unbounded above. The anomaly requires instead that the effect of the variance

must be larger, and thus that increases in variance be associated with decreases in
the short rate. But since the conditional variance is unbounded above, the short rate
will be negative for large enough values of the state variable.

Proposition 2 indicates that we cannot use this class of models to reconcile the

anomaly with strictly positive interest rates, but does not, in our view, rule them
out altogether. If a small probability of negative interest rates led to an affine model
that was realistic in other respects, we might view it as a small cost paid for the
convenience of linearity. Duffie and Singleton (1995) and Pearson and Sun (1994)

make a similar argument in extending the Cox-Ingersoll-Ross model of bond pricing.

We examine this possibility in the next subsection.

4.3 Informal Estimation of an Independent Factor Model

We estimate the parameters of the simplest independent factor model to see how
this structure might work in practicq. We find, for this example, that Proposition 2

understates the difficulties. Although estimated parameters imply a small probability
that short rates are negative, the model differs sharply from
dimensions.

Our model starts with three scalar state variables following

the data along other

square root processes

for i = O, 1,2, and pricing kernels

– log mt+l = ~ + ~(lzot + ~lzlt + ~0z;:2&0t+l + ~lz;/2&lt+l

– log nt~+l = 6“ + ~ozot + y2z2t + Aoz;{2Eot+l + A2z;[262t+l,

where {&it} is

and Z1 and 22

independent standard normal. We refer to Z. as the common factor
as, respectively, the dollar and pound factors. We assume, as well,
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that the parameters related to Z1 and 22 are the same: 91 = wz = y, 01 = 92 = 6,
U1 =u~= u, 6* = 8, 71 = 72 = y, and AI = A2 = A. This presumption of
symmetry is pure convenience: it reduces the number of parameters and, in the

process, clarifies the relation between parameter values and features of the data. We

use the normalizations

70 = 1 + A:/2

7= –l+A2/2.

As in the two-currency Cox-Ingersoll-Ross model, the latter allows the model to
reproduce the anomaly.

Given parameter values, we can compute properties of currency prices and interest
rates in dollars and pounds. Here we do the reverse: we use satnple moments for the
dollar/pound exchange rate and short rates in dollars and pounds to estimate the
model’s parameters. We do this informally to illustrate as simply as possible the

issues that arise in formal estimation of such models. The sample moments are those
reported in Tables 1 and 2. The model’s structure allows us to estimate its parameters

recursively:

1. The regression slope underlying the anomaly identifies A. The depreciation rate
is

Sf+l —St = (-1 + A2/2)(2,t - 22,)+ A (Z;[’clt+, - z;/2E2t+1) .

Short rates are

so the forward premium is ~t — st = —(zlt — z2t). The slope parameter in the
forward premium regression is

a’ = 1 – A’/2.

Since the estimated slope parameter in Table 2 is – 1.840, we estimate IAI = 2.3S
(the sign is not identified).

2, We use properties of the forward premium to estimate the parameters governing
the currency factors ZI and 22, which we have assumed are the same. The
autocorrelation parameter y is the autocorrelation of the forward premium> in

this case 0,900.

16



3. The variance of ZI (equivalently Z2) is related to the variance of the forward
premium by

Var(f – s) = Var(zl – ZZ) = 2Var(zl).

Since VaT-(j–s) = 0.00272 for dollar/pound rates, we have VaT(Zl) = 0.00272/2 =
1.82 x 10-6. Given Var(zl), we find 8 from the variance of the depreciation rate:

Var (st+~ – St) = 2aj Var(zl) + 2A20. (25)

Our estimates of A and Var(zl) imply 6 = 5.46 x 10-6,

4. We compute ISfrom our estimates of Var(zl), 0, and p:

eu2
Var(zl) = —1–92’

which implies u = 0.251,

5. We identify the parameters of the common factor from properties of short-ter]n
interest rates. The mean determines 00:

implying 60 = 6.91 x 10–3

6. The other two parameters of the common factor, VO and ao, are intertwined.
The former is an input into the autocorrelation of Z.:

Auto(r) = ~o
Var(zo) Var(zl)

Var(zo) + Var(zl)
+y

Var(zO) + Var(zl)”

We find Var(zo) from the variance of the short rate: Var(r) = Va7-(zo)+ Var(zl),

Given our earlier estimate of Var(zl), we compute Var(zo) = 2.68 x 10-6 and

yO = 0.996. Roughly speaking, greater persistence in interest rates than interest
differentials implies VO > y.

7. We use our estimate of Var(zo) to determine Oo:

90U;
Var(zo) = 2.68 x 10-G = —

l–y:’

which implies U. = 1.80 x 10-3.

17



We can now provide a quantitative assessment of Proposition 2. Since Z1 and Zz
range between zero and infinity, we see that short rates are negative with positive
probability, as required by the theory. Since both 20 and ZI have approximately
gamma distributions (see Appendix A.4), the probability y is easily computed. We find

that the probability is less than 10-5.

The difficulty with these parameter values is, instead, that the unconditional
distribution has enormous skewness and kurtosis. One symptom of this is the Feller
condition: our estimates of {0, a, ~} violate the condition by five orders of magnitude:

2(1 – y)o

u’
= 1.73 x 10-5 ~ 1.

Holding sample moments fixed, the Feller ratio declines as we increase az toward one,
but exceeds one for the dollar/pound rate only when a2 > 0.98. Even the Flood-

Rose estimate of 0.58 for the ERM is too small to eliminate the problem. By one

interpretation, parameters that violate the Feller condition are infeasible: the state
variables are absorbed at zero and the model has a degenerate limiting distribution,

Another interpretation is that zero is a reflecting barrier, and that violation of the
Feller condition indicates extreme values for higher moments; see Appendix A.4.

This difficulty stems directly from the anomaly. As we see in equation (25), the
variance of the depreciation rate depends on both A and 0. The anomaly dictates a

large value of A. For the model to reproduce the observed volatility of the depreciation
rate, we therefore need a small value of t?. With small O we find that large a is
required to reproduce the variability of the forward premium, which violates the
Feller condition.

Stated somewhat differently, the model is squeezed between the anomaly, on the
one hand, and the variability of the depreciation rate, on the other. The anomaly
indicates a large value of IAI. But the variance of the depreciation rate restricts the

independent variation in the two kernels, and therefore indicates a small value of
A’@. A small value of O is the compromise, which leads to a violation of the Feller
condition.

5 Affine Models with Interdependence

We turn next to the general class of afine currency models. We show for such a model
to account for the anomaly, it must exhibit asymmetric interdependence: common

factors must influence interest rates differently in the two currencies.
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5.1 Two Examples

We illustrate the intuition for interdependence with two examples. One of the simplest
examples is based on a single state variable z obeying a process like (18), with pricing
kernels

– log mt+~ = (1 + A’/2)zt + Az:/2&t+,

– log m:+l = (~”+ ~*2/2)z, + ~*z:/2E,+1.

The model is interdependent in the sense that the same factor z affects both pricing
kernels and asymmetric if its effects are different: if (1, A) # (~”, A“). In this setting
short rates are rt = z~ and r; = ~“z~, so the forward premium is ft – St = ( 1 – -~”)zt.

Both interest rates are strictly positive if y“ >0. Depreciation is

St+l —St= [1 – ~“ + (A2 – A*2)/2] z~ + (A – A*)Z:’2E,+I,

so expected depreciation is q~ = [1 — ~“ + (A2 — A*2)/2]zt. The slope of the forward
premium regression is therefore

~2 _ ~.’

a’ =1+
2(1 – ~*)-

(27)

If ~“ = 1 the forward premium is zero: the model has no forward premium and thus
no forward premium anomaly. For other values, the model implies an inverse relation
between the forward premium and the interest differential if 2(1 – y’) and AZ – A*2

have opposite signs and the latter is larger in absolute value. Frachot (1994) describes
a similar example in continuous time.

This example is asymmetric in two respects. The first is that the two interest
rates follow different processes. The second is that the state variable z has different
effects on the two pricing kernels, and hence on interest rates. A second example
indicates that the latter, which we refer to as asymmetric interclependence, is the key
to explaining the anomaly.

Consider, then, a similar model based on two state variables, z, and 22, obeying
identical independent square root processes (18) with pricing kernels

– log mt+l = (1+ A’/2)z,, + (V* + A*2/2)z2, + AZ:[2E,,+I + A* Z;[2E2,+,

– log m;+l = (7* + ~*2/2)zlt + (1 + A2/2)’z2t + A*Z;[2C,,+1 + A2;(2E2,+1.

Ahn (1995), Nielsen and SaA-Requejo (1993, pp 9-10), and SaA-Requejo (1994, p 17)

describe similar models. Our version is symmetric in the sense that the unconditional
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distributions of the two pricing kernels are the same, but the state variables ZI and

ZL potentially affect the two kernels in different ways.

Short rates in this model are

The forward premium,

ft –St = ~t–r: = (1 –y*)(z~~–z2t).

and depreciation rate,

.$t+l—St= [1 – ~“ + (A2 – A*2)/2] (Zlt – Zzt) + (A – A“)(z;{zclt+l – z;;2E2t+l),

imply a regression slope of
~2 _ ~*2

a2=1+2(l– 7*)’

as in equation (27). As in the first example, appropriate choice of parameters allows
us to generate a negative value. The critical feature in this regard is, again, that each
state variable affects the two kernels differently.

These two examples highlight the role of asymmetric interdependence: of state
variables that affect pricing kernels differentially. In the second, this takes a partic-
ularly striking form. Suppose y’ < 1 (if y* > 1 the argument is similar). From the

short rate equations, we might say then that Z1 is the “dollar factor,)’ since it has a

greater effect on the dollar short rate than 22. For similar reasons we might refer to Z2
as the pound factor. But the anomaly (in fact, any value of a2 less than one) implies
~*2 > J2, implying that innovations in the “pound factor” have greater influence on
the dollar kernel than do innovations in the dollar factor. It’s as if (to use a concrete

example) US money growth had a larger influence than British monetary policy on
dollar interest rates, but a smaller influence on the dollar pricing kernel.

5.2 Informal Estimation of the Two-Factor Example

Despite this unusual feature, an informal estimation exercise suggests that this model
provides a closer approximation than the independent factor model to the properties
of currency prices and short-term interest rates. The model has six parameters and

thus requires six sample moments to estimate:
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1.

2.

3.

4.

5.

6.

We use the relative variance of the forward premium and the dollar short rate
to identify ~’:

Var(f – s) _ 2(1 –y”)’

Var(r) 1 +7.2 “

This equation has two solutions, but they are observationally equivalent, We
choose the smaller root, ~“ = 0.333.

Given y“, the mean value of the dollar short rate determines 9:

E(T) = (1 +y”)o.

With a mean short rate of 0.006904, we estimate O = 0.00518.

The autocorrelation of the forward premium identifies ~ = 0.900,

We use the standard deviation of the dollar short rate to compute u. The
variance of the short rate is

Var(r) = (1 +~”2)Var(zl),

implying Var(zl) = 0.002862. Since

020
Var(zl) = —l–w2’

we find o = 0.0173. Unlike the independent factor model, the estimates of y,
0, and a satisfy the Feller condition.

We use properties of currency prices to estimate A and A*. The difference in
the squared values is determined by the anomaly: equation (27) implies

A2 – ~*2 ~ 31.0

Finally, the variance of the depreciation rate identifies (A – A*)2:

Var(s,+l – s,) = 2a~Var(zl) + 2(A – A*)20.

Given values for az, Var(zl), and Var(st+l – St), we compute (A – A*)2 = 0.108.

On the whole this example fits the data much better than the independent factor
model. The Feller condition, for example, is satisfied. Outstanding issues are the
magnitudes of A and A“, which play an important role in the shape of the yielcl curve,

and the unexpected asymmetry in the effects of each state variable on short rates and

pricing kernels noted earlier.
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5.3 Affine Models

The general affine currency
state variables,

of Currency Pricing

model is characterized by a law of motion for a vector of

Zt+l = (1 — @)@ + Ozt + v(zt)l’2&t+l (28)

and pricing kernels

– log mt+l = 6 + ~TZ~ + ~TV(Z~)]/2E~+I

– log m:+l = 6“ + ~*Tzt + A*TV (zt)l/2ct+l, (29)

where {&t} = NID(O, 1), @ is stable with positive roots, and \~is diagonal with typical

element

v;(z) = a; + plTz; .

Equations (28,29) characterize what we term the general class of affine currency mod-
els. Duffie and Kan’s (1993) Condition A guarantees that state variables remain in the

region defined by nonnegative volatility in the continuous-time analog; see Appendix
A.2.

With this structure, the depreciation rate is

S~+l — St = (d — 8“) + (~ — ~*)TZ~ + (~ — ~*)Tv(Zt)l/2E~+l.

Short rates are

rt = (6–w)+(y-T)zt

r; = (6* –u”) + (~” – T*) Z,,

where u = ~j A~aj/2, w* = ~j A~2aj/2, ~ = ~j A~~j/2 z O, and ~“ = ~j A~2~3j/2 2
0. For interest rates to be positive, we need each Zi bounded (say) below, and therefore

(~ – ~) and (~” – ~“) must have nonnegative elements.

Together these two equations imply a negative value of az in the forward premium

regression, equation (1), if

Cov(s,+, – S,, f, – St) = [(7 –

We see immediately that the anomaly

y“) – (T – T*)]Tvar(z)(~– Y*

hinges on differences between y and ~“ and
between ~ and 7*. If Vur(z) is diagonal, as in the examples of Section 5.1, then the

ith elements of ~ —~“ —~ + T“ and y —~“ must have different signs for at least one i.

More generally, the covariance hinges on differences in the effects of state variables on
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interest rates and pricing kernels in the two currencies. In this sense, the asymmetric
effect of the state variables on the two pricing kernels in our two examples is a general

requirement of a model that accounts for the anomaly.

This model also makes it clear why models with independent factors in Section 4.2

cannot account for the anomaly with positive interest rates. This model is a special
case in which z can be partitioned into independent subvectors: z = (Z02Z1, Z2),

Then y = (70, y], O) and ~“ = (~0, O,72). These models can be asymmetric, but the
“exclusion restrictions” and the assumption that the common factor Z. affects both

kernels the same way limits their interdependence.

6 Final Remarks

Proposition 2 is the result.

We have examined the implications for models of currency pricing of the forwarcl
premium anomaly: the tendency for currencies with high interest rates to rise sub-
sequently in value. Many regard this feature of the data anomalous because of the

many failed attempts to build theoretical models that account for it.

We find, instead, that it is relatively easy to construct models consistent with

the anomaly: we need an inverse relation between the difference in the conditional
means of the logarithms of pricing kernels in two currencies and differences in the
conditional variances. In the class of affine models, this requires either a positive

probability of negative interest rates or that some state variables have asymmetric

effects on the pricing kernels in the two currencies. Examples of each exist in the
literature. Informal estimation suggests that within the class of affine models, those
with asymmetries offer the best hope of explaining the properties of currency prices

and interest rates in general.

We are left with two outstanding issues. The first is whether a closer look finds
that affine models with a small number of state variables are capable of approximating
the properties of currency prices and fixed income securities in different currencies.

Ahn ( 1995) and SaA-Requejo (1994) have made some progress along these lines, ex-
tending the analysis to yields on bonds with longer maturities. The second is the
economic foundations of pricing kernels that reproduce the anomaly. We have fol-

lowed a “reverse engineering” strategy in which pricing kernels are simply a stochastic
processes that account for observed asset prices, but one might reasonably ask what

kinds of behavior by policy makers and private agents might lead to such pricing
kernels, One possibility is outlined by Alvarez and Atkeson (1996), Stulz (1987),
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ancl Yaron (1995), who develop dynamic general equilibrium models in which interest
rates and currency prices reflect monetary policies. Perhaps further work will connect
pricing kernels in these models to properties of interest rates, currency prices, and

monetary aggregates.
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A Mathematical Appendix

A. 1 Representations of One-Factor Affine Models

We show that affine models capable of reproducing the anomaly can be characterized
by two equations of the form:

1/2
zt+l = (1 — w)6’ + ~zt + uZt Et+ I (18)

for a fixed positive parameter yO (a normalization). This model differs from (~ox-
Ingersoll-Ross in two respects: (i) the intercept 6 in the relation for the pricing kernel
and (ii) the possibility of negative coefficient of z in the same equation. We assume

/3 # O, since otherwise the conditional variance is constant and the model cannot
account for the anomaly.

Consider, as an alternative, a more heavily parameterized model:

z,+, = (1 – p)o + ~z, + (a + pzt)l/2Et+,

and

– log mf+l = 6 + ~Zt + ~(a + ~Zt)l’2Et+I,

with a Feller-like condition guaranteeing that a+~z is always positive in the continuous-
time analog. This structure nests the one-factor models of Cox-Ingersoll-Ross (1985)

and Pearson and Sun (1994) as special cases.

The goal is to show that the second model can be expressed in the form of the
first, equations (18,30). The key is that the state variable z is not observable: its

role is simply to help characterize the conditional distribution of ~n~+j for j 2 1. In
particular, linear transformations of z leave the distribution of future m’s unchanged.

We proceed in steps. Consider, first, a reparametrization of the second lnoclel
based on the substitution z’ = a + ~z. In terms of this new state variable, the
equations for the state and pricing kernel are
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and

/1/2
= 6’ + ‘y ’z: + Azt &t+l

The state equation is now in the same form as (18), but we have an additional pa-
rameter ~’ in the relation for the kernel. Step two is to eliminate the extra parameter
with a normalization, which we do by offsetting changes in y’ by resealing z’. The

only subtly is that the scaling must retain the sign of the state variable, If ~’ > 0,

define z“ = (yO/~’)z’. Then we can rewrite the equations for the state and pricing
kernel in terms of z“:

2:+1
= (1-y)(%)+~z’+p(%)1’2z’’1’2’t+’
= (1 – ~)o” + pz: + p“z;’1’2&,+,

and

()

1/2

– log mt+l = 6’ + ~oz: + A : z;’1’2Et+,

II 1/1/2= 6’ + ~oz{’ + A Zt Et+l,

which are in the form of (18,30). When ~’ < 0 this procedure does not work, since
we would be taking the square root of z“ < 0. We instead define z“ = —(yO/~’)z’ and
proceed analogously. The equation for the pricing kernel in this case becomes

which is also in the form of (30).

We use two normalizations in the paper. One is “+~o” = 1 + J2/2, which results

in z being the short rate. The other is “+~o” = –1 + J2/2, which allows the model
to account for the anomaly.

An alternative representation of the one-factor affine model is

z~+l = (1 — y)o + yzi + (a + p2t)l’2&t+l

and

– log m~+~ = (1 + A’/2)zt + A(a + ~zt)l/2&t+l.

This effectively loads the sign change for To into ~ and the intercept 6 into a. This

representation has the property that it reproduces the nonstochastic volatility case
when B = O.
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A.2 Affine Models of Bond Pricing

Duffie and Kan (1993) characterize a class of affine bond pricing models in continuous
time. We translate their class of models into discrete time and derive conditions under
which bond yields are strictly positive.

Duffie and Kan’s affine models are based on a k-dimensional vector of state vari-

ables z following

Zt+l - 2,= (1 - Q)(6 - z,)+ V(z) ’/’et+,, (31)

where {et} w NID(O, 1), @ is a stable matrix with positive diagonal elements, V(g) is

a diagonal matrix with typical element

and Dz has nonnegative elements. State prices are governed by a pricing kernel of the

form
– log ??zt+~= 6 + ~Tzt + ATv(zt)l/2&t+1. (32)

The process for z requires that the volatility functions vi be positive.

We define the set D of admissible states as those values of z for which volatility
is positive:

D= {z: vi(z) >0 all i}.

Duffie and Kan (1993, Section 4) show that z remains in D if the process satisfies

Condition A For each i:

(a) for all z s D satisfying vi(z) = O (the boundary of positive volatility), the drift

is sufficiently positive: PIT(I – 0)(6’ – Z) > ~,T~i/2; and

(b) if the jth component of ~, is nonzero for any j # i then vi(~) and Uj(z) are

proportional to each other (their ratio is a positive constant).

We refer to models characterized by (31 ,32) and satisfying Condition A as the Dufie-
f<an class of afine models.

Our characterization of “these models differs from Duffie and Kan’s in two respects.
First, Duffie and Kan write (31) as

Zt+l — Zt = (1 – Q)(o– Zt)+ Xv(z) l’’ct+l, (33)
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which includes a matrix X that is missing in our version. We show that our choice

is innocuous by reducing their model to ours. As in Section A.1, the key is that z is
not directly observable. Assume X is invertible (this is convenient but not essential)

and define z’ = X–l z. If we substitute for z, equation (33) becomes

2:+1 —z; = (1 — Q’)(O’ —z;) + v’(z’)1’2&t+1,

with u~(z’) = ai + ,fljTz’, Q’ = ~–lo~, d’ = X–16, and @jT = @lTX, Equation (32)

becomes
– log mt+~ = 8 + 7’T2; + ATv’(z;)l/2&i+l.

with ~’T = VTX. Thus we have effectively eliminated X from the model.

Our second difference from Dufie and Kan is the assumption that the volatility
parameters ~; are nonnegative. Define the matrix ~ = (@l, . . . , p~) with ~;j denoting
the jth element of pi and the (i)j)th element of PT. Note that we can choose the
diagonal elements of ~ to be nonnegative: if ~zi <0 for any i, we replace Zi and –zi
and ~ii with —,fl;i and change the other parameters in the model accordingly. This

produces a matrix ~ with positive diagonal elements. Condition A(b) tells us that if

~ has nonzero off-diagonal elements, then they are proportional to diagonal elements
and hence positive as well.

Given this structure, bond prices are log-linear in the state variables z. If b; is the
price at date t of a claim to one dollar in all states at date t + n, then by log-linearity
we mean that

– log b; = A(n) + ~(~)TZL

for some parameters {A(n), B(n)}. Since bond yields are y: = –n-l log b:, they are
linear in z:

– log b; = A’(n) + ~’(n)ZL,

where A’(n) = n–l A(n) and B’(n) = n–l~(n). We use equation (6) to generate

parameters recursively:

B(n+ l)T =
~k

(7T + B(n) T@) – j~(~j + B(n)j)2 p;,
,~=1

starting with A(0) = O and B(O) = O. We say that a model is invertible if there exist

k maturities for which the matrix
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is nonsingular. The assumption of invertibility is not restrictive: if a model is not

invertible, we can construct an equivalent invertible ~modelwith a smaller state vector.

Analogously, define the vector AT = [A’(nl), . . . . A’(nk)].

W’e now turn to a smaller class of models in which bond yields are always positive:

Lemma 1 Consider the Dufie-Ifalz class of afine models. If the model is inveriiblc

and bond yields are positive for all admissible states z, then ~ is diagonal with strictly

positive elements.

In words: the volatility functions have the univariate square root form

with strictly positive ~ii, As a consequence, ~ has full rank. This rules out both pure

Gaussian factors like 9: = (O, 0,. . ., O) and multivariatefactors like ~~ = (1,1,..., 1).

Proof. Suppose, in contradiction to the lemma, that ~ has less than full rank.
Then there exists a nonzero vector h satisfying BTh = O. For any admissible z,
2{ —— z + ph is also admissible for any real p since it generates the same values for

the volatility functions. Now consider bond yields. For yields to be positive we need

bond prices to be less than one. If y denotes a vector of yields for a set of maturities
for which B is invertible, then we need

y= A+ BTz>O—

for all admissible z. Since z’ = z + ph is also admissible, we have

y = A + BTZ+ pBTh.

By assumption, B is invertible so BTh # O. Thus we can choose p to make yields as
negative as we like, thereby violating the premise of the lemma. We conclude that Ij
has full rank. Condition A(b) then tells us that ~ must be diagonal. ■

Our final result is that in this environment (univariate volatility functions), Var(z)

has nonnegative elements:

Lemma 2 Consider the Dufie-I(a~l class of afine models in u]hich ~ is diagonal with

strictly positive elements ~ii. Then Var(z) has all positive elements.
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The proof hinges
Feller condition.
that for each z

for all admissible .

on Condition A(a), Duffie and Kan’s multivariate analog of the

,Since ~ is diagonal with positive elements, the condition implies

k

z satisfying Vi(z) = 0, where 1~’= 1 — @ has elements ~;r. The new

ingredient relative to the univariate Feller condition is the effect of variables Zj, j # i,
on the drift of z;. The structure placed on ~ means that the set of admissible z’s
includes values of Zj that are arbitrarily large. The condition therefore implies ~ij < 0
forallj #i. The admissible set also includes z] = Oj, so ~iz >0. Since @ = 1 – 1{
has positive diagonal elements, by assumption, ~ii <1.

We have established that the elements of @ are nonnegative. We now show that
the unconditional variance of z, which we denote by the matrix 0, has no negative

elements. Since z is a first-order autoregression with stable Q, its variance is the
solution to

Q = @n@T + v(o),

where V(6) is a diagonal matrix with positive elements vi(Oi) = ai + ~diidi. Since @ is

stable, we can compute Q iteratively using

Oj+, = @nj@T + v(o),

starting with 00 = O. We” see that at each stage the elements of Qj+l are sums of

products of nonnegative numbers, so we conclude that the elements of Q are nonneg-
ative. ■

We have addressed positive bond yields (Lemma 1) and nonnegative c.ovariances
(Lemma 2) in affine models for admissible values of the state, which need not be
the same as values of the state that occur with positive probability. Consider, for

example, the bivariate process

Zlt+l = (1 - p)e + pz, + Z;{’,, t+,
1/2

Zzt+z = Zlt + Zlt &2t+l.

The admissible region for this model includes any real number for

zz cannot be negative (subject to the discrete time approximation).
covariance between Z1 and 22 is positive.

Z2, yet by design
Nevertheless, the
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A.3 Proof of Proposition 2

Proposition 2 is based on a model with three independent state variables or factors:
a common factor ZOand currency-specific factors Z1 and 22. The common factor has,

by construction, no influence on currency prices or the forward premium. It therefore

has no influence on the anomaly, and we can disregard it.

kVith this simplification, interest rates in the two currencies are

ft – St = (7 – T)Tzlt – (~” – T*) Tz2t,

The depreciation rate is

St+, – s, = (6 – 6*) + yTz,t – 7*Tz2t + ATv’(z,t)’/2&1t+1 – A*Tv2(z2t)’/2&2t+1.

The anomaly therefore requires

o > Cov(st+l – St, ~~- st) = (7 - ~)T Var(zl)~ + (~” - 7*)T Var(z,)~*. (:34)

The question is whether this is consistent with interest rates that are always positive.

The condition that interest rates are positive for all admissible states places re-
strictions on the parameters. For the “dollar” short rate r we need the elements of
~ – ~, and hence of y, to be nonnegative, since ~ > 0 and each element of Z1 is

unbounded above. By Lemma 2, Var(zl ) has nonnegative elements, so the bilinear
form

(~ - T)T Var(z~)7,

is nonnegative. Similar reasoning applies to the second term in (34), so we conclude
that the model cannot reproduce the anomaly with strictly positive interest rates. ■

An example indicates that the proposition is limited to the Duffie-Kan class of
affine models. Consider a model based on an iid state variable z drawn from the
uniform distribution on [0,1] with pricing kernel
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with {ct} w NID(O, 1) and independent of z. Then the short rate is

If ~ < ,B2/2 and 8 + ~ – 62/2 = O, the short rate varies between O and 6 and is
thus always positive. With a similar model for the foreign interest rate, based 011

an analogous state variable z*, the forward premium is (y – ,62/2)(2 – z“) and the

forward premium regression has slope

which is negative under the stated conditions. This example is affine in the sense

that yields are linear functions of state variables, and is capable of accounting for the
anomaly with positive interest rates, but it is not in the Duffie-Kan class,

A.4 Distribution of State Variables

Consider a state variable z following the square root process ( 18). For short time

intervals, the unconditional distribution of z is approximately Gamma with density

f(z) = [bar(a)]-’z“-le-Z/b,

and parameters a, b > 0. This conclusion relies on a similar statement by Cox, Inger-

soll, and Ross (1985) for their continuous-time analog and Sun’s (1992) demonstration
that the discrete time model converges to Cox-Ingersoll-Ross. The mean and variance

for a Gamma random variable are ab and abz, which defines the parameters as

(1 - yz)o
a=

G:2
b=—

l–p’”

In the continuous-time limit 1 – ~’ ~ 2~ = 2(1 – p), so a ~ 2(1 – V)O/Oz) the Feller

ratio in ineclualit y (26). We compute other moments using the moment generating

function:

for s < 1/b. Indicators of the first four moments are

pl(rnean) = 6’
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9U2
pz(variance) =

(1 - yz)

2

()

f12
1/2

~l(skewness) = —~1/2 = 2 (~_ ~2)@

72.(kurtosis) = ~
602

a -3=(1 -p2)6 -3”

In continous time, the Feller condition (19) is equivalent to a 2 1. Thus parameter
values implying small a violate the Feller condition and generate Iarge values of the
skewness and kurtosis measures, ~1 and TL.
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Table 1

Properties of Currency Prices and Interest Rates

Currency Mean Std Dev Skewness Kurtosis Autocorr

A. Depreciation Rate, St+l – St

British Pound –0.0017 0.0342” –0.187 2.075 0.084
Canadian Dollar –0.0015 0.0122” –0.343 0,636 0.057
French Franc –0.0005 0.0328’ –0.357 1.198 –0.002
German Mark 0.0021 0.0340* –0.289 0.901 –0.015

Italian Lira –0.0038 0.0334’ –0.712 1.961 0.049

Japanese Yen 0.0044 0.0324” 0.403 0.622 0.067

B. One-.Month Interest Rate, r~

American Dollar 0.0069” 0.0030” 0.996 0.884 0.957”

British Pound 0.0093” 0.0027’ 0.045 –0.077 0.915”
Canadian Dollar 0.0081” 0.0028” 0.822 1.145 0.96,5*
French Franc 0.0091” 0.0035” 2.380 7.906 0.755”
German Mark 0.0053” 0.0020” 0.652 –0.235 0.969”
Italian Lira 0.0122’ 0.0045” 1.732 4.140 0.74:3*

.Japanese Yen 0.0046’ 0.0020” 0.564 2.095 0.914”

C. Forward Premium, ~t – St = rt – r;

British Pound –0.0024* 0.0027” –0.053 1,169 0.900”
Canadian Dollar –0.0014” 0.0014’ 0.018 0.480 0.842’

French Franc –0.0023” 0.0032” –0.670 2.546 0.660”
German Mark 0.0017” 0.0029* –0.573 0.088 0.953*
Italian Lira –0.00<56” 0.0045* –2.117 6.384 0.724”
Japanese Yen 0.0021” 0.0029” 0.298 0.303 0.888”

Entries are sample moments of depreciation rates, St+l – St, one-month eurocurrency
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interest rates, rt, and forward premiums, ~t — st. The data are monthly, last Friday
of the month, from the Harris Bank’s Weekly Review: Inter?tatioftal Money Market,s
and Foreign Ezcha~tge, compiled by Richard Levich at New York llniversity ’s Stern

School of Business. The data are available by anonymous ftp: aleast.gsia.cmu.edu in
directory /dist/fx. Dates t run from July 1974 to November 1994 (245 observations).
An asterisk (*) indicates a sample moment at least twice its Newey-West standard
error. The letters s and ~ denote logarithms of spot and one-month forward exchange
rates, respectively, measured in dollars per unit of foreign currency, and r denotes the

continuously-compounded one-month yield. Mean is the sample mean, St Dev the

sample standard deviation, Skewness an estimate of the skewness measure ~1, Kurtosis
an estimate of the kurtosis measure 72, and Autocorr the first auto correlation. The
skewness and kurtosis measures are defined, specifically, in terms of central moments
p3: “~~= p3/p;12 and TZ = pA/p~ — 3. Both are zero for normal random variables.
Our estimates replace population moments with sample moments.



Table 2

Forward Premium Regressions

Currency CYl az Std Er ~2

British Pound –0.0062
(0.0027)

Canadian Dollar –0.0036
(0.0009)

French Franc –0.0021
(0.0031)

German Mark 0.0033
(0.0025)

Italian Lira –0.0042
(0.0039)

.Japanese Yen 0.0080
(0.0024)

–1.840 0.0339 0.0213
(0.847)

–1.575 0.0120 0.0341
(0.460)

–0.674 0.0328 0.0042
(0.827)

–0.743 0.0340 0.0041
(0.805)

–0.073 0.0335 0.0001
(0.453)

–1.711 0.0320 0.0230
(0.643)

Entries are statistics from regressions of the depreciation rate, st+l – st, on the forward
premium, ~t – St:

St+l — St = al + az(~t — St) + residual,

where s and j are logarithms of spot and forward exchange rates, respectively? mea-

sured as dollars per unit of foreign currency. The data are described in the notes to
Table 1. Dates t run from July 1974 to November 1994 (245 observations). Numbers
in parentheses are Newey-West standard errors and Std Er is the estimated standard
deviation of the residual.
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Figure 1

Mean Depreciation Rates and Forward Premiums
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