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ABSTRACT
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economy. Our theoretical results are supplemented by numerical and empirical analyses of the
dynamics of lumpy investment at the plant level and the associated aggregate implications. The
dynamics are surprisingly rich since they represent the interaction between a replacement cycle,
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economy. The empirical analysis of these dynamics is based on plant level investment data for
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frequency of lumpy investment activity is higher during periods of high economic activity and
more likely the older is the capital. These empirical results are consistent with the predictions
of our theoretical model. Nonetheless, the predicted path of aggregate investment that neglects
the interaction of the non-flat hazard and the cross sectional distribution of the age of the capital
stock tracks actual aggregate investment quite well. However, ignoring the fluctuations in the
cross sectional distribution can yield predictable nontrivial errors in forecasting changes in
aggregate investment in periods following large swings in aggregate investment.
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Machine Replacement and the Business Cycle: Lumps and Bumps

1. Introduction

This paper investigates the aggregate implications of the non-convex adjustment of
plant and equipment at the plant level. Our emphasis contrasts quite sharply with the
neoclassical model of investment where the accumulation of capital reflects the slow
adjustment of capital to its desired value.! The model we pursue assumes that small
adjustments of the capital stock are either not feasible or undesirable. In particular, many
investment projects (eg. the construction of a new plant or the purchase of large machines)
are not available in small quantities. Further, the costs of adjusting the capital stock may be
non-convex, as described, for example, by Rothschild [1971]. As a consequence, at the
plant level one may see periods of low investment activity followed by bursts of investment
activity, i.e. investment spikes. Moreover, to the extent that these periods of high activity
are not smoothed by aggregation, the non-convex cost of adjustment model may have
interesting aggregate implications.? In particular, the behavior of aggregate investment can
be highly dependent on the cross sectional distribution of the age of the capital stock.

As documented further below, there are two key observations that motivate this view
of investment activity. First, as reported by Doms and Dunne [1994], a significant fraction

of investment activity at the plant level is associated with large variations in the capital stock:

' This point is neatly seen in the transition path dynamics displayed by King, Plosser and Rebelo [1988] where the speed of adjustment
1o the steady state is largely determined by the curvature of the utility function. Abel [1990] provides a synthesis of the neoclassical
investment model with convex adjustment costs. Abel and Eberly [1994] model the investment choice at the firm level allowing for fixed
costs in the adjustment process in a stochastic environment. They provide conditions for inaction on investment due to these fixed costs of
adjustment. Our emphasis is on the timing of discrete investment relative to the business cycle and the aggregation of discrete choices.

2 For macroeconomists, this is a critical point. Bertola and Caballero [1990] discuss the role of aggregate shocks in creating
synchronization of discrete decisions while Cooper and Haltiwanger [1992] stress the role of aggregate complementarities.
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i.e. investment is largely a lumpy activity. Second, aggregate variations in investment are
associated with an increase in the frequency of investment spikes at the plant level. That is,
investment activity at.the extensive margin plays a major role in aggregate investment
behavior.

To better understand these observations, we construct a variant of the machine
replacement model analyzed by Cooper and Haltiwanger [1993] in which individual plants
decide upon the timing of machine replacement. Our earlier paper stressed deterministic
cycles and argued that downturns were a good time for retooling since the opportunity costs
were lower and, due to the deterministic cycles, an upturn in activity was sure to follow. In
contrast, the emphasis here is on embedding the machine replacement problem in a dynamic
stochastic environment. The theme that retooling should take place in periods of low activity
must be qualified in this more general environment. The relationship between the gains to
retooling and the state of the economy depends on the specification of the underlying
stochastic process. Further, the costs of retooling depend on the nature of the adjustment
cost specification: lump sum versus proportional costs. We find that recessions are not
always the optimal time to retool. In particular, if shocks are persistent and adjustment costs
are largely fixed, investment spikes are predicted to be procyclical.

Given these results on the optimal patterns of retooling at the individual plant level,
we then investigate the implications of these discrete choices for aggregate investment. In
light of the degree of heterogeneity in the microdata that we subsequently analyze, it is
important to extend the analysis to a heterogenous plant setting. This allows us to understand

the relationship between the cross sectional distribution of the age of the capital stock and the



responsiveness of plant level and aggregate investment to aggregate shocks.

We use the LRD to investigate the predictions of the model in terms of the nature and
timing of large scale investment episodes at the plant level and the connection between the
latter and aggregate fluctuations in investment. The key result that emerges at the micro
level is that the probability of a plant experiencing a large investment episode is increasing in
the time since the previous episode. Thus, at the plant level, bursts of investment are then
followed, on average, by periods of low investment. This is in contrast to the usual
presumption of positive serial correlation in investment activities which emerges from the
standard convex adjustment cost model. We demonstrate that, in terms of our hazard
specification, the standard convex adjustment cost model yields a negatively sloped hazard.
This prediction is conclusively rejected in the micro data.

While our estimated hazards are upward sloping, the predicted path of aggregate
investment generated by ignoring the interaction of the non-flat hazard and the cross sectional
distribution of the age of the capital stock tracks aggregate fluctuations in actual investment
quite well. That is, investment movements are largely explained by factors other than the
evolution of the cross sectional age distribution. However, ignoring the fluctuations in the
cross sectional age distribution can yield predictable nontrivial errors in forecasting changes
in aggregate investment after large swings in aggregate investment. It is during such periods
that the cross sectional age distribution diverges substantially from the steady state

distribution.

II. A Machine Replacement Model

Consider the problem of an individual producer with a given stock of capital. The



productivity of this capital is influenced both by a shock to total factor productivity and the
"age" of the capital. Given the state of productivity, the agent makes the discrete choice
between replacing existing capital with a new machine or continuing to use the capital for
another period. In making its investment decision, the producer calculates the discounted
expected benefits of more productive capital relative to the current costs of replacement. The
gain to replacement is that a new piece of machinery is more productive as it reflects some
aspects of technological progress.®> There are two types of costs of replacement. One is the
direct loss of output associated with the acquisition and installation of new capital goods.
Second, the process of installing the new machines and retraining workers reduces
productivity in the plant. As we shall see, the nature of the adjustment costs and the
structure of the stochastic process governing the shocks jointly determine the timing of
replacement activity.

It should be noted at the outset that our specification focuses on lumpy investment by
assumption. Thus our model fits into the ongoing literature on non-convex adjustment
processes.*

Formally, consider the optimization problem of an individual agent. Producer

i=1,2,....1 maximizes

3 Hence this model stresses embodied technological progress as a source of growth,

¢ The recent paper by Caballero and Engel [1993a] provides a synthesis of one approach to this type of problem. In their model, the
starting point of the analysis is a hazard function which depends on the difference between the current and target value of a particular
variable, such as employment or capital. Their hazard function is thus a state dependent rule that may be parameterized and estimated and
aggregate dynamics evaluated. This procedure has been used to characterize employment adjustments, Caballero and Engel [1993a] and
Caballero, Engel and Haltiwanger {1995a), and to study investment flows, Caballero and Engel [1993b] and Caballero, Engel and
Haltiwanger [1995b). The current paper shares many themes with these other efforts though it characterizes a hazard function that depends
on the time since last replacement (age of the capital) and the aggregate state rather than the deviation of the current variable from the
target. Accordingly, there are some important differences across these approaches in terms of what the hazard function and the cross
sectional distribution represent. As discussed in section IV below, the differences in approaches lead to quite different empirical strategies

as well.
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where «,=u«k,_, and 4 >1 is the pace of exogenous technological progress. The choice
variable in this problem is z! where z=1 means that replacement is chosen in period t.

The first equation is the objective function for the individual producer. In this
simplified model, utility in a given period depends solely on consumption and labor time is
fully utilized in the production process. Assume that u(-) is increasing and concave and that
the discount rate BE(0,1). For much of the analysis, we will assume that u(®) is linear so
that the agent’s objective is to maximize the present value of output net of adjustment costs.

From the second equation, first note that consumption and (net) output are the same.
This implies that the agent is unable to smooth consumption through the holdings of financial
assets and/or inventories of the consumption good. The right side of (2) represents the
production process, net of the adjustment costs. Gross output is an increasing function of the

stock of capital, given by f(-) but also depends on the state of productivity, denoted by A},



which contains an idiosyncratic and a common component.®

The production relation also includes the two costs of adjusting the capital stock
described above. First, there is an opportunity cost associated with the diversion of labor
and other inputs away from production and into adjustments in the capital stock. This is
parameterized by @' which equals 1 during noﬁ-replacement periods and equals A <1 during
each replacement period.® Second, there is a fixed cost of adjustment given by Fz! which
reflects both the lost output from the acquisition of the new capital and other fixed
adjustment costs, where zi=1 iff replacement is occurring in period t.

The final equation expresses the time path of capital and hence its link to the
producer’s choice. We denote by «, the leading edge technology; however, each producer’s
actual capital (K) is generally not the best technique available. In every period, the producer
has the choice of replacing its current machine with the leading technology.” If the producer
chooses replacement (zj=1), then the adjustment costs described above are borne in period t
and the producer’s capital in the next period is «,,,. If the producer chooses not to replace
then the machine depreciates at rate 6.® Note then that the gains to replacement reflect both
the pace of technological progress (1) and the rate of physical depreciation of a machine (6).

There are three interpretations of this optimization problem. The most direct is that

3 That is, assume Al=A¢l. Of course, at this point in the analysis this distinction is not important. It will become very relevant for
understanding the aggregate implications of this model. While we consider a model with technology shocks, one could instead consider an
economy in which the shocks to the production process represent changes in relative product demands either across producers or over time.

¢ Note that this naturally implies heterogeneity in adjustment costs across firms if A< 1, a point emphasized by Caballero and Engel
[1993b] as well.

7 For simplicity we assume that the replacement process renders previous vintages worthless both in the plant and to others. The model
could be supplemented to allow for the interaction of multiple vintages or a resale market for used capital. Further, the replacement
decision is irreversible.

' The model could be easily supplemented to allow for some small levels of investment (e.g. to replace broken machines and so forth)
even when large investments are not taking place.
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the economy consists of I independent producers financing investment from their own output
and consuming the remainder. A second interpretation comes from the centralized problem
of a planner making machine replacement decisions at I sites with a representative agent
consuming the difference between output and investment. In the case of linear utility, the
choices across sites are independent and (1)-(3) (with utility linear) would then represent the
planner’s problem at one of the sites. When utility of the representative agent is strictly
concave, our formulation misses the congestion effects that would arise in the planner’s
problem. Finally, when u(c)=c in (1), this specification is equivalent to a partial equilibrium
problems in which I firms maximize the discounted present value of revenues net of
investment expenses.

The underlying exogenous technological progress in this economy makes this into a

non-stationary problem. For our analysis, it is convenient to consider a stationary version of
this economy. In particular, we assume that 4(c)=c,"/1-y and f(*) exhibits constant returns
to scale. Let x,=X/k, so that lower case letters represent values which are normalized by the

current value of the leading technology. Further, suppose that the fixed cost of installing the

capital is proportional to the leading edge technology, i.e. F,=F«k,. Then, the economy

described in (1)-(3) can be rewritten as

t=co
EOZ ﬂ'u(c,') (4)
1=0
subject to:
Cxi = yzi = Arie‘;kri - ZriF° ®)

In this version of the optimization problem, note that the discount rate 83 is different from
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that used in (1). This reflects the fact that in dividing through by «,, the rate of technical
progress u as well as the parameters of preference and technology influence the discount
rate. This has an interesting implication for empirical work in that across sectors with
different rates of technological progress, one ought to find different rates of discounting and
hence differences in the solution to the machine replacement problem. We assume that the
rate of technological progress (i) is not too big so that 8<1.° 1In (6), p=(1-6)/u and lies
between zero and one and reflects both physical depreciation and obsolescence. With our
normalization, machine replacement (z'=1) implies that the state of the machine is 1 in the
next period; otherwise, the capital is only a fraction p of its size in the previous period.

To analyze this problem, we utilize a dynamic programming approach where the

value function V(k,A) satisfies the following functional equation:

V(kA) = max[u(AfK) + BE, 4, Pk A'),u(ARDA -F) + BE,, V(14N ()
where the expectation is taken using the conditional distribution, ®(A-|A). The current
aggregate shock plays two roles in this dynamic programming problem. First it has a direct
influence on current productivity and second it is informative about future productivity
. through ®(A-|A).

Our first result is the existence of a solution to this functional equation. Proofs of

1- 1- 1-v
€ . ¢
=k YL TN From this, B = (Bu'"") and we assume that

1-y 1-y 1-y

-~
-

0

% In going from (1) to (4) we use the fact that

Bl <1,



this and other propositions are in the appendix.
Proposition 1: There exists a solution to the functional equation.

We represent t’he solution to (7) through a hazard function H(k,A), which is the
probability of replacing if the current capital stock is k and the aggregate state of productivity
is A. The hazard function provides an ideal link between the theory and the empirical
exercises since it neatly summarizes the theoretical implications and can be estimated from
the data. Note that the hazard function conditions on the aggregate state only, assuming that
the idiosyncratic part of the shock is not observable to the econometrician.!® Thus
H(k,A)e[0,1] while if we condition on both the aggregate and idiosyncratic components, then
the hazard would either be zero or one.

The policy rules for this problem reflect two forces: an underlying replacement cycle
and the response of the agent to shocks in productivity. For the non-stochastic version of this
problem, Cooper and Haltiwanger [1993] find there will be a deterministic replacement cycle
in which the time between replacement will depend, inter alia, on the proportional and fixed
costs of adjustment, A and F.

In the stochastic case, this underlying deterministic cycle will imply that the older the
capital, the more likely is replacement: H(k,A) is decreasing in k. This is shown in
Proposition 2 below, though only with some restrictions on the size of F and the curvature of

u(:).!' Further, the replacement decision will be influenced jointly by the realized value of

9 Again, our ultimate goal is 10 relate the mode! to microeconomic evidence in which we will be unable to observe all aspects of plant
productivity. So, in conducting that analysis, we will condition on the state of the aggregate economy. Thus, it is useful to derive
theoretical results that pertain to that exercise. If we write the hazard over k and the decomposed shock as H(k,A, &), then the hazard we
work with, H(k,A), is the integral of H(k,A,&) over the fixed distribution of £. Since this is an iid shocks, its distribution is independent of
the distribution of k.

' When uf-) is strictly concave and F large, then the costs of replacement could be lower for high values of k implying the possibility
that the hazard is not strictly increasing. In this case our method of proof seems to fail.
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the technology parameter and the age of the capital stock. The response of investment to this
random variable depends on both the nature of the adjustment costs (A and F) and the
persistence of the shock. The agent would prefer to replace machines during a period where
inputs are not very productive (reflecting A< 1) and would also prefer to have a new machine
available when productivity is high. At one extreme, if the adjustment costs are just a fixed
cost of replacement, then the strict concavity of u(:) will imply that replacement is more
likely during economic upturns when consumption is high; i.e. H(k,A) is increasing in A.
This is the point of Proposition 3 below. On the other hand, if the adjustment costs are
proportional to output, then the opportunity cost argument implies that replacing investment
in good times is quite costly; i.e. H(k,A) is decreasing in A. Proposition 4 verifies this
claim in the case of iid shocks as long as u(-) is not too concave. In this proposition, we
restrict the relative risk aversion measure for u(-), denoted by R(-) to be less than one at all
points in the consumption space. Finally, Proposition 5 shows that if shocks are positively
serially correlated and adjustment costs are lump sum, then replacement investment is
procyclical since expected benefits are higher due to the persistence in A.

Proposition 2: If u(-) is not too concave and F is small, then H(k,A) is decreasing in k.
Proposition 3: If u(-) is strictly concave, F>0, A=1 and A is iid, then H(k,A) is

increasing in A.

Proposition 4: If R()<1, F=0, Ae(0,1) and A is iid, then H(k,A) is decreasing in A.

Proposition 5: If u(’) is linear, F>0, A=1 and ®$(A-|A) is decreasmg in A, then H(k,A)
is increasing in A.

1. Simulations

10
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Obtaining analytic solutions to the stochastic dynamic programming problem to study
the aggregate implications of the replacement decision at the producer level is quite difficult.
This reflects an inability to obtain a closed form decision rule for the individual producer and
thus dealing with the heterogeneity across multiple producers. So, to better understand the
implications of the solution to this problem for aggregate investment, we have produced
simulation results. '

A. Approach and Individual Optimization Results

For the numerical analysis, we solved the dynamic programming problem given in (7)
using value function iteration. The state space had three components. First, the capital stock
lies in the discrete set given by {1,0,0%,0°,...} where p reflects both depreciation and
obsolescence. Second, we assume that there are two aggregate shocks {Ay,A,} with
Ay> A" Third, we assume that the idiosyncratic shocks take values in a discrete set.'

The idiosyncratic shocks are important to the analysis since they generate a non-degenerate
distribution of the capital stock. Further, they are a dominant element in any empirical study
of investment and so must appear in the theoretical model.

For the simulations, we assume that the rate of capital depreciation (8) is .1, the
discount rate for the agent (B) is .9 and the technological progress parameter (x) is 1.00.
Further, assume that utility is a linear function of consumption. The aggregate shock is

determined by a first order Markov process where Prob(A,,;=A;|A=A))=.9 for j=L,H.

2 This approach is also complementary to our objective of estimating the parameters of the problem from microeconomic data, a topic
we retumn to in our discussion of empirical evidence.

Y For the simulations, A, =.75 and Ay=1.25.

' The idiosyncratic shocks were multiplicative and took on 20 values between .4 and 1.6, with a mean of one. Throughout our
experiments, these shocks were iid.

\
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Since we have set u=1, p=(1-6) and 8=B=.9. The fixed cost (F) is set at .2 and the
opportunity cost of replacement (1-A) is .25.

Figure 1 presents the hazard functions for this economy conditional on the aggregate
state. Instead of reporting the hazard for a given k, the horizontal axis measures the time
since last replacement. Thus, from Proposition 2, the hazard is increasing in the time since
last replacement, given A. In the discussion that follows, we term this an "increasing
hazard" to focus on the relationship between the probability of replacement and the time
since last replacement given A."

For this simulation, the hazard is upward sloping in accord with Proposition 2.
Further, as an illustration of Proposition 5, the combination of fixed costs and persistent
shocks implies a procyclical hazard. Since the cost of change is independent of the state of
productivity, it is optimal to replace during upturns to take advantage of the complementarity
between the state of total factor productivity and the age of the capital.

B. Aggregate Investment

One of our primary motivations is to provide a link between discrete investment
choices at the producer level and aggregate investment. That relationship is greatly enriched
by the interaction of aggregate shocks and underlying heterogeneity across plants. To make
this point, we study each effect in isolation and then focus on their interaction. Throughout
this section, we use the parameters described earlier.

Before proceeding, it is useful to have a specification for the evolution of the capital

stock and a measure of aggregate investment. Denote by g,(k) the period t cross sectional

13 Gtill, the hazard depends on the two state variables (k,A) along with the idiosyncratic shock and thus should not be confused with a
deterministic time dependent policy function.

-
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distribution of capital, indexed by vintage (k). The aggregate level of investment in period t,
given an aggregate shock (A), is
. I(A) = I, H(,A) g(k).
To understand this expression, consider a given vintage of capital. For that vintage and
aggregate productivity A, the hazard H(k,A) is the probability of investment. Summing this
over k, weighted by the fraction of producers in each state, yields aggregate investment.!®
From this expression, aggregate investment is determined jointly by the cross sectional
distribution as well as by the current state of productivity. Of course, the importance of the
cross sectional distribution is dependent upon the shape of the hazard function. Clearly, if
H(k,A), is independent of k, then the aggregate level of investment is independent of g(k).

This accounting framework highlights the two influences on aggregate investment:
shifts in the hazard and movements along a fixed hazard due to changes in the cross sectional
distribution. The key issue in the empirical analysis is disentangling these two forces.

The evolution of the cross section distribution is given by

g+1()=I(A)
g.+1(0k) =[1-H(k,A)] g (k).

where I,(A) is given above. Thus the fraction of agents with new capital, k=1, is simply the
investment rate in a given period. Further, the fraction with capital of vintage pk in period
t+1 is the fraction of producers with capital k in period t who choose not to invest,

A neat way to visualize the evolution of the cross section distribution is given in

Figure 2. Here the state space is depicted as a ladder. Producers on a particular rung in

' Recall that there is no choice on the size of investment so that we normalize a "project” to be an investment level of 1.

1%
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period t either go to the top of the ladder with probability H(k,A) (i.e. they invest) or move
down one rung with probability 1-H(k,A). For a fixed value of A, the cross sectional
distribution will evolve to a stationary distribution. Aggregate shocks disrupt this process so
that the resulting time path of investment reflects the response of investment to these shocks
and the dynamics of the adjustment process of the cross sectional distribution.

To better understand the underlying dynamics of this economy, consider first an
extreme case in which there are no aggregate shocks in the system. The presence of the
idiosyncratic shocks will lead to a nondegenerate distribution of the capital stock across
agents. However, there will be no aggregate dynamics in that the economy will settle on a
steady state distribution.

Figure 3 displays the behavior of aggregate investment starting from a uniform
distribution of producers across the capital state space in an economy without aggregate
uncertainty. Initially there is a burst of investment since many producers have old capital as
their initial condition. Over time the distribution evolves until a stationary distribution is
obtained and the level of aggregate investment is constant. Note that the adjustment dynamics
lead to cycles in aggregate investment. Each producer undertakes machine replacement at
stochastic intervals of time: the deterministic machine replacement system is made stochastic
by the producer specific shocks. Yet, due to the assumed large number of plants, the
economy has a stationary distribution with constant aggregate investment.

Consider now the other extreme in which there are only aggregate shocks to the
system. In this case all fluctuations in aggregate investment are driven by these shocks. As

there is no heterogeneity, initial differences in the age of capital disappear over time as

1
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replacement becomes synchronized due to the common shocks.!”

The most interesting case, of course, arises when there are both aggregate and
idiosyncratic shocks. ‘This is clearly the empirically relevant case since differences across
plants given the state of the aggregate economy are quite significant.'® Furthermore, it is
the interaction between the cross section distribution and the aggregate state that gives rise to
such rich dynamics in the machine replacement problem. Note that when both types of
shocks are present, the economy will have fluctuations in aggregate investment as well as a
non-degenerate cross sectional distribution of the capital stock.

A simulation in which there are two aggregate states and idiosyncratic shocks is
displayed in Figure 4. In this figure, the aggregate state is either O (corresponding to
A=A)) or 1 (corresponding to A,=Ay). Note that investment spikes when the aggregate
state changes from low to high. However, these spikes are not of uniform height since the
fraction of investors depends on the underlying distribution. This is one way in which the
cross sectional distribution influences aggregate investment. Furthermore, between variations
in the aggregate state, the economy experiences cycles in investment. This is similar to the
pattern portrayed in Figure 3 as the economy converged to a stationary distribution. In an
economy with both idiosyncratic shocks and aggregate shocks, these same transition
dynamics govern the system between the switches in the aggregate state.

IV. Empirical Evidence on Investment Patterns

A. Measurement and Basic Facts

7 This is the type of synchronization described in Bertola and Caballero [1990).

™ We discuss the empirical evidence on plant level heterogeneity in some detail in the next section,
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The data used to evaluate the predictions of our theory are longitudinal data for 6900
plants in the U.S. manufacturing sector for the period 1972-91. The data are a subset of the
Longitudinal Research- Database (LRD) representing all large, continuously operating
manufacturing plants over the sample. While entry and exit are obviously of interest in this
context, in this study we focus our effort on the continuously operating plants. This permits
a detailed examination of the empirical investment hazard at the plant level and its connection
to aggregate fluctuations in investment.

Our objectives are threefold: (i) to characterize large scale investment episodes at the
plant level, (ii) to determine whether there is a systematic relationship in the timing of large
investment episodes at the plant level in a manner consistent with the machine replacement
model and (iii) to quantify the connection between the timing of large investment episodes at
the plant level and aggregate fluctuations in investment. In pursuing these objectives, we
evaluate the predictions of our theory model relative to the predictions from the standard
alternative model, the convex adjustment cost model.

Three recent studies (Doms and Dunne [1994], Power [1994], and Caballero, Engel
and Haltiwanger [1995b]) have used the LRD to study the process of plant level investment.
Doms and Dunne conduct an exploratory data analysis characterizing the distributions of
plant level investment. For their 16 year sample (which is quite similar to ours), they find
that plants concentrate about 50% of their cumulative 17 year investment in the three years
surrounding the year with the largest investment. Power [1994] conducts an exploratory
study of the timing of the large investment episodes and in this regard we build upon her

work. Caballero, Engel and Haltiwanger [1995b] exploit the adjustment hazards approach
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developed by Caballero and Engel [1993a]. In this context, the latter approach involves
estimating the plant-level relationship between investment and an estimate of the difference
between the actual and desired capital stock.'” None of these papers address the issues that
are the focus of this paper: the timing of large investment episodes at the plant level and the
connection between the timing of large investment episodes at the plant level and aggregate
fluctuations in investment.

To begin our empirical analysis, we first address the representativeness of our sample
and then characterize the basic properties of the cross sectional distribution of plant level
investment in our sample. The top panel in Figure 5 depicts aggregate gross and net
investment in machinery and equipment for the U.S. manufacturing sector over this period
based upon tabulations from the 4-digit Annual Survey of Manufactures published data. The
gross investment is deflated at the 4-digit level with investment price deflators (in 1987
dollars) and the net investment series is tabulated using BEA 2-digit depreciation rates and
the perpetual inventory method. The lower panel in Figure 5 depicts the same series based
upon our sample of 6900 plants. For the latter, we initialized the real capital stock for each
plant in 1972 by multiplying the book value of machinery in 1972 by the ratio of real to
book value of the machinery for the 2-digit industry in which the plant operates in 1972.

Even though we only have a small fraction of the total number of plants, the gross
investment in machinery for our sample constitutes about 45% of aggregate investment in

machinery. Most importantly for our purposes, the correlation between aggregate investment

¥ Since the Caballero, Engel and Haltiwanger [1995b} (hereafier CEH) approach requires constructing a measure of the desired capital
stock this generates substantial differences in the empirical approach to the data to that pursued here. The advantage of the CEH approach
is that this permits rich characterization of the driving forces of aggregate investment fluctuations (e.g., aggregate shocks, idiosyncratic
shocks, cost of capital shocks and their respective interactions with nonlinear response at the micro level). The advantage of the approach
pursued here is that measurement/specification error issues play less of a role since we focus on timing patterns,
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and investment measured in our sample is quite high. Thus, though we focus on a subset of
the producers, their investment behavior seems representative of total manufacturing.

Figure 6 depicts a histogram of annual plant-level gross investment rates.?’ The
distribution is highly skewed to the right. The large fraction of plants with investment rates
at or near zero reflects the fact that many plant-year observations involve little or no
investment. For our data set, about 10% of the observations entail a zero level of
investment. The long right tail illustrates the fact that a relatively small, but important,
fraction of plants experience a large investment episode in any given year.

To evaluate the contribution of the largest investment episodes to aggregate
investment, we rank the investment rates for each plant over the 20 year sample period and
examine the contribution of the plant level ranked episodes to cumulative aggregate
investment over the 20 year period.?! Figure 7 depicts the results of this exercise. Using
only the investment associated with the largest investment episode for each plant yields 17%
of cumulative aggregate investment. The top five investment years at each plant account for
more than 50% of cumulative aggregate investment.?

To provide some perspective on the time series fluctuations and relative importance of
large investment episodes, Figure 8 depicts the time series fluctuations in the fraction of

plants with gross investment rates in excess of 20% and the contribution of such plants to

¥ All plant-year observations are used to construct Figure 6. The gross investment rate is measured as the real gross machinery
investment in the period divided by the initial real value of the machinery in the period.

1 By cumulative aggregate investment we mean the sum of all investment for all plants and all years for our sample.

2 These results appear to differ somewhat quantitatively (although not qualitatively) from the results by Doms and Dunne [1994]. That
is, they find that the largest investment episode at each plants accounts for 25% of cumulative investment over their sample for the typical
plant. However, this primarily reflects differences in the length of our samples (their sample is 17 years, ours is 20 years). The difference
in the length of the sample will by construction yield differences in the contribution of the largest investment episode to cumulative
investment over the sample.
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aggregate investment. The aggregate gross investment rate is plotted for comparison on the
right vertical axis. A number of observations are worth making. First, plants with large
investment episodes constitute about 20% of the plants but account for almost 50% of gross
investment. The latter is a large percentage but far from 100% -- that is, both lumpy and
non-lumpy investment are important components of investment. Second, the fraction of
plants having large investment episodes and the amount of investment accounted for by such
plants is positively correlated with the aggregate investment rate.”® This is important
because much of the subsequent analysis is about the determinants of plants having large
investment episodes and the cyclical fluctuations in such plants. These findings indicate that
factors driving aggregate investment are closely linked to factors driving the fraction of
plants experiencing large investment episodes.
B. Motivating Our Empirical Approach

The evidence in Figures 6, 7 and 8 is only suggestive since we cannot a priori rule
out the hypothesis that the observed skewed distribution of plant level investment reflects a
skewed distribution of idiosyncratic shocks impacting plants. To distinguish this hypothesis
from the lumpy investment model, we investigate the timing of the relationship between the
large investment episodes at the plant level.

Our machine replacement model of section II predicts an upward sloping hazard with
respect to the time since last replacement. In practice, we investigate this prediction by

examining whether the probability of having a large investment episode at the plant level is

increasing in the time since the last large investment episode.

3 The correlation between the aggregate investment and the fraction of plants with investment larger than 20% is 0.57. The correlation
between aggregate investment and the fraction of investment accounted for by plants with investment greater than 20% is 0.69.
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The competing hypothesis that the skewed distribution of plant level investment
simply reflects the skewed distribution of idiosyncratic shocks does not imply an upward
sloping hazard. In the face of serially uncorrelated random shocks and no adjustment costs,
the hazard should be flat with respect to the time since the last large investment episode.
The presence of serially correlated random shocks or convex adjustment costs implies plant-
level investment will be positively serially correlated and thus the hazard should be
downward sloping.

To examine this point further, consider a simple convex cost of adjustment model in
which a firm maximizes the discounted present value of profits (IT) where II=6K - %4vI?2,
where K is the stock of capital, 6 is the state of productivity and I is the level of investment.
The flow of profits is equal to the flow of output from the capital less the quadratic costs of
adjusting the capital stock. The capital stock is assumed to depreciate at a rate of §€ (0,1).
The solution to this dynamic optimization problem is I=a+bf, where a and b are constants
that depend on the parameters of the problem including those that characterize the stochastic
process for 6.

Figure 9 illustrates the results of simulating this model assuming that 6 is positively
serially correlated.” The investment rate (vertical axis) fluctuates due to variations in the
productivity of capital and with enough dispersion in 8, investment rate spikes can emerge.
Note, however, that these investment spikes occur in bunches, reflecting the persistence in 6
implying that the probability of large investment in the current period is higher if there was

an investment spike in the previous period. That is, the hazard is downward sloping. In the

M For these simulations, the discount rate was set at .9, the rate of depreciation at .1, the serial correlation in #, was set at .9 and y was
normalized at 1.
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next section, we elaborate further on the contrasting predictions of our machine replacement
model and alternatives such as this simple convex adjustment cost model.
C. Defining An Investment Spike

Our objective is to examine the timing of large investment episodes at the plant level.
To accomplish this objective, we must develop a method for defining a large or lumpy
investment episode. That is, unlike the specification of the theoretical model, not all positive
investment episodes are easily categorized as representing a lumpy investment episode.
To address this difficulty, we consider alternative methods of defining lumpy investment
episodes -- hereafter denoted as investment spikes. Three definitions of investment spikes
are considered as follows:

(i) Relative threshold: investment spike if gross investment rate at plant in year is
2.5 times median annual gross investment for plant over entire sample period;

(ii) High absolute threshold: investment spike if gross investment rate at plant in
year is greater than 20%;

(iii) Low absolute threshold: investment spike if gross investment rate at plant in year
is greater than 3%;

All three definitions attempt to define a threshold investment rate above which a plant
is incurring the adjustment costs and machine replacement process that are the focus of the
model. The first definition is that used by Power [1994).3 It reflects the idea that
abnormally high investment episodes are defined relative to the typical investment rate
experienced within a plant. The second definition is similar but uses an absolute rather than

a relative threshold. The third approach takes a somewhat different view based upon the

¥ Power [1994] considers the robustness of her results to alternative relative thresholds. In particular, she considers 1.75, 2.5 and 3.25
times the median. Her findings are, for the most pan, robust to these alternative definitions of investment spikes.
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alternative hypothesis that virtually all positive investment episodes involve incurring the
adjustment costs of undergoing machine replacement. In this case, investment rates of less
than 3% are interpreted as representing investment that does not induce the fixed costs that
are the focus of the model.

The definitions of these thresholds encompass varying views of the lumpy and non-
lumpy components of investment. We proceed by investigating the timing relationship
between investment spikes so defined. Recall that our model predicts an upward sloping
hazard in the time since the last spike while Figure 9 implies that the hazard will be
downward sloping if the defined spikes only represent large (potentially serially correlated)
shocks in the presence of convex adjustment costs. A natural question is the sensitivity of
these contrasting predictions to the alternative definitions of investment spikes. Figure 9
implies that the prediction of a downward sloping hazard from the convex adjustment model
is not sensitive to the specific threshold chosen to define an investment spike. That is, the
prediction of a downward sloping hazard from convex adjustment cost model with positively
serially correlated shocks is consistent with any threshold definition.

The impact of the threshold on the predictions from the machine replacement model is
somewhat more difficult to evaluate. On the one hand, choosing too low a threshold implies
that some of the observed spikes may represent non-lumpy investment that does not exhibit
the timing patterns predicted by the machine replacement model. On the other hand,
choosing too high a threshold implies that some machine replacement episodes may be
excluded from the spike definitions. In both cases, there is potential measurement error in

both the dependent and independent variables which would bias the estimated hazard.
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Evaluating the magnitude of such biases requires imposing structure well beyond the scope of
this paper. Instead, the approach here is to consider alternative investment spike definitions
to characterize the sensitivity of the results to these concerns.

To sum up our empirical approach, distinguishing between competing hypotheses of
large scale investment episodes is based on examining the slope of the estimated hazards for
the alternative spike definitions. A finding of a flat hazard is consistent with a random
shock, no adjustment costs model and a finding of a downward sloping hazard is consistent
with the convex adjustment cost model. With these remarks and caveats in mind, we now
proceed to use these spike definitions to estimate the hazards and investigate the aggregate
implications.

D. Kaplan-Meir Estimates of Investment Hazard

We begin our characterization of the timing relationship between large investment
episodes by examining the Kaplan-Meir nonparametric hazards for each investment spike
definition. Kaplan-Meir estimates are generated from the pooled 1980-91 sample as well as
for individual years.”® Figure 10 depicts the Kaplan-Meir hazards for specific years and for
the pooled sample. The empirical hazards exhibit pronounced shifts across years that are
non-neutral across investment ages. For each spike definition, the Kaplan-Meir hazard is
decreasing in the time since the last investment spike. This result holds true for the estimates
based on the pooled sample across years as well as the by year estimates. The sharpest

decline in the probability of having an investment spike occurs after investment age zero

* To minimize the impact of censoring in the subsequent estimation, we focus our attention on the period 1980-91. This permits nine
investment age categories (0-8) where age 0 in a given year represents plants that had an investment spike in the previous period and age 8
represents plants that have not experienced an investment spike in the previous eight years.
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(i.e., plants who had a spike in the previous period). The large probability associated with
having a spike in the period immediately following a spike reflects the multiyear spike
phenomenon emphasized in the findings of Doms and Dunne [1994]. That is, one of their
key findings is that large investment episodes are often spread across two (or sometimes
three) years. While this multiyear spike phenomenon may reflect economic factors, it is also
possible that it reflects a form of measurement error induced by the calendar year nature of
the data. Large investment projects that start late in one calendar year and completed in the
subsequent year can easily yield this pattern. Results presented below provide further
support for this interpretation.

On face value, these findings do not support the prediction of an upward sloping
hazard and thus do not support the predictions of the machine replacement model. However,
it is likely that these empirical hazards reflect a variety of forces beyond those we emphasize
in the theoretical analysis. For example, as is well known in the empirical labor economics
literature, unobserved structural heterogeneity can yield downward sloping hazards even if
the hazard for any individual plant is upward sloping. Put differently, the empirical hazards
depicted in Figure 10 reflect between plant and within plant effects while the prediction of an
upward sloping hazard is a within plant prediction.

E. Estimating Hazards with Fixed Effects
To separate the competing influences on the empirical hazards, we estimate the

following parsimonious specification:
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where h, =1 (0) if plzznt e has (does not have) an investment spike in period t, o, represents
a plant fixed effect, o, represents a common year effect, and D, are investment age
dummies.?” When the plant fixed effects and year effects are not included, this

specification yields the Kaplan-Meir pooled sample estimates. The inclusion of the plant
fixed effects is intended to absorb the between plant differences in the likelihood of having an
investment spike so that the estimated coefficients on the investment age dummies can reflect
the timing relationship among investment spikes within plants. Given that we include the
fixed effects, we cannot interact the investment age effects with year effects and so must
constrain the year effect to be the same across all investment age groups.

The year effects capture any factors that shift the hazard across time. In our formal
model under the assumption of a time invariant distribution of independently distributed
idiosyncratic shocks, the hazard shifts over time only due to aggregate shocks. However,
other factors such as time variation in the distribution of idiosyncratic shocks can shift the
hazard over time. Thus, it is appropriate to interpret the year effects as reflecting all factors

that shift the hazard over time. Accordingly, in what follows we will refer to these time

¥ This simple specification is motivated by a number of factors. First, it imposes no parametric functional form on the hazard.
Second, this structure lends itself to the aggregate decomposition exercises considered in the next section. In spite of its simple appeal,
there are a number of potential econometric concerns. First, to control for the fixed effects the model is estimated after subtracting plant-
specific means from the dependent and independent variables. As discussed by Chamberlain {1991}, this method using least squares is not
subject to inconsistency due to the incidental parameters problem as long as there is sufficient within plant variation in the investment age
variables. A potentially related problem is that the errors may be serially correlated. Identifying the within plant relationship between
investment rates and investment ages is particularly problematic in the presence of serially correlated idiosyncratic shocks. The problem of
distinguishing between state dependence and serially correlated errors is a well known and difficult problem. While we have not pursued
this problem formally, we did try a solution suggested by the work of Ollcy and Pakes {1992] by including lagged plant-level employment
as an additional explanatory variable in the estimation. The basic idea is that such a lagged endogenous variable could absorb the influence
of serially correlated idiosyncratic shocks. Results from this exercise (not reported) yield very similar coefficients on the year and
investment age effects to those reported here, although the estimated coefficient on lagged employment is positive and statistically
significant.
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series shifts in the hazard as hazard shocks.

The results of estimating equation (8) are presented in Table 1.2 The coefficient
estimates for ¢, for se}ected years are depicted in Figure 11 with the intercept shifts across
years reflecting the year effects. In interpreting Figure 11, note that the fixed effects have
been absorbed so that the average o, across the years has a mean of zero. For all spike
definitions, the estimated hazards are u-shaped with respect to investment age. The
probability of having an investment spike in the period immediately after an investment spike
is still quite high even after controlling for fixed effects. However, using either the upper
absolute spike or the relative spike definition, the probability drops substantially from
investment age O to investment age 1 and then increases for each additional year since the
previous investment spike. For example, for the high absolute spike definition, a plant with
an investment age of 1 is 12% less likely to experience an investment spike than a plant of
investment age 8. The lower absolute spike definition also yields a u-shaped pattern but the
trough is at investment age equal to 4 and the subsequent increase in the hazard is not
monotonic.

For all specifications, the estimated age effects are highly statistically significant: i.e.
we reject the flat hazard model. Further, we clearly reject the downward sloping hazard
model. Only from age O to age 1 does the hazard decrease with age and this latter feature is
potentially driven by the limitations of using calendar year data. In short, once we control
for fixed effects, neither the random shock model implying a flat hazard or the convex

adjustment cost model implying a downward sloping hazard are consistent with the estimated

2 Table 1 reports the coefficients for several intermediate specifications. That is, specifications with just year effects and specifications
in which the fixed effects are at the industry rather than the plant level are reported.
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hazards. Instead, the estimated hazards are consistent with the predictions of the machine
replacement model.

The shifts in th; investment ;pike hazards across years depicted in Figure 11 reveal a
strikingly procyclical pattern. From Figure 8, the years depicted represent a business cycle
episode with high aggregate investment in 1981, substantially lower aggregate investment in
1982 and 1983 and high aggregate investment again in 1984 and 1985. The estimated
hazards follow this same pattern indicating that the probability of having an investment spike
increases during periods of high economic activity. This provides support for the
specification of the model that yields procyclical hazards -- specifically, sufficient serial
correlation in the aggregate shocks and high fixed as opposed to proportional costs of
replacement.

F. Apggregate Implications

Consider the following alternative decompositions values of actual investment:
I =18 + (I, -1}) where 1} = Y h,_g(k) 9)
k
and

L=1F+ (- 1Y where IF = ) [(é))j o, + alg b (10)

where E is the total number of plants, the «’s in equation (9) refer to the estimated
coefficients from equation (8), I, is the aggregate fraction of plants having an investment

spike (what we hereafter refer to as aggregate investment), g(k) is the empirical investment
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age distribution,” and h,, are the Kaplan-Meir hazard estimates (i.e., the empirical
hazards).

The measure I¢ characterizes the predicted behavior of aggregate investment using the
actual empirical hazard (the Kaplan-Meir by year estimates) with the time series average of
the cross sectional distribution g(k). Comparing the time series behavior of this measure to
the actual fraction of plants having investment spikes provides a basis for evaluating the
importance of time series fluctuations of the cross sectional age distribution. An important
feature of this decomposition is that it does not rely on our ability to identify the separate
influences on the empirical hazard. That is, the Kaplan-Meir by year estimates incorporate
all of the forces (i.e., plant fixed effects, depreciation, obsolescence, aggregate shocks,
idiosyncratic shocks) that yield fluctuations in investment patterns by investment age groups.
Thus, this measure characterizes the predicted path of investment under the assumptions that
all of these forces are at work but with a time invariant cross sectional age distribution.

The measure 1* uses the actual cross sectional age distribution but abstracts from
hazard shocks. Comparing the time series properties of this measure with aggregate
investment provides a basis for evaluating the contribution of the interaction of the non-flat
hazard with the cross sectional age distribution.

For the subsequent analysis of these decomposition exercises, we focus our attention

on the results for the upper absolute spike definition.3® The time series of I¥ and 18 are

¥ Note that k and thus g(k) indexes the time since the last large investment episode not the vintage of the capital stock as in the
theoretical model. However, as we pointed out in section III.A, there is a one-to-one mapping between the time since the last replacement
and the vintage of the capital stock in the theoretical model.

* Similar results are obtained using the other spike definitions.
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plotted against the actual fraction of plants experiencing investment spikes in Figure 12 .3

I tracks aggregate investment quite closely implying that time series variation in the cross
sectional age distribution has only a modest marginal contribution -- or put conversely,
fluctuations in the hazard are what matter most. In terms of measures of goodness of fit, the
root mean squared error associated with I# (i.e., the difference between I, and 18) is 0.004.
These are small forecast errors relative to the variation exhibited by aggregate investment
(standard error of the latter is 0.021).

The flip side of these results is that the series I ¥ exhibits only modest movements over
time. However, close examination makes it clear that during periods of the greatest
movement in I* there are some interesting and important differences between I, and 1£.
Specifically, in periods in which I is relatively low (high) are precisely those periods that 12
overpredicts (underpredicts) the actual increase in I,. Consider, for example, the years 1984-
87. In 1984, the non-flat hazard interacting with the cross sectional distribution yields a
relatively low I*. Ignoring this interaction (as I# does) yields an overprediction of actual
investment. In the succeeding years 1985 and 1986, the interaction of the non-flat hazard
and the cross sectional age distribution yields a positive increase to aggregate investment and
ignoring this yields an underprediction of actual investment. In 1987, the interaction of the
non-flat hazard and the cross sectional age distribution yields a negative contribution to the
change in investment and thus ignoring this component yields an overprediction of
investment.

This pattern of overprediction and underprediction is precisely what one would expect

31 In generating the series for Figure 12, we standardized all of the series to have the mean of the actual investment series. That is, we
eliminated any mean differences between the series.
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if the machine replacement model was correct but the implied influence of the cross sectional
age distribution was ignored. Recall from the time series simulation that the influence of the
cross sectional age disfribution is twofold. First, the impact of aggregate shocks depends on
the state of the cross sectional age distribution. Second, endogenous cycles in investment
emerge when the existing cross sectional age distribution differs sharply from that associated
with the steady state distribution consistent with current aggregate conditions. Both of these
effects are especially important in the periods immediately following large fluctuations in
aggregate investment. Further, while both of these effects lead to prediction errors, it is this
latter effect that generates a pattern of over and under prediction when one ignores the
influence of the cross sectional age distribution and the non-flat hazard.

Viewed from this perspective, it is useful to focus on episodes following sharp swings
in aggregate investment. Figure 13 shows that the associated prediction errors for the change
in investment are non-trivial in periods following large fluctuations in aggregate investment.
Figure 13 depicts the actual changes in investment spikes (right vertical axis) against
the fraction of the actual change accounted for by the predictions from alternative
decompositions. In 1985, I# accounts for about 40% of the increase in investment. In 1987,
I# accounts for about 230% of the increase in investment.

Observe that after the large hazard shocks in the 1983-85 period, hazard shocks are
relatively small in magnitude in the period 1986-90. Accordingly, the impact of the
interaction of the cross sectional age distribution and the non-flat hazard diminished over this
period of time. Based upon the very sharp decline in investment in 1991 (the end of our

sample) generated by a large adverse hazard shock, we would predict relatively large
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prediction errors from ignoring the interaction of the cross sectional age distribution and the
non-flat hazard in the immediately following years.

How do we recpncile the somewhat conflicting implications of Figures 12 and 13?
The key is to recognize that the interaction of the cross sectional age distribution and the
non-flat hazard generates endogenous cycles in investment.  Thus, ignoring these factors
will not yield large prediction errors in the levels but can lead to larger, systematic prediction
errors in the changes, particularly in periods in which the cross sectional age distribution has
been substantially disrupted.

Interestingly, conducting a dynamic simulation of the cross sectional age distribution
based upon our estimated hazard yields an aggregate investment series that closely tracks the
actual changes in aggregate investment. The series labeled "Dynamic" in Figure 13 shows
that the prediction error of the dynamic simulation is small in magnitude in all periods,
including periods of large investment fluctuations. Thus, using our estimated mode! that
incorporates the impact of the investment age distribution performs quite well in predicting
investment changes relative to the predictions based on neglecting the impact of the cross
sectional distribution.

V. Conclusion

Our goal in this paper was to model the machine replacement problem of an
individual producer and then to trace the implications of this discrete choice problem for the
behavior of aggregate investment. To do so, we analyzed the choice of an individual agent
with emphasis on the timing of replacement relative to the business cycle. Here we found

that replacement investment is more likely to be procyclical the more persistent are shocks
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and the more important are fixed adjustment costs. Further, the theoretical model predicted
fairly rich dynamics in aggregate investment due to the interaction of the aggregate shocks
and the tendency of the cross sectional distribution of capital vintages to evolve to its
stationary distribution.

The empirical section of the paper provides evidence that these theoretical properties
are apparent in the data. First, large investment episodes are an important feature of plant
level investment and constitute a large fraction of aggregate fluctuations in investment.
Second, estimates of microeconomic hazards reveal that once fixed effects have been taken
into account, the probability of a large investment episode (denoted an investment spike) is
increasing in the time since the previous spike. Third, the investment spike hazards are
procyclical. Putting these pieces together implies that ignoring fluctuations in the cross
sectional distribution of the vintage of the capital stock can lead to non-trivial errors in the
predicted changes in the fraction of plants experiencing investment spikes. Strikingly, the
relative importance of the prediction errors increases during periods of large investment
fluctuations.

There are at least three directions in which to build upon our work. First, the model
excludes any movements on the intensive margin by assuming that all investment projects are
of the same size. While analytically convenient, the empirical implementation of this
approach requires the creation of a disérete variable from observations on investment flows.
An alternative approach, which we will pursue, is to build a richer model of investment
which allows the agent to choose a path of investment with nonconvex costs of adjustment.

This may also include a description of the effects of capital market imperfections. This
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model will be easier to implement empirically and will nest the standard neoclassical model
of investment as a special case.

Second, working from the fundamental contribution of Rust [1987] and others, there
is an alternative empirical strategy to pursue: the estimation of the structural model from the
LRD. While our empirical work did not require the imposition of a particular hazard
function, the approach does not provide a link between the estimates and the underlying
structural model. In future work, we will make this link explicit and provide microeconomic
estimates of an investment model with nonconvex costs of adjustment.

The final issue concerns the links between capital, worker flows and productivity.
This paper concentrates on the timing of large investment episodes while others, e.g. Davis
and Haltiwanger [1992] focus on employment movements. An integrated model of
investment activity and labor market dynamics with implications for productivity is an

obvious next step.
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Appendix: Proofs

Proof of Proposition 1

As long as p is small enough that B<1, then the existence of a solution to (7) is guaranteed
by Theorem 9.6 in Stokey-Lucas [1989].

Proof of Proposition 2 Let A denote the productivity at the plant ignoring, for now, the
decomposition of A. For a given value of A, let k’(A) satisfy V"(k,A)=V'(k,A) where

V" (k,A) =u(Ak) + B EV(pk,A") (A1)

and
V'(k,A) =u(AkA-F) + BEV(1,AY). (A2)
Letting A(k,A) = V'(k,A)-V*(k,A), it is sufficient to show that A(k,A) is decreasing in k.
From (A1) and (A2),
A(k,A) =u(AkA-F) -u(Ak) +BE,[V(1,A") -V(pkA")]

where V(k,A) =max{V'(k,A),V'(k,A)}. Clearly the last part of this expression, representing
the expected gains to replacement, is decreasing as k increases since V(k,A) is an increasing
function of k. The first two terms capture the cost of replacement. If this cost is also
increasing is k, then A(k,A) will be falling in k. Differentiating the first two terms with
respect to k yields

A[Au'(Ark-F) -u'(AR)]

In the event that F=0, this derivative is negative if R(c) =-u"(c)/u’(c) <1 for all
values of consumption. Thus, if the curvature of u(*) is not too large and F=0, then H(k,A)
is decreasing in k. By continuity, this holds for F small.

If u(’) is linear, then u(ANk-F)-u(AKk) will clearly be a decreasing function of k for
any value of F. This is also true for u(*) nearly linear.

This proves that given the state, the hazard is decreasing in k. Since it is true for
each realized value of A, it is also true if one integrates over the idiosyncratic components of
the shock to obtain the hazard defined over the aggregate state.

Proof of Proposition 3
Using the definition of A(k,A), for the case of F>0 and A=1, we have
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A(k,A) = u(Ak-F)-u(Ak) + BETV(1A)-V(pk,A D).
Since A is iid the last term is independent of the current realization of the shock while the
different in current utility flows, while negative, is an increasing function of A due to the

curvature of u(:).

Proof of Proposition 4

Again, using A(k,A) as defined above, we have:
Ak, A)=u(AkA) - u(AK) + B [EV(1,A4") - EV(pk,A")].

where the expectation is taken over A’. Since A is assumed to be iid, this expectation in
independent of A.

To show that replacement is less likely when A is high, we need to show that A(k,A)
is a decreasing function of A. With A iid, this amounts to showing that u(AkA)-u(Ak) is a
decreasing function of A; i.e. the costs of replacement rise in good times due to the
opportunity cost aspect of the replacement process. Differentiating this difference with
respect to A leaves the condition that k[Au’(AkA)-u’(Ak)] must be negative if A(k,A) is to
fall with A. This last inequality is true iff u(+) is not too concave: i.e. iff R(c)<1 for all c,
where R(c)=-u"(c)/u’(c).

Proof of Proposition 5

For the case of F>0, A=1 and u(") linear, A(k,A) is given by
AkA)=PE,,,[V(1.A -WpkAN] -F

Note that the expectation over A’ is conditional on A so that the current state of productivity
does influence the replacement choice even though A=1 and u(-) is linear. Since high
values of A put, by supposition, more weight on high values of A’, it is sufficient to show
that V(1,A)-V(k,A) is increasing in A for any k. This is, in turn, equivalent to the condition
that

1
[VeilzArz >0.
k

for all k. This condition is satisfied if V,,(k,A)>0 for all (k,A). From (A1) and (A2) this
positive cross partial condition holds when F>0, A=1 and u(*) is linear. To see this, note
that by assumption, replacement will eventually occur so that (Al) is a sequence of current
period returns with positive cross partials between k and A. From (A2), V'(k,A) has a
positive cross partial since the second term is independent of k.
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Table 1
Coefficients from the Regression of Spike and Age
Rel Spike Ind, Yr  Rel Spike Upper Upper Threshold Lower Threshold Lower
controls Pint, Yr Threshold Pint, Yr Ind, Yr Threshold
controls Ind, Yr Pint, Yr
Age -
Const 0.083 0 0.095 0 0.194 0
(0.006) (0.007) (0.015)
0 0.249 0.054 0.258 0.025 0.672 0.099
(0.004) (0.004) (0.004) (0.005) (0.014) (0.019)
1 0.039 -0.119 0.064 -0.122 04 -0.047
(0.004) (0.005) (0.005) (0.005) (0.014) (0.02)
2 0.008 -0.134 0.039 -0.123 0.298 -0.076
(0005) {0.005) (0.005) (0.006) (0.015) (0.02)
3 0.007 -0.121 0.024 -0.114 0.22 -0.092
(0.005) (0.005) (0.006) (0.006) (0.016) (0.021)
4 -0.003 -0.117 0.004 -0.111 0.159 -0.058
(0.005) (0.005) (0.006) (0.006) 0.018) (0.022)
5 0 -0.098 0.011 -0.084 0.185 -0.031
(0.005) (0.006) (0.006) (0.007) 0.02) (0.023)
6 -0.001 -0.083 0.006 -0.068 0.103 -0.066
{0.006) (0.006) (0.007) (0.007) (0.024) (0.025)
7 -0.001 -0.067 -0.005 -0.06 0.157 0.02
Year (0.006) (0.006) (0.008) (0008) (0.027) (0.028)
80 0.014 0011 0.037 0031 0.045 0.053
(0.006) (0.006) (0.007) (0.006) (0.006) (0 006)
81 0.014 0.013 0.035 0.031 0.051 0.057
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
82 0.001 0 0.026 0.023 0.023 0.03
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
83 -0.009 -0.012 0.016 0.013 -0.004 -0.001
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
84 0.036 0.032 0.07 0.065 0.057 0.053
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
85 0.039 0.039 0.077 0.077 0.047 0.049
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
86 0 0.004 0.032 0.037 0.019 0.021
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
87 0.017 0018 0.047 0.049 0.042 0.039
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
88 0.016 0.017 0.037 0.039 0.046 0.045
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
89 0.03 0.031 0.054 0.055 0.055 0.055
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006)
90 0.017 0.018 0.03 0.032 0.035 0.038
(0.006) {0.006) {0.007) (0.006) (0.006) (0.006)
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Figure 1
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Figure 3

Convergence without Agg. Shocks
Baseline Parameters
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Figure 4

Aggregate Investment Fluctuations
Baseline Simulation
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Equipment Investment In Manufacturing
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Figure 6

Plant Level Investment Distribution

Percent of Plants

)
B
)

XX R R NN e ey ey e e ra e X

4§r.

X EX] o
””:":“0”0'0
A DA DA P X

)

)

9.9.0.9
KXXXXX]

KX AXXXX]
PO XX AXX]

POXX XXX XX XX

)

X
%

RRRRIIRRRRRRRKRR

[0

(N NN
X XXX XXX XXX HX A AXAXXXX]
XXX XRIXORHXICHK IR IR IXARRARHHAN,

)

OO XTI

PR X XOOOIRAXATEEINK

(AR XXX AAHIAIAARIARIRAAAAAAAAAIARAR KA KKK

PRI KR AAAKK KK
N/

AVAVAVAVATA AVAVA
QXXX XXX RHX I XXX XK IR XX AXHXIKHXX KX

4
A1

4

17-_

a
m (4} @ r~ 0 n <r [y} N ~ (=)

000000000000O0O0O00O0O0OOCOOO0OODOODOODODOODODOOODOO

0000111222333344455566667778889999
03692581470369258147036925814703609

Distribution of Plant Level Investment

i



Figure 7

Contribution of Ranked Annual Investment to Cumulative
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Figure 8

Investment Rate vs Investment Spikes
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Figure 9

iInvestment rates
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Figure 10

Kaplan—Meir Hazard:Relative Splke Kaplan —Melr Hazard:Lower Absolute Splke
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Figure 11

Hazard, with Fixed Effects: Relative Splke Hazard, with Fixed Effects: Lower Absolute Spike
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Figure 12

Actual and Predicted Investment
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Figure 13

Actual Change Accounted for by Predicted Changes
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