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This paper is an attempt to do international trade theory
without mentioning countries.

In recent years it has become common to argue that external
economies operate at a local rather than a national level (Porter
1990), an observation that has led to a new interest in economic
geography among international trade theorists (Krugman 1991).
Taken to its logical conclusion, this line of thought seems to suggest
an approach to international economics in which one thinks of
countries as areas on a surface rather than as discrete locations, and
tries to adopt a "field theory" approach to global trade that describes
all flows of goods and services across that surface rather than only
those flows that happen to cross arbitrary lines called borders. One
might admit that in practice economic regions are often separated by
natural barriers such as oceans and mountain ranges, and also that
national borders appear to matter a great deal for trade flows, even
when formal trade barriers are low. Nonetheless, it seems obvious
that it would be useful to have at least a benchmark model of
specialization and trade in a "seamless” world, one in which
national boundaries are ignored and even economic regions -- which
will typically be blobs with fuzzy edges rather than points -- are
observed rather than defined ex ante.

We are not, however, aware of any formal models of world
specialization and trade that do away with the assumption that

regions, whether or not they are identified with nations, are discrete
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points. Even in our own work on the emergence of global
specialization (Venables (1993), Krugman and Venables
forthcoming) we have focussed on two-region models in which
trade between the regions is costly but trade within them is not --
that is, we have represented regions as exogenously defined points,
even if the role these regions end up taking in the world economy
is endogenous. There is, of course, no mystery about why
international trade theorists have been reluctant to think in terms of
a seamless world: at first sight, modeling such a world appears to
be a task of daunting technical difficulty. After all, a three-location
model is far more complex than a two-location model, a
four-location model more complex still; surely, one supposes, a
model with continuous space, which is to say an infinite number of
locations, will be entirely intractable.

But then again, maybe not. In this paper we show that it is
possible to gain some surprisingly clear intuitions about
specialization and trade in a seamless world. Admittedly, these
results depend on the use of a highly stylized dynamic model, in
which we make extremely unrealistic assumptions about both
natural geography and the motives for trade. Even within this
stylized framework, we are obliged to rely to a considerable extent
on simulation -- that is, on high-tech numerical examples. We are,
however, able to develop intuition about these simulations and even

derive a number of analytical results using insights from an
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unexpected source: Alan Turing's classic analysis of the dynamics
of morphogenesis (Turing 1952). On reflection, the idea that the
origins of spatial structure in biology and economics might be
analyzed using similar tools may not seem that outlandish; in any
case, one purpose of this paper is to introduce "Turing waves", long
a familiar concept in theoretical biology, to the economics
literature. (See also the discussion in Krugman (forthcoming)).
This paper, then, is in five parts. Part 1 lays out the basic
concepts, and offers an intuitive overview of the paper's analytical
approach. Part 2 lays out the model, and shows how short-run
equilibrium is determined. Part 3 shows, through simulation and
then an analytical interpretation of those simulations, how a world
with an initial distribution of economic activity that is (almost)
uniform across space can spontaneously differentiate itself into
industrial and agricultural regions. Part 4 describes how growing
integration of such a structured world economy leads to
"bifurcations”, points at which the existing geographical structure
becomes unstable and a new structure evolves. Finally, Part 5

summarizes the results and offers suggestions for further research.

1. An intuitive approach

Although we are not aware of any papers that do so, it
would be straightforward to develop a model of world trade in

which comparative advantage varied smoothly across space.
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Imagine, for example, a Ricardian model in which a continuum of
locations is arrayed in a line from north to south, and in which
climate and therefore the relative productivity of labor in wine as
opposed to wheat production varies smoothly with latitude. Then
one would immediately have a model in which equilibrium in the
world economy could be thought of in terms of the boundary
between wheat and wine areas rather than in terms of the
specialization of nations. It would be natural to think of this world
as consisting of two regions, one producing wheat and the other
wine, but the boundary between these regions would be endogenous
rather than specified in advance. For some purposes this approach
to modeling a seamless world might well prove useful; comparative
advantage still explains much, perhaps most of world trade.
However, both traditional location theory and recent work in
economic geography generally assume away inherent differences
between locations, and instead explain regional specialization in
terms of some kind of external economies. We will remain within
that tradition, and thus try to model a world in which economic
differentiation among locations is entirely spontaneous.

In Krugman and Venables (forthcoming) we introduced a
particular way of modeling external economies that seemed
particularly well suited to thinking about geographical issues. We
assumed that in each location labor must be allocated between two

sectors: agriculture, where labor faces decreasing returns (because
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of limited land supplies), and a manufacturing sector consisting of
many differentiated products, each produced with increasing
returns. In order to create external economies, we assumed that
manufactured goods are used as intermediate inputs into each
others' production. In the context of a two-location model, we were
able to show that this setup could produce a spontaneous
differentiation of roles between the locations, with one
concentrating on manufacturing while the other concentrated on
agriculture. In this paper we adopt the same general framework, but
now imagine a world with a large number (in the simulations) or
continuum (in the algebra) of locations. In this type of model it no
longer makes sense to identify locations with regions; rather, we
find that the model implies that groups of nearby locations will
concentrate on manufacturing or agriculture, and we call these
fuzzy-edged zones of economic orientation manufacturing or
agricultural regions.

Imagine, then, a world in which both labor and arable land
are evenly divided among many locations. Labor in each location
can be used either to work the land or to produce manufactured
goods; as in our previous model, we imagine that manufacturing is
subject to increasing returns at the level of the firm and, because of
the use of manufactured goods as inputs into each others'
production, at the level of the industry. We also suppose that there

are costs of transporting manufactured goods. In such a world, is
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there any reason why the fraction of labor employed in
manufacturing might vary across locations?

There is clearly an equilibrium in which all locations are
identical -- that is, in which the share of the work force employed
in manufacturing is the same everywhere. Let us call this the Flat
Earth equilibrium. While the Flat Earth equilibrium always exists,
however, it may not be stable. To see why, imagine perturbing it so
that the initial share of labor in manufacturing varies slightly across
the landscape, and consider a location whose neighborhood (in some
sense) is somewhat more oriented toward manufacturing than the
average. Such a location may well then turn out to be a place in
which manufacturing is especially profitable, for two reasons. First,
because manufactured goods are an input into manufactures
production, a location that is surrounded by manufacturing-oriented
locations will have access to a bigger market than one that is not;
this "backward linkage" will tend to make industrial production
there profitable. And at the same time, the availability of the inputs
provided by nearby manufacturers will also encourage local
industrial production -- an effect which corresponds to the idea of
"forward linkage".

These effects will apply in reverse to a location whose
neighborhood is less manufacturing-oriented than average: the lack
of good access either to markets or to the inputs produced by other

manufacturers will tend to make it an unattractive place to engage
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in manufacturing.

So manufacturing will tend to be an attractive activity in a
neighborhood that is already manufacturing-oriented, an unattractive
activity in one that is not. If manufacturing expands where it is
profitable and contracts where it is unprofitable, these differences
among neighborhoods will tend to grow over time. That is, the
world will spontaneously organize itself into manufacturing regions
-- neighborhoods with a large share of the labor force employed in
manufactures -- and agricultural regions -- neighborhoods with a
small share so employed.

Can we say anything about how big manufacturing regions
will be, and how they will be spaced? Loosely, we might argue that
there will tend to be a typical size of and separation between such
regions. If a manufacturing region is too big, its agricultural
hinterland will be too large (that is, some of the farmers will be too
distant to be a useful market); if a manufacturing region is too
small, the forward and backward linkages will be insufficient to
feed its growth. And of course if two manufacturing regions are too
close together, they will either tend to merge or will inhibit each
other by competing for the same hinterland. So while it may be
wholly a matter of historical accident which regions become
industrialized, the size and spacing of these regions should be at
least roughly determined by the underlying parameters of the

economy.



We can, however, be much more specific than this if we
adopt an approach suggested by Alan Turing, in his landmark 1952
paper on morphogenesis.

Turing's paper was concerned with the process by which a
group of initially identical cells become differentiated into the
different parts of a developing embryo. The specific chemical
mechanisms he described are still unsubstantiated in their original
context, and in any case need not concern us here. What we can
make use of is the remarkable way in which Turing simplified the
analysis of a nonlinear system that seems at first sight hopelessly
intractable.

The Turing approach involves two main simplifications.
First, we need to impose a specific "geometry" on our spatial
system. Turing assumed that his model embryo consisted of a ring
of cells -- that is, a one-dimensional system with no ends. In our
context this means assuming that the world is a "racetrack"
economy, in which resources are distributed evenly around a circle.
Second, Turing focussed on the initiation of cell differentiation
rather than its conclusion; in our case, this means that we look at
the early stages in which the world evolves away from the Flat
Earth equilibrium, rather than at the long run equilibrium.

Suppose, then, that we imagine a world consisting of N
locations (where N may be as large as one likes), arrayed in a circle

(so that location N is next to location 1). Let m; be the share of
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manufacturing in location j's employment. The implication of the
story we have just told is that the rate of change of each m; is a
function of the vector of locational employment shares (and only of
that vector, since it fully describes the state of the world at any
instant). The details of that function depend on the whole structure
of the model; but we can simply imagine a reduced form equation

for the evolution of, say, m, of the form

m, = Fim,m,,...m,) (§))

What is the equation for the evolution of m,? Well, it
involves the same function, but with the role of each location

moved one step to the left:

m, = F(m,m,,...m,,m,) (0}

and similarly around the circle.

Now linearize this dynamic system around the Flat Earth
equilibrium. Let m' be the vector of deviations of manufacturing
employment from their Flat Earth values m®; then the dynamics of
the model in the vicinity of the Flat Earth may be described as a

system of the form
m' = Am’ 3)
where A is an N by N matrix.
The way one always analyzes such a linear system is to look
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for the eigenvectors of A and their associated eigenvalues. Turing,
however, pointed out that A has a special structure that simplifies
this task. Consider (1) and (2); by linearizing these two equations
around m; = m" we get the first two rows of A. But that means that
the second row of A is the same as the first row, but displaced one
location to the right (and with the last element wrapped around to
the front). Generally then, the element of A in row r and column s
can be written a,,, where it is understood that if the index is
negative, N is added to its value. In other words, A has a cyclic
structure.

This structure allows us to construct the eigenvectors very

easily. Suppose that

m, = ¥ @

for all r, where i is the square root of minus one and we assume that
éN/2n is an integer. This is an eigenvector if it satisfies the

following equations, for eachr = 1..N,

N
Eas_reicbs = Aei¢r (5)
3=1

where A is the eigenvalue. Rearranging,

z a:_rei¢(~’") = A (6)

N
-r=1

s
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This is the same equation for all rows r, so (4) indeed defines an
eigenvector; for each value of ¢ the eigenvalue is given by (6).
The eigenvector defined in (4) has elements which are

complex rather than real numbers. However, since

e™ + e ™ = 2cos(x) D

and

i(e™ - e ™) = 2sin(x) (8)

these complex eigenvectors can be reassembled into simple sine and
cosine waves. In other words, any sinusoidal fluctuation in
manufacturing employment whose wavelength is an integer fraction
of the circumference of the economy will be an eigenvector, with
an eigenvalue that depends only on that wavelength.

But such sinusoidal fluctuations in manufacturing have
another aspect: one can represent the vector m' as a Fourier series,
that is, as a sum of sine and cosine waves with wavelengths N, N/2,
N/3, and so on. What we have just demonstrated is that the
components of that Fourier representation are also eigenvectors.
Thus the evolution of the economy near the Flat Earth equilibrium
can in effect be represented as the parallel and independent
evolution of a set of shadow economies, in each of which the
variation of manufacturing employment is a perfectly regular sine

wave.,
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We can now think of the process described loosely above,
in which slight initial variations in manufacturing orientation lead
the economy to organize itself into manufacturing and agricultural
regions, more precisely: such self-organization will take place if and
only if at least one of the sinusoidal eigenvectors of the dynamic
system has a positive eigenvalue. If it does, then fluctuations of that
wavelength will grow over time, producing regional differentiation.

What if the eigenvalues of more than one wavelength
fluctuation are positive? If we start close enough to the Flat Earth,
by the time the unevenness of manufacturing distribution becomes
marked it will be dominated by whichever fluctuation has grown
most rapidly -- that is, by the wavelength with the largest
eigenvalue. The answer to the question, how far apart are
manufacturing regions likely to be, is therefore answered by finding
this "preferred" wavelength.

Notice, by the way, the role of initial conditions in this
analysis. The preferred wavelength is determined by the parameters
of the model; thus the number and spacing of manufacturing regions
will not depend on initial conditions, as long as the initial
distribution is sufficiently flat. The initial distribution of
manufacturing will, however, determine the phase of the fluctuation
at that preferred wavelength, and thus which specific locations
become industrialized.

It is possible, then, to think about the emergence of a
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spatially structured world economy in terms of the growth of
"Turing waves", regular fluctuations across space in the
manufacturing share of employment. While this approach offers a
startlingly simple way of thinking about a seemingly complex issue,
however, it has two important limitations.

First, even if we consider the evolution of a world economy
that starts from a close approximation to the Flat Earth, Turing
wave analysis applies only to the initial period of self-organization.
Later on, as the distribution of manufacturing becomes very
uneven, the nonlinearity of the dynamic system becomes
unavoidable; so Turing analysis cannot give us a good picture of
what happens thereafter. To analyze these later stages we must turn
to numerical methods.

Second, while it is useful to carry out the exercise of asking
how an economy evolves a spatial structure by diverging away from
the Flat Earth, this is clearly what we might call a fictitious history.
Perhaps it is not a bad description of, say, the emergence of
Flanders and northern Italy as manufacturing centers in the early
Middle Ages. But from then on each successive spatial structure
emerged from an economy that was already structured into
industrial and farming regions, so that once again Turing analysis
is no longer valid.

To some extent this means that the dynamics of economic

geography fit Henry Ford's definition of history, as "just one damn

13



thing after another". We may, however, be able to get some more
insight by imagining a different, slightly more realistic fictitious
history. In this history we start with an economy that already has a
regular structure of manufacturing and agricultural regions. We then
gradually change its parameters -- in particular, it is interesting to
explore what happens if transport costs fall, leading to growing
world integration. What one expects to happen in this case is an
eventual bifurcation: at some point the initial structure becomes
unstable, and the economy makes a transition to a new structure,
with a different (presumably smaller) number of manufacturing
regions. If one then continues the process, this structure in turn
eventually collapses, and so on. While this more complex fictitious
history cannot be treated using Turing's simplification and can thus
be explored only via simulations, by following only a particular
path through the many possible equilibria of the system we may be
able to avoid wandering off into a taxonomic swamp.

This is about as far as we can get without being more
specific about the details. We therefore turn next to the statment and

solution of a spatial model of the world economy.

3. A formal model
The structure of this model is closely related to that in
Krugman and Venables (forthcoming), and makes use of the same

sorts of technical tricks, involving the combination of Dixit-Stiglitz
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monopolistic competition and iceberg transport cost, that have
figured in many recent papers in economic geography. We will
therefore be brief in describing its formal structure.

We consider a world in which economic activity takes place
on the circumference of a circle whose radius we normalize to 7.
Two immobile factors -- workers and land -- are uniformly
distributed around that circumference with densities L and K
respectively. Each location can produce both manufacturing and

agricultural output.

Manufacturing

Manufacturing is assumed to be a monopolistically
competitive sector, in which the number (or more formally the
density) of firms operating at location r is endogenously
determined, and denoted n(r). The producer price charged by firms
at r is p(r). Shipments of manufactured goods are subject to
"iceberg" transportation costs -- that is, a fraction of any shipment
melts away in transit. The number of units that must be shipped
from r in order that one unit arrives at s is denoted t(r,s) and given

by

(r,s) = e'P )
Trade costs are therefore an exponential function of distance, where
D(r,s) is the (shorter!) distance from r to s around the
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circumference of the circle.

We will assume that different manufactured goods can be
aggregated via a CES function to yield a manufactures composite
that is used both as a consumption good and as an intermediate
input. This CES function may be represented indirectly by a CES
price index, q. In each location the price index is defined over

products supplied from all sources; at location r it takes the form:

reR

q(N'° = B f n(Sp(s)(s,NHf ds (10)

where B is a constant, and 6 (>1) is a measure of product
differentiation. Demand for each variety is derived by partial
differentiation of this price index with respect to the price of the
variety. If expenditure on manufacturing in location s is denoted
c(s), then demand in s for a single variety produced in r and sold in

S, X(r,8), is:
x(r,s) = Bp(r) °1(r,s)' °q(s)° 'c(s). an

Integrating around the circle, the total demand for a product
produced in r, x(r), is,

r+mn

x(r) = p(r)°B f Ur,s)' °q(s)° ' c(s)ds. 12)

A single firm in location r has profits given by:
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1(r) = pr)x(r) - [(A-Ww) + pg@)] e + Px(r)].
(13

The first term is revenue, and the second costs. We assume a fixed
input requirement of & and a constant marginal input requirement
B. The input is a fixed coefficient aggregate of labour and
intermediate goods, with input requirements of labor and
intermediates 1-u and u respectively, w(r) is the manufacturing
wage rate, and q(r) the price index of intermediates. In other
words, each firm uses both labor and all varieties of industrial
products, where we assume that these are appropriately aggregated
by the CES form of equation (10).

Since the producer of an individual good faces an elasticity
of demand o, firms mark up price over marginal cost by the factor
1/0. We choose units of measurement such that fo = o - 1, so that
price is

p() = (1-p)w(r) + uq(r). (14)

Firms are scaled such that they earn zero profits at size 1; this is
done by setting a = 1/0. We assume instantaneous entry and exit

of firms, so that

x(r) = 1. (15)
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Operating at this scale, each firm demands (1-x) units of labor.

Manufacturing employment at location r is therefore

m(r) = (1-p)n(r). (16)

Agriculture and general equilibrium.

Agricultural output, which we choose as numeraire, is
assumed costlessly tradeable. At each location the agricultural
production function is Cobb-Douglas in land and labour, with
labour share 1. Workers are geographically immobile but sectorally
mobile, so the agricultural wage, wA(r) is given as the (value)

marginal product of labour in agriculture,

wA(r) = nK'[L-m(. amn

Combining intermediate and consumer demands we can find

expenditure on manufacturing,

c(r) = un(r)g() + YI(A-wn@Iw@) + K'""(L-m(r)").
(18)

The first term is intermediate demand and the second consumer
expenditure. Consumers devote a proportion y of their income to
expenditure on differentiated products, and total income is given in
the square brackets; within the brackets the first term is income
from manufacturing employment and the second is total income

generated in agriculture.
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Instantaneous equilibrium.

Rather than supposing that the economy moves immediately
to a full equilibrium, we introduce dynamics by supposing that there
is a gradual process of reallocation of labor between manufacturing

and agriculture. Specifically, we assume that
m(r) = 8[w(r) - w()] 19)

At any instant, then, we think of the economy as having a
predetermined allocation of labor to manufacturing at each location,
m(r). Corresponding to this allocation is a short-run equilibrium.
For given values of m(r) equations (10), (12), (14), (15), (16),
(17), and (18) give equilibrium values of q(r), p(r), x(r), w(r), n(r),
wA(r) and c(r).

If we define long run equilibrium as a stationary state in
which the allocation of labor is no longer changing, then such a
long-run equilibrium requires that manufacturing and agricultural
wages be equal. One such long run equilibrium is the Flat Earth

case. We choose units such that in this case,

() = a) = wi) = p) = 1,
") = o) = 1) 0

This can be achieved by appropriate choice of constants B, L and K
(values are given in the appendix).

Our next step is to explore the process by which this
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economy diverges away from the Flat Earth equilibrium.

3. The emergence of spatial structure

One way to explore the dynamics of this model is simply to
assume a set of parameters, impose an initial allocation of labor
between agriculture and manufactures, and run the model on a
computer. (It is of course necessary for simulation purposes to work
with a number of discrete locations rather than continuous space).

Figure 1 shows the results of a typical run. The figure plots
the share of manufacturing in employment at each location (on the
vertical axis) as a function of time. We consider a world with 40
locations, (bear in mind that location 40 is next to location 1). The
starting point for this run was a position very close to the Flat Earth
equilibrium. Specifically, we set m(r) equal to one plus 0.0001
times random variables drawn from an N(0,1) distribution;
parameters take values, u = 0.5,0 =6,n =09,y =03and ¢
= 6, where T = €", i.e., is the number of units that have to be
shipped to secure delivery of one unit to the most distant location.

Although the world economy in this run starts off with
almost no spatial structure, we see that it eventually evolves a
structure with a strong differentiation between industrial and
agricultural regions. This emergent structure is also, it turns out,
extremely regular: the three industrial regions are evenly spaced

around the circle. Repeated runs of this model, with initial
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conditions randomly chosen each time, consistently produce this
result.

Our discussion in part 1 of this paper already suggests why.
What is happening in Figure 1 is that the divergence away from the
Flat Earth is being driven by a Turing wave of frequency 3; by the
time a linearized model is no longer a good approximation, the
pattern of peaks and troughs in manufacturing orientation has
become sufficiently pronounced to lock in the eventual position of
industrial and farming regions.

We can further confirm this interpretation of the dynamics
by showing how the predicted rate of growth of a Turing wave
depends on its frequency. Consider the model described by
equations (10) - (19). If we linearize this model around the Flat

Earth equilibrium, we get the following system:
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r+n

(1-0)" = == [la-wn’ + (-0 Hsn'as

r+m

o’ = 1= [lo-ng’ + (-wehory as,

p' = (A-pw’ + pg’,

m' = (1-py’,

wAy = {m’, G B

¢’ = [u+y(A-pn' + ——

@1

where { is the elasticity of agricultural wages with respect to
industrial employment. We simplify these equations in two ways.
First, eliminate endogenous variables p', ¢', and n'. Second, define
constants o, and e, (the values of which remain to be found), such
that

wi(r) = a,m'(r), q'(r) = a m'(r).

22)

Equations (21) can then be expressed as:
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(1-0)e, = [1 + (1-0){(1-pa, + paq}]
B r+g

f m'(z)K(s,r)' dr
l—pr

-R

o[(1-we, + pa] = [ + y(1-pe, + (1ro-1a]
B r+R

f m'(2)t(s,r)! Ods.
l-pr

(23)

The differential equation for m', equation (19), takes the form,
m' = 8[a, - {Im’. 24
hese equations do not look very friendly. We know from part 1,

however, that we need concern ourselves only with sinusoidal

fluctuations in m'(r). Suppose, then, that we assume that

m'(r) = cos(¢r) 25

with ¢ an integer. This enables us to evaluate the definite integrals
in (23);

B o ooy o B¢ fs-rii-o
= fn m'(s)t(s,r) °dz = fn cos(dps)le 1) ds
= H(d)cos(¢r)

(26)
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where

13 (c-1) [1+e-om(-1)
tz(o-l)2+¢2l ] —e f1-0®

H($) =

@7

Values of o, and e, can now be obtained as functions of H(¢) from
equations (23), and an explicit equation for @, is given in the
appendix.

We saw in equation (24) that the rate of growth of a
fluctuation of frequency ¢ -- which is to say the eigenvalue of that
eigenvector -- is proportional to [«, - ¢]. This term can be used

to find the "preferred" frequency.

Figure 2 shows a, as a function of ¢ for the parameters
used to generate Figure 1. a«, is positive for frequencies 2 and
above, and approaches zero from above as the frequency goes to
infinity (this property is quite general). o, captures the fact that
locations with more manufacturing pay a higher manufacturing
wage. Against this, locations with more industry have a higher
agricultural wage, and this effect is captured by the parameter {,
and illustrated by the line {{. The growth rate is positive for
fluctuations of frequencies 2 - 6; thus this economy can be expected
to diverge away from the Flat Earth. And it shows that the growth
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rate is highest for fluctuations of frequency 3, thus confirming that
the emergence of a regular spatial structure in this case can be
interpreted as the growth of a Turing wave.

We might ask why an intermediate wavelength has the
highest growth rate -- which is equivalent to asking why the
economy develops several distinct industrial regions, as opposed to
a single center or a wide dispersion. The basic intuition was already
given in part 1. too large an industrial region (too long a
wavelength) will not have enough close-in hinterland, while too
small a region (too short a wavelength) will not generate sufficient
linkages.

The number of industrial regions that emerge depend in a
systematic way on the parameters of the model. Table 1 shows how
the preferred frequency depends on the share of intermediates in
production and the level of transport costs (units shipped for
delivery of one unit at distance ©t). The integer values in the table
give the preferred frequencies, and we see that strong linkages (high
p) and low transport costs give a lower preferred frequency.

The bracketed numbers in the table give the value of a,, at
the preferred frequency. Concentrations form if this number
exceeds {. If transfer of labor from agriculture to industry has very
little effect on the agricultural wage then even weak linkages will
cause agglomeration. However, when agricultural wages are more

elastic with respect to manufacturing employment then substantial
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linkages are needed for the eigenvalue to be positive; (recall that {
= 0.0476 in the examples of figures 1 and 2). Agglomeration
therefore requires strong linkages and/or low {. When
agglomeration occurs, strong linkages and low transport costs give

fewer, larger concentrations.!

Table 1: Preferred Frequencies, (., ($)).

uw=0.1 u =03 =05
t=1.5 2 1 1
(0.0022) (0.025) (0.076)
t=3 5 3 2
(0.0022) (0.024) (0.092)
T=6 8 4 3
(0.0022) (0.025) (0.094)
Tt =20 14 7 5 “
(0.0022) (0.025) (0.094)

4. The evolution of spatial strurcture
Up to this point we have considered only how a Flat Earth

might organize itself into agricultural and manufacturing regions.

! Reducing o (raising price cost mark-ups) also has the effect of
leading to fewer and larger concentrations.
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Ordinarily, however, it is more interesting to ask how changes in
underlying parameters will alter the pattern of trade and
specialization in a world that is already differentiated into such
regions. In particular, what will happen to the pattern of
specialization as the world economy becomes increasingly well
integrated over time?

We may address this question by carrying out the following
experiment. We reduce the transportation cost t in a series of small
steps. Following each step, we allow the model economy to evolve
until it reaches a steady state; then take the next step.

Anyone who is familiar with nonlinear systems can guess
what might happen in such an experiment. As t falls -- in effect, as
the world gets smaller -- the model eventually reaches a point at
which an equilibrium structure of manufacturing regions is no
longer stable. At that point, then, this structure will unravel, giving
rise to a new structure with fewer manufacturing regions. As we
continue to reduce transport costs, this new structure will persist for
a time; then it in turn will collapse, and so on.

And that is indeed exactly what we find. Figure 3
summarises the results of such an experiment (constructed with the
same parameter values as figure 1). The bold solid lines give the
"preferred" frequencies that will be reached starting from the Flat
Earth equilibrium. The dashed lines and downwards pointing
arrows show the effects of starting with high transport costs and a
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four manufacturing region structure, and progressively reducing
transport costs.

As transport costs fall, there is a critical point at which the
four-manufacturing-region structure collapses into a three-region
structure. This then collapses into a two region structure and then
into a world with a single manufacturing region. We find, then, that
even if the change in underlying parameters is gradual, the
evolution of the world's spatial structure is characterized by
"punctuated equilibrium". Long stretches of stability are interrupted
by episodes of discontinuous change.

We should also note that the equilibria that the model
"visits" as we reduce transport costs do not coincide with the
equilibria attained starting from a Flat Earth. There is therefore a
path dependence in the structure of equilibria. This is emphasised
further if we run history backwards: start with the one-
manufacturing-region equilibrium and gradually increase t. This is
illustrated by the dashed lines and upwards pointing arrows. The
model retraces its steps, from one to two and then to three
manufacturing regions, but transitions do not occur at the same
levels of t; clearly these ranges are overlapping.

We see, then, that this model exhibits a considerable degree
of path dependence. Even in the story of self-organization from a
near-uniform world, which locations become industrial depends on

details of the initial conditions. But beyond this, as the economy
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evolves over time, even gross features of the spatial structure of
production may depend on where the economy has come from.
Figure 4 gives information about the phase of the
manufacturing regions that develop as transport costs are reduced.
The two-manufacturing-region world develops from the three-region
world, with one region at the same location, and the other midway
between two of the previous manufacturing regions. The one-
manufacturing-region world has its manufacturing centre midway
between, although intersecting with, the manufacturing regions of

the two region world.

5. Conclusions

The idea of modeling international trade simply as flows
across a landscape, without the usual assumption that countries or
at least regions can be represented as points, at first seems both
outlandish and likely to be analytically intractable. We hope,
however, that we have succeeded in making the case that thinking
in terms of a world economy in which activity is spread
continuously across space is perfectly reasonable, at least as an
intellectual exercise. Indeed, once one has worked with a spatial
model of the global economy, the traditional assumption that
countries are dimensionless points can be seen as the awkward if
useful assumption it is, rather than as a particularly compelling way

to think about international specialization and trade. And it turns out

29



that such a spatial model need not be analytically intractable; with
a little help from the computer, and a lot of help from ideas created
in other fields, it is possible to develop some quite clear intuitions
about how spatial structures emerge and evolve in a "seamless”
world.

In addition to suggesting an alternative way to think about
world trade, we hope that this paper has served as something of an
advertisement for the use in international economics of concepts and
techniques borrowed from fields outside economics. In the model
developed here, such typical features of nonlinear systems as path
dependence and punctuated equilibria occur in a very natural way;
while these concepts have received some application in economics,
they are still used only occasionally, and it seems useful to show
that they may be of direct relvance to the understanding of as basic
a subject as international specialization and trade. And we are of
course delighted to have found a compelling economic application
of Turing's beautiful analysis of the origins of spatial structure.

It remains true, however, that the framework that we have
used to describe world trade is aggressively unrealistic. Thus one
would like to know in which directions it should be extended to
move it somewhat closer to applicability.

One extension which sounds simple is to go from the
circular "racetrack” economy to a two-dimensional surface.

Preliminary work suggests that in practice this extension is anything
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but simple: two-dimensional spatial models quickly become
astonishingly difficult both to analyze with paper and pencil and
even to simulate on a computer (the time needed to do a simulation
run can easily go from minutes to days). Nonetheless, like it or not
we do not live in a one-dimensional economy, and it is important to
know what difference that makes.

Another extension would be to add some nonuniformity in
the landscape. It is common practice among historians to argue that
aspects of natural geography, such as the availability of navigable
rivers, have played a crucial role in the differential growth of
different regions; this framework offers one way to model such
“catalytic” effects formally.

Finally, it would be natural to extend the framework to
multiple industries, so that what emerges is not simply a division of
the world into agricultural and manufacturing regions, but
specialiiation within the manufacturing sector.

It is easy to see that the initial simplicity of our approach,
especially the story of how spatial order emerges from a Flat Earth
economy, can quickly dissipate as we add realistic complications.
Nonetheless, we hope that this model has demonstrated that a truly
spatial model of world trade is both possible and worth doing.
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Appendix

The Flat Earth equilibrium has endogenous variables
taking the values given in (20) if units are chosen such that
parameters B, L and K satisfy:

el(l-o)n _ ll

l—l'l_n -0 _
T'_fn’(z‘yl dz'2[ (1 - o)

K = nn/(n-l)l;Y.
Y

(28)

o, can be expressed as a function of H(¢) by solving equations
(23) to give:

y o1 [u(1-20)
¥ A(e-1)[ H@)

A=@-1f—a - L 4 +1-0-
¢ )[H(¢)’ ZORE "]

+pdo-1) +p +a - 1]

(29)

As ¢ - =, H(P) - 0, and a, -~ 0 from above, as illustrated in
figure 2.
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