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regarding cyclical movements in labor productivity and the degree of returns to scale. We
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based on electricity consumption: (1) Is the phenomenon of near or actual short run increasing
returns to labor (SRIRL) an artifact of the failure to accurately measure capital utilization rates?
(2) Can we find a significant role for capital services in aggregate and industry level production
technologies? (3) Is there evidence against the hypothesis of constant returns to scale? (4) Can
we reject the notion that the residuals in our estimated production functions represent technology
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1 Introduction

This paper studies the implications of procyclical capital utilization rates for inference re-
garding cyclical movements in labor productivity and the degree of returns to scale. To study
cyclical movements in capital utilization we use two measures of capital services: industrial
electrical use and data on the workweek of capital. The investigation addresses five questions

using different assumptions about the production technology:

1. Is the phenomenon of near or actual short run increasing returns to labor (SRIRL) an
artifact of the failure to accurately measure capital utilization rates?

2. Can we find a significant role for capital services in aggregate and industry level pro-
duction technologies?

3. Is there evidence against the hypothesis of constant returns to scale?

4. Can we reject the notion that the residuals in our estimated production functions
represent technology shocks?

5. How does correcting for cyclical variations in capital services affect the statistical prop-
erties of estimated aggregate technology shocks?

Briefly, the answers are: (1) yes, (2) yes, (3) no, (4) no, and (5) a lot.

Our investigation utilizes aggregate data and two new data sets: a panel on 2-digit SIC
industries and a panel on 3-digit SIC industries. We argue that the data are well described
by a constant returns to scale production function. The estimated coefficients on labor and
capital services are similar to the shares of labor and capital in national income, .64 and .36,
respectively. The estimated residuals from our estimated production technology have two
important properties. First, in most cases, they pass a variant of Hall’s (1988) invariance
test; they are consistent with a set of orthogonality conditions that candidate measures of
technology shocks ought to satisfy. In contrast, the traditionally calculated Solow residual
does not pass the Hall test. Second, they are much less volatile and less correlated with
aggregate output than the empirical measure of technology shocks used in the Real Business
Cycle (RBC) literature.

The observation that average labor productivity is procyclical, which goes back at least
as far as Fabricant (1942), is closely related to a well known puzzle: capital appears to play

no role in explaining cyclical movements in output. This puzzle has been stressed by Solow
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(1964), Lucas (1970), Bernanke and Parkinson (1991), among others. Exploring different
data sets over different sample periods and using different estimation strategies, they arrive
at the same conclusion: capital enters estimated production functions with either the wrong
sign or not at all.

The typical reaction is to this finding is to ignore movements in capital when studying
cyclical productivity fluctuations. While disheartening, Perry (1973)’s rationale for doing

this seems compelling:

‘If capital is ignored, it is for a simple pragmatic reason: one cannot find an im-
portant or statistically significant role for capital in a freely estimated aggregate
production function or any equivalent relation that one might use in estimating

potential output.’

An alternative response is to obtain better measures of capital services. This is the
strategy we pursue. And with better measures, we find that there is an important and
statistically significant role for capital services. Moreover, estimated returns to scale are
roughly constant.

A different reaction to the apparent unimportance of capital in estimates of production
functions is to stop estimating them. In the macro literature, authors like Hall (1988) have
studied returns to scale by relating the growth rate of output to a cost weighted sum of the
growth rates of inputs. We implement the Hall type strategy using our measures of capital
services to assess the robustness of our findings. The key result is that, with this approach
too, we cannot reject the hypothesis of constant returns to scale.

Using our measures of capital utilization, we argue that neglecting cyclical variations in
capital services affects inference about why average labor productivity is procyclical. This is
important because the procyclical nature of average labor productivity has played a central
role in recent debates about the causes of aggregate economic fluctuations. RBC theorists,
such as Kydland and Prescott (1982) and Long and Plosser (1983) emphasize the importance
of exogenous shocks to productivity as the main impulse to postwar US business cycles. With
shocks to the aggregate production technology, RBC models can account for the observed

procyclical nature of labor productivity. Other researchers, sometimes organized under the



‘New Keynesian’ banner, have sought to revive much of the common wisdom associated
with the IS-LM paradigm using models grounded on microeconomic foundations.! These
researchers emphasize the importance of demand shocks as impulses to economic fluctuations.
In conjunction with increasing returns to scale, demand shocks too can generate procyclical
movements in productivity.?

Increasing returns to scale are also an essential ingredient in a recent strand of literature
that emphasizes the importance of multiple equilibria for understanding business cycles.?
In standard RBC models the competitive equilibrium can generally be characterized as the
solution to a planning problem, which, being a concave program, has a unique solution. With
increasing returns the resource constraints facing the economy no longer define a convex set,
so there can be more than one equilibrium path. Under these circumstances, recessions can
be the result of pessimistic, self fulfilling beliefs of agents in the economy. With increasing
returns to scale, low output and employment levels will be associated with low levels of labor
productivity.

An alternative explanation of procyclical productivity, and the one which is most rele-
vant to this paper, focuses on cyclical movements of capital utilization and labor hoarding.
This explanation has recently been explored by, among others, Greenwood, Hercowitz and
Huffman (1988), Kydland and Prescott (1988), Burnside, Eichenbaum and Rebelo (1993),
Finn (1991), Basu and Kimball (1994), Bils and Cho (1994) and Burnside and Eichenbaum
(1994).

Given the importance of disentangling the sources of procyclical productivity, analyzing
the properties of the Solow residual and estimating the degree of returns to scale have become
priority items in the macroeconomics research agenda. Authors like Basu and Kimball (1994)
use industry level annual data to assess the contribution of unobserved input variation to
cyclical movements in total factor productivity. Shapiro (1993a) uses annual data to study
the importance of movements in the workweek of capital. A different body of research,

originally associated with Hall (1988, 1990), focuses on the returns to scale and externalities.

1See Mankiw and Romer (1991) as well as the references therein.

2Rotemberg and Summers (1990) combine labor hoarding behavior along with nominal price rigidities as
a way of rationalizing the cyclical behavior of average labor productivity. Perhaps this defines them as ‘Old’
Keynesians.

3Gee for example Farmer and Guo (1995), Rotemberg and Woodford (1995) and the references therein.



Hall (1988, 1990) claimed to find evidence of large markups and increasing returns to scale.
Using similar methods, Caballero and Lyons (1992) and Bartelsman, Caballero and Lyons
(1994) argue that there are large spillover externalities at the industry level.

Bartelsman (1993) suggests that Hall’s evidence of large increasing returns to scale can
be explained entirely by the presence of small sample bias in Hall’s econometric procedures.
A different criticism has been levied by Basu and Fernald (1994a,b) who argue that with
imperfect competition, the use of value added data leads to spurious findings of large in-
creasing returns to scale and external effects. Indeed, they show that when gross output data
on 2 digit SIC industry level data is used, evidence of increasing returns and externalities
disappears.* In addition, at this level of aggregation, findings of external spillover effects are
associated with an exceedingly improbable implication. Estimated total returns to scale is
roughly constant. So spillover effects emerge only at the cost of concluding that there are
very large internal decreasing returns to scale (see Basu and Fernald (1994a) and Burnside
(1994)). One exception to this characterization is the 4 digit SIC industry level study by
Bartlesman, Caballero and Lyons (1994).

All of the previous studies use variants of Hall’s (1988) methodology in conjunction with
annual data. Rather than rely solely on annual data, we consider different specifications of
technology that allow us to attack the problem with quarterly aggregate and industry level
panel data. As it turns out there are interesting tradeoffs involved in using different spec-
ifications of technology. These involve the generality of the specification being considered,
the assumptions about market structure and data requirements that are needed to estimate
the parameters in question. But overall returns to scale is a dimension across which all of
the specifications can be compared. And as it turns out, inference is very robust on this
dimension.

In all cases we estimate the parameters of technology using a three stage least squares

procedure that exploits the fundamental identifying assumption proposed by Hall (1988):

4The fact that value added and gross output data yield different estimates of the degree to scale can be
explained even in the presence of perfect competition. In order for value added output to correctly measure
the marginal productivity of primary inputs, one of the following three restrictions has to hold: (1) materials
and energy are used in fixed proportions with gross output (Leontief aggregation), (2) the relative price
of materials and energy in terms of gross output is constant (Hicks aggregation}, and (3) the gross output
function has the form Y = F[(K, L), M, E] (weak separability), where K, L, M, and E denote capital, labor,
materials and energy, respectively. See Bruno (1978).



shocks to technology ought to be orthogonal to variables that are ‘known neither to be
causes of productivity shifts nor to be caused by productivity shifts’. In our view, shocks to
monetary policy, say as measured by Christiano, Eichenbaum and Evans (1994), as well as
variables like the relative price of oil qualify to be included in this class.

The remainder of this paper is organized as follows. Our model is presented in Section
2. Econometric procedures and data sources are detailed in Section 3. Empirical results are
presented in section 4. Some important limitations of our analysis are discussed in Section
5. The key problem, as in the related literature, (see for example Hall (1988, 1990) and Basu
(1993) is the potential impact of unobserved overhead capital and labor on the interpretation

of our estimated parameters. Concluding comments are contained in Section 6.

2 Model Specification

We begin by providing an overview of the three specifications of technology used in our
empirical work. In addition we summarize the tradeoffs with each specification. These
pertain to the generality of the specification, assumptions about market structure and the
data needed to implement the model empirically.

Let Y; denote time ¢ gross output. In our first specification we assume that

}/t = min(Mtalft) (1)

where M, denotes time ¢ materials and V; denotes a function that involves hours worked
(L;), the stock of capital (K}) and electricity use (F;). Capital services and E; are related
via a Leontief technology. Our second specification relaxes this assumption and allows for
substitution between capital services and E;. The third specification abandons the assump-
tion that M; and V; are related via a fixed coefficients technology. Here we assume that Y;
is a differentiable function of capital services (S;), energy (E;), L, and M, :

}/t = F(‘S’ta Lta Etv Mt) (2)

The following Table summarizes the tradeoffs involved in using the different specifications.



Specification 1 Specification 2 Specification 3
Data Frequency | Quarterly, Annual Quarterly, Annual Annual
Industry Level | 2, 3 digit SIC 2 digit SIC 2 digit SIC
Goods Market | No Assumptions = No Assumptions No Assumptions
Factor Markets | No Assumptions Hours, Electricity: All factors:
Perfect Competition Perfect Competition

The advantages of the first specification are that it allows us to use quarterly 2 and 3 digit
SIC data and makes no assumptions about market structure. The cost is that it imposes a
Leontief relationship between M, and V; and a Leontief relationship between capital services
and F;. The advantages of the second specification are that it allows us to use quarterly 2
digit SIC data and assumes only that labor and electricity markets are perfectly competitive.
The cost is that it imposes a Leontief relationship between M, and V;. The advantage of the
third specification is that it imposes no restrictions on the production technology other than
differentiability. The cost is that we can only use annual data and we must assume that all
factor markets are perfectly competitive.

We turn to a more detailed discussion of the three technology specifications.

2.1 Specification 1: The Simplest Structure of Production

In our simplest production specification, Y; is produced combining value added, (V;), and
materials, (M,), according to the Leontief production function (1). Basu (1993) has argued
persuasively that this Leontief form provides a good approximation to the structure of pro-
duction in manufacturing, since movements in materials track movements in gross output
very closely . An additional motivation for working with this specification, emphasized by
Bernanke and Parkinson (1991), is that it allows us to work with industry level gross output
data, despite the absence of observations on material inputs.

The value added produced in one hour by one worker is A;F(1, K;/N;). In setting up our
benchmark case, we suppose that the function F(-) is homogeneous of degree one, concave
and twice differentiable. The variable N, is the number of time ¢ workers and A; reflects the
state of time t technology and other exogenous factors that affect productivity. Since each

worker is employed for H, hours, total value added produced by the firm in period ¢ is:®

5This specification of technology is similar to the one used in Chari, Christiano and Eichenbaum (1994).



‘/t = NthAtF(l, Kt/Nt) = AtF(Nth,Kth). (3)

So to measure capital services we need to multiply the capital stock by its workweek. In our
formulation this coincides with the number of hours that each worker is employed.® This
correction for capital utilization is similar to the one originally employed by Solow (1957)
which involved multiplying the stock of capital by the employment rate.

The key problem involved in using this production structure is the absence of good
direct measures of capital services. Certainly none are available at the quarterly frequency.
However, following Griliches and Jorgenson (1967), we can measure these services indirectly
via electricity consumption. This strategy has also been employed by Costello (1993) in her
study of the properties of the Solow residual in an international context.

Suppose that electricity consumption per machine is proportional to its workweek, H;.

Then total electricity consumption, E, is given by:

E, = ¢H,K,. (4)

Defining total time ¢ hours as L; = N, H;, and using equation (1) we obtain
Y: = AcF(Le, B/ ¢). (5)

From an empirical standpoint, this formula has an important advantage: observations on
all of its variables are available at the quarterly frequency for 2 and 3-digit SIC industries.”
The disadvantage is that it imposes the strong restriction that the elasticity of electricity
use with respect to capital use is equal to one. There are a variety of reasons why this may

not be true, such as the existence of overhead capital. The generalized technology discussed

5Notice that the production function exhibits increasing returns to scale in N;, H; and K. It is standard
to assume that there are increasing marginal costs associated with increases in H;, say because the rate of
depreciation is an increasing function of H;. In this case we can optimize with respect to H; and obtain a
reduced form production function that is concave in N; and K;. See Greenwood, Huffman and Hercowitz
(1988).

7A standard criticism of the use of electricity as a measure of capital utilization is the possible presence
of a trend in the electricity-capital ratio. This could reflect a change in the composition of capital away
from structures to equipment. We could capture this effect by allowing ¢ to be a deterministic function of
time. If the function F(-) were Cobb-Douglas, this would simply change the unconditional growth rate of
technology.



in section 2.3 relaxes the unit elasticity assumption. In section 5 we discuss how neglecting

overhead capital (and labor) can bias our results.
Line Speed and Labor Hoarding

We now consider the effects of variations in labor effort and in the intensity with which
capital is used. Suppose that hourly capital services per worker in equation (3) are A, K; /Ny,
so that the value added produced in one hour by a worker is A;F(1, \,K;/N;). Here A
denotes the intensity with which capital is used or ‘line speed’. Also suppose that electricity
consumption per machine is proportional to the effective workweek of the machine, ¢ ; H;.
Then FE; is equal to ¢\ H:K; and equation (5) remains unchanged. So, according to this
simple formulation, using electricity consumption allows us to measure capital services in a
way that is robust to changes in line speed.

To allow for unobserved changes in labor effort, i.e. ‘labor hoarding’, define the number
of efficiency units of labor as (;H;. Here {; measures effort per hour. Suppose that total

electricity depends on effort so that E; = ¢(; H;K;. Then equation (5) becomes:

Ve = AF(G L, B/ ). (6)

Notice that E,; still measures total capital services. However the production function now
involves (;, unobserved labor effort. One way to incorporate labor hoarding into the analysis
is to specify the costs associated with supplying effort. We could then use the condition that
determines the optimal supply of effort to solve for (; as a function of unknown parameters
and observable variables. The resulting ‘reduced form’ production function could be used in
empirical work. This is the approach pursued by Burnside, Eichenbaum and Rebelo (1993),
Basu and Kimball (1994) and Burnside and Eichenbaum (1994). Here we wish to see how
far we can go in explaining the apparent short run increasing returns to labor by controlling
for capital utilization while remaining as eclectic as possible about market structure and the
determinants of labor supply. Because of this we abstract from variations in effort in our
empirical analysis. This will tend to bias our results against the null hypothesis of constant

returns to scale.



2.2 Specification 2: A Slight Generalization

The second production specification that we consider is given by
Y= mjn(Mt,V?)’

where V;* is defined as:

V' = AF(Ly, K7). (7)

Here K is given by a CES function of capital and electricity use:®
K; = [p(HK)" +(1 - wE?,  p<l. 8)

This type of two level production function was first proposed by Sato (1967) and has often
been used in the applied general equilibrium literature (see for example Ballard, Fullerton,
Shoven and Whalley (1985)). Our assumption that the production function is weakly sepa-
rable between labor and the two other inputs is consistent with Berndt and Wood’s (1979)
parameter estimates for a translog cost function fit to a panel of manufacturing industries.

To implement this formulation we need to make use of the optimality condition that
determines the firm’s demand for electricity. Suppose that the firm acts as a price taker in
the market for labor and electricity. Then cost minimization requires that the firm equate
the marginal rate of substitution between N; and E; to the relative price of the factors,
W.H;/ Pg,. Here W, denotes the real wage rate per hour worked at time ¢:

AFy(L, K3)(L - w)(K:/B)'™* _ Poy o)
Fi(Ly, K¢) W’

Equation (9) holds regardless of whether the firm is a perfect competitor or not in the goods
market. Here F; denotes the partial derivative with respect to the ** argument of F.

In our empirical work we assume that F' (-) has a Cobb-Douglas form so that
Yo = A (L)™ (K7)™. (10)

Consistent with this notation we do not impose the a priori restriction that the production

function is constant returns to scale, i.e. we do not assume that a; + a; = 1. Given (9)

8V,* does not correspond to measured value added because it depends upon E;. This is immaterial for
our empirical work since we use gross output data, rather than value added data.
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and (10), gross output can be written as a geometric average of total hours (L;), energy

consumption (E;) and the price of electricity relative to labor, pg; :

Taking first differences and letting lower case letters denote logarithms, we obtain:
Ay = 70 + 1Al + v2Ae; + ¥3ApE: + €. (12)

Here v + ¢; denotes the growth rate of A;, v1 = a3 + ag/p, 12 = as — az/p and y3 = —ay/p.
Our basic production structure coincides with the special case in which the elasticity of

substitution between capital and energy is equal to zero (p = —o00). Here (12) becomes®

Ayt =Y + aIAlt + aert + €. (13)

We now turn to a brief discussion of the differentiable technology (2).

2.3 Specification 3: The Differentiable Technology

Much of the recent literature that uses annual data to study productivity assumes that
output is produced according to (2). Taking a first order log linear approximation to this
technology yields

Ay, = DAz, + ¢, (14)

where 7 denotes overall returns to scale, Ax; is a cost weighted measure of the growth rate

of aggregate inputs,
A:L't = CStASt + CLtAlt + thAmt + cetAet.

Here lower case symbols denote logarithms of upper case symbols and c¢;; denotes the share
of factor j in total time ¢ cost.

In sum, our three specifications of technology give rise to three types of relations between
factor inputs and output, (12), (13) and (14). But absent further restrictions, these are
without empirical content. They hold as identities. To have content, identifying assumptions

must be imposed on the stochastic process ¢;. We turn to this issue in the next section.

9This relation can be derived directly from (3) under the assumption that V; is Cobb-Douglas in L; and
K H,, where the weights do not necessarily add up to one.
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3 Econometric Method and Data

The fundamental identifying assumption underlying our analysis is that ¢; is a stationary

technology shock (not necessarily i.i.d.). Suppose that we have observations on a subset

of those variables, which, in Hall’s (1988) terminology, are known neither to be causes of
productivity shifts nor to be caused by productivity shifts. Let z; denote the time ¢ realization
of these variables. By assumption

E[tht] = 0. (15)

We think of (15) as representing a set of necessary conditions that candidate measures of
technology shocks must satisfy. Suppose that the dimension of z; is greater than or equal to
the number of parameters in the production technology. Then (15) can be used to estimate
the parameters of (12), (13) and (14). We do so via three stage least squares.

In some cases we present ‘restricted’ estimates, using panels of industry level data. These
estimates are obtained by imposing the linear restriction that the parameters of the produc-
tion technology, with the exception of -y, are the same in all industries. The intercept term
for each industry is left unrestricted. When the dimension of 2z, exceeds the number of
parameters to be estimated, (15) generates overidentifying restrictions that can be tested.
We do so using Hansen’s (1982) J test. Parameters restrictions were tested using the Wald

statistic discussed in Eichenbaum, Hansen and Singleton (1988).
Choice of Instruments

We now discuss our choice of instruments, i.e. the observable analogs to the vector z;.
In principle the vector 2; ought to satisfy two criteria. First, the elements of z; should
be ‘exogenous’ in the sense that they are uncorrelated with the growth rate of technology.
Second, they should be correlated with economic activity in the industry under consideration,
i.e. they ought to be relevant. Finding instruments that satisfy both of these criteria
is difficult. Different variables have been used in the literature. Burnside, Eichenbaum
and Rebelo (1993) use quarterly innovations to government consumption. Caballero and
Lyons (1992), Basu (1993), Bartelsman, Caballero and Lyons (1994) and Basu and Fernald
(1994a,b) and Burnside (1994) employ variants of the instruments used in Hall (1988) and
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Ramey (1989). These consist of current and/or lagged values of the annual growth rates of
oil prices and real military expenditures as well as the political party of the President.

Shea (1993a,b) has criticized the last two of the Hall-Ramey instruments on the grounds
that they are not relevant. To make this point, Shea (1993a) regressed the growth rate of
industrial production in 20 manufacturing industries on a time trend, seasonal dummies, and
current and four lagged values of real military spending, using quarterly, seasonally unad-
justed, data over the period 1958-1985. He found that military spending is not statistically
relevant for output in any of the industries he looked at. Similar results hold for the political
party of the President. According to Shea, results based on irrelevant instruments should
not be viewed as ‘better’ than ordinary least squares estimates. This line of reasoning may
provide an additional rationale for the maintained assumption in Shapiro (1993a) that, over
the sample period, 1978 - 1988, there were no aggregate technology shocks. Bernanke and
Parkinson (1991) make the same assumption using quarterly data over the interwar period
to justify the use of ordinary least squares.

In this paper we utilize a different set of instruments. While we do report results for
Hall-Ramey type instruments, we also use as instruments lags of the monetary policy shock
measures discussed in Christiano, Eichenbaum and Evans (1994). These shock measures are
particularly attractive in the present context because they are, by construction, orthogonal
to a large set of economic aggregates in the monetary authority’s reaction function. Specif-
ically, Christiano, Eichenbaum and Evans (1994) identify monetary policy shocks with the

disturbance term in a regression equation of the form:
St = I/J(Qt) + Eg4. (16)

Here S; is the policy instrument of the monetary authority, ¥ is a linear function, €2, is the
information set available to the monetary authority and ¢, is a serially uncorrelated shock
that is orthogonal to the elements of €2,. To rationalize interpreting £,; as an exogenous policy
shock, (16) must be viewed as the monetary authority’s rule for setting S;. In addition, the
orthogonality conditions on ¢, correspond to the assumption that date ¢ policy shocks do
not affect the elements of ;. Christiano, Eichenbaum and Evans (1994) derive two measures

of policy shocks. These correspond to different specifications of S;. In both cases €, is given
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by
Qt = {Qt, Pt, PCOMt, Qt—‘r) Pt._-,-, PCOMt_-,-, FE_T,NBRt_T,TRt_T T = ]., ceny 4}

Here Q., P,, PCOM,, FF;, NBR, and TR, denote the time ¢ value of the log of real GDP,
the log of the GDP deflator, the log of an index of sensitive commodity prices, the federal
funds rate, the log of nonborrowed reserves and the log of time ¢ total reserves, respectively.
The two measures of S; are the log level of nonborrowed reserves and the federal funds rate.
The corresponding policy shock measures, denoted by eyxpg, and egg,, correspond to the
residual from the OLS regression of the corresponding measure of S; on €, i.e. they are the
time ¢ component of S; that is orthogonal to the elements of ;.

To see why policy shocks are useful instruments in our context, consider the vector v,
consisting of eypgr, and epp,. It follows that v, satisfies E[v;|€;] = 0. We assume that the
time ¢t — 7 technology shock for industry %, €;;_., lies in the space spanned by the elements
of §, for all 7 > 0, so that

Elv€i—r] =0 72>0. 17)

Among other things, the statement that €; lies in {2, embodies the assumption that Chris-
tiano, Eichenbaum and Evans (1994) include enough contemporaneous information in the
Fed’s reaction function so that what they call a policy shock is not in part a reaction to

current technology shocks. Under our assumptions it is also true that
E[Eit’l)t_-,-] = 0, (18)

for all 7 > 0. The simplest way to see this is to suppose that €;; has an (invertible) infinite
ordered moving average representation ¢; = a(L)u; where Euy|Q%_1] = 0 and a(L) is a

square summable polynomial in the lag operator L. Then

Eleivi—r) = El(aoti + arthig—1 + - - - + Gr_1Ui—(r=1))Ve—r] + E[(@rtip—r + - - )ve_r |.

That the first term on the right hand side of this expression is zero follows from E[u;|2:—1] =
0. That the second term equals zero follows from (17) and the invariability of a(L). Conse-
quently, (18) holds, so that instrument vectors z; that include current and lagged values of

v, satisfy identifying assumption (15).
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An alternative way to rationalize the use of these instruments is to assume that €; is
an exogenous stochastic process that has an MA(q) time series representation. Then it is
appropriate to use v;_,, 7 > ¢, as instruments.

The solid lines in figure 1, reproduced from Christiano, Eichenbaum and Evans (1994),
depict the estimated time series of expg, and €pp,. Since the policy shock measures are,
by construction, serially uncorrelated, they tend to be somewhat noisy. For ease of inter-
pretation we display the centered, three quarter moving average of the shocks. Also, for
convenience we include shaded regions, which begin at National Bureau of Economic Re-
search (NBER) business cycle peaks and end at troughs. The estimated standard deviation
of epp, is 0.79 percent, at an annual rate, while the standard deviation of exgp, is 1.61
percent. The two monetary policy shock measures have a correlation of 0.49.

When we work with quarterly data we consider two specifications of the instrument vector

z;. The benchmark specification of z; is given by

21t = {1, Apo,t_l_.,-, €NBR;_9-.x, €FFy_o ., T = 0, ,3}

Here Ap,; denotes the growth rate in the price of oil. We lagged the policy shocks measures
by two quarters in an attempt to mitigate any spurious correlation between z;; and e¢;
that might arise because of misspecification in the monetary authority’s information set. In

practice our results were robust to this correction. Our second specification of z;, is given by
2o = {17Apo,t—n Agt—r, T=0, 7}

Here Ag, denotes the time ¢ growth rate in military expenditures. We think of 2z, as corre-
sponding to the Hall-Ramey instruments. In practice, we measure p,; using the quarterly av-
erage of the monthly producer price index of crude petroleum (CITIBASE acronym PW561).
We measure g; as real Federal government purchases for national defense (CITIBASE acronym
GGFENQ).

When we work with annual data we choose as our instruments (i) a constant, (ii) the
current and lagged annual growth rate of the price of oil, and (iii) €5 g, , and efy,_, where
these are four by one vectors containing the quarterly NBR and FF based policy shock
measures from the year t — 1. We use shock measures that are lagged by a full year to ensure

that the instruments do not contain information based on current input or output data.
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To investigate the relevance of our instruments we regress the growth rate of output, the
growth rate of hours worked and the growth rate of electricity consumption on three sets of
instruments: (i) zy, (ii) {Apot-1--,7 =0,...,3}, and (iii) {1, Apot—r, Agi—r,7 = 0,..3}. In
each case the regression was calculated using data from the aggregate manufacturing sector,
the aggregate durable goods sector and the aggregate nondurable goods sector. Table 1
reports the R? associated with these regressions. Notice that the R? associated with the
Hall-Ramey type instruments are quite low. They range from a low of .03 when the growth
rate of electricity consumption in the durables sector is used as the dependent variable to a
high of .10 when we used the growth rate of output in the manufacturing or durable goods
sectors as the dependent variable. Comparable R? emerge with {Ap,¢—1_-,7 =0,...,3}. In
contrast, our benchmark instrument list does much better. Here the R? range from a low
of .24 when the growth rate of electricity consumption in the nondurables sector is used
as the dependent variable to a high of .42 when we used the growth rate of output in the
manufacturing sector as the dependent variable. Evidently lagged values of €xpg, and epp,
contain substantial amounts of information regarding the different measures of economic
activity that we consider, i.e. they are relevant.

In general, the asymptotic distribution of the technology parameters are affected by the
fact that eypg, and epp, are generated regressors. However, this is not the case in our
application as long as the growth rate in technology is an exogenous M A(q) process and 2y,
includes only estimated values of expg, and epp, that are lagged by at least q periods.!® To

see this write regression equation (16) as
Zy =X + €.

Denote the estimated values of €g; as €g;. Consider a vector of instruments, V;_., that includes
values of €g;, lagged at least 7 > ¢ periods. For simplicity sake, we consider the case in which
the number of instruments equals the number of parameters to be estimated. Suppose that

we estimate the parameters v in the relationship

W; =D + e

10We thank Mark Watson for pointing this out to us.
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via an instrumental variables procedure that imposes the orthogonality restrictions
E[‘/;_-ret] =0.

Then

] 23—1[%‘7{_]
VEG -y = T ]
G='=Ts b

Since V,_, = Vi, + B) X,_., it follows that

@
gjetVt’_T] \/_Z[etvt’_,]m/_ 3 -p)| ;xt_,et].

Aslong 7 > q, T7' Y°T_,[X,_,e,] converges in probability to zero. Next note that 7~ YT [D,
=T-1 2T [DV!_ ] + (B— BT ST, [D.X,_,], so that T-' L [D,V;_] converges in prob-
ability to the same matrix as 7! £7_,[D,V;_.]. It follows that the asymptotic distribution
of VT (5 — ~) is unaffected by the fact that we must estimate V;_,.

3.1 Data

Our empirical work utilizes data from a variety of sources. All data referred to in this
subsection are seasonally adjusted. We indicate the CITIBASE acronym for each variable

in brackets.
Economy Wide Input and Output Data

In some of our empirical work we employ economy wide aggregates. Here our measure
of output is quarterly real GDP (GNPQ) over the sample period 1972:2 - 1992:4. Our
measure of hours worked is the quarterly average of monthly total employee - hours in
nonagricultural establishments (LPMHU). We considered two measures of the quarterly
growth rate in the real capital stock. The first is taken from Hall (1994). The second is
an updated version (available only through 1988:4) of the measure discussed in Christiano
(1988).1! Our measure of aggregate electricity consumption is a quarterly average of a
monthly index of total electrical power usage in the industrial sector (manufacturing plus

mining plus utility industries).’?> When dealing with economy wide aggregates we measure

11We thank Jonas Fisher for making this data available to us.
12We thank Joe Beaulieu for making this data available to us in machine readable form. This raw data is
published on a monthly basis in Industrial Production, Federal Reserve Statistical Release G.12.3.
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the relative price of electricity using the quarterly average of the producer price index for
electric power (PW054) and quarterly compensation per hour in the non farm business sector

(LBCPU).
Manufacturing Sector Input and Output Data

We measure quarterly labor input at the 2 digit SIC level using quarterly averages of
monthly production worker hours. For each 2 digit industry this measure is constructed as
the product of two time series, average weekly hours of production workers (LPHRXX) and
production workers on nonagricultural payrolls (LPPXX). Here XX refers to the relevant 2
digit SIC code. For aggregate manufacturing it is also possible to obtain data on a broader
measure of labor input, total hours of all persons, worked by all employees (LMNM). This
broader measure of labor input is not available at the 2 digit SIC level. To justify abstracting
from non-production workers on the basis of the simple model of section 2 we need to assume
that their input is used in fixed proportions with value added. If this Leontief assumption
does not hold, the interpretation of our results continues to be valid only if the correlation
between non-production hours and production hours is one.

Annual labor input measures correspond to the annual averages of the monthly data. All
of the data are available over the period 1972:1-1992:4. Corresponding 3 digit level data for
the sample period 1977:1 - 1992:4 were obtained from the Board of Governors.

Electricity consumption was measured as kilowatts of electricity used at the 2 digit SIC
level. These data were obtained from the Board of Governors. The two digit SIC level data
are available over the period 1972:2 - 1992:4, while the 3 digit SIC level data are available
over the sample period 1977:1-1992:4. Quarterly and annual data correspond to averages of
the underlying monthly data.

Obtaining quarterly measures of industry level output is more difficult than obtaining
the corresponding input measures. The Federal Reserve Board uses three sources of data to
construct the industrial production index: measures of physical product, kilowatt hours of
electricity, and production worker hours. The weight on each of these underlying sources of
information depends on the industry in question. Averaging over all 2 digit SIC manufac-

turing industries, roughly 43%, 31% and 26% of the output index is based on measures of
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physical product, kilowatt hours and production worker hours data, respectively. Note that
the Board does not use a simple, mechanical rule for inferring output from inputs. Instead
it estimates output using time varying production factor coefficients. If we conceive of the
Board as producing an optimal prediction of output given the information at its disposal, it
is reasonable to use the Board data on output.!® Still, we would be nervous about basing
inference entirely on this data set.

Fortunately there are a number of ways to assess the robustness of our results to the use of
alternative data sources. First, we exploit the fact that there are many 3 digit SIC industries
where the output index produced by the Board is strictly based on physical product. We
constructed a database with the subset of these 3 digit industries for which we could obtain
matching labor input and electricity use over the period 1977:1 - 1992:4. The net result was
a panel of 26 three digit SIC industries. These are listed in Appendix A, along with the
three digit SIC codes and the corresponding 2 digit SIC industries. Second, we repeat our
analysis using annual data. At the annual frequency, the Board’s measure of output is not
based on input data. This is because data from various censuses provide actual production
data for most industries. Therefore the problem of inferring output from inputs is almost

entirely an issue for within year variation of industrial output.

4 Empirical Results

Some Basic Facts

We begin our analysis with a brief review of some basic facts. Figure 2 displays the
quarterly growth rates of real GDP (Ay,), economy wide hours worked (Al;) and aggregate
industrial electricity consumption (Ae;). It is clear that Ae; is highly correlated with both
Ay, and Al;, even though at the aggregate level it is difficult to obtain a measure of elec-
tricity consumption that matches the output concept. The high correlation between these
aggregates is documented in the following table which presents the unconditional correlations

between Ay;, Al;, Ae; and the growth rate in our measure of capital, Ak;. In contrast to

13See Miron and Zeldes (1989) for a discussion of different models of measurement error in this context.
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Ae;, Ak, is basically uncorrelated with Ay, and Al, (as well as Ae;).} This is why analysts
have traditionally found that capital plays no role in explaining cyclical fluctuations in out-
put - existing measures of capital are poor measures of capital services, at least at cyclical

frequencies.

Correlations: Economy Wide
Ayt Alt Aet Akt
Ay, |10 .82 .72 .09
Ah, | .82 10 .73 .31
Ae, |72 73 1.0 .07
Ak |1 .09 31 .07 1.0

Figures 3 and 4 are the analogs to figure 2 except they are based on quarterly and annual
manufacturing data. Figures 5 and 6 display, in a graphical manner, the quarterly and annual
correlations between (Ay, and Aly), (Ay, and Ae,;), and (Al; and Ae;) for the individual
2 digit SIC industries underlying the aggregate manufacturing data. The following table
summarizes the correlations between Ay,, Al, and Ae, for the manufacturing sector as a

whole.

Correlations: Manufacturing Sector
Quarterly | Annual

Ay, Al Ae, Ay Al Ae
Ay, [T0 94 8 10 95 .88
Al, |94 10 81 95 10 .94
Ae, | .80 .81 1.0 .88 .94 1.0

A number of points are worth making here. First, as in the aggregate data, Ae; is
highly correlated with Ay, and Al;. Indeed, the correlation is even more pronounced in the
manufacturing data. This may reflect the fact that our measure of e, corresponds exactly to
the manufacturing sector. Second, the quarterly and annual correlations are very similar. If
anything Ae, and Al, are slightly less correlated with output at the quarterly level. This is
very comforting given possible concerns about the use of input data in the procedure used by
the Board to construct some of the quarterly output data. Recall that while these concerns

are relevant for the quarterly data, they are not relevant for the annual data. So the basic

14This is also true if we redo the analysis over the sample period 1972:1-1988:4 using the measure of capital
discussed in Christiano (1988). '

20



fact which drives our inferences - namely that Ae; comoves positively with Ay, and Al; -
cannot be dismissed as an artifact of the way the output data are constructed.

A different way to see this is to consider the correlations between (Ay; and Al), (Ay,
and Ae;), and (Al; and Ae;) for the individual 3 digit SIC code industries where the Board’s
measure of output data is not constructed with the aid of any input data. These are displayed
in figure 7. Notice that while there are interesting differences between the industries, in the
vast majority of cases Ae, displays a sharp positive correlation with Ay; and Al,.

Next we consider the cyclical properties of a different measure of capital services: the
workweek of capital, wk;. Shapiro (1993a), among others, has suggested that a measure of
wk; might be useful in correcting capital stock data for cyclical variations in capital services.
To pursue point, we obtained the measure of wk; used by Shapiro (1993a). This consists of
an updated version of the series published by Foss (1981). The data are annual, with each
observation corresponding to the fourth quarter workweek of capital. The sample period is
1976:4 - 1988:4. The following table summarizes the correlations between Ay;, Al;, Ae;, and
Awk,.'®

Measured Work Week of Capital
Ayt Alt Aet A'Ll)kt
Ay, 1.0 .95 .88 .88

Al 95 1.0 .90 .89
Ae, 88 90 10 .74
Awk; | .88 89 .74 1.0

Notice that Awk; displays a strong positive correlation with Ay;, Al; and Ae,. We take this
fact to be supportive of our basic hypothesis that capital utilization rates are procyclical.!®

We conclude this subsection by briefly documenting the apparent ‘short run increasing
returns to scale’ or SRIRL puzzle. All the results that we report were obtained using the
GMM procedure and the instrument list z;; discussed in section 3. The following table
presents the points estimates of n; that result from estimating the relationship Ay, = no +

mAl; + € using aggregate and manufacturing sector data.

15 A1l growth rates were calculated on a fourth quarter to fourth quarter basis.
16We also computed the correlations between the growth rate of total capital services, (k, -wk;) and (Ay;,
Alg, Ae;). These are similar to the ones between wk; and (Ay,, Al;, Ae;).
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Returns to Labor

Economy Wide Manufacturing

Total Hrs. Prod. Worker Hrs. Total Hrs. Prod. Worker Hrs. Durables* Nondurables*
m | 1.21 .96 1.25 .97 .92 .98

(.13) (.09) (.08) (.06) (.06) (.10)

*
Production Worker Hours

Notice that when total hours worked are used to construct Al;, 7.71 is estimated to be sig-
nificantly greater than one. When production worker hours are used, 7, is estimated to be
approximately one. This is true, regardless of whether we work with aggregate data, manu-
facturing data, durables goods data or nondurables goods data. SRIRL appears to be alive
and well, even with our instruments.

The following table presents the point estimates of 7, that result from estimating the

relationship Ay, = vo + Qe + €.

Returns to Electricity
Economy Wide Manufacturing
Total Durables Nondurables

ne | .49 115 .83 92
(.07) (14)  (.09) (19)

Notice that, for the manufacturing sector, measuring factor input by electricity alone or
hours alone yields very similar results. Indeed we even get ‘short run increasing returns to
electricity’. The estimated value of 72 is positive but smaller for the economy wide case.
Presumably this reflects the fact that we do not have as good a measure of electricity use

for the economy wide data.
CES Versus Leontief

The previous subsection documented the basic fact that the growth rate of electricity
consumption is highly correlated with the growth rates of hours worked and output. We now
consider how this fact affects technology parameter estimates. Table 2 reports the results of
estimating the parameters of the technology specification given by (6) - (7) which allows for
substitution between capital services and electricity. The first column presents economy wide
results, while the second column presents results pertaining to the total manufacturing sector.

The third column presents results obtained imposing the restriction that the technology
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parameters are the same in all 2 digit SIC industries. The fourth and fifth columns are
the analogs to the third column except that they pertain to the durable and nondurable
goods industries. The row J; reports the probability value associated with the statistic for
testing the overidentfying restrictions of the model. The row J; reports the probability value
associated with the statistic for testing the hypothesis of constant returns to scale, a; +as =
1. The last three rows report different statistics pertaining to the average ‘technology shocks’
€;. For restricted panel runs, the reported statistic regarding €, pertains to the average value
of the industry specific statistic. For example, o, corresponds to the average value of the
standard deviation of ¢; across the different industries.

The key result is that across all of the cases considered, the estimated value of o, the
elasticity of substitution between the workweek of capital and electricity, is positive but very
small. Specifically, it ranges from a low of .03 for the aggregate manufacturing sector to a
high of .30 for the nondurables goods sector. In no case can we reject the null hypothesis
that o = 0. This case corresponds to the Leontief specification given by (3).17

A different way to assess the Leontief specification is to investigate the empirical rela-
tionship between the growth rate of electricity and the growth rate of capital services, as
measured by the growth rate of the product of the workweek of capital (Awk;) and the stock
of capital (k). The following Table reports the results of estimating the relationship

Aet = ﬁ[AU)kt + Akt]

using our three stage least squares procedure in conjunction with instrument list z;.

Aggregate Manufacturing Aggregate Durables Aggregate Non Durables

B 11.23 1.77 .93
(0.55) (0.77) (0.35)

Notice that, in no case, can we reject the null hypothesis, = 1. light of this result and our
previous findings regarding o, through much of what follows, we impose the restriction that

electricity use is proportional to the workweek of capital. Table 2 contains results generated

171t is interesting to contrast the restricted point estimates of a;, a3 and ¢ in the manufacturing industries
(.71, .30, and .03) with the unrestricted point estimates for the underlying industries. One way to summarize
the unrestricted estimates is to focus on their median. The median point estimates of a1, ay and o are .60
.38 and .16. The associated median standard errors are .37, .35 and .55. Evidently, the qualitative nature
of inference here is not affected by imposing the (false) restriction that the 2 digit industries have the same
technology coefficients.
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without imposing that restriction. So the reader can verify that none of the conclusions
discussed in the text are affected by the imposition of that restriction.

In the remainder of this section we address five key questions: (1) Does SRIRL vanish once
capital services are measured by electricity consumption? (2) Are capital services productive
when measured by electricity consumption? (3) Is there evidence against the hypothesis of
constant returns to scale? (4) Is there evidence against the overidentifying restrictions of our
model? and (5) What can we say about the properties of technology shocks? We address
these questions at three levels of aggregation: economy wide data, 2 digit SIC code level

data and 3 digit SIC code level data.
Economy Wide Data

Table 3 reports the results of estimating the model using economy wide data. The first
column reports results obtained using two different measures of the capital stock. The third
column reports results obtained measuring capital services by electricity consumption. A
number of results emerge here. First, when we use the capital stock data, SRIRL emerges,
i.e. oy is estimated to be greater one. In addition, the estimated value of a5 is negative and
insignificantly different from zero. In sharp contrast, when we measure capital services by
electricity use, the SRIRL phenomenon disappears and capital services enters significantly
into the production technology. Second, there is no evidence against the hypothesis of
constant returns to scale. Finally, according to the J; statistic there is no evidence against
the model’s overidentifying restrictions.

Using electricity consumption as a measure of capital services has important implications
for the statistical properties of the technology shocks. As a benchmark, suppose we simply
set a; = .64 and a; = .36. Using the stock of capital and electricity consumption as measures

of capital services we obtain

ASt = AKg ASt = Aet
J1 015 42
oc/ony | 67 7
pay | 87 .06

respectively. Notice that with the stock of capital measure, there is substantial evidence

against the model’s overidentifying restrictions. There is virtually no evidence against these
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restrictions when capital services are measured using electricity. Perhaps more importantly,
with the electricity measure and these parameter values, the technology shocks are virtually
uncorrelated with the growth rate of output. Moving to the estimated values of a; (.54)
and oy (.30) lowers o/oa, and raises p.a, somewhat (see Table 3). But even there pca, is
only equal to .31. This small correlation seems very difficult to reconcile with existing RBC
models that are driven primarily by technology shocks. Finally, it is worth emphasizing that
our electricity based technology shocks are much less volatile and substantially less correlated
with output than those emerging from the measures of output, hours worked and stock of

capital that are typically used in the RBC literature.!®
Manufacturing Sector Data

Table 4 reports results based on the 2 digit SIC data. Columns labeled ‘Aggregate’
pertain to aggregate manufacturing data while the columns labeled ‘Restricted’ refer to
results obtained using the panel on 2 digit SIC industries. Results are reported for both
quarterly and annual data.

Consider the quarterly results. First, for aggregate manufacturing, the point estimates of
oy and oy are .69 and .31, respectively. The corresponding restricted panel point estimates
are .64 and .37.1° These estimates are remarkably close to national income based estimates of
labor and capital shares obtained using a constant returns to scale Cobb-Douglas production
function (see for example Christiano and Eichenbaum (1992)). Second, the J; statistics
reveal virtually no evidence against the hypothesis of constant returns to scale. Third, the
overidentifying restrictions associated with the aggregate model can be rejected at the 1%
significance level. However, there is very little evidence against these restrictions for the
restricted panel. Fourth, comparing our economy wide based estimates of o./ocay and peay
(.60 and .31) with those reported in Table 4 (.37 and .21), we see that these fall as we move

to the aggregate manufacturing sector. However, we are hesitant to make too much of this

18For example, suppose we use Christiano’s (1988) measure of capital, hours worked and output. In
addition set a; = .655 and ay = .345, the values estimated in Christiano and Eichenbaum (1992). The
resulting point estimates of o, and o./oa, are .0114 and 1.05, respectively. The correlation coefficient
between €, and AY;, peay, is approximately equal to .80.

19The median unrestricted point estimates of a; and as across the 2 digit industries are .54 and .38. The
corresponding median standard errors are .20 and .22.
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fact because our estimates of o./oay and peay rise to .63 and .54, respectively when we work
with the restricted panel data. But even these estimates are smaller than those used in the
RBC literature.

The key finding with the annual data is that the results are quite similar to those obtained
with the quarterly data. There is some difference in the point estimates associated with the
restricted panel.?® This sensitivity is also revealed in the portion of Table 4 reporting annual
results for the durable and nondurable good sector. This point aside, inference seems robust.
Specifically, (1) there is no evidence of SRIRL, (2) there is no evidence against the hypothesis
of constant returns to scale, (3) there is little evidence against the overidentifying restrictions
of the model, and (4) there is overwhelming evidence that capital services, as measured by
electricity, are an important factor of production. The fact that inference is robust to the
use of annual data is particularly comforting because annual output data is not constructed
using information on factor inputs. As a further check on the robustness of the 2 digit SIC
results, Appendix A reports results obtained by omitting 2 digit SIC industries in which a
particularly large proportion of the output index reported by the Board is based on input

data.
3 Digit SIC Sector Data

Table 5 reports results obtained using our 3 digit SIC data set. Recall that this data
set consists of 3 digit industries for which there are direct measures of physical output.
The columns labeled ‘Restricted’ refer to results generated under the restriction that the
coefficients a; and as are the same in all of the industries we looked at. The columns
labeled ‘Unrestricted’ report results generated from the corresponding unrestricted runs.
Specifically, we report the median point estimate of a; and a; as well as the corresponding
median standard errors. In addition we report the median probability of the J; statistic
as well as the median point estimates of o.,0./0a, and pca,. The probability value for
the J; statistic refers to the overidentifying restrictions associated with the entire system of

unrestricted runs.

20The median point estimates of a; and ay obtained using the unrestricted annual 2 digit using data are
.80 and .17, respectively, with corresponding standard errors of .13 and .15.
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The key features to note here are as follows. First, as above, there is no evidence for either
SRIRL or increasing returns to scale. If anything there is some evidence of decreasing returns,
but only for the restricted specification where we do not distinguish between durable and
nondurable goods. This specification aside, we find very little evidence against the hypothesis
of constant returns to scale. Second, as was the case with our other data sets, we find a
substantial role for capital services, as measured by electricity, in producing output. Third,
there is virtually no evidence against the overidentifying restrictions imposed by the model.
This is true regardless of whether we work with the entire panel or condition on durables
and nondurables goods industries. Finally, we find that the estimated values of o/54, and
Peny are somewhat larger than those emerging from the manufacturing and economy wide
data. Still, these estimates are substantially smaller than those used in the RBC literature.
We conclude that the main findings obtained with the aggregate and 2 digit SIC data are
confirmed by the 3 digit SIC data.

We now briefly comment on the results of working with the alternative instrument set, zy;.
Table 6 reports a subset of the results we obtained with the Hall-Ramey type instruments.
Specifically, we display results for the restricted 2 digit and 3 digit SIC panels as well as
the median estimates from the corresponding unconstrained specifications. The key point to

note is the robustness of our results to the change in instruments.

The Differentiable Technology

We conclude this section by reporting results obtained from estimating the returns to
scale parameter 7 in the production technology given by (2). We estimated 7 using three
measures of the growth rate of capital services, AS;. These measures are the growth rate in
the stock of capital, the growth rate of electricity and the growth rate in the workweek of
capital times the stock of capital. The corresponding sample periods, which were dictated by
data availability, are 1961 - 1989, 1973-1989, and 1977 - 1988, respectively. In all cases the
data correspond to fourth quarter to fourth quarter growth rates. The instrument list is given
by z;:. Results for aggregate manufacturing, durable and nondurable goods are reported in

Table 7.
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The key results can be summarized as follows. First, for aggregate manufacturing and
durable goods, the estimated value of 7 is highest when AS; is measured by AK,;. Moving
to electricity or workweek of capital based measures of AS; results in smaller 7. With these
measures we cannot reject the hypothesis of constant returns to scale. If anything, there is
some mild evidence of decreasing returns to scale in the nondurable goods industries. Third,
in all cases the estimated shocks to technology and their correlation with the growth rate of
output are much smaller than those used in the RBC literature.

Viewed as a whole we conclude that inference about returns to scale is quite robust across
the three specifications of technology that we considered. There just is not much evidence

in our data sets against the hypothesis of constant returns to scale.

5 Shortcomings of the Analysis

In this section we discuss how the presence of capital goods that do not use electricity,
overhead labor and capital, and multiple production shifts could affect the interpretation of

our results.

5.1 Non-Production Workers and Overhead Costs

So far we have stressed mismeasurement of capital services as the main source for the ap-
parent short run increasing returns to labor. An alternative and perhaps complementary
explanation for this phenomenon is the existence of large overhead costs. To see this, sup-

pose that the production function is of the form:

Y = AL - 9) K22, (19)
Here ¢ represents overhead hours. An infinitesimal increase in hours worked due to a demand
shock generates a change in labor productivity equal to:

d(Ye/Ly) _ Ye

dL, L2

Suppose a; < 1. Then, absent overhead costs (¢ = 0), this derivative is negative, sug-

(1 = 1)L +¢]. (20)

gesting that labor productivity ought to be countercyclical in a model driven primarily by

demand shocks. However, for ¢ > (1 — a;)L, this derivative will be positive. This could,
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in principle, rationalize procyclical productivity even in a model driven by demand shocks.
However a simple back-of-the-envelope calculation suggests that the required overhead costs
must be large. If o is roughly equal to .65, ﬂz}Lt&l will be positive only if overhead costs
represent 35% of L.

Even if overhead costs are not this large, the fact that we have neglected them could
bias our econometric results. Taking a first order log-linear approximation to the production
function (19) and first differencing yields the following expression for the growth rate of

output

L
Ayt = Aat + alL Alt + agAkt. (21)

-

As before lower case letters denote the logarithm of the corresponding variables. Also L
represents the point around which we linearize (19). The key point is that, as long as ¢ > 0,
the sum of the coefficients on Al; and Ak,, will not equal one even if oy + @3 = 1. This is
because the coefficient on Al; is biased upwards, away from ;. However this does not imply
that our estimate of local returns to scale, as defined by Rotemberg and Woodford (1995),

is biased. These authors define local returns to scale for a production function F(K, L) to

be
Y= KF(K,L)+ LF,(K,L)
B F(K,L)

For the function F(-) given by (19), v is given alﬁ + a. So in this case, our estimate of

the sum of the coefficients on Ak, and Al is a consistent estimate of v.

On a priori grounds, it might be reasonable to assume that overhead costs are more
important for supervisory labor than for production workers. To the extent that this is true,
estimates of the coefficient on Al; should be higher when that variable is measured as total
hours worked rather than total production worker hours. Because of data constraints we can
only pursue this idea for the aggregate manufacturing sector. When we reestimate (13) with
this measure of Al; and electricity based measure of capital services, the point estimates of
the coefficients on Al; and Ae; are .82 and .36. The corresponding standard errors are .26
and .20, respectively. Recall from table 2 that the analogue estimates obtained using total
production worker hours as the measure of Al; are .69 and .31. The corresponding standard

errors are .16 and .17, respectively. The fact that the point estimate of the coefficient on Al,
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is higher in the case of total worker hours is consistent with the presence of more overhead
costs for supervisory workers. However, we cannot reject the hypothesis that the coefficients
are actually the same in the two cases. So it is possible that there are important overhead
costs associated with labor, and that these might be contribute to the procyclicality of
labor productivity. But the empirical case that these types of costs are more important for

supervisory workers than for production workers is weak.

5.2 Issues Regarding the Stock of Capital

Supposing that there is overhead capital which enters the production in a manner similar to
overhead labor. Then, proceeding as above, it is straightforward to show that the coefficient
on the change in Ak;, will be biased upwards, away from a;. As above, this will not induce
a bias in our estimate of local returns to scale, v.

Next we consider the case in which only a subset of the capital stock employs electricity.
Specifically, consider our simplest specification of the production technology (3). Suppose
that K; = Ky; + Ko, so that

Y: = Au(L)* (K1 Hy + Kot Hy )2, (22)

where H; denotes time ¢ hours of work per worker. Also suppose that electricity use is given
by
Ey = ¢K 1. H,

and that K5 does not require the use of electricity. Taking a log linear approximation to
(22) we obtain,
oK. H

E
_ B A _ i . 23
B olGH 0 Y O E T grH (D + Akl (23)

In general, the bias depends critically on the correlation between the right hand side regres-

Ayt = Aat + alAlt + as

sors. As a useful benchmark suppose that Aky =Ak;; = 0, so that Ae; = Ah;. This is
the case in which all variation in capital services corresponds to changes in the workweek of

capital. Then (23) can be written as
Ayt = Aat + alAlt + agAet,
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so that there is no bias whatsoever. A similar argument would hold had we written the
production function as Y; = A,(L;)* (K1, H;)** (K H;)*?. Again the sum of the coefficients
on Al; and A(hik1;) = Ae; would be a biased estimate of total returns to scale. But to the
extent that K;; and Ky do not vary over the cycle the bias induced by working with the

simple Leontief production structure will be small.

5.3 Multiple Shifts

In our empirical work we ignored the fact that the capital stock can be utilized more in-
tensely if plants use discrete multiple shifts. The available shift data is scarce but suggests
an interesting puzzle. In U.S. manufacturing the shift premium paid to workers is small.
Kostiuk (1990) estimates a premium for the second and third shift of only 5.3%. Despite the
small shift premium, most industries whose production process does not require continuous
operation make modest use of the second shift and little use of the third. Bils (1992) argues
that industries bunch their production in a small number of shifts because of increasing
returns to scale. Shapiro (1993) argues that the marginal premium is much higher than the
commonly reported average shift premium. He estimates the marginal premium to be 25%.

To discuss how the presence of multiple shifts could affect our estimates, we extend our

basic model to allow for two production shifts. Suppose that output is given by
}/t = AtHNlathta2 +AtHN;thta2_ (24)

Here N;; denotes the number of workers employed in shift i, for i = 1,2. To simplify the
analysis, we assume that the shift length, H, is the same for both shifts. Taking a log linear
approximation to (24), we obtain the following expression for the growth rate of Y;:

N NGt

Ay, = Aay + oy [Nl—NAnlt + NI—N

An2t] + a2 Ak (25)
The specification used in our empirical work can be written as:

' N,
Ayt = Aa; + o [Nl N, Any + oy N_.NgAnzt] + asAk;. (26)

Here N; and N, are the points about which we linearize the production function. To assess
the specification error associated with neglecting multiple shifts, we can compare the coeffi-

cients used to aggregate Anj; and Ang, in (25) and (26). Shapiro (1993) reports that, for his
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sample of non-continuous processor industries, the percentage of workers on the first, second
and third shifts is 68.2%, 20.7% and 11.1%, respectively. Suppose we aggregate the second
and third shifts and assume that «; is equal to .65. Then the implied coefficients on Any,
and Any, in (25) are .681 and .319. The corresponding coefficients in (26) are .621 and .379.
We conclude that while there is some bias, it is not of first order magnitude. The basic fact
driving this result is the puzzle pointed out by Shapiro (1993); Why isn’t there more shift

work?

6 Conclusion

This paper presented evidence that capital utilization rates are sharply procyclical. Our
evidence relies on an electricity based measure of capital services. Standard measures of
capital services seriously understate the procyclicality of actual capital services and lead to
misleading inference regarding cyclical movements in labor productivity and the degree of
returns to scale in the economy. Our results have three important implications for macroe-
conomists. First, models that depend on large, increasing returns to scale as a source of large
propagation effects are inconsistent with the data. Granted, given the sampling uncertainty
asscociated with our parameter estimates, it is possible to maintain that there are small
increasing returns to scale. But viewed overall, there is virtually no evidence to suggest that
there are important deviations from constant returns to scale in the manufacturing industry.
Second, existing RBC models which depend on large, volatile aggregate technology shocks
and which predict that the growth rate of output is highly correlated with aggregate tech-
nology shoks are empirically implausible. Third, our results strongly support models which
emphasizing cyclical movements in capital utilization rates as an important determinant of
movements in conventional measures of total factor and labor productivity. It seems very
difficult to rationalize the properties of electrical use by manufacturing industries in a way

that does not involve substantial cyclical movements in capital utilization.
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APPENDIX A

In this appendix, we summarize the 2 and 3 digit SIC codes of the manufacturing in-
dustries considered in the paper. In addition we summarize the sensitivity of the results we
obtained with the 2 digit SIC industries to disregarding industries in which a particularly

large percent of the Board’s output measure is based on input data.

In our analysis we used the following 2 digit SIC industries.

2 Digit SIC Industries
SIC Code | Name
20 Food
21 Textiles
23 Apparel
24 Wood Products
25 Furniture
26 Paper
27 Printing - Publishing
28 Chemicals
31 Leather
32 Stone, Clay and Glass
33 Primary Metals
34 Fabricated Metals
35 Machinery
36 Electrical Machinery
37 Transportation Equipment
38 Instruments
39 Miscellaneous

The following 3 digit SIC industries were used in our analysis.
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3 Digit SIC Industries
SIC Code | Name Ouput Units
201 Meat Products Pounds
202 Dairy Products Pounds or Gallons
207 Fats and Oils Pounds
212 Cigars Units
221,2 Cotton and Synthetic Fabrics | Bales or Linear Yards
226 Fabric Finishing Linear Yards
227 Carpeting Square Yards
228 Yarns and Thread Pounds
245 Manufactured Homes Units
262 Paper Tons
263 Paper Board Tons
265 Paperboard Containers Feet
271 Newspapers Tons
281 Basic Chemicals Tons or Cubic Feet
282 Synthetic Materials Pounds or Tons
285 Paint Gallons
301 Tires Units
314 Shoes Pairs
324 Cement Barrels
325 Structural Clay Products Units
331 Basic Steel and Mill Products | Tons
332 Iron and Steel Foundries Tons
333 Primary Nonferrous Metals Tons
334 Secondary Nonferrous Metals | Tons
336 Nonferrous Foundries Pounds
374 Railroad Equipment Units

To assess the robustness of our results we redid the analysis underlying Table 4 excluding
two subsets of industries. Excluding SIC Industries 23, 25, 34, 35, 38 and 39 leaves us
with industries in which at least 30% of the Board’s measure of output is based on physical
output. If in addition we exclude SIC Industries 27, 28, 32, and 36, we are left with a panel
of industries in which at least 40% of the Board’s measure of output is based on physical

output. All of the results in the following table refer to restricted panel estimates based on

quarterly data..
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Table A.1, 2 Digit SIC Data

Ay = 10 + Al + ade; + ¢

All 2 Digit SIC industries | Exclude SIC 23, 25 Also Exclude SIC 27, 28,
34, 35,38,39 32, 36

Manuf. Dur. Nondur. | Manuf. Dur. Nondur. | Manuf. Dur. Nondur.
oy .64 .61 74 .75 .84 .67 .82 .98 .61

(.05) (.06)  (.09) (.06) (10) (.10 (.09) (14)  (12)
(oD, 37 .43 .39 .32 .24 AT 27 .13 .51

(.05) (07)  (.08) (.06) (11)  (.08) (:10) (16)  (.12)
Ji 31 12 .30 .20 .07 42 .46 .16 .51
Jo .75 .38 .10 .18 .15 .09 .09 .10 .22
o /oay | .59 .57 .63 .60 .52 .69 .59 .50 .63
PeAY .66 .59 .60 .56 42 .55 .53 .45 .55
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Figure 1

Three Quarter, Centered Average of FF Policy Shocks
With and Without Commodity Prices

Percent, Annual Rate
1

Three Quarter, Centered Average of NBRD Policy Shocks
With and Without Commodity Prices

Percent, Annual Rate
>
S
—

For the solid lines, the policy shocks are estimated as the orthogonalized innovations from the 6-
variable VARs which include Y, P, PCOM, FF, NBRD, and TR; for the dashed lines,, the policy
shocks are estimated as the orthogonalized innovations from the S-variable VARs which include
Y. P. FF, NBRD, and TR. In each case, the three-quarter, centered averages are computed with
equal weights applied to the time t-1, t, and t+1 orthogonalized innovations.



Figure 2

QUARTERLY GROWTH RATES OF ECONOMY WIDE DATA*
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* Y represents real GNP, H represents total hours worked in nonagricultural establish-
ments and F represents electrical power usage in the industrial sector. All series are plotted
as first-differenced logarithms. The data are described in more detail in the text.



Figure 3

QUARTERLY GROWTH RATES OF AGGREGATE MANUFACTURING DATA*
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* Y represents industrial production in the manufacturing sector, H represents total
employee hours in the manufacturing sector, and E represents electrical power usage in the
manufacturing sector. All series are plotted as first-differenced logarithms. The data are
described in more detail in the text.



Figure 4

ANNUAL GROWTH RATES OF AGGREGATE MANUFACTURING DATA*
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* Y represents gross output in the manufacturing sector, H represents total employee
hours in the manufacturing sector, and E represents electrical power usage in the manufac-
turing sector. All series are plotted as first-differenced logarithms. The data are described
in more detail in the text.



Figure 5

CORRELATIONS OF QUARTERLY 2-DiGIT SIC LEVEL DATA*
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* Y represents industrial production, H represents production worker hours and F rep-
resents electrical power usage. All series are first-differenced logarithms. The z-axis labels
are the appropriate SIC codes.
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Figure 6

CORRELATIONS OF ANNUAL 2-DicIiT SIC LEVEL DATA*

Output and Hours
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* Y represents industrial production, H represents production worker hours and E rep-
resents electrical power usage. All series are first-differenced logarithms. The z-axis labels
are the appropriate SIC codes. The correlation between Y and E for industry 20 is —0.19.



Figure 7

CORRELATIONS OF QUARTERLY 3-DIGIT SIC LEVEL DATA*

Qutput and Hours
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* Y represents industrial production, H represents production worker hours and E repre-
sents electrical power usage. All series are first-differenced logarithms. The z-axis labels are
the appropriate SIC codes. Industry 22* is industries 221 and 222 combined. The correlation
between H and FE for industry 201 is —0.03.



[ Table 1: R? of Instrument Lists with Output and Inputs

Hall Instruments*
Sector Output Hours Electricity
Manufacturing 0.10 0.09 0.05
Durables 0.10 0.09 0.03
Nondurables 0.09 0.09 0.08
Growth Rate of Oil Price: Lags 0-3
Sector Output Hours Electricity
Manufacturing 0.07 0.06 0.02
Durables 0.07 0.05 0.00
Nondurables 0.07 0.08 0.03
Benchmark Instruments’

Sector Output Hours Electricity
Manufacturing 0.42 0.38 0.34
Durables 0.40 0.39 0.34
Nondurables 0.36 0.29 0.24

* Growth Rate of Oil Price, Lags 0-3; Growth Rate of Military Spending, Lags 0-3
! Growth Rate of Oil Price, Lags 1-4; epr: Shock, Lags 3-6; expr: Shock, Lags 3-6

Table 2: CES Specifications

Economy Wide Manufacturing Sector
Aggregate 2 Digit SIC Code Level*
All Industries | Durables | Nondurables

0.74 0.71 0.76 0.63 0.90
o (0.50) (0.34) (0.09) (0.18) (0.15)

0.24 0.30 0.27 0.41 0.27
02 (0.17) (0.30) (0.08) (0.12) (0.12)

0.15 0.03 0.26 0.04 0.30
o (0.35) (0.44) (0.17) (0.20) (0.22)

0.98 1.00 1.03 1.04 1.17
oy + oy (0.34) (0.08) (0.04) (0.05) (0.08)
J 0.92 0.004 0.34 0.11 0.33
oc/oay 0.60 0.37 0.63 0.60 0.67
Peny 0.32 0.21 0.54 0.42 0.56
* Coeflicients restricted across industries, with industry fixed effects




Table 3: Economy Wide Data ﬂ

” AY:; = ap+ cyAH; + a; AK] + ¢ j]
AK* = AK? | AK* = AK® | AK* = AE
a 1.23 1.31 0.54
1 (0.14) (0.24) (0.27)
a -0.32 -0.88 0.30
2 (0.85) (1.81) (0.11)
0.91 0.43 0.84
a1+ oy (0.80) (161) (0.19)
J 0.91 0.72 0.41
oe/oAy 0.56 0.56 0.60
Peny 0.38 0.39 0.31
KH: Hall (1994) measure of capital
K©: Christiano (1988) measure of capital: 72:1-88:4

l Table 4: Manufacturing Sector Data 1
H AY; = ap+ oyAH; + ez AK; + ¢ “
Quarterly Annual
Manufacturing | Durables | Nondur. | Manufacturing | Durables | Nondur.
Aggregate | 2-Digit SIC Code Level* | Aggregate | 2-Digit SIC Code Level*
0.69 0.64 0.61 0.74 0.69 0.43 0.38 0.60
Qi (0.16) (0.05) (0.06) (0.09) (0.31) (0.02) (0.06) (0.12)
0.31 0.37 0.43 0.39 0.21 0.57 0.71 0.30
a2 (0.17) (0.05) (0.07) (0.08) (0.36) (0.02) (0.06) (0.12)
1.00 1.01 1.04 1.13 0.90 1.00 1.06 0.90
o1 + oz (0.07) (0.04) (0.05) (0.08) (0.09) (0.01) (0.08) (0.07)
J 0.01 0.31 0.12 0.30 0.12 0.20 0.44 0.09
O'E/O'Ay 0.37 0.63 0.60 0.67 0.33 0.61 0.55 0.69
PeAY 0.21 0.54 0.42 0.56 0.35 0.58 0.49 0.71
* Coefficients restricted across industries, with industry fixed effects




I

Table 5: 3-Digit SIC Code Level Data

|

A},t = ag + alAHt + azAK; + €

|

Restricted* Unrestricted!
Manufct’rng | Durables | Nondur. | Manufct’rng | Durables | Nondur.
0.52 0.73 0.45 0.52 0.64 0.56
o (0.05) (0.11) (0.07) (0.31) (0.44) (0.33)
0.35 0.14 0.35 0.38 0.24 0.21
a2 (0.04) (0.08) (0.06) (0.25) (0.36) (0.26)
0.86 0.87 0.81 0.87 0.89 0.92
o + ap (0.05) (0.08) (0.09) (0.28) (0.28) (0.82)
J 0.20 0.19 0.26 0.50 0.15 0.79
0c/0ay 0.84 0.75 0.88 0.95 0.70 0.97
Peay 0.84 0.82 0.86 0.78 0.78 0.76

* Coeflicients restricted across industries, with industry fixed effects
t Median coefficients across industries, with median standard errors reported
in parentheses

| Table 6: Hall Instruments |
" AYt = oag + alAHt + azAK: + €

2-Digit SIC Code 3-Digit SIC Code
Restricted* | Unrestricted' | Restricted* | Unrestricted!
o 0.54 0.61 0.79 0.50
1 (0.04) (0.19) (0.05) (0.32)
0.39 0.29 0.23 0.20
02 (0.04) (0.18) (0.04) (0.25)
0.93 0.91 0.79 0.79
ay + o (0.04) (0.20) (0.05) (0.28)
J 0.41 0.65 0.20 0.81
oc/oay 0.62 0.58 0.83 0.91
Pe.AY 0.63 0.61 0.87 0.85
* Coefficients restricted across industries, with industry fixed effects
t Median coefficients across industries, with median standard errors
reported in parentheses




Table 7: Differentiable Technology Specification

Measure of AS;
AK; Ae; Awk, - Ky
Aggregate Manufacturing
n 1.10 1.01 .98
(06) (07)  (.05)
J1 .05 .07 .27
ae/Tay 24 .24 17
Pery A7 .26 .17
AggregateDurables
n 1.16 1.06 1.08
(05)  (05) (.08)
J1 35 .20 .30
O/ Ty 18 .16 .17
Pedn -.08 .11 .14
Aggregate Non Durables
n .83 .82 .86
(13)  (14) (12)
Jy A1 .13 .22
Oe/Ony 50 .52 .42
Pery .67 .61 .43




