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ABSTRACT

We model the invention of new technologies and their diffusion across countries. Our

model predicts that, eventually, all countries will grow at the same rate, with each country's

productivity ranking determined by how rapidly it adopts inventions. The common growth rate

depends on research efforts in all countries, while research effort is determined by how much

inventions earn at home and abroad. Patents affect the return to invention. We relate the

decision to patent an invention internationally to the cost of patenting in a country and to the

expected value of patent protection in that country. We can thus infer the direction and

magnitude of the international diffusion of technology from data on international patenting,

productivity, and research. We fit the model to data from the five leading research economies.

The parameters indicate how much tech logy flows between these countries and how much each

country earns from its inventions domestically and elsewhere. Our results imply that foreign

countries are important sources of technology even though countries earn most of their return to

innovation at home. For example, about half of U.S. productivity growth derives from foreign

technology yet U.S. investors earn 98 per cent of the revenue from their inventions domestically.
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1 Introduction

A basic question is the role of technology in explaining productivity differences across countries.

One hypothesis is that technology is highly mobile across borders while capital is not. The

implication is that capital investment rather than technology explains differences in per capita

income. Another hypothesis is that capital is highly mobile internationally while countries are

slow to adopt foreign technology. In this case income differences derive from differences in the

rate at which different countries innovate and adopt inventions from elsewhere.2 To assess the

plausibility and quantitative implications of this second hypothesis we develop and implement

empirically a model of how and where inventions occur, how they diffuse domestically and

internationally, and how they give rise to increases in productivity.

While economists have devoted substantial attention to measuring the degree of capital

mobility internationally, less is known about the international mobility of technology. The

problem is observing the creation of knowledge and its diffusion over time and across space.3

In this paper we exploit data on international patenting and research effort to infer the sources

'Barro and Xala-I-Martin (1992) and Mankiw, Romer, end Weil (1992) pursue the empirical implications

of this hypothesis. Several puzzles are that: (1) the implied values of capitals share and of interestrate

differentials are implausibly large; (ii) levels of income per capita converge at rates that are too slow given

r.asonahle parameter values; (iii) the growth rates of total factor productivity, which take capital accumulation

into account, continue to exhibit convergence (Downick and Nguyen (1989) and HelliweU and Chung (1991));

(iv) technology appears to diffuse more rapidly domestically than acrce borders (Lichtenherg(1992)).
2Gerschenkron (1962) interprets the comparative experiences of different European countries and Japan

during their industrial revolutions in terms of the diffusion of technology. Nelson and Phelps (1966), KrugTnan

(1979), Connulka (1990), Groesmen and Helpinan (1991), Segeratrom (1991), Young (1993), and Parents aix!

Prescott (1994), among others, provide alternative formalizations of international diffusion. Groarnsn and

Helpman (1994), Fagerbeng (1994), and Dinopoulos (1994) survey the literature.
3Neverthelees, Pavitt and Soete (1982), Fagerberg (1987), Benhabib and Spiegel (1992), Coe and Help-

man (1993), and Evenson and Englander (1994) estimate international technology diffusion using alternative

approaches. We depart from these other studies in embedding technological diffusion, endogenous research

activity, and the patenting decision into an intertemporal general equilibrium framework.

I



and the spread of technological progress. Data on employment of R&D scientists and engineers

provide a measure of the inputs used to invent while data on international pnting indicate

where inventions occur and where their inventors think they might be adopted. However,

patenting measures technology diffusion only imperfectly and indirectly: Many inventions are

not patented at all, or at least not patented everywhere they are used, while many ideas that

are patented never constitute significant innovations. Moreover, the costs of patenting and the

benefit of protection vary across countries, both because of differences in patent laws and the

strength of protection, and because of differences in market size.4

To address these problems we incorporate the inventor's decision to patent in different

countries into a model of research and technology diffusion. The model identifies features of

an invention and characteristics of national economies and patent systems that determine the

return to patenting. We can thus isolate the role of technology diffusion in the patenting

decision.

In our model, production in each country, as in Grossman and Helpman (1991), uses a fixed

continuum of inputs to make a homogeneous output. Researchers in each country search for

inputs of higher quality that potentially can be used anywhere in the world. We follow Kortum

(1994) in assuming that researchers draw from a given distribution of ideas of different quality.

Variation in the quality of ideas explains why inventors seek patent protection for some ideas

in many countries while others are protected in only one country or not at all.5

Ideas are adopted in different countries with a lag that can vary according both to where

the idea originates and to where it is used.6 Since the processes of invention and of production

are intimately linked, the diffusion of ideas domestically may be much more rapid than their

4Penrcu.pe (1951) provides the claa.ic diacua.Ion of t& international patenting eysteni.
5Putnam (1993) finds that, of Inventions that are patented in at least one country, 72 per cent are patented

oaly there while 18 per cent are patented in three or more countnea.
Abramovitz (1992) describes the ease with which countries can adopt each other'. technologies in terms of

their degree of "technological congruence".
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diffusion across borders, but our model does not impose this ordering a priori.

An idea constitutes an innovation i.n a country if it surpasses the state of the art there. As

the distribution of technology in a country advances, a smaller fraction of ideas are innovations.

An implication is that a less inventive country will eventually grow at the same rate as more

inventive ones since it is able to draw more innovations from the "technology gap" between

itself and others. The technology gaps between countries that sustain a common growth rate

determine long-run relative productivity levels.

We incorporate the patenting decision into our model of invention and diffusion as follows:

We assume that if an idea constitutes an innovation in a country then the inventor appropriates

the rent it earns there as long as (1) no better invention has rendered it obsolete and (2) it

has not been successfully imitated. Patent protection reduces the hazard of imitation. It need

not provide perfect protection from imitation, nor is imitation necessarily immediate if the

inventor fails to patent.

The rate at which an idea diffuses to a country is unaffected by the inventor's decision to

patent there. At the same time, more rapid diffusion into a country increases the incentive to

patent there since the rewards will be achieved sooner. Patent protection nevertheless does

have real effects in that it influences the return to R&D.

At the time of invention, the inventor knows the absolute quality of the idea but not how

much, if any, it advances the state of the art in different countries. Hence the inventor must

decide whether or not to apply for a patent in a country without knowing how much the idea

will ever earn there. Inventors will patent some ideas widely and others in few places, or

nowhere at all. Some unpatented ideas may someday significantly advance the state of the

art, while some widely-patented ideas will turn out to be duds. An inventor will seek wider

protection for a high-quality idea, since it is more likely to be an innovation.

Our model identifies market size, the cost of patenting, the strength of intellectual property

protection, the average level of productivity, and, most critical for our analysis, the speed at
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which the country can absorb ideas into its technology as characteristics of a country relevant

to the patent decision.7

We fit the steady state of our model to data on growth, relative productivities, research

scientists and engineers, and international patenting from the five major research economies:

France, Germany, Japan, the United Kingdom, and the United States. We decompose growth

in output per worker in each of the five countries into what is contributed by innovations

from each of the five. We also decompose earnings from innovations in each country into

what emanates from each of the five. We find that foreign countries are important sources of

technology even though countries earn most of their return to innovation domestically. For

example, nearly half of U.S. productivity growth derives from foreign technology. Nevertheless,

U.S. inventors earn 98 per cent of the revenues from their inventions at home, We conclude

with several simulation experiments. Eliminating diffusion between the United States and the

rest of the world, for example, would lower world growth by almost half a percentage point

and leave the United States far behind the other four. At the other extreme, if diffusion were

as rapid between countries as within them then world growth would be 2.3 percentage points

higher than the base case level. We find that patent protection has only a modest impact on

growth.

We proceed as follows: In section 2 below we present the model and then, in section 3,

characterize its steady state. In section 4 we parameterize the steady state with data from

the five leading research economies. In section 5 we decompose the sources of growth and the

returns to innovation among these countries, and offer the results of the simulation of several

alternative scenarios that allow for different rates of international technology diffusion and

TAs we diacuwd, en idea I. more likely to sdw. the state 01 the art in a country wheie the level of

productivity is low. This does not mean th&t an inventor Ia necessarily more likely to apply for protection in a

poor country, however. A country is likely to be poor precisely because it adopts innovations slowly, reducing

the return to patenting there.
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different levels of intellectual property protection. Section 6 offers some concluding remarks.

2 The Model

Since our model is intricate, we review its components before describing each in detaiL Pro-

duction of output, described in section 2.1, combines a continuum of inputs of varying quality,

which are themselves produced by labor. An alternative activity for workers is doing research

to come up with ideas for better inputs. Section 2.2 describes how ideas are produced and

how they disseminate. A key variable describing a country at any moment is the stock of

ideas that have reached it up to that point. Our assumptions about production and diffusion

imply a relationship between this stock of knowledge and the distribution of technologies in

the country. Section 2.3 derives this distribution and its dynamics. In 2.4 we show how labor

productivity relates to the stock of ideas through the implied distribution of technologies.

We make assumptions about market structure, with implications for pricing and firm profit,

which we discuss in 2.5. These assumptions also have implications, which we turn to in 2.6,

about the value of having an innovation adopted in a country, depending on whether or not

it is patented. We can thus infer the return to patenting in a country, and relate the decision

to patent an idea to the quality of the idea, the speed of diffusion, the cost of patenting, and

market size. This we do in 2.7. Putting these things together we then calculate, in 2.8, the

the expected value of an idea, incorporating the optimal patenting decision in each country.

The value of ideas determines the return to doing R&D while labor productivity determines

the opportunity cost of this activity. In 2.9 and 2.10 we relate the two to solve for the

equilibrium amount of R&D effort and the wage.
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2.1 Production

We consider a world consisting of n = 1,. . . , N countries. Output in country n (Y) is pro-

duced by combining intermediate inputs subject to a constant-returns-to-scale Cobb-Douglas

production function,

ln(Yt/J) = J_1jhi[zntu)x(i)]di,
where X(j) is the quantity of input j produced at time tin country n and Z(j) is the quality

of that input. (See the Appendix for a list of symbols.) The range of inputs is fixed over time

and the same across countries. Output is homogeneous and tradable across countries, while

inputs are nontraded.8 We choose units so that to produce any input at rate x requires local

labor services at rate x. Productivity differences across countries result from differences in the

quality of inputs.

Within a country, the quality of inputs improves over time. These improvements derive

from research performed both domestically and abroad.

2.2 Ideas

An idea is our basic unit of research output. While we assume that all workers in each country

are equally productive producing goods, we allow workers to differ in their productivities as

researchers. In particular, we assume that in country n with a total labor force of L, if

workers are ranked according to their productivity as researchers, a worker of rank jproduces

ideas at a stochastic rate antfi(t)'. The parameter reflects the overall productivity

of researchers in country n at time t while reflects the rate at which research productivity

declines as less talented workers become researchers. We assume that workers are compensated

•By assuming & single, homogeneous tradable output we prevent inventions from having any efft on the

terms of trade between countries. While it would be interesting to consider the implications of invention. for

the terms of trade, we pru1ude the possibility here in order to foct purely on the implications of innovation

for productivity.
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in proportion to their productivity in either production or research. Hence the workers who

are the most productive at doing research will become researchers. Thus if R,, workers in

country n at time t are doing research, they will create ideas at a rate atL'R.

There are several dimensions to an idea: its quality, its sector of use, and the time until it

diffuses to each country. An idea's quality is a random variable Q drawn from the cumulative

distribution function, F(q) = Pr[Q <q]. The quality of an idea is common to all countries to

which it diffuses. We assume a Pareto distribution of qualities, F(q) = 1 — qB
An idea applies to only one out of the continuum of inputs. The input j to which the idea

applies is drawn from the uniform distribution on [0, f].10

Ideas, even good ideas, do not diffuse immediately. Let r be the random diffusion lag. If

an idea is discovered at time t in country i then it diffuses to country n at time t + r,,, for

n = 1,2,... ,N. We assume that the marginal distribution of the diffusion lag from country i

to country n is exponential with parameter e,,, i.e. Pr[r � x] = 1 — Thus is the

speed of diffusion from country i to country n and e' is the mean diffusion lag.

We distinguish between the concepts of diffusion and adoption. While every idea will

eventually diffuse to every other country (if the ,,j's are strictly positive) many ideas will

never be adopted because they are not useful. Some ideas are not useful even when they are

invented while other ideas are no longer useful by the time they have diffused.

9Bental and Peled (1992) and Kortuni (1994) 1o use the Pareto distribution to characterize the pool

of undiscovered techniques from which researchers draw. The Pareto distribution has the convenient feature

that, if we truncate the distribution at some level z, then the random variable Q/z (� 1) inherits the Pareto

distribution. Thus, if a new idea is better than current beet practice (say z) then the distribution of the inventive

step (Q/z) does not depend on the level of the best practice that is surpassed

10We ignore the possibility that research could be aimed at improving the quality of a specific input.
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2.3 The Technological Frontier

In equilibrium, only the best available idea for each input in each country is actually adopted.

Thus for each country n, Z(j) represents the highest quality idea yet adopted in country ri

in sector j by time t, so that {ZfltLj)}j[oj1 is the technological frontier in country n at time

t. Consider an idea of quality q in sector j discovered somewhere at time t. If the idea diffuses

to country n with a lag of r then it will constitute an innovation if and only if q> Z+r(j).

In this case the idea is adopted so that the technological frontier at j jumps discontinuously

from Z+(j) to q.

To derive the dynamics of the technological frontier in a given country, we need to know the

rate at which ideas were discovered in all countries over all of history. Researchers in country

n produce new ideas at a nonstochastic rate Let be the stochastic rate at

which ideas of a given sector diffuse to country n from all the research that has been done

throughout the world. (The corresponding stock is fJi,,ds.) An idea may be the

result of domestic research or may arrive from some other country It may be the outcome of

research performed recently or years before. Integrating over the appropriately weighted past

research done in country i the stock of ideas flowing into country n's technolo' is, summing

across countriçs,

=r' J etcr,LR,ds. (1)

Let z denote the level of the technological frontier in a particular sector of country ri.

8



Letting H(zIt) Pr[Z,j(j) � z], the distribution of this frontier is:11

H(zIt) (2)

Note that the distribution of the technological frontier depends only on the total stock of ideas

at that time, regardless of when these ideas were adopted for production or where they

came from. This feature of the distribution simplifies the analysis drastically.

2.4 Productivity

Output is maximized when production workers are evenly divided among production of the

individual inputs. In this case labor productivity is the geometric mean of t technological

frontier. Thus, we use defined by,

1nA, =J / lnZ,4j)dj.
Jo

as an index of productivity in country n.12 Using our result on the distribution of the techno-

logical frontier, we have,

lnA, =
f°°lnzhn(zlt)dz

11ldeas are adopted in eector z at a stochastic rate of jtZ'. The probability that no idea is adopted in the

time interval It, t + dt] is thus e" Therefore,

H(zt+ dt) =H,(zlt)e
or.

8lnH,(zlt) . —.

öt ——S.tZ

Solving this differential equation, with the two initial conditions: (i) lim-._,,, H,(zIa) = 1 V z 1 and (ii)

irs-. p,.. =0, yields the cumulative distribution function for t& tethnological frontier.
12 market structure that we asmime does not, In fact, imply an even allocation of production workers

among inputs, since the mark-up differs acroes sectors. Productivity is proportional to this index, however, as

can be seen from equation (10) and (11) below.
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where h(zIt) dH,(zjt) = Ojz_(+1)e_t. Solving this integral, as 1nt becomes large,

we obtain:

= e"14°, (3)

where, ' .5772 is Euler's constant.13 Thus productivity growth in a country is proportional

to the growth in the stock of ideas that have diffused to that country.14

13ng the variable of integration to x =

'p.,'
InA,,t = In(p.,t/x)edx = 8' lnp,,(l —e") —9 J 1nxedx.

0 0

For large ,,,, we have an arbitrarily good apprmdniation,

lnA,,t =9_1Iniii9_1f°°1nredx

The Laplace transform of — — lnt is s Ins, where ' is Euler's constant. Evaluating the Laplace transform

at a = 1 implies,

Inzedx = -v'.

This gives us the desired result that,

lnA., = g_1 + 5/9.

'4As we discussed in our introduction, our model implies that an idea is more likely to be adopted in a country

with a relatively low level of productivity. The probability that an idea of quality q will prove useful is simply

H.,(qlt). Integrating this probability over the Pareto density of Q, and noting that Iit becomes arbitrarily

large over time, we get

f Hn(q)F'(q)dq = = =

Consider two countries, m and n, with levels of productivity A,,, and A,, respectively. The probability that

an idea will be adopted in country m relative to the probability that it will be adopted in country n is simply,

(A,,./A,,4'. Thus if A, <A,, country vn will obtain more true innovations than will country n from the

same number of ideas. In this sense the low productivity country draws innovations from the "technology gap".
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2.5 Market Structure

We assume that the right to use an invention in country n passes to a local, monopolistic

imitator with a hazard that depends on whether or not the inventor has a patent in that

country. We denote the hazard of imitation if the invention was patented as t and if it was

not patented as For a patent to. have any value requires, of course, that r° < Ot• Jf

patents provide perfect protection then = 0, while if trade secrets are impossible to keep

then ot = 15
Whether the rights to the invention are owned by the original inventor or by an imitator,

the owner competes against the state of the art for that input in that country at the time of

invention. We assume that competition is Bertrand. Hence the owner of the invention charges

the highest price at which production using the previous state of the art is tiprofitable)6

15We do not allow the Inventor to wait until the invention is adopted in a country to apply for a patent

there. This aesumption reflects the requirement of most patent systems that patents be taken out in additional

countries within one year of the first, or priority, application. We assume that inventors do not delay seeking a

priority application.
16Grossman and Helpman (1991) make similar assumptions. The production technology implies a unit elastic

demand for an individual input given the prices of all other inputs. Hence to maximize profit the owner of the

invention charges the highest price at which it remains the only seller of that input. We assume that the owner

of the right to use the invention, when the invention is adopted in a country, competes with the state of the art

at the time of invention. The owner of an invention thus blocks protection of any Interim improvement over the

initial state of the art that is dominated by that invention. This assumption is consistent with the requirement

of most patent systems that only ideas that are "state of the art," can receive protection, where "state of

the art" is interpreted to mean the most advanced idea regardless of whether or not it has been adopted for

production This assumption is easier to justify when the original inventor holds a patent than when a domestic

imitator owns the right to the invention. The alternative assumptions that an imitator competes against the

next-best adopted technology, or that imitation is perfectly competitive, both Imply lower mark-ups over direct

production costs for unpatented Inventions. While this implication may be realistic, the consequent asymmetry

in mark-ups between patented and imitated inputs substantially complicates the analysis. Moreover, it implies

that the patent system itself has real effects on productivity conditional on the level of research. To focus
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2.6 The Value of an Invention

Our assumptions about price competition imply that a firm producing an input of quality q in

a country where the state of the art for that input at the time of discovery was z will charge

p = (q/z)w, where w is the wage in the country at the time. We use the price of final output

as numeraire. Total purchases of the new input are . Given the pricing equilibrium, the

profit to the owner of the right to use a technolo' of quality q improving on an existing input

of quality z is ,r(z, q) = (1 — if q> z and zero otherwise.

The owner can earn a profit only after the invention has been adopted and only before it

has been surpassed by a more advanced technolor. Consider, then, the expected prcfit in

country n at time a from an invention of quality q at time t < a in country i. The probability

of its having been adopted for production by time a is (1 — '"()). The probability of its

not having become obsolete by then is e'', while the probability J its not having

been copied by then is e_(3_t), where k E {pat, not} depending upon whether or not the

invention was patented. At the time t that an invention of quality q occurs in country i, the

expected discounted value of the right to use it in country n, given the existing state of the

art z in the relevant sector, is therefore:

q) = lrnt÷,(z, q)e._(r+L)s(1 —

if q � z. Otherwise the value is zero. Here again k =pat if the idea was patented and k = riot

otherwise, and r is the discount rate, which we treat as constant over time.

2.7 The Decision to Patent

A patent gives the inventor the incremental benefit of a lower hazard of imitation, so is worth

V,(z, q) — V,(z, q). We assume that, at the time of invention, the researcher knows the

on other implications of the international patent system more critical to the analysis here we preclude this

poibilit
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quality of the invention but not the state of the art in the sector to which it will apply in

each country. Integrating over the distribution of the states of the art in country n, given by

equation (2), the expected value of an idea of quality q from country i in country n is:

V,(q) = T(,1q9, 9)
j°° Y, —

where, k = pat, not depending upon whether or not the idea is patented and T(b, 0) 1 —

ebbh/oF(!jl b), where b) J'°e ZX0 1dx is the incomplete gamma function. Hence, if

it costs an inventor in country I C,t to patent in country n then the inventor will seek patent

protection in that country if Vt(q) —V,j(q) exceeds c, and not otherwise. The return to

patenting rises with the quality of the invention q. Hence the condition:

,pat, ' note \ —q/ — qj — Cnjt 4

determines a threshold quality level jt such that inventions of higher qualtv are patented

while those of lower quality are not.17 We assume that if an invention constitutes an innovation

in a country then a patent is automatically granted.

Since researchers in country i produce ideas at rate the number of patents they

apply for in country n, Pt is:

Pt = (5)

Since the fraction of ideas seeking protection is while the fraction that are potentially

useful is the ratio of the number of patented to potentially useful ideas is:

(6)

As we show below, in steady state this ratio is constant.

17A poseibility, of course, is that the ct of patenting would exceed the benefit for any invention regardlese

of its quality, in which case patenting would be zero, and i, infinite. At the other extreme, if c =0 then

= 1, ao that any idea would be patented.
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2.8 The Return to R&D

The value of an invention of quality q from country i in country n is the maximum of V,t(q) —

C,ut and V,(q). The expected value of an idea in that country before its quality is known is

therefore the expectation of this amount across all possible values of q, which is:

V,t = V,(q)F'(q)dq + 100 V,t(q)FF(q)dq — (7)
1

where, as before, F'(q) = Oq_(1) is the Pareto density. The expected return to an idea of

unknown quality in country i at time t is therefore the sum of its expected returns across

countries, or
N

Vt=>JVrt. (8)

This amount represents the expected return to a unit of R&D effort.

2.9 Equilibrium R&D

The marginal researcher in country i, ranked Rj, can expect to earn doing

research. Equilibrium in the labor market thus implies that the number of researchers l? in

country i will solve: 'R ''I it
ctf3Va — j = w,.j, (9)\J'itl

where wit is what a marginal researcher would earn producing output.

2.10 Technology, Wages, and Income

The wage in the production sector of country i is proportional to the level of productivity

in that country. Bertrand competition implies that the mark-up over this wage, MU)

p(j)/w, is low in sectors where the currently adopted input is only marginally better than the

input it replaced while M(j) is large in those sectors where the current input is a substantial

improvement over its predecessor. Since expenditure on each input is the same, more labor
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is allocated to the production of inputs with low mark-ups. Consequently, the wage, as well

as productivity, is lower than would be the case if production workers were equally allocated

among sectors. As we show in the appendix, the mark-up M is a random variable with a

time-invariant distribution with density:

0m1 I 8m0
g(m;O) • him—im —i —1

Given this density and the level of productivity, the wage is:

wst = (10)

where,

c1(9) [°him(m;6)dm.

The value of total output equa's wage costs plus profits. Again, taking into account the

distribution of the mark-up, the value of output in country i, given the wage and the labor

force in production there, is:
Wjt

(L1 — R) (11)
'2(O)

where

?c2(O) jm_19(ra;O)dm.

The appendix provides the derivation of the expressions for g(m; 0), the wage, and the value

of output.

We have now fully specified our modeL To summarize, equation (1) relates R&D effort to

subsequent growth of technology in different countries. Equation (4) determines what ideas

are patented given the value of output. Equations (7), (8), and (9) determine thedivision of

the labor force in a country between production and research and development as a function

of the wage in that country and output levels around the world. Finally, equation (10) relates
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the wage in a country to its level of technology while equation (11) relates a countrys output

to its level of technology and the size of its labor force engaged in production.

We treat the total labor force in each country as exogenous. The state of the economy

at any moment can be described in terms of the N technology parameters p, which evolve

according to (1). The economy is in equilibrium when, taking as given the current and future

state of the economy, patenting and labor allocation decisions are individually optimal, as

implied by (4) and (9).

3 The Steady State

The economy is in steady state when the state variables p grow at a constant common rate,

which we denote g, and patenting is constant. In order to obtain a steady-state outcome we

make the following assumptions about exogenous variables:

(i) Total labor forces in each country are constant. Hence = L V t.

(ii) The productivity of researchers is proportional to the current level of technology where

they work, so that the number of new ideas generated by a given research effort is proportional

to the stock of existing ideas.18 Specifically, we assume that kjt =apit.

(iii) Patenting costs are a constant proportion of output, that is =

equivalent assumption is made in many other models of endogenous growth, as, for example, in Krugrnan

(1979) and in Grossman and Helprnan (1901). With constant labor forces this assumption is needed for the

economy to grow in steady state. Technologies and ideas would also grow if labor forces grew at a constant

positive rate n and research productivity were given by a, = a7y [0,1). Ideas and technology would then

grow at rate n/(1 —.y). Kortum (1994) develops a model with tle features (with 7=0) for a dosed economy.
'5This assumption is equivalent to assuming that examining a patent requires a constant labor input whose

cost is passed on to the applicant. If productivity growth were reflected in lower patenting costs, eventually all

nsw ideas, no matter how bad, would be patented. Since we observe a rate of domestic patenting that is not

growing over time (with the exception of Japan), we find it reasonable to assume that patenting costs have not

been falling relative to market size.
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Two features of a steady state are: (1) a constant number R, of workers in each country

engaged as researchers; and (ii) patenting thresholds that are proportional to the destination

country's productivity, Le., constant values of as defined by equation (6).

From equation (1), given the constant number of researchers R1 and labor force L in each

country, the steady-state growth rate of technology and the steady-state relative technology

levels solve the system of N equations:

pg = (12)

where .' (FAlL//ANt, . FAN—it//ANt, 1)' and

61N

6N1 ... 6NN

where:

£ .— _in$ + 9 J

The solution to this system gives the world rate of productivity growth, A/A = g/O and

relative productivity levels,

/f/Znt\—=—j , n=1,...,N—1.ANt \PNLJ

From equation (4), given the growth rate g, patenting thresholds b,j are deter-

mined by the N2 equations:

T(b,6) {[W(P6t/g, b) — W(( + )/g, b)1 —

[W(i0L/g, ) — ru)/g. )1} = (13)

where:

k=pat,rot,
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—as —be' 20and W(a/g, b) gJ°° e e ds. Note that the only country characteristics that directly

affect the patenting threshold are the adoption lag e,, the strength of patent protection rates

as reflected by i° and and the cost of patenting c,u. In particular, br does not depend

on the levels of technology and

In steady state, the expected value of an idea of unknown quality from country i in country

n, Vt, will be a constant proportion v of country n's output Yt divided by its level of

technology tint, that is,

—1V,t =

where:

= (J9)1 {jL T(b, 9)[(/g, b) — ((P0t + )/g, b)]db

+ f00 T(b, 6)[W(0t/g, 6) — + e)/g, b)]db} —

where: -

F+g k=pat,not.

As is the case with , v depends on the adoption lag, the strength of intellectual property

protection, and the cost of patenting, but not on technology levels. The steady-state return

to doing research to the R1th researcher in country i is thus:

: Lnt

while the return to producing output is simply wjj.

order to compute this integral, we rely on the result that for 6>0,

4'(a/g, 6) = 6"r(—a/g, 6).

As a consequence, we also have

T(b,8) = 1— be$(!j_,b).
There is a continued fraction representation for the incomplete gamma function (that admits d <0) leading to

a speedy numerical algorithm [from Press et. a1. (1989), pp. 160-163].
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Substituting equations (10) and (11), the condition for steady-state labor market equilib—

rium in each country, from (9), becomes:2'

— R)()(1_0)b8 = ?C2(O). (14)

To summarize, the N(N + 2) equations (12), (13) and (14) determine the steady-state growth

rate 9, N — 1 relative technology levels p, N2 patenting thresholds , and N levels of R&D,

R. Given, R, (12) determines g and z. Given g, (13) determines . Given g, 6, and p, (14)

determines R.

How much patenting is done in steady state? Substituting the relevant steady-state magni-

tudes into equation (5) implies that the steady-state number of patents applied for by inventors

from country i in country n is:

D._fl4 — p.In
As technology advances researchers become more productive, so more ideas are produced. But

as technology advances a smaller percentage of these new ideas constitute improvements in the

state of the art, so are worth patenting. In steady state these two effects cancel out, yielding

a constant rate of patenting.

4 Calibration

We assume that the steady state of our model describes, in 1988, world proc. activity growth,

relative levels of productivity, numbers of researchers, and foreign and domestic patenting

21Since v,,,, is independent of technologr levels, an implication of this exprion is that the elastkity of R&D

with respect to the level of technology has the sign of 1-9. Researchers in countries with more advaneed

technologies, as measured by , are proportionately more productive as researchers, but their opportunity cost

of doing research is also greater in proportion to The net effect is more research in advanced countries if 9

exceeds one and lese otherwise.
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among Germany, France, the United Kingdom, Japan and the United States. In this section

we let the data from these economies determine a vector of parameters, including diffusion

parameters, for our theoretical model

4.1 Solving the Model

The steady-state equations of the model can be represented as

y= c(e,x),

where y is a vector of observable endogenous variables, e is a vector of parameters, and x

is a vector of exogenous variables. The function G(.) represents the simultaneous solution of

equations (12), (13), and (14) as well as the productivity and patenting equations: (3) and

(15).

We assume that all patent systems are the same, but allow them to provide different degrees

of protection to nationals than to foreigners. Hence we define £0t as the imitation rate when an

invention is patented domestically and t as the imitation rate when an invention is patented

abroad. The hazard of imitation of unpatented inventions "° is the same everywhere.

We assume that the rate of diffusion of inventions from country I to country n is the

product of a parameter governing the speed at which county n adopts new inventions, a

parameter governing the speed at which inventions from country i are ready for adoption,

and a parameter governing the percentage increase in adoption speed for domestic inventions.

Formally, = where we normalize = I and D = 1 if ,i i. This we require ten

parameters to account for the 25 diffusion rates between and within our five countries.

22We ha choei the five countrie. because of their size and research intensity together they employ over

80 percent of the world'. research scientists and engineers. Furthermore, each of these five countries obtain.

between 70% and 80% of its foreign patent applications from one of the other four. About 60% of the world's

Cross Domestic Product (CDP) is produced in these countries (Summers and Heston (1991)). Hence our five

countries account for most of the world's inventive activity and a majority of the market for inventions.
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In summary, we search for 17 parameters

pat pat8 = [r, 0, j3, J, a, L 'D 'F ,ci, , e.5, 1., . , 4.,

The values of the exogenous variables,

[Li, - . . , L5, Cfl,. , C4, . , C55]1,

are shown in table 1. The workforce in each country L is taken from Summers and Heston

(1991). The patenting costs are based on country specific filing fees, agents fees, and translation

costs taken from Helfgott (1993). To obtain the c we divide the application costs by the

adjusted GDP of the country charging the application fee.24 We fix the interest rate at 7%

based on historical real returns on the U.S. stock market.

There are 35 endogenous variables in the model,

y [A/A, Ait/At, . . . , At/At,R1,. .. , R, Pa,. . . , Pr,. ,P551"

as shown in table 2.
23Th costs were adjusted for Japanese domestic applications. The Japanese applyfor over 300,000 patents

domestically each year. Okads (1992) finds that Japanese patents gra.nt.ed to foreigners contain on average 4.9

times as many inventive claims as those granted to Japanese inventors. Thus we translate 4.9 Japanese domestic

patent applications into the equivalent of 1 application elsewhere. This adjustment is reflected in table 2. We

also scale up the cost of an application for a Japanese inventor in Japan by this same factor of 4.9. We ignore

the more complicated fee atn.cture applying to patents through the European Patent Office and complications

introduced by patent renewal fees.
24Helfgott collected the cost of application data from a survey in 1992 and converted all the figures into $tY.S.

using the exchange rate in effect unear the end of 1992". We took 1992 GDP in local currencies from iMP

(1994). We then converted GDP into $U.S. using 1992 fourth quarter exchange rates from IMP (1994) and we

subtracted from GDP the share o(GDP spent on R&D, from OECD (1991). Since we ignore patent renewal foes

and the pible cost of disclosure of information in taking out a patent, our measure of the cost of patenting

is a lower bound on the true costs. To check the aenitivity of results to substantially higher application costs

we experimented with increasing all foreign patenting costs by $10,000. There were no substantially different

implications for diffusion.
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Our measure of productivity A is manufacturing output per hour takr from van Ark

and Punt (1993). We calculate productivity growth by averaging over our five countries from

1979-1989. We use manufacturing productivity to represent a country's overall technological

capability since productivity may be poorly measured in other sectors.

To measure research effort 1? we use research and development scientists and engineers

employed by the business sector in each country in 1988. To eliminate the effect of defense

related research we multiply these employment numbers by the fraction of business sector

R&D financed by either the business sector or from abroad. All data on research are from

OECD (1991).

Patent applications by country of application and resident of inventor in 1988 (Pm) are

from WIPO (1990). As mentioned in the footnote above, patent applications in Japan by

Japanese inventors have been scaled down by a factor of 4.9. Since patent law requires that

an inventor apply for a patent in any other country within a year of the first (or priority)

application, patent applications rather than grants capture better the inventor's patenting

decision in our modeL Moreover, applications rather than grants are much more comparable

across countries.

In order to evaluate the plausibility of a givenparameter vector O, we need to thmpare

the predictions of the model, = C(O, z), with the actual value of the endogenous variable,

y. We have written a computer algorithm to do this.25

We solve the model using GAUSS. The program begins with a parameter vector and a guess for the the

growth rate of technology, g. Then, (1) it finds the set of b, that solve equation (13); (ii) it iterates between

equations (12) and (14) until it finds technology levels and research employments that are '3sistent with each

other; (lii) it uses (12) to obtain a new value for the growth of technology; (iv) with the flew value of git returns

to the beginning of step (i). These steps are repeated until the growth oftechnology stops changing. FInally,

equations (3) and (15) are used to infer productivity and patenting. The entire procse takes about 1 minute
on a Pentium PC.
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4.2 Baseline Parameters

We choose baseline parameters to match the steady-state values of the variables impliedby the

model as closely as possible to our measures of the endogenous variables. Hence we minimize

the distance function, EI . where ö is the weight placed on variable j. Our thirty-

five endogenous variables consist of five productivity variables (four relative productivities and

productivity growth), research scientists and engineers in the five countries, and twenty-five

patent levels between countries. In order to give each type of variable equal weight we choose

5,= lforj= 1,...,lOandô3=1/5forj= 11,...,35.26

The parameters that fit best are shown in table 3. Our estimate of 0 is somewhat aboveone,

implying that, other things equal, the return to research relative to production is greater in

more advanced countries. We obtain a very small value for the parameter fi of the distribution

of research talent. This result suggests that research output is roughly proportional to the

workforce in each country with only a small effect from the fraction of the workforce engaged

in research. While we find that domestic patents virtually preclude imitation, foreignpatents

provide very little protection. This reflects the fact that the home country is always the most

popular country in which to seek protection (by at least a factor of 2, see table 2). Our

imitation rates are lower than those reported by Levin et. al. (1987), although their concept

of imitation seems to encompass our notion of obsolescence as well.

Thrning to diffusion rates, we find them to be considerably more rapid within than between

countries. For example, the rate of domestic diffusion in the United States is 0.03, while from

the United States to Japan it is 0.003. For inventions from Japan, the rate of domestic

diffusion is 0.17 while the rate of diffusion to the United States is 0.02. Though the implied

mean diffusion lags are large, they are consistent with the results of micro ' nomc studies

Th calculate baseline parameters we nested our algonthrn for solving the steady state of our model fora

given parameter vector within & standard minirni7tjon routine. txsing the AMOEBA non derivative routine

minimization took several days on a Pentium PC.
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summarized in Jovanovic and Lach (l993).

Table 4 shows how the model performs at fitting the vector of endogenous variables. The

model is highly successful at fitting overall productivity growth, relative productivity levels,

and levels of research employment in each country. Patterns of international patenting are less

successfully captured though the overall level of patenting is about right.

5 Decompositions and Counterfactuals

Our estimates allow us to decompose the sources of growth in each country into what originates

from domestic research and what originates from research in each of the other four countries.

We also decompose the return to invention in each country into what is earned from the home

market and from each of the other four. We then examine the implications of different amounts

of international diffusion, and of different levels of intellectual property protection.

5.1 The Sources of Growth

Through the process of international technology diffusion, research done in one country leads to

productivity growth elsewhere. Table 5 quantifies these links between countries. The European

countries derive most of their growth from abroad while the United States and Japan obtain

slightly more from domestic research. Japan, Germany, and the United States make the largest

contributions to growth. A surprising result is that Germany and Japan each contributemore

than the United States. Though the United States produces many more inventions, we find

that these inventions diffuse quite slowly.

27iovanovic and Laths concept of the diffusion rate is the rate at whk.h the market for a product reaches ita

potentiaL Our concept Ii the hazard rate until a product is adoptnd.
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5.2 The Rewards to Research

While the growth decomposition in table 5 looks at foreign countries as sources of new technol-.

ogy, table 6 looks at foreign countries as markets for new technology. We calculate the fraction

of the average value of an invention arising from markets in each of the 5 courtries. Inventions

obtain almost all their value domestically, even for the smaller European economies.

5.3 Alternative Patterns of Diffusion

Another way to quantify the role of international technology diffusion is to ask how the steady

state of the model would differ if technological links between countries were reduce<i The

results of several such experiments are shown in table 7. For comparison, we repeat the

predictions of the model from table 4 under the column "Baseline." Our first experiment,

"Technological isolation", reduces to 0.0001 the rate of diffusion between the United States

and the block of four other countries. Since the block of four other countries grows faster on

its own than does the United States, the U.S. level of productivity must fall relative to the

other countries (by a factor of more than 10) before the resulting technology gap supports the

new steady state growth rate. The new growth rate is about 90 per cent of the baseline

value. Our second experiment, "Borderless diffusion" eliminates the effect of country borders

on diffusion rates. In particular, we set D = 9.77 even if n i. Since ideas now spread

more rapidly and evenly across countries, the world growth rate rises and productivity levels

becomes more tightly clustered around the U.S. level Research employment is stimulated,

particularly in the smaller countries (Germany, France, and the U.K.) which now have a much

larger effective market for their inventions.

21Thua, in the now steady state the United State. Is not unnpietely isolated since it obtatna many innovations

from abroad, aibeit years later.
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5.4 The Strength of Patent Protection

We conclude with some counterfactual experiments on the strength of patent protection. In the

first experiment we eliminate all forms of patent protection by setting and equal to t"°,

i.e., the hazard of imitation of patented ideas is as great as unpatented ones. With i3 nearly

zero, it is predictable that world productivity growth would not change drastically, although

research employment falls considerably. The drop in research employment is particularly

pronounced in Japan and the United States, which have large domestic markets. In the

pat patsecond experiment, we make patent protection perfect by setting D and LF equal to zero,

so that there is no hazard of imitation if an invention is patented. World productivity growth

is higher by a modest factor of 1.003, although research employment more than doubles.29

6 Conclusion

We have developed a model of the invention and the international diffusion of technology that

allows us to identify the sources of growth and the sources of rewards to innovation in the world

economy. While our model is complex, it nevertheless embodies several crucial simplifications.

First, we have ignored capital accumulation. We implicitly assume that capital is perfectly

mobile among the countries we consider. An implication is that, while capital deepening and

productivity growth are correlated, capital deepening is not the force driving growth. Capital

moves endogenously to take advantage of technological improvement.

Tbese results should not be Interpreted to mean that intellectual property protection is undesirable. Present

value calculations indicate that very small changes in growth rates have large effects on permanent income. At

the same time, since the number of research adentlats and engineers is small relative to the total labor force,

large percentage changes in research employment imply very small percentage changes in current output. For

example, our calculations indicate that the magnitude of the steady-state income gain due to higher growth

from perfect patent protection is roughly comparable to the amount of steady-state income Icet from diverting

production workers to research.
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Second, we have ignored the terms of trade by treatin.g intermediate inputs as nontraded.

Changes in the terms of trade may be an important means by which the benefits of productivity

growth diffuse internationally.

Finally, we have not examined the out-of-steady-state implications of our modeL An

outstanding question is whether convergence to the steady state of our model can explain the

convergence of productivity levels exhibited by the countries in our sample riuring the post

World War II period. A puzzle posed by Jones (1993) is that the growth in research scientists

and engineers during this period was accompanied by a falling rate of productivitygrowth.

While there are many explanations for this finding, one that is consistent withour framework

is that the research effort that accompanied World War II left the world with a pool of many

good ideas. The subsequent absorption of these ideas into productive technology would then

explain the exceptionally high growth rate in the two decades after the Second World War.

We leave the examination of this hypothesis for future research.

We view our current work as only a first step in the empirical general equilibriummodeling

of technology creation and diffusion in the world economy. While suggestive, our estimates

should be interpreted with caution since we fit our model to a small amount of data froma

small number of countries. Firm conclusions can only follow experimentation with alternative

methodologies and richer data. Nonetheless, our analysis provides insights that are likely to

survive further scrutiny. One broad conclusion is that technology among the major research

economies diffuses much more slowly between countries than within them, yet even large

countries derive a substantial share of their growth from abroad.
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A List of Symbols

Y Output in country n at time t.

J Range of inputs, j E [0, J].

X(j) Quantity of input j in country n at time t.

Z(j) State of the art of input j in country n at time t.

Workforce in country n at time t.

ant Productivity of researchers in country ii at time t.

Parameter of the distribution of research talent.

Researchers in country ia at time t.

Q Random variable representing the quality of an idea.

F(q) Distribution from which the quality of an idea is drawn.

0 Parameter of the quality distribution, F(q) = I — q9.

r Random diffusion lag.

Rate of diffusion from country i to n.

Stock of ideas that have diffused to country 'a by time t.

H(zt) Cumulative distribution of the state of the art in country ii at time t.

At Level of productivity in country n at time t.

ii' Euler's constant ( .5772.)

pat Rate of imitation in country n if invention is patented.

Rate of imitation in country n if invention is not patented.

pnt(j) Price (in units of output) of input j in country n at time t.

Wage (in units of output) of production workers in country n at time t.

ir(z, q) Profit from marketing input of quality q in country ia at

time t if the next best input has quality z.

q) Expected discounted value as of time t in country ia of an invention
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from country i where the invention has quality q and replaces an

input of quality z. The index k = pat, not specifies if it is patented.

r Discount rate.

V,(q) Expected value of q) before the sector (hence z) is known.

c,. Cost of seeking protection in country n from country i at time t.

qnit Cut-off quality to patent from country i

in country n on an idea invented in t.

P,t Number of ideas from country i seeking protection in a at time t.

Defined as t (constant in steady state.)

Expected value of an invention from country i in country a at time

t, unconditional on its quality.

V*t Expected value of an invention from country i at time t.

g Steady-state growth rate of , the stock of diffused ideas.

W(a/g,b) Integral defined as gJ0eae9Jds.

Normalized value of an invention from country i in country a

defined as Vz,j/Y,d.

ic1(O) Term relating productivity index to the wage.

'2(O) Average value of the inverse of the mark-up of input prices over

the cost of producing them.

y Vector of endogenous variables.

x Vector of exogenous variables.

8 Vector of parameters.
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B Mathematical Appendix

We derive the time invariant probability density for the mark-up of input price over marginal

cost (the wage) across sectors. This density shows up in our equation for the wage conditional

on productivity (10) and our equation for the value of output conditional on the wage and the

workforce in production (11). We begin by deriving those equations.

To derive the wage equation, start with the result that the quantity purchased of input j

is

YxW_ Jp(j)
—

JwM(j)'

where M(j) is the mark-up for input j. Plugging this into the production function and

rearranging,
,1

lnw=lnA_JlJ lnM(j)dj.
0

But, if we know the density g of M we have,

.ooJ' I lnM(j)dj= I lnmg(rn;O)dm.Jo Ji

To derive the value of output equation, note that total profit across all sectors is,

—
M(j)_1)dj Y[1 —

f°m_19(m;9)dm].

Therefore, since wages plus profits equal the value of output,

Yjm19(m;0)dm = w(L - R).

Deriving the functional form of g(m; 9) requires several steps. As we have defined it, the

mark-up for input j at a given time is equal to the quality of that input relative to the quality

of the input that it surpassed. We begin by deriving the joint density for new innovations

of the mark-up and the state of the art surpassed, denoted l(m, zit). We then integrate over

all past cohorts of innovations to obtain the distribution of the mark-up for those innovations

that are still in use.
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First consider the distribution of the state of the art surpassed by innovations adopted at

time t. This will not be the same as the distribution of the qualities of all inputs currently in

use, equation (2), since low quality inputs are more likely to be surpassed than high quality

inputs. Formally, we have,

Pr[Z � zQ � Z,il = Pr[Z � z,Q � ZIt]/Pr[Q � Zt] =

where F(z) 1 —x9 is the distribution from which the quality of ideas is drawn and H'(xlt) =

is the density of the state of the art, the derivative of equation (2). Integrating

out the denominator under the assumption that pjbecomes arbitrarily large, we find that the

density of the state of the art that is surpassed by innovations adopted at time t is,

Without regard to the state of the art surpassed, the mark-up of an innovation adopted at time

t is drawn from the Pareto distribution. To see this, let z be the state of the art surpassed,

Pr[z � Q � zm] — F(zm) — F(z) — 1
-

r1— — m1 — Zj —
Pr[Q � z]

—
1 — F(z)

— m

Therefore, multiplying the density of the state of the art surpassed by the density of the

mark-up conditional on the state of the art surpassed,

l(m, nt) = O2pm_0_1z_0+1)e_.

The derivation above tells us about the distribution of the mark-up for new innovations.

To calculate the distribution of the mark-up for all inputs currently in use we need to keep

track of the mark-up for innovations adopted years earlier that are still in use. This is made

possible by the fact that the hazard rate faced by these earlier innovations depends on their

quality, i.e. the product of their mark-up and the state of the art they surpassed. It is for this

reason that we derived the joint density. The other ingredient is the rate at which innovations

were being adopted in earlier periods. This is simply the rate at which ideas were diffusing
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at time a multiplied by the fraction of those ideas that were useful at that time, i.e. z,/t,.

Combining these results, the distribution of the mark-up is,

G(m'Ii) =j j.m J0O i(,n,zl3)e_t_)m)dzdmds.-ooJ,1 1

Changing the variable of integration from z to

x = + — z9(m, a,

and, noting that (m, a, t) becomes arbitrarily large over time, the inner-most integral is

a, t)2m(9'). Thus, changing the order of integration,

G(m'It) = f'' OmO+ Lt a, t2dsdrrz.

Changing the variable of integration from a to /.z,,

o —(9+1)
G(m't) = iT (1— m9)2(m

+ Olnm — l)dm.

After some rearranging, we see that the argument of this integral is exactly g(rn; 9), the density

of the mark-up.

36



Table 1: Exogenous Variables

Germany France U.K. Japan U.S.
Labor Force

(millions) 29 25 28 61 120

Adjusted CDP
(S billions) 1751 1299 921 3662 5876
Application costs
(5) to patent in:
Germany
France

U.K.

Japan
U.S.

paid by inventors from:
1066 1066 1066 3066 1066

992 992 992 3042 992

1200 1200 1200 4020 1200

4772 4772 4772 9590 4772

3390 3440 1390 4210 1390

Sources: Labor force is from Sununers and Heston (1991).
Adjusted CDP is from IMF (1994) with RkD expenditure from
OECD (1991) subtracted. Costs of filing a patent application
(including translation and agents fees) are from Helfgott (1993).
The cost for a Japanese inventor filing an application in Japan
is scaled up by a factor of 4.9 (see text for the rationale).
The ratio of application costs to adjusted GDP is assumed
to be exogenous and constant in steady state.
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Table 2: Endogenous Variables

Germany France U.K. Japan U.S.

Productivity growth
in manufacturing 0.035 0.035 0.035 0.035 0.035

Relative productivity leve]s
in manufacturing 0.82 0.76 0.58 0.82 1

Adjusted research employment
in thousands 97 41 74 289 477

Patent applications
seeking protection in:

Germany
France
U.K.

Japan
U.S.

by inventors from
42872 4713 4114 12819 16310
12592 14921 3830 9340 15304

12179 4590 24098 11371 17279

7246 2512 2407 62884 15374

12483 4901 5805 29613 75632

Sources: Manufacturing value added per hour is from
Van Ark (1992). Research employment is R&D RSE's
employed in the business sector, OECD (1991) adjusted by
by the fraction of business sector R&D which
is financed by either the business sector or from abroad.
Patent applications are from WIPO (1990). Domestic applications
in Japan are scaled down by a factor of 4.9 (see text).
All data are 1988 values with the exception of productivity growth,
which we average across countries from 1979-1989.
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Table 3: Fitted Parameters

Definition Symbol Fitted value
Parameter of search distribution 0 1.60
Parameter of talent distribution fi 0.0 12

Number of markets (millions) J 0.17

Research productivity 0.00015
Imitation rates:

if not patented 0.226
if patented at home 0.000
if patented abroad 0.221

Diffusion rates from:
Germany 0.037
France 0.0074
U.K. 0.032

Japan 0.020
U.S. 0.0030

Diffusion rates to:

Germany 1. 1.73

France 1.34

U.K. 3. 0.57

Japan 0.87
Diffusion rate domestic 9.77

We parameterize as E,1.e.jq where D takes on
the value 1 if ,i i and the value in the last
row of the table if n = i (we normalize = 1).
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Table 4: Model Fit

Endogenous variable Actual Prediction
Productivity growth

0.035 0.036

Productivity levels (relative to U.S.)
Germany
France
U.K.
Japan

0.82 0.92
0.76 0.84
0.58 0.57
0.82 0.89

Research employment (thousands)
Germany
France
U.K.

Japan
U.s.

97 103
41 42
74 72

289 301

477 437

Patent applications (thousands):

U.S. seeking protection in
Germany
France
U.K.
Japan
U.S.

seeking protection in U.S. by
Germany
France
U.K.

Japan

16 21
15 20
17 15

15 10

76 90

12 8
5 3
6 4

30 12

The full set of 25 patent predictions are available from the
authors.

Table 5: Growth Decomposition

Rows may not sum to 1 due to rounding.
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Fraction of productivity
growth in:

Due to research performed in:
Germany France U.K. Japan U.S.

Germany
France
U.K.

Japan
U.S.

0.38 0.06 0.09 0.31 0.16
0.23 0.22 0.09 0.31 0.16
0.24 0.05 0.30 0.29 0.12
0.16 0.03 0.06 0.65 0.09
0.14 0.03 0.06 0.19 0.58



Table 6: Invention Value Decomposition

Fraction of invention value
from markets in:

For inventions originating in:
Germany France U.K. Japan U.S.

Germany
France
U.K.

Japan
U.S.

0.80 0.02 0.04 0.02 0.00
0.03 0.90 0.03 0.01 0.00
0.02 0.01 0.80 0.01 0.00
0.05 0.02 0.04 0.92 0.00
0.10 0.04 0.09 0.04 0.99

Columns may not sum to 1 due to rounding.

Table 7: Experiments with the Rate of Diffusion

Baseline Technological Borderless
isolation diffusion

Productivity growth
0.036 0.033 0.062

Productivity levels (relative to the U.S.)
Germany
France
U.K.

Japan

0.92 16.1 1.13
0.84 14.9 1.07
0.57 10.4 0.85

0.89 16.7 0.96

Research employment (thousands)
Germany
France
U.K.

Japan
U.S.

103 91 186

42 40 67

72 65 138

301 287 383

437 430 398

In "Baseline" we repeat the predictions of the model from
table 4.
In "Technological isolation" we set the diffusion rates
between the U.S. and the other 4 countries equal to 0.0001.
Since these diffusion rates are not zero, the U.S. still grows
at the same rate as the other 4 countries in steady state.
In "l3orderless diffusion" we set ED = 9.77 even

for n i.
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Table 8: Experiments with the Strength of Patent Protection

Endogenous variable Baseline No patent Perfect patent
protection protection

Productivity growth:
0.0356 0.0352 0.0358

Productivity levels (relative to U.S.):
Germany
France
U.K.
Japan

0.92 0.93 0.93

0.84 0.84 0.84

0.57 0.57 0.57
0.89 0.89 0.89

Research employment (thousands):
Germany
France
U.K.
Japan
U.S.

103 36 314

42 8 90
72 22 220

301 60 558

437 40 504

In "Baseline" we repeat the predictions of
table 4.

In "No patent protection" we set all imitation rates equal to = .226.

In "Perfect patent protection" we set all imitation rates, conditional
on patenting, equal to 0.
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