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Introduction

In 1959, Leif Johansen noted that production technologies in

the existing growth literature were based either on the assump-

tion that capital and labor are used in fixed proportions or on the

assumption of smooth substitutability between factors. He pro-

posed a synthesis of these extremes in which "any increment in

production can be obtained by different combinations of incre-

merits in labor and capital inputs, whereas any piece of capital

which is already installed will continue to be operated by a con-

stant amount of labor throughout its lifespan". Suhsequently,

Solow (1962), Sheshinski(1967), Calvo (1967, 1976), Cass and

Stiglitz (1969), and numerous others investigated the properties

of this so-called putty-clay model.

In most quantitative work to date, economists have used

the now standard model of production with smooth substitution

between factors. In that model, the capital stock of the economy

can be aggregated into a single state variable. In contrast, in the

putty-clay model, capital goods come in a wide variety of types

indexed by the proportions in which they can be combined with

other factors, and, in general, no single capital aggregate can be

formed. The concern that this feature of the putty-clay model

might give rise to an intractable "curse of dimensionality" may

have hindered its application.
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In this paper, we build a version of the putty-clay model in

which there is a large variety of types of capital goods which are

combined with energy in different fixed proportions. Our prin-

cipal contribution is to establish easily checked conditions under

which the problem of solving for the equilibrium of the model

economy reduces to a dynamic programming problem with only

two endogenous state variables, regardless of the number of dif-

ferent types of capital goods that are allowed. In appropriate

applications, this result allows us to avoid the "curse of dimen-

sionality" that typically plagues attempts to analyze the dynam-

ics of economies with a wide variety of capital goods and bind-

ing non-negativity constraints on investment. We apply these

results to study the equilibrium dynamics of value-added, invest-

ment, wages, and energy use in a simple model of energy use with

putty-clay capital.

Several applied economists have suggested that putty-clay

models may be useful in modelling the relationships between en-

ergy prices, output, and other aggregate variables. For example,

in interpreting differing estimates of the elasticity of energy use

in time series and cross section data, Griffin and Gregory (1980)

and Pindyck and Rotemberg (1983) argue that the elasticity of

energy use is low in the short run and high in the long run. Griffin

and Gregory go on to suggest that the putty-clay capital model
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may provide a framework that is capable of generating a grad-

ual adjustment of energy use in response to a persistent change

in energy prices. Pindyck and Rotemberg develop an alterna-.

tivé model of gradual adjustment of energy use based on costs

of adjustment in capital and labor. In another example, in the

business cycle literature, Mork (1989), Tatom (1988), and oth-

ers document an asymmetric relationship between energy price

changes and output. Specifically, they observe a large negative re-

lationship between energy price increases and output but only an

insignificant relationship between energy price decreases and out-

put. Tatom suggests that these observations may be explained

in a model in which the energy intensity of existing capital goods

is fixed.

In the business cycle literature more broadly, several econo-

mists have noted a close relationship between changes in the price

of energy and changes in output in post war data. For example,

in an often cited article, Hamilton (1983) notes that all but one of

the US recessions since World War II have been preceeded a large

increase in the price of oil. Others have noted that the correlar-

tion between output and the real price of energy is significantly

negative. Motivated by these observations, Kim and Loungani

(1992), Finn (1992), and Ratti and Raymon (1992) have used

models with putty-putty capital to assess the role of energy price
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shocks in generating business cycles. They conclude that energy

price shocks can play a significant role, potentially accounting for

between 1/6 to 1/3 of the variablility of output. However, the

predictions this model give for energy use differ from the data

in a key respect: in these models, energy price changes have a

large immediate effect on energy use, while in the data, energy

use adjusts slowly over time. In related work, Rotemberg and

Woodford (1993) develop a model of energy use with fixed costs

and imperfect competition. We use a simple calibrated model to

obtain some preliminary answers to the question of whether in-

troducing putty-clay capital would in fact be useful in addressing

these questions.

We present three main propositions regarding the solution of

the putty-clay model. First, it is immediate that given any wage,

energy price, and vector of existing capital goods, there is a cutoff

energy intensity such that all capital goods with lower energy

intensities are fully utilized and those with higher intensities are

left idle. Second, our main result is that, when all existing capital

goods are always fully utilized, the equilibrium of the model can

be found as the solution of a dynamic programming problem with

only two aggregate endogenous state variables. Finally, we show

that in this dynamic programming problem there is at most one

type of capital with positive investment, even when energy prices

5



are stochastic. These results give rise to a simple algorithm for

computing equilibrium in applications: first solve the simplified

dynamic programming problem to obtain a candidate solution

and then calculate the cutoff rule corresponding to this solution

to verify that the solution indeed satisfies the assumption of full

utilization. Verification of this condition confirms the candidate

solution as the equilibrium of the original model.

We use this algorithm to analyze the impacts of energy price

changes in a calibrated model. It turns out in this application

that the full utilization condition is always met. Intuitively this

is because, in the data, energy costs as a share of total costs are

typically low — on the order of 5 to 15 percent of total costs. We

analyze the properties of the model economy under the assump-

tion that energy prices follow a Markov process with persistence

similar to that estimated by Kim and Loungani (1992) and Finn

(1992). We relate these properties to the applied issues men-

tioned above.

1. The Economy

Index time by t = 0,1,2 At each date, a random

event Sj E S is realized, where S is a finite set. Let s =

(so, s1, 2,•• . ,Si) be the history of realizations of the events up

through date t, and let (5i) denote the probability of I. Output

is produced with inputs of capital, energy, and labor. Energy is
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imported from abroad at an exogenous world price pj(st), and

energy imports are paid for with exports of output, with trade

being balanced at every date. There exists a variety of differen-

tiated capital goods with types indexed by v V, where V is a

finite set contained in [0, oo). A unit of capital of type v provides

capital services in production only in combination with 1/v units

of energy. If k units of capital of type v are combined with e

units of energy where e> k/v, then the energy in excess of k/v

is wasted. If e C k/v, then the capital in excess of ev is left

idle. Capital services are then combined with labor to produce

output. Use of k units of capital of type v, together with e units

of energy and ii units of labor yields

(min(k/v, e))°f(v)°n0° (1.1)

units of output, where f(v), f'(v) � 0 and f"(v) <0.

Heuristically, the relationship between this production func-

tion and more typical putty-putty production functions can be

understood as follows. Consider the production function Q =

F(k,e)°n('°), where k is the capital stock, e is energy use, ii is

labor, F is a constant returns to scale production function, and

Q is gross output. Production may be written Q =

where v = k/e and 1(v) = F(v, 1). Thus, production can be ex-

pressed as a function of the energy intensity of the capital stock,
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v, energy use, e, and labor, ii. To obtain the putty-clay model,

suppose v, the energy intensity of the existing capital stock, is

fixed, and let output be the same function of energy use and

labor given above. Since at most k/v units of energy e can be

used productively with k units of capital of type v, equation (1.1)

follows.

The stock of capital in this economy at date t in state s is

represented as a function ic1: V x Si—i —. [0, oo) where kj(v, t—1)

is the stock of capital of type v. Let the functions e2 V x S

[0, oo) and n V x S —+ [0, co) represent the quantities of energy

and labor used in production, where ej(v, st), n1(v, t) are the

quantities of energy and labor used in combination with capital

of type v. Thus, inputs k1, Ct,n yield aggregate output in state

St

Qi = E(min(ktQ, s1')/v, e1(v, St)))0 f (v)°n1(v, t)00) (1.2)

We assume that all types of capital depreciate at the same rate

S and that investment in each type of capita], X1(V,8), must be

non-negative, so that

x1(v,st) = k+1(v,st) — (1 — 5)kj(v,st) � 0 (1.3)

for all v E V and s E St. There is a total of one unit of labor

input in the economy. The preferences of the representative agent
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are given by

f E/3tir(st)u(c(st))
t=o ,'

The equilibrium allocation for this economy can be found as

the solution to the problem of choosing sequences of functions

{kj÷i,xj,ej, ,nt,ct}o to maximize

(1.4)
t=o t

subject to the constraints (1.3) and

= [e2(v, s )°f(v)°n1(v, t)(1—O) — p(st)ej(v, 3t)] (1.5)

ct(st) +Exi(v,s) y(5t) (1.6)

ej(v,st) � Ict(v,s2')/v, Vv,s (1.7)

et(v,st),rtt(v,st) � 0, Vv,st (1.8)

Ent(v,st) � 1. (1.9)

with ko(v, SO) given. The use of the constraint (1.7) in place of

the term min(k/v, e) in production is justified by the observation

that it is never optimal to consume more energy than can be

productively employed with the current capital stock.

As stated here, problem (1.4) has endogenous state variables

(kj(v, t1)) of dimension equal to the number of elements in V.
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To allow smooth substitution between energy and other inputs

in the long run, it is necessary to make the number of elements

in V large. Thus, the "curse of dimensionality" prevents a direct

attack on this problem. In what follows, we show that if all ex-

isting capital goods are always fully utilized in equilibrium, then

the vector of state variables Ic can be reduced to two aggregated

state variables, regardless of the number of elements in V.

We begin by analyzing the decision to utilize existing cap-

ital goods. Observe that this decision is static. Consider prob-

lem (1.4). Clearly, given a realization of s and k2(v, 8t—1) and

p2(t), the energy use ej(v, I) and labor allocations nj(v, I) that

maximize value-added at t and s, maximize (1.5) subject to con-

straints (1.7)-(1.9). Analysis of this problem yields,

Proposition 1: (A Cutoff Rule) Given capital stock vec-

tor k and energy price p, there is a cutoff type of capital v'(k,p)

such that all capital of types v > v*(k,p) is fully utilized and

capital of types v c v'(k,p) is not utilized at all. The cutoff

intensity level ? is increasing in p.

Proof: Consider the Lagrangean

max E[e(v)°f(v)°n(v)'°) — pe(v)]

+u(v)[k(v) —e(v)v] ÷>ee(v)e(v)
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+w[1 — Em(v)] +

Here, the multiplier p(v) is the marginal product of capital goods

of type v and the multiplier w corresponds to the wage rate that

clears the labor market when capital stock k and energy price p

are given. The first order conditions of this problem include

Of(v)0(Th?)(1_8)
— p = p(v)v — e6(v)

(1 — 9)(6 )°f(v)° = w —

From these first order condition.s, we get the result that

= max[Of(v)(
(1 0)

)(1-O)JO — 01.

Thus, capital of type v is utilized, in the sense that e(v) and n(v)

are positive, only if

Of(v)(1
— 0

)(1-O)IO —p � 0, (1.10)

and it is utilized fully if this is a strict inequality. Since the first

term in (1.10) is strictly increasing in v, we see that the decision

to utilize capital is determined by a cutoff rule, with energy saving

capital (high v) being used fully and energy intensive capital (low

v) being left idle. The cutoff energy intensity, denoted v', is

increasing in both the energy price and the wage rate, where the

wage rate is determined by the existing stock of capital goods Ati
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For any given energy price p and capital stock !c(v), we

can check whether the whole capital stock is fully utilized as

follows. Since production is Cobb-Douglas in capital services

and labor, wages are w = (1 — O)CJ where Q is gross output.
If all capital is fully utilized, e(v) = k(v)/v for all v, n(v) =

k(v)f(v)v1/>k(v)f(v)v' for all v, gross output is

Q = (Ek(v)f(v)/v)°,

and value-added is

= (Ek(v)f(v)/v)° —pEk(v)/v. (1.11)

Given capital stock k, substitute the expression for wages under

the assumption of full utilization into (1.10) and then check the

condition that v > vt(k,p) for all v such that k(v) > 0.
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2. A Simple Algorithm

We now turn to our main result. We present a simple pro-

gramming problem with two state variables (Z and M) which

we refer to as aggregate capital services and aggregate energy

use. We then show that, if the solution to this problem satisfies

our full utilization condition, then we can use it construct the

solution to the original problem (1.4).

To that end consider the problem of choosing sequences

{Zt+i(st),.M+i(st), x2(V,81), ct}o to maximize

(2.1)
t=o

subject to

cj(st) + >xt(V,s) c Z(d') — p(s2)A4(st') (2.2)

Zj1(s2) = (1 — 5)Zt(s2') + Ext(V, st)f(v)/v (2.3)

= (1— 5)M1(st') +Lxt(v,s)/v (2.4)

x(v,st) � 0 Vv,st (2.5)

with Z0, M0 given.

Given any choice of sequences {2+i, M+i, ôt}'Io and ini-

tial Z0,M0 that satisfy constraints (2.2)-(2.5) and have Zo(s°) =
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Eko(v,s°)f(v)/v and Mo(s°) = Eko(v,s°)/v, we can con-

struct an allocation {k+, ê1, nj, êj}0 which satisfies (1.3) and

(1.5)-(1.9) as follows. Let

= (1— 6)kt(v,st) +It(v,81),

êj(v,81)
= kt(v,s1)/v

ñt(v, st) = kj(v, s2')f(v)if'/ Ict(v, s1')f(v)v'

and i and ô are the same. We then have the following:

Proposition 2: (An Equivalent Problem) Given ini-
tial capital stock Ice, let {2jj, Jt11, Z, êt}70 solve problem

(2.1) with Z0 = Eko(v)f(v)/v and M0 = ko(v)/v. Let

the sequences {k21, It, el ñ, ât} be the allocation derived

from that solution. If this allocation satisfies condition that

v > v(kj(s'),p(s)) for all dates t, states st and capital types

v such that kj(v, s1') > 0, then this allocation solves problem

(1.4).

Proof: If v > v*(ict(st_1),pj(st)) for all dates L, states s

and capital types v such that icj(v, tt) > 0, then constraint

(1.7) always binds. To see that the constructed sequences { k1÷1,

el, n, ê1}0 solve problem (1.4), it is easiest to rewrite (1.4)

with the assumption that (1.7) always binds. To do this, use

(1.7) to substitute out for energy use. Then note that the labor
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allocation problem is static, and that for a fixed capital stock, its

solution takes the form given by the expression for ñ.2(v, 3t). After

substitution for energy use and labor into (1.5) and combining

(1.5) with (1.6) gives

c(st)+Ext(v,st) � (2.6)

(E !cj(v, s2_1)f(v)/v)O — pt(s5( k1(v, .s_')/v)

Keeping (1.3) as before this simplified problem is then one of

choosing sequences for {kj÷i(v, 5t), xt(V, 3t), c1} to maximize

(1.4) subject to (2.6) and (1.3). Final substitution of Z+i(st)

for Ek2÷i(v,st)f(v)/v and Mt+i(s1) for >1cj+i(v,st)/v makes

it easy to see that the constructed sequences derived from the

solution to (2.1) solve this simplified version of (1.4).

We now show that in the solution to problem (2.1), in each

period and each state of nature, there is positive investment in

at most one type of capital.

Proposition 3: (One Type of Investment) Let {2+,
solve problem (2.1). Then at each date t and in

each state 3*, there is at most one v E V such that 1t(u,st) > 0.

Proof: In the case that all capital is always fully utilized,

we may examine the properties of the solutions of problem (2.1).

Let Aflst),Af(st) AJ(3t) and Af(v,st) be Lagrange multipliers
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on constraints (2.2),(2.3),(2.4), and (2.5) respectively. The first

order conditions of the problem (2.1) with respect to xt(v, I) are

then

= )4(s) — (s)f(v)/v — )M(s2)/v. (2.7)

Investment zj(v, 8t) is positive only if the multiplier A'(v, 8i) = 0.

Furthermore, this multiplier is non-negative, so that zero is its

minimum value. Let i3 be at type of capital that receives positive

investment. Since zero is the minimum value of AT(v, 5t), not

only is A(i, 8t) equal to zero, but so is the derivative of AT(i3, 3t)

with respect to v. The derivative of A7(v, 3t) with respect to v is

given by

[—Af(st)(f'(v)v — 1(v)) +

The sign of this derivative depends on the sign of the numerator

of this expression. The multiplier AZ is positive (since Z increase

welfare) and the multiplier AM is negative (since M decreases

welfare). Since f(v) is strictly concave, this numerator is strictly

increasing in v. Thus, the derivative of A(v,8i) is strictly nega-

tive for v <€3 and strictly positive for v > 5. Hence, if it exists,

13 is the unique minimizer of M(v, 3t).

While we find that proposition 3 is useful in simplifying com-

putation 0 equilibrium, we also find that it sheds some light on

the workings of the model. At first glance, one might think that
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the problem of choosing which types of capital goods to invest in

would be similar to a portfolio allocation problem, with multiple

types of capital receiving positive investment in a given period

for reasons of diversification. This proposition shows that this

analogy is flawed: under the condition that all capital is always

fully utilized, in this model, at each date and in each state of

nature, there is always at most one optimal type of capital for

investment. To see why this is true, it is useful to consider the

problem of choosing investment in this model as a portolio selec-

tion problem.

Given the description of the production technology, at each

date t and in each state of nature s, it takes one unit of con-

sumption to produce a unit of new investment in capital of type

v. Thus the one period return, in terms of the consumption good,

of investing in one unit of new capital of type v is given by

= (1— 5)qjj(v,s*fl) +r2-{-l(v, tt1),

where q1+i(v, st+1) is the price of a unit of capital of type v at

date t + 1 in state 8H and rj÷j(V, SI+1) is the rental rate for unit

of capital of type v at date t +1 in state t+1 A consumer will be

willing to make a positive new investment in any type of capital
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v such that

( i+1\ !( ( t+1\\
R÷j(v,s) � 1. (2.8)

81 + 1

In equilibrium, aggregate investment adjusts so that the left hand

side of (2.8) is less than or equal to one for all values of v, and

equal to 1 for all values of v that receive positive new investment.

Thus, if the returns on investment of capital of different types

v are sufficiently correlated in the sense that the expression on

the left hand side of (2.8) is single peaked for any portfolio of

investments, then there is investment in at most one type of

capital at each date and state t, s.

We can obtain an expression for the return &+i(v, st+1) from

the firm's profit maximization problem. The firm purchases in-

vestment goods and produces output in order to maximize

> )%7(st)[OZj(s2_1)0_pt(st)!vJ(st_1)_> q(v, s1)xt(v, st)] (2.9)

list V

subject to the constraints (2.3) and (2.4). In (2.9), A(st) is the

date zero price of consumption at date t, state s, and OZ1(st_l)6

is gross output less payments to labor. The first order condition

for investment from this problem is

q1(v,.st) = 4f(v)/v+1/v (2.10)
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If capital of type v is fully utilized, then at the margin one unit

of new investment contributes

rj+i(v,st) = 0Z2+i(st)°'f(v)/v _pt÷i(st+l)/v (2.11)

to value-added. From these two expressions, it is clear that the

return to investment in new capital of type v takes a simple form

Rj÷j(v, 3t+1) = A2+j(st)f(v)/v + (2.12)

where

A+i(st) [(1 — 6)A,.1(st') +

and

= [(1 — 5)AM (3t+1) +p+1(st+1)].

The term At+i(s1") is positive and B1+1(st+l) is negative. As we

have seen in the proof to Proposition 3, functions of this form

are single peaked in v. The first order condition (2.8) is formed

from a weighted sum of these returns and thus takes the form

Gj(st)f(v)/v + H(st)/v = 1 (2.13)

where

1+1 1 i-Fl

Gj(st) =71 (t)'(;)
19



/ t+1\ If f i+1\\
H(s) = )tL\Cj..448 J)B(st+1)

91+1

Again, C(st) positive and H(st) negative, so this weighted sum

is also single peaked in v. Intuitively, the fact that the returns

to investment in capital of type v separate into terms dependent

on the state of nature and terms dependent on v in the manner

indicated in (2.12) forces these returns to be suffiently well lined

up that there is at most one optimal choice of type of capital for

investment. This choice, of course, varies at each date with the

current state.

This result does not generalize to cases in which some types

of capital are left idle in some states of nature. To see why not,

consider a two period example, with dates t = 0,1, with uncer-

tainty represented by two states of nature 3i, 2 in the second

period. Let there be two types of capital v1, v2 and assume that

capital of type 1 is left idle in state s2. The return to investing

in capital of type v in this case is simply the marginal product

of capital of that type at t = 1. Thus Rj(vi, 82) = 0. Consumers

will invest in both types of capital at t = 0 if

-p(si)/vj] = 1

and

> fr(s)u'(ci(s)) [OZ°'f(v2)/v2 — p(s)/v2] = 1
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Here, these two expressions do not separate as in (2.13) the same

way for both types of capital. It is a straightfoward exercise

to construct an example in which two types of capital receive

positive investment in a case such as this.

3. An Application

In this section we present an application of these results in

which energy prices follow a Markov process. The solution to

the model can be found as the solution to a Bellman equation

with two endogenous state variables and two controls. Let en-

ergy prices follow a Markov process with a finite set of states

{p}. Let ir(p',p) be the probability that the energy price is p' at

date t+ 1, given that the energy price isp at date t. We solve for

equilibrium under the assumption that for every realization of the

Markov process for energy prices, the corresponding equilibrium

capital stock is always fully utilized. We then verify this assump-

tion after calculation. Given this assumption, we can treat the

problem (2.1) as a dynamic program with endogenous state vari-

ables: Z = >, kj(v)f(v)/v and M = , k1(v)/v. We assume

that F(k,e) = k0e(l), so 1(v) = v°. We write the Bellman

equation as follows.

W(Z,M,p) = XVZ'M' >( )(p) (3.1)C,,,,
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subject to the constraints

c+x=Z°—pM (3.2)

Z'=(1—5)Z+xf(v)/v (3.3)

M' =(1 —S)M+x/v (3.4)

Note that we have used the result of Proposition 3 restricting

investment to one type of capital good. We use a method out—

lined by Judd to solve this problem — we approximate the de-

cision rules c(Z, M,p) and v(Z, M,p) with Chebyshev polynomi-

als, choosing the approximation that minimizes the error induced

when these approximate decision rules are inserted in the two in-

tertemporal euler equations derived from this Bellman equation.

Presumably, a wide variety of alternative solution methods would

work as well.

Before presenting the findings from the stochastic simulation

of the model, it is useful to look at some static calculations to

get a sense of the size of the immediate impact of energy price

shocks of various sizes on value-added in the model economy

and to examine the range of price changes for which all capital

remains fully utilized. We present these calculations in Table 1.

We assume that the capital stock that exists at date 0 is the

capital stock that holds in the steady state of the model when
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energy prices are permanently fixed at p = 1. We then calculate

value-added in period 0 for various values of p. For comparison,

we include the same calculation for the case in which capital is

putty-putty, so that there is a single capital stock It and gross

output is given by Q = (k°e('°))°n('°). We also calculate the

steady state level of value-added that will obtain if the new energy

price lasts forever. In the calculations in Table 1, we assume that

= .96, labor's share (1 — 0) in total costs due to capital, labor,

and energy is 2/3 and that energy's share 0(1 — a) in these costs

in the steady state when energy prices are constant is 1/20. We

set 5 = .08. These figures are roughly consistent with cost shares

for the U.S. economy as a whole.

There are three main regularities that emerge from these

calculations. First, the immediate impact of a large energy price

increase is larger in the putty-clay economy than in the putty-

putty economy. Second, the impact of energy price changes is

asymmetric in the putty-clay economy in comparison with the

putty-putty economy: energy prices increases have a greater im-

pact on value-added than energy price decreases. Third, when

the cost share for energy is low, there is a wide range of energy

prices for which all capital remains fully utilized.

In comparing the asymmetric relationship between energy

prices and output reported in Table 1 to that found by Mork
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(1989) and Tatom (1988), recall that these authors ran regres-

sions of log changes in output on log changes in energy prices.

The price columns in Table 1 correspond to equal positive and

negative changes in the log of the energy price while the percent-

age changes in output reported in the table approximate the log

of the change in output. The figures in the table indicate that

with an energy cost share of 5 percent, approximating the energy

cost share for the economy as a whole, capital is not left idle until

energy prices increase by more than a factor of 6. If we set the

energy cost share to 15 percent, approximating numbers reported

by Griffin and Gregory for the manufacturing sector of the econ-

omy alone, capital is not left idle until energy prices more than

double.

We now consider an economy in which energy prices follows

a Markov process. We compare the properties of a models with

putty-clay and putty-putty technologies. Let the parameters of

preferences and technology be as before. Let the energy price

process take on two states, a high state ph and a low state pj. Let

the mean energy price equal 1, let the variance of energy prices

be .1, and let the serial correlation be .95. This serial correlation

and variance are similar to those found by Finn(1992), Kim and

Loungani(1992), and Ratti and Raymon(1992). These statistics

give energy prices Ph = 1.3162, and pj = .6838, and transition
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probabilities lr(ph,ph) = lr(pj,pi) .975.

In Table 2, we report statistics from these economies assum-

ing first putty-clay and then putty-putty capital. The mean and

the standard deviation of output are nearly the same in the two

models. Mean energy use in the putty-clay economy is about 5

percent lower than in the putty-putty economy. The standard

deviation of energy use in the putty-clay economy is less than 60

percent its level in the putty-putty economy. The standard devi-

ation of wages in the putty-clay economy is less than 75 percent

of that in the putty-putty economy, while the standard deviation

of investment is 15 percent higher in the putty-clay economy. En-

ergy use, wages, and investment are highly correlated with output

in both economies, but slightly less so in the putty-clay economy.

Finally, in the putty-clay economy, the response of output to en-

ergy price changes is asymmetric, while in the putty-putty model

it is symmetric.

To get some intuition for the workings of the economy, we

plot segments of realized energy prices and major aggregates from

simulations of both economies. These plots are presented in Fig-

ures 1-7. Figures 1 and 2 plot the path of energy prices and the

corresponding paths of value-added. Note that when the energy.

price rises, value-added fails more initially and stays lower in the

putty-clay case. When the energy price falls, value-added rises
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further initially in the putty-putty case. We also see the asym-

metric initial response of value-added to energy prices changes in

the putty-clay model in these figures.

The asymmetric response of output to energy price changes

in the putty-clay economy can be understood as follows. Dur-

ing a long spell of low energy prices, the energy intensity of the

putty-clay economy builds up over time. When this long spell

is followed by an energy price increase, the impact of this price

increase on value-added is large. On the other, hand, if a long

spell of high energy prices is followed by an energy price decline,

the energy intensity of the economy will be low so that the price

decrease will not have much affect on value-added.

Figure 3 plots the transition paths of energy use in the two

models. Here the difference between the two modeLs is stark:

in the putty-clay model, energy use adjusts slowly, while in the

putty-putty model, the adjustment is instantaneous. Figure 4

shows that when the price of energy rises, investment falls in both

the putty-clay and putty-putty models, but the drop is larger in

the putty-clay model. Figure 5 shows that wages adjust more

gradually following energy price changes. Figure 6 shows the

fraction of the payments to energy and capital that go to energy.

This fraction almost doubles initially when the energy price dou-

bles and then falls gradually as there is investment in less energy
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intensive types of capital. Note that when the energy price rises,

the higher payments to energy come out of the returns to capital.

Figure 7 shows the energy intensity of new investment. The

choice of the type of new investment is quite responsive to energy

price changes because these changes are persistent. In addition,

there are small changes in the type of new investment that occur

as the energy intensity of the existing capital stock gradually

adjusts.

Conclusion

Despite the early theoretical attention given to putty-clay

models of capital, they have not found frequent use in stochastic

applications. We show that, in fact, the putty-clay model is quite

tractable, even in stochastic applications, as long as a certain

condition is met. We present an application of the model to

energy use and find that this condition is met in practice.

Simulation of this simple model produce several observa-

tions. First, this model produces a negative correlation between

energy prices and output. Second, this relationship between en-

ergy prices and output is asymmetric. Third, energy use responds

gradually to persistent changes in energy prices. While it is true

that the putty-putty model produces a negative corrlation be-

tween output and energy prices, it is not consistent with these

latter two observations. In this sense, the putty-clay model is an
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improvement over the putty-putty model in terms of capturing

salient features of the data. While these results seem promising,

more detailed work will be needed to see if this putty-clay model

will prove useful in modelling energy use and business cycles.
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Table 1

Immediate Impact of Oil Price Changes
0 = 1/3 (1— a)0 = .05 /3 = .96 5 = .08 p = 1

Price Clay Putty S.S.

Po Yo/? -1 Y0/? -1 Y0/? -1

1.01* -.0005 -.0005 -.0007

1.05* -.0026 -.0026 -.0037

1.10* -.0053 -.0050 -.0071

1.25* -.0132 -.0117 -.0166

1.5* -.0263 -.0211 -.0300

2* -.0526 -.0358 -.0507

3* -.1053 -.0562 -.0791

4* -.1579 -.0704 -.0987

5* -.2105 -.0812 -.1137

6* -.2632 -.0900 -.1257

7 -.3152 -.0973 -.1358

8 -.3594 -.1037 -.1444

9 -.3960 -.1092 -.1519

10 -.4270 -.1141 -.1586

* indicates that the capacity constraint is binding in this case
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Table 1, cont.

Immediate Impact of Oil Price Changes
0 = 1/3 (1 — a)0 = .05 /3 = .96 5 = .08 p = 1

Price

Po

Clay

Y0/Y 1

Putty

Yo/? 1

S.S.

Y0/? 1

1/1.01* .0005 .0005 .0007

1/1.05* .0025 .0026 .0037

1/1.10* .0048 .0050 .0072

1/1.25* .0105 .0118 .0169

1/1.5 * .0175 .0216 .0309

1/2* .0263 .0372 .0534

1/3* .0351 .0595 .0859

1/4* .0395 .0757 .1096

1/5* .0421 .0884 .1283

1/6* .0439 .0989 .1438

1/7* .0451 .1078 .1571

1/8* .0461 .1157 .1688

1/9* .0468 .1226 .1791

1/10* .0474 .1288 .1885

* indicates that the capacity constraint is binding in this case
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Table 2

Statistics from Putty-Clay and Putty-Putty
Economies with Markov Energy Prices

0 = 1/3, (1 — cr)O = .05 fi = .96 5 = .08

Y — value-added, M — energy use, w — wages, x — investment

Statistic Putty-Clay Putty-Putty

mean(Y) 1.09 1.09

mean(M) .061 .064

std(Y)/mean(Y) .027 .027

std(M)/mean(M) .200 .341

std(w)/std(Y) .562 .766

std(z)/std(Y) .434 .377

corr(M,Y) .874 .979

corr(w,Y) .926 1.00

corr(x,Y) .773 .887

corr(p,Y) -.961 -.985

mean(Mog(Y)z.p> 0) -.040 -.034

rnean(Alog(Y)zp c 0) .029 .034
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