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1 Introduction

A newcomer to the theory of bond pricing would be struck by the enormous
variety of models used by academics and practitioners alike. Prominent ex-
amples include Black, Derman, and Toy (1990), Brennan and Schwartz (1979),
Cox, Ingersoll, and Ross (1985), Heath, Jarrow, and Morton (1992), Ho and Lee
(1986), and Vasicek (1977), and one could easily add many others to the list.
The common element linking these diverse theories is what Sargent (1987) terms
the pricing kernel: the stochastic process governing prices of state-contingent
claims. A theory of bond prices that does not admit pure arbitrage opportu-
nities implies that a pricing kernel exists. Hence a theory of bond prices is
essentially a choice of pricing kernel.

Given a pricing kernel, we can compute prices of bonds and related assets.
We describe and implement a procedure for doing the reverse: of using prices
of riskfree government bonds to deduce the pricing kernel. We do this in a
discrete-time log-linear theoretical framework that has been used by) among
others, Campbell (1986), den Haan (1993), and Turnbull and Mime (1991), and
is closely related to the one-factor Gaussian interest rate model of Jamshidian
(1989) and Vasicek (1977). This framework does not encompass all of the mod-
els in the literature, or even all of those listed above, but its simple structure
makes the relation between bond yields and the pricing kernel relatively trans-
parent. Given this structure, we can trace observed properties of bond prices
to properties of the kernel. We show, for example, that the upward slope of
the mean yield curve and the positive autocorrelation of interest rates provide
information about the pricing kernel that bear on the pricing of related assets.

Our estimated pricing kernel provides a useful perspective on both the gen-
eral equilibrium foundations of asset pricing and the properties of interest-rate
derivative assets. With respect to the foundations of asset pricing, the widely-
documented discrepancies between representative agent theories and observed
asset prices have been linked, most notably by Hansen and Jagannathan (1991),
to variability of the pricing kernel. Like them, we find that the pricing kernel
has substantially greater variability than theory based on a representative agent
with power utility. We find, in addition, that most of this variability is short
term. With respect to derivative assets, our estimated kernel provides some
insight into their pricing. One example concerns bond options. In our theoret-
ical framework, an increasing mean yield curve implies mean reversion in the
kernel and the short rate. As a result, approaches to option pricing that do
not incorporate mean reversion must compensate by positing a declining term



structure of volatility. A second example concerns the relation between forward
and futures prices. Although these prices need not bear any particular relation
to each other in our framework, our estimated kernel implies that futures prices
are less than forward prices, as they seem to be in the data. This property is a
general consequence, in our framework, of kernels that imply a positively auto-
correlated short rate, and holds even when the mean yield curve is decreasing.
These examples illustrate, we think, the benefits of reducing the theory of bond
pricing to its least common denominator, the pricing kernel.

We develop these issues in the following pages, starting with a quick look at
the salient properties of bond yields and forward rates.

2 Properties of Bond Yields

We review two features of yields and forward rates on US government bonds:
the tendency for long rates to be higher than short rates, on average, and the
high degree of persistence in yields and forward rates of all maturities. The
data are monthly, and were constructed by McCulloch and Kwon (1993).

To fix the notation, let b' denote the dollar price at date i of an n-period
discount bond: the claim to one dollar in all states at date t + n. The dollar
yield on a bond of maturity n, for n > 0, is

yfl = —n1logb. (1)

The yield on a one-period bond is simply the short rate: rg = —logb.
Forward rates are implicit in the prices of n- and (n + 1)-period bonds:

f = log(b/b1). (2)

From definitions (1) and (2) we see that yields are averages of forward rates:

yfl__lfJ_l (3)

Thus we can express the maturity structure of riskfree bonds in three equivalent
ways: with prices, yields, or forward rates.

The most common method of representing the term structure is with yields,
to which we turn now. The first feature of interest is the slope of the yield curve.
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We see in Table 1 and Figure 1 that the yield curve has been, onaverage, upward
sloping. This characterization holds for the postwar period as a whole (1952-
91) and for a shorter recent period (1982-91). Certainly yields have been higher
over the last decade than they were earlier, but there has been no qualitative
change in their tendency to increase with maturity.

The second feature we want to stress is the high degree of persistence in bond
yields. The first-order autocorrelation, reported in Table 1, is at least 0.9 for
all maturities. For the period as a whole, the autocorrelation of the one-month
yield is 0.976, and for the last decade 0.906. This pattern of somewhat smaller
autocorrelations over the recent past applies to all maturities. The autocorrela-
tions are similar across maturities, but increase slightly with maturity in both
sample periods. Some authors have interpreted the high degree of persistence
as suggesting the possibility of a unit root in the short rate. Chan et a!. (1992,
p 1217), for example, note that there is "only weak evidence of mean reversion."
Perhaps for this reason, the theoretical models of Ho and Lee (1986) and Black,
Derman, and Toy (1990) start with unit roots in, respectively, the short rate
and its logarithm.

Since the theory is expressed most simply with forward rates, we report
analogous properties for them in the second panel of Table 1. Both features of
bond yields show up in forward rates, too. One minor exception is the slope of
the mean forward rate curve: there is a modest nonmonotonicity between five
and ten years. The departures from monotonocity are small, however, relative
to sampling variability and the accuracy of the forward rate data.

These properties of bond yields and forward rates will come as no surprise,
but they serve as useful guides in thinking about the theory that follows.

3 A Theoretical Framework

Our theoretical framework starts with the pricing kernel: the stochasticprocess
for state-contingent claims prices. Among the many notable applications of this
approach to bond pricing, real and nominal, are Cox, Ingersoll, and Ross (1985),
Constantinides (1992), Duffie (1993), and Longstaff and Schwartz (1992). Our
discrete-time, log-linear structure builds on earlier work by Campbell (1986),
den Haan (1993), and Turnbull and Milne (1991).

3



The pricing kernel is a stochastic process for a positive random variable rn

satisfying
1 = E(nzt÷jR11) (4)

for all maturities n, where R1' b+1/b4' is the one-period (gross) return
on an (n + 1)-period bond and E denotes the expectation conditional on the
date-t information set, which includes the history of the pricing kernel. In
representative agent economies, m is the nominal intertemporal marginal rate
of substitution and (4) is a first-order condition. More generally, there exists
a positive random variable m satisfying (4) if the economy admits no pure
arbitrage opportunities. See, for example, the discussion in Duffie (1993, Section
LA). More important for our purposes, equation (4) allows us to price bonds
recursively:

= E(mj÷ib÷1). (5)

By convention b = 1 (a dollar today costs one dollar).

The pricing relation (5) becomes a theory of bond prices once we characterize
the pricing kernel rn. A convenient and tractable choice is the infinite moving
average,

—logm = 5+>ct—j, (6)

for {} normally and independently distributed.with mean 0 and variance o.2•
The logarithm guarantees that m is positive; the negative sign is chosen to pro-
duce simple expressions for interest rates. We normalize by setting o = 1, so
that cr is the variance of the innovation . Stationarity requires that the coeffi-
cients be square summable: < co. The dynamics of m are governed by
the moving average coefficients {a,}. In most respects, this specification of the
pricing kernel is simply a tr3nslation into discrete time of the one-factor Gaus-
sian interest rate model. The difference is that our formulation allows more
complex interest rate dynamics than the diffusions used by Jamshidian (1989)
and Vasicek (1977). We will see later that this difference is essential.

We are now in a position to compute bond prices. We show, by induction,
that bond prices can be expressed in log-linear form as

—logb = ji + (7)
j=0
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for some parameters {jf, /9}. For n = 0 we have log b = 0, so

(8)

for all j � 0. Given the price function (7) of an n-period bond, we use the pricing
relation (5) to compute the parameters of the price function of an (n+1)-period
bond. The first step is to evaluate the conditional expectation in (5). Note that

logb÷1 +logm÷1 = —(S+p')—(cj +f3)+_.

The conditional mean and variance of this expression are

E(log b1 + log mt+i) = —( + jz) — E(aj+i + ÷1)ej

and

Varg(log t1 + log m1) = (co + fl)2o2.

We now apply a property of expectations of log-normal random variables: if log x
is normal with mean and variance cr2, then log E(x) = jt + o/2. Applying
this formula to the pricing relation (5) and collecting terms, we find that the
(n + 1)-period bond price function has the infinite moving average form (7) with
parameters

jfl+I =+S—(ao+/3)2o2/2 (9)

1Pj —FJ+I-I-a,+1,
for n,j � 0. Evaluating the bond price functions, then, is simply a matter of
running through the recursions (9,10), starting with the initial conditions (8).

As in Heath, Jarrow and Morton (1992), the pricing formulas are simpler for
forward rates than for bond prices. We start by defining partial sums of moving
average coefficients,

= >,.
From the recursion (10) and the initial value (8), we see that the moving average
coefficients for the bond price function are

n
— (11— — fl+J

i=1
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Since j3" = A — A0, the intercept in the bond price function is

= n5—(2/2)A1.

Thus bond price functions are governed by the partial sums of moving average
coefficients, A.

Turning to forward rat;es, we see from equations (2,7) that they can be
expressed

ffl = (fl+I — i') + (i3' —

From (9,11) we find that the intercept in the forward rate function is

—1f=5—Ao2/2

and the moving average coefficients are

n+1 AP3 Ij — fl+3+1
—

fl+J — fl+,+1

Forward rates are summarized, then, by

Proposition 1 Forward rates in this economy have the infinite moving average
representation

f = (12)

with parameters {S,u,a3) of the pricing kernel (6) and A

Proposition I characterizes forward rates in this economy. From it, we can
construct prices and yields on bonds of any maturity. Yields, for example, are
averages of forward rates [see (3)],

= S — (cr2/2n) A_1 + n (A1 — A1)_1, (13)

and bond prices are simple functions of yields,

— logb' = nS — (i2/2) >A_1 +(A+1 — Aj)g...j. (14)
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Thus, if we know the parameters of the pricing kernel we can compute bond
prices, yields, and forward rates. Our plan is to do the reverse, and use obser-
vations of bond prices to uncover the parameters {5, a, a3) of the kernel.

Remarks. 1. Although the state is infinite dimensional, in the sense that
bond prices depend on the infinite history of &s, in another sense this is really a
one-factor model. One-period returns on bonds of all maturities are (except for
a small nonlinearity) perfectly correlated, since the only source of uncertainty is
next period's innovation. Our framework, however, allows more general dynam-
ics than most other one-factor models. Multifactor extensions are considered in
Appendix B. 2. Proposition 1 can be proved more directly by attacking forward
rates instead of bond prices (see Appendix A). The cost is that we must start
with a somewhat less intuitive pricing relation for forward contracts.

4 Reverse Engineering 1: An Example

One of the intriguing features of bond yields is the close relation between their
"time series" and "cross section" properties: the pricing kernel dictates both the
dynamic behavior of interest rates and the slope of the yield curve at a point in
time. In this section we describe how time series and cross section information
can be used to characterize the underlying pricing kernel. Both are necessary:
the parameters of the kernel cannot be inferred from the time series or cross
section of bond prices alone. An example illustrates in a more concrete setting
how both kinds of information can be used to estimate the parameters of the
kernel.

One source of information about the pricing kernel is dynamic properties
of interest rates, like autocorrelatjons and autocovariances. The short rate, for
example, is

= jO = — 2/2 + Eaj+it_j,

so its autocorrelations are determined by {aj,a2, .. .}. These moving average
coefficients are those of the pricing kernel shifted over one position, so we lose
one piece of information about the kernel when we look at the short rate. As we
move up the forward rate curve, we lose additional moving average coefficients
[see (12)1, so the dynamics of the short rate are more informative than the
dynamics of longer-maturity forward rates. The time series evidence, however,
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is not sufficient: the variance .2 of innovations to the pricing kernel cannot be
identified from time series alone.

A second source of information about the pricing kernel is the cross section
of bond yields, exemplified by the yield curve at a point in time or the mean
yield or forward rate curve. The mean forward rate curve, for example, is

E(fTh) = —

and the mean yield curve is

E(y') = S — (o2/2n) A_1. (15)

Information on mean yields or forward rates, however, is not generally sufficient
to identify the parameters of the kernel. One reason is that mean forward rates
depend on squared partial sums, A, and a given sequence of squared partial
sums can be generated by more than one sequence of moving average coefficients.
The two sequences of moving average coefficients,

{l,—.5,—.3,—.1,...} and {I,—1.5,.7,—.1,. .

both produce the same values of A, so they generate the same mean forward

rate curve. Another reason why cross section evidence is not enough is that n
mean forward rates depend on n + 2 parameters: 5, o, and the first n cr's. We
gain one degree of freedom from the normalization cro = 1, but that leaves us
short one piece of information. The cross section of forward rates, then, like
the dynamics of the short rate, is insufficient to identify the pricing kernel. The
kernel can generally be identified, however, by a combination of time series and
cross section evidence, which we do shortly.

Although the cross section evidence cannot generally tell us all of the pa-
rameters of the kernel, the slope of the mean forward rate curve places limits
on the dynamics of the short rate. To produce an increasing mean forward rate
curve, the parameters must satisfy

(16)

This implies, by itself, mean reversion in the short rate. This follows since an
increasing mean forward rate curve requires the positive sequence {A} to be
decreasing, so it must converge. This rules out pricing kernels whose partial
sums diverge, including the random walk model of Ho and Lee (1986) and
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our own fractional difference model (Backus and Zin, 1993). In the random
walk model the moving average coefficients are a, = a1 for j � 1, so that
A = 1 + na1. As long as c is nonzero, the squared partial sum A eventually
grows without bound as n increases, and the mean yield and forward rate curves
eventually decline with maturity. Unless this effect appears at maturities greater
than ten years, the random walk model is inconsistent with our observation (in
Table 1 and Figure 1) of increasing mean yield and forward rate curves. Dybvig
(1989) makes a related point about the Ho and Lee model and suggests an
alternative that exhibits mean reversion.

An example illustrates how the time series and cross section properties of
bond yields might be combined to estimate the parameters of the pricing kernel.
We approach this estimation problem formally in the next section, but its logic
is apparent from an informal moment matching exercise. Let us say that the
pricing kernel is ARMA(1,l):

—logmt = (1— )S — logm_i + +
The moving average coefficients are then a0 = I, c = p + 0, and a3 = ( +
0)p' for j > 1, so the coefficients are square summable if 1. The nice
feature of this example is that it delivers the first-order autoregressive short rate
studied by Turnbull and Mime (1991), Vasicek (1977), and others. The short
rate for this example is

= (I — )(5 — 0.2/2) + O). (17)

An estimate of this equation over the same sample period as Panel A includes
the autoregressive parameter, cp = 0.976, and an estimate of the innovation
variance,

Var[(p + 0)] = (cp + 0)2a2 = 0.0005342.

The time series evidence thus gives us two pieces of information that we can use
to estimate the four parameters of the pricing kernel.

To identify the parameters of the kernel we need cross section evidence as
well. In this example we use mean bond yields, which we've seen depend on the
squared partial sums of moving average coefficients. In the ARMA(1,1) example
the partial sums take the form

A = 1 + ( + 0)(1 )/(1 — ), (18)
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for n 0. The tneaii short rate is (see Table I)

E(r) = S — 02/2 = 5.314/1200,

which is one of the required pieces of information. Each long yield gives us an
additional piece of information, so in this example the mean yield on any long
bond enables us to estimate the four parameters of the kernel.

We combine the tinie series and cross section evidence informally using a
graphical technique we refer to as the Quattro Method of Moments. Given a
value for 0, the time series information allows us to compute p and 0 from

= 0.976

0 = O.OOO534/ + Oj,

and the mean short rate gives us

5 = 5.314/1200+02/2.

The final step is to choose 0 to bring the theory "close" to observed mean yields
on long bonds, with the other parameters adjusting to satisfy the first three
conditions. We experiment with different values of 0 until the theoretical mean
yield curve looks similar to the data when we graph the two together. The
result is pictured in Figure 2A, where the black squares represent cross section
evidence (the mean yields reported in Table 1) and the line represents theory
(equation [15]). The parameter values are = 0.976, 0 T0982' a = 0.0890,
and S = 0.00839.

We see in Figure 2A that this procedure provides only a rough approximation
to the data. We can replicate the steep slope of the short end of the yield curve
with smaller values of 0 or the flatness of the long end with larger values, but
we cannot do both at the same time. The chosen value of 0 leans toward the
latter of these two objectives. This difficulty is reduced if we use moments from
the 1982-91 period in our exercise. For example, with = 0.906, 0 = —0.9081,
0 = 0.30704, and 5 = 0.05337 the mean yield curve has greater curvature, and
we see in Figure 2B that the implied mean yield curve is quite close to the data.
The critical difference here is the choice of 'p. For the complete sample period,
there is tension between 'p's role in determining the autocorrelation of the short
rate (indicating a high value) and its role in determining the curvature of the
yield curve (indicating a low value). If we choose 'p = 1, so that the short rate is
a random walk, the match between theory and data is worse: With some values
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of 0 the mean yield curve is even less concave than with p = 0.976, and with
others it slopes down over the relevant range of maturities.

Our method of estimating the parameters of the pricing kernel differs in two
respects from the procedure pioneered by Ho and Lee (1986) and widely adopted
by practitioners. In the Ho and Lee procedure, what we have called the time
series information consists of an autoregressive parameter for the short rate and
a volatility parameter for short rate innovations. Ho and Lee also introduce
time-dependent drift in the short rate. They set the autoregressive parameter
equal to one (so that short rate changes are independent) and the volatility
and drift parameters are inferred from cross section information: prices of long
bonds and derivative assets, like bond options, at a point in time. [This is
implicit in their work, explicit in later treatments (Duffie 1993, Exercise 3.12,
for example)]. Thus the Ho and Lee procedure differs, first, in disregarding time
series evidence on the short rate and, second, in adding time-dependent drift
parameters that can be used to match observed asset prices more closely.

This procedure's widespread use suggests that it works well in practice —
indeed, the additional time-dependent parameters allow the model to replicate
an entire yield curve exactly, which our model does not (the rough fit of Figure
2A being an example). We worry, though, that the additional parameters may
mask weaknesses in the theory's foundations, particularly regarding the implied
dynamics of the short rate. We've seen, for example, that with a random walk
short rate the theory produces insufficiently concave, and eventually decreasing,
mean yield curves, for which the time-dependent drift parameters compensate.
Our procedure, on the other hand, should give us a clearer picture of the impact
of interest rate dynamics on prices of bonds and related assets. With luck
this will lead to future improvements in the pricing of interest-rate derivative
securities.

5 Reverse Engineering 2: Estimation

In the previous section we used an informal procedure to estimate the parame-
ters of an ARMA(l,l) pricing kernel. Here we extend the theory to finite ARMA
pricing kernels and estimate their parameters by the generalized methodof mo-

ments, or GMM (Hansen, 1982).
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Finite ARMA pricing kernels are those that can be expressed in the form

— (L)logm, (1)5+ ®(L), (19)

with autoregressive and moving average polynomials

and

®(L)=1+OiL+...+OqL,
respectively, for finite nonnegative integers p and q. As in statistical time series
analysis, the hope is that a model of this kind will be able to approximate a wide
range of dynamic behavior with a small number of parameters. In Appendix
C we describe the relation between short rate dynamics and the form of the
pricing kernel.

Our estimation procedure chooses the parameters of an ARMA pricing kernel
to make the theory "close" to the data in a well-defined statisticalsense. As in
the ARMA(1,l) example, we use both time series and cross section information
to estimate the parameters of the kernel. We summarize the time series behavior
of interest rates with a subset of the autocovariances of the short rate,

Cov(rg,r+k) =
i=1

for k = 0,1,3,12,24 months. Differences between the autocovariances of this
formula and sample estimates give us five moment conditions. There is enough
smoothness in the autocovarjance function that these five moments capture a
large part of the dynamics of the short rate. And, as we have seen, autocovari-
ances of long rates contain no additional information regarding the dynamics of
the pricing kernel. We sun-Ilnarize the cross section of bond yields with mean
yield spreads,

E(y" — y') = (4 — n

for maturities n = 3, 12,36, 60, 120 months. Differences between the expressions
on the right side of the equation and sample means of yield spreads give us five
more moment conditions. These 10 moment conditions are used to estimate the
standard deviation of the kernel (c) and the autoregressive and moving average
parameters (, and 0,). The remaining parameter (6) simply shifts the yield
curve up and down by a constant, and is chosen to equate the mean short rate,
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E(r) = — cr2/2, to its sample mean.

Estimated pricing kernels are reported in Table 2 for several ARMA mod-
els. The estimates are computed using a common two-step implementation of
GMM. In step one, we weight each of the 10 moment conditions equally and use
the estimated parameter values to construct a weighting matrix. The weighting
matrix is computed by Newey and West's method with a. window width of 96.
We use the weighting matrix from our most general model, the ARMA(2,3), for
each of the models in the table. In step two, we use the estimated weighting
matrix to compute the parameter values reported in Table 2. This procedure
places greater weight 9n those moments that are estimated precisely than on
those that are not. Since we have more moment conditions than parameters,
the parameters will generally not permit the pricing kernel to match all of the
moments exactly, just as our informal procedure (summarized by Figure 2) did
not match the mean yield curve exactly. The magnitude of these differences
between theory and data is summarized by the J-statistic. In the language of
sampling theory, the J-statistic for an ARMA(p,q) model is distributed asymp-
totically as a chi-square with .s = 10 — (p + q + 1) degrees of freedom if this
model generated the data. A large J-statistic thus indicates that the differences
between theory and data are large relative to their sampling variability.

Estimates of low-order models give us an idea of the demands the data
place on the theory. The ARMA(1,1) model, for example, illustrates how time
series and cross section evidence is combined by our estimation procedure. We
saw in the previous section that the autocorrelation of the short rate for the
full sample implied a value of p1 of 0.976, but that the curvature of the mean
yield curve required a smaller value. Our estimated value (ø is 0.7073) is a
compromise between the two, which the J-statistic indicates is not liked by
either. A casual look at the autoregressive and moving average parameters
for this model suggests that they are equal, and that we could eliminate both
from the model by cancellation in (19). In fact the small difference between
the two is both economically essential (an increasing mean yield curve requires

= + O < 0) and statistically significant (the difference of -0.0051 has a
standard error of 0.0006).

The J-statistics for the ARMA(2,2) and ARMA(2,3) models suggest that
both are considerable improvements over the ARMA(1,1). The ARMA(2,3),
in particular, appears to provide an adequate approximation to the features of
bond yields captured by our ten moment conditions. Moreover, the t-statistic
of 2.1 for the third moving average parameter (03) indicates that this model is
a useful step beyond the ARMA(2,2).
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The striking improvement of moving from the ARMA(l,1) to the ARMA(2,3)
kernel may help us understand why Stambaugh (1988) and Gibbons and Ra-
maswamy (1993), among others, found that first-order, one-factor models do not
provide an inadequate description of bond yields, returns, and forward rates.
Both of these studies use the Cox-Ingersoll-Ross model. Like our ARMA(l,1),
the Cox-Ingersoll.-Ross model implies first-order dynamics for the short rate (see
Appendix D). Gibbons and Rarnaswaniy (1993, Section 5.3) find, as we do with
the ARMA(l,1), that the degree of short rate persistence implied by cross sec-
tion evidence is substantially smaller than that implied by the dynamics of the
short rate (their parameter p corresponds to our In our case, the tension
between time series and cross section evidence is greatly reduced when we in-
crease the order of the model. The ARMA(2,3) delivers both the concave shape
of the yield curve, as we see in Figure 3, and the highly autocorrelated short
rate that we see in the data (the first autocorrelation for this model is 0.938). In
this respect, the high-order dynamics allowed by our theoretical structure are a
useful extension of Vasicek's (1977) one-factor Gaussian interest rate model.

Our estimated ARMA(2,3) model gives u.s a detailed description of the pric-
ing kernel, whose properties are easily related to those of bond yields. One
feature of our estimated kernel is that the moving average coefficients a, are
negative after the initial coefficient = 1. These coefficients, which are plot-
ted in Figure 4, illustrate the response of the logarithm of the kernel to a unit
innovation. Since the coefficients all have the same sign, the autocovariances
of forward rates and yields are all positive. Since they are much smaller than
one, the partial sums = 127..o a3 are positive and decline with maturity, thus
generating increasing mean yield and forward rate curves. We see, in short, that
while the moving average coefficients in the theory can take a variety of forms,
the data imply a pricing kernel with much more structure to it.

6 Implications

The pricing kernel has been used, in different contexts, as a metric for assessing
general equilibrium asset pricing theories and a building block for pricing fixed
income securities. Our work sheds some light on each. With regard to the
general equilibrium foundations of asset pricing theory, we relate the variability
of our estimated pricing kernel to estimated lower bounds constructed by Hansen
and Jagannathan (1991). With regard to fixed income security pricing, we
examine the pricing of bond options, forwards, and futures.
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Variability of the pricing kernel. One of the open issues in asset pricing
theory concerns the relation between asset prices and economic fundamentals.
Although general equilibrium treatments of asset prices date back at least to
Merton (1973), they have yet to be taken seriously as descriptions of actual
economies, and with good reason. Attempts to apply representative agent the-
ory, for example, have produced asset prices and returns much different from
those we observe. Perhaps the most elegant characterization of the discrepancy
between theory and data is Hansen and Jagannathan's (1991) lower bound: ob-
served asset returns imply substantially larger standard deviations of the pricing
kernel than we get from representative agent theory with power utility and mod-
erate risk aversion. This lower bound is a yardstick against which other theories,
like Telmer's (1993) incomplete markets economy, can be measured.

Our estimated pricing kernel implies a standard deviation that can be com-
pared to lower bounds derived by Hansen and Jagannathan (1991) and esti-
mated by Bekaert and Hodrick (1992). Hansen and Jagannathan show that the
return from a balanced portfolio strategy (the return, that is, from a strategy
that requires no initial payment, like an excess return) places a lower bound
on the standard deviation of the pricing kernel in. If the return from such a
strategy is labeled x, then the Hansen-Jagannathan bound is

[Var(rn)]''2/E(m) � IE(x)I/I Var(x)]'12.

The right side is the Sharpe ratio of the investment strategy (the ratio of the
return's mean to its standard deviation), so the inequality tells us that large
Sharpe ratios imply high variability of the pricing kernel. Bekaert and Hodrick
(1992, esp Section IV and Table Xl) report Sharpe ratios ranging from 0.004
to 0.78 for portfolios of US and foreign equity and currencies. Their data are
monthly for the 1980s, so they correspond most closely to our estimates for
the recent period. Using these estimates, and the log-normal structure of our
theory, we find

Var(rn)1"2/E(rn) [Var(logm)]'12 = 1.047.

This number is larger than Bekaert and Hodrick's highest lower bound, but not
by an enormous margin.

Our estimates of the variability of the pricing kernel are based on a more
restrictive theoretical structure than those of Bekaert and Hodrick (1992), but
in return for this structure we get more detailed information concerning the
kernel's dynamic structure. One way of expressing the dynamic structure is
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the autocorrelation function. Our pricing kernel is negatively autocorrelated at
all lags, but the magnitudes are small (the largest in absolute value is the first
autocorrelation, -0.05). Another way of expjessing the dynamics of the kernel
is with its conditional variance at different time horizons:

Varg(logm) = 72c.
As the forecast horizon n increases, this approaches the square of our estimated
standard deviation. We find that our estimated parameter values imply that
almost all the variation is in the first period. In this sense, the variability of
the pricing kernel indicated by earlier work seems to consist primarily of short
term variability. Cochrane and Hansen (1992, Section 2.7) come to a similar
conclusion by a different rOute.

Both the variability and the dynamics of the kernel indicate large discrepan-
cies between observed asset prices and representative agent theory with power
utility. In this framework, the pricing kernel might be expressed

—log Tnt = p + 'ylog(c/c_1) + log(p/p_1),

where p is the agent's discount rate, c is consumption, 'y is the risk aversion pa-
rameter, and p is the dollar price of the consumption good. Thus the properties
of the kernel are inherited from the growth rate of consumption and the rate
of inflation. Neither component accounts for the properties of our estimated
kernel. Consumption growth, for example, exhibits too little variability to ac-
count for the standard deviation of our kernel, at least with reasonable values of
the risk aversion parameter. Since the standard deviation of monthly consump-
tion growth is about 0.005 (0.5 percent per month), the theory requires a risk
aversion parameter of about 200 to match the standard deviation of the ker-
nel. The standard deviation of inflation is even smaller (about 0.003 monthly),
and inflation dynamics are much different from those ofour estimated kernel.
Since inflation is highly persistent, its conditional variance increases slowly, with
most of the unconditional variation showing up far into the future. Our esti-
mated kernel thus highlights the weaknesses of representativeagent theory and
provides a target at which alternative theories might aim.

The price of risk. Many treatments of dynamic asset pricing theory start
with with a parameter termed the price of risk, which summarizes the relation
between risk and expected return. Two notable examples are Hull (1993, ch
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12), who describes this approach in a general setting, and Vasicek (1977), who
applies it to a one-factor interest rate model much like ours. Our theory makes
no mention of a price of risk, but we can easily derive one. We find that this
helps us understand the origins of the price of risk and gives us a somewhat
different perspective on it.

The standard definition of the price of risk is the Sharpe ratio: the ratio
of the expected excess return on an asset to its standard deviation. For a
bond with maturity n + 1, the (net) return in our theoretical framework is
1og(b1/b'). This definition is approximate in our discrete time model, but
exact in continuous time. The excess return over the short rate can be expressed
(see equation [14D

n-fl — (A2 A2 2J-) i (A A \— Vo — "n) I m V'O —

which has conditional wean

Ex = (A — A)o2/2 = (A0 — A)(A0 + A)a2/2

and conditional variance

Vartx11 = (A0 — A)2o2.

The analog in our model of Vasicek's price of risk (see his equation [14]) is the
ratio of the mean to the standard deviation, which we label q:

(cr/2)(Ao + A) sign(Ao — An)

for each maturity n + 1.

Our formula for the price of risk differs in two ways from applications that
treat it as a paraiietric constant. One difference is that it depends on maturity:
bonds with different maturities have different prices of risk. We see in Figure 5
that with our estimated parameter values the range of variation in q is extremely
small. A second, more fundamental difference is that the price of risk need not
be positive. Tile required parameter values may be unrealistic, but they are
nonetheless consistent with arbitrage-free bond pricing. If, however, we require
the theory to produce an increasing mean forward rate curve, then A0 = 1 > A
and the price of risk is positive. Thus the property of the kernel that delivers
an increasing mean forward rate curve also delivers a positive price of risk.

The behavior of the price of risk is transparent in our ARMA(1,1) example,-
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which like Vasicek's (1977, Section 5) popular continuous-time example has a
first-order autoregressive short rate. Partial sums A are given by (18) and the
price of risk is

qt2+l = —(a/2)[2 + ( + O)(1 — y')/(1 — )] sign(' + 0).

From the formula we see that q is positive when y + 0 is negative, which is
necessary to produce an increasing mean forward rate curve.

Bond options: volatility and maturity. Practitioners commonly apply the
Black-Scholes formula to bond options, at least as a first approximation, but
find that with constant volatility the Black-Scholes formula either undervalues
short options or overvalues long options. This is typically corrected by choosing
smaller values of the volatility parameter for long options, resulting in a so-
called term structure of volatility. Our theoretical framework produces exactly
this effect as the result of the mean-reversion of interest rates implied by an
increasing mean forward rate curve.

Our benchmark is an interpretation of the Black-Scholes formula for bond
options adapted from Hull (1993, Section 15.6). Consider a European call at
date t on an n-period discount bond with strike price k and expiration date
t + r. Its price can be expressed

c = bN(d1) — bkN(d2),

where N(.) is the standard normal distribution function and

d1 = [log(b/k) — log b + v2r/2]/(vrh/2), d2 = d1 — vr1'2,

for some volatility parameter v. For example, we might choose v to match the
one-period volatility of an an n-period bond:

Lr 11 Lfl IA A \2 2V — vartiogug1) = V1n 'O) O

The formulas then tell us how to extend call prices to longer maturities r.
Practitioners generally find that they must use smaller values of v, so-called
implied volatilities, for longer maturities r to explain observed prices of options.

The option formula for our theoretical framework has the same form, but a
different volatility parameter. The call price is the solution to

c" = —
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where Mg, fl m is the r-period pricing kernel and x max{0, x} is
the nonnegative part of x. This gives us a call price of

cr" = b'N(d1) — bkN(d2) (20)

with
d1 = [Iog(b'/k) — log b + o/2]/i.i,, d2 = d1 —

and

cr = Var(log b÷,.) = cr2 — A,)2. (21)

Similar formulas are reported by Jamshidian (1989, equation 9) and Turnbull
and Mime (1991, Theorem 1) for closely related environments.

The difference between our formula and Black-Scholes lies in the choice
of volatility parameters. In our application of Black-Scholes, volatility vrh/2
increases with the square root of the time to expiration. In our exact formula,
volatility also increases with r, but the rate of increase depends on the moving
average coefficients {c,} of the pricing kernel through the partial sums A =

a,. In principle, the theory can generate a wide range of volatility patterns.
With a random walk short rate, as in the popular Ho and Lee (1987) model,
volatility increases with the square root of r. But if we restrict ourselves to
pricing kernels that give rise to increasing mean forward rates, including those
estimated in the previous section, then volatility generally increases less rapidly
than rh/2. We have seen that an increasing mean forward rate curve requires
convergence of A. As a consequence, the volatility parameter o,,. in equation
(21) also converges, and the implied volatility v = o,n/(cri,nrh/2) approaches
zero as we increase the maturity r of the option. Thus mean reversion in the
pricing kernel and interest rates implies, as a general feature of our theoretical
framework, a term structure of volatilities for the Black-Scholes formula that
declines for long options. Similar properties are implicit in Jamshidian (1989)
and Turnbull and Mime (1991). What is new is the connection between this
condition on implied volatilities and the slope of the mean forward rate curve.

Our ARMA(1,l) example gives us some idea of the magnitudes involved.
From equation (18) we know that

A÷ — A, = i(l — 'p')( + 0)/(1 —
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so the volatility parameter [equation (21)] for the call option is

= a[( I — t)I + 011(1 — p)][(l — so2T)/(1 —

If we choose v = a1,, to match the volatility formula in Black-Scholes to the
true volatility for r = 1, then for more distant exercise dates we must choose
implied volatilities

v = [(1 — 502T)/(1 — so2)j1/2/r1/2

The sequence {v} is an example of a term structure of volatilities. Using
the same parameter as Section 4, o = 0.976, this results in a declining term
structure of volatility (Figure 6).

A related feature of our example is that the volatilityparameter, defined by
equation (21), generally declines with the maturity n of the underlying bond.
Thus our model, like Jamshidian's (1989), automatically produces the positive
relation between "duration" (n in this case) and volatility addressed by Schaefer
and Schwartz (1987).

Forward and futures prices. Cox, Ingersoll, and Ross (1981) have traced
differences in prices of forward and futures contracts to correlation between bond
and futures prices. The same is true in our theoretical framework, but given
our estimated parameter values we can trace this feature back to properties of
the pricing kernel.

Forward contracts are implicit in bond prices and forward rates. Consider a
contract at date L specifying payment at date I + r of FT dollars in return for
an n-period bond at the same date, the claim to one dollar at date £ + r + a.
We can replicate this cashflow with two bond transactions at date I: we buy a
bond with maturity r + n and we sell (short) the equivalent value of r-period
bonds. If bond prices are labeled b, then the second transaction involves the
quantity b'/b of r-period bonds and a cash flow at date I + n of the same
amount. Arbitrage requires

FL = b7*/b.

From equation (14) we see that the equilibrium forward price is

00
— log F' = aS — (c2/2) A_1 + (A++5 — A+5)_,, (22)

5=0
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with the usual definitions of parameter values.

Now consider a futures contract specifying receipt of the same n-period bond
at date t + r. Unlike the forward contract, the futures requires the owner to post
collateral each period equal to the current value of the contract. Cox, Ingersoll,
and Ross (1981, Proposition 2) show that the value of the futures contract is
the value of the payment

b ' 61t+Tl
1=0

at date t + r, the date the contract matures. The date-t value of the contract is

/1-—I
,-,rn ,-. I rn ILl n
'-'i = Ct 11m+i÷lIug+j)0t+i

This has the recursive representation,

— , i • r1•,n \
L7* —

starting with G = b, where zn mt+j/b defines the equivalent martingale
measure (Duffie 1993, Section 2G). The price of a futures contract with maturity
T > 0 is thus

— log G = — a2/2(A_ + (A÷1 — A1 + )2 — rAg)

+ (Ar+n+j — A+1)_1. (23)

Note that the coefficients of _, are the same as those for the forward contract.

We are now in a position to compare prices of forward .and futures contracts,
given by equations (22) and (23). In our theoretical framework, the ratio of the
two prices is constant, with

log F' — log G" = 2 (A1 — A÷1)(A0 — A1).

This price differential can have either sign, but with our estimated kernel it is
positive, as we seem to see in the data (Meulbroek, 1992, Table IV).

More interesting to us is that the conditions that deliver a positive price
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differential are different from those that give us an increasing mean forward
rate curve. Instead, the critical ingredient seems to be the persistence of the
short rate: pricing kernels that produce highly autocorrelated short rates also
tend to produce positive price differentials. We can see this most easily by
looking at two examples. One example is a kernel that generates a random
walk short rate, which is obviously highly persistent. In this case the partial
sums are — 1 + na1, so the price differential is

log F1" — log G" = a2nr(T — 1)a/2,

which is positive for maturities r > 1. A second example is our ARMA(1,1),
with A given by equation (18). The first-order autocorrelation of the short
rate is o. The price differential in this example is

log FIT" — logG' 2[(so + 0)1(1 — )]2(1 — > (1 — ,i)

which is positive if o> 0, negative otherwise. Note that this condition can hold
even in models that do not produce increasing mean yield curves. With >0,
for example, the slope of the yield curve is determined by thesign of cc + 0, but
this second condition has no bearing on the sign of the price differential.

Positive autocorrelation of the short rate is not sufficient to guarantee a
positive price differential, but it's close. A sufficient condition is that the moving
average coefficients of the short rate, a for i � 1, all have the same sign,
which guarantees positive autocorrelations at all lags. This condition says that
an innovation to the short rate increases the conditional mean of the short
rate at all future dates. It holds for the random walk model, in which these
coefficients are the same, and for the ARMA(1,1) example with positive so, in
which = . Although this result is specific to our log-linear framework,
it is suggestive of two related results. The first is thepositive price differentials
produced by the Cox-Ingersoll-Ross (1981, Section 4) model. As we show in
Appendix D, their model is a generalization of our ARMA(1,1) example in
which the analog of so is positive. Perhaps the same mechanism is at work
in their model and our ARMA(1,1) example. Our second conjecture is that
the dependence of the price differential on persistence that characterizes our
model may extend to other environments. Since other popular models of bond
pricing imply highly persistent interest rates, perhaps they also imply a positive
premium of forward prices over futures prices.
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7 Final Remarks

We have described, in the context of a log-linear model of bond pricing, how
information on bond yields can be used to estimate the pricing kernel that gave
rise to them. The pricing kernel is the building block of fixed income security
pricing, so information about its properties has direct application in the pricing
of interest-rate derivative securities. For this reason, we think that our pro-
cedure of reverse engineering may help us understand the features of a theory
that lead to observed properties of asset prices, and lead to improvements in
pricing derivative assets. Our log-linear framework, however, is only one step
in this direction. It allows us to relate properties of asset prices to those of the
kernel in a relatively simple and transparent way, but it rules out, among other
things, the changing volatility apparent in bond prices and returns. One exten-
sion, outlined in Appendix E, introduces a stochastic process for the conditional
variance of the pricing kernel, which was constant in the framework of this pa-
per. Another is to model the kernel along the lines of the semi-nonparametric
models used by Gallant and Tauchen (1989). This approach, in principle, would
allow us to approximate an arbitrary nonlinear pricing kernel. Perhaps future
work will tell us which extensions are the most useful for understanding the
prices of bonds and related assets.
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A Alternate Proof of Proposition 1

The proof starts with Jamshidian's (1988) suggestion to translate the pricing
relation for bond prices into an analogous relation for forward rates. From
definition (2) we note that the one-period return on an (n + 1)-period bond
satisfies

log = logb÷1 —logb'
— L + og — og

The pricing relation (4) then implies

exp(—fTh) = Et(mt+ibjJb), (24)

and we compute forward rates and bond prices recursively. For n = 0 we have

b= 1, so
exp(—f) = Egmt+j.

We now apply a property of expectations of log-normal random variables: if
log x is normal with mean p and variance cr2, then log E(x) = p + c2/2. That
gives us

jO = 2/2 + >
=0

This in turn defines the one-period bond price as

— logb = f° = S — aci2/2 + c+_j,
which is clearly linear in the innovations {g}.

Bond prices and forward rates for higher maturities follow by induction.
Suppose the n-period bond price can be expressed

—logb = jf
for some parameters {p',f3). We've just derived the parameters for ii = 1.

Given the parameters for an arbitrary maturity n > 0, we derive the price of an
(n+ 1)-period bond from the forward rate pricing relation, equation (24). Note
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that

— log(rn1b1/b) = 6 + (ao + )+i + (a1 +

This random variable has conditional mean

—Et(log(m÷1b1/b)] = 6 +(a÷i + f3 — /37).

and conditional variance

= (ao + I3)2o•2.

Hence

5 — (a0 + flTh)2cr2/2 + (a÷1 + /31 — (3fl)f
i=0

Proposition I follows from running through the recursions.

B Multifactor Models

Several papers have looked at similar bond pricing models with more than one
factor, including Heath, Jarrow, and Morton (1992, Section 6) and Turubull and
Mime (1991, Section 5). We do the same here for our theoretical framework.

We develop the theory in a two-factor setting; extensions to higher dimen-
sions should be transparent. Let us say that the pricing kernel follows a two-
dimensional process,

— log = + a11,_ + >

where the 's are independent normal random variables with zero means and
variances o and o. By convention we set a10 = a20 = 1. Using the same
methods as Proposition I, we find that forward rates are

f = S — (Ac+ A)/2 --a2,fl+I+J2,t_,
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where A This is similar to equation (12), but has two components
for both the mean and moving average terms.

There are two differences between the one and two factor models worth not-
ing. One difference is that the dynamics can be more complex with two factors
than with one. The combination of two AR(1) factors, for example, produces
ARMA(2,1) dynamics in the pricing kernel. This aspect of the two-factor theory
is easily replicated by choosing appropriate moving average coefficients in the
one-factor model. The second difference is more fundamental: the two factor
model gives agents a finer information partition. They know the individual in-
novations, and c2, not just their sum (which is the innovation to the pricing
kernel). For this reason, a two-factor model is not observationally equivalent to
a more complex one-factor model. This is easily verified by comparing mean
forward rates in a two-factor model with those from the one-factor Wold repre-
sentation of its pricing keinel.

Example. Let the pricing kernel be

— log Tnt = S + Xl + x,

with
= ptX,_1 + ,j.

This gives us cx = p for i = 1,2 and j � 0. Forward rates are

= S — (Aa + Aci)/2 + p1Xjg + P'X2t,

with A1 = (1 — p'')/(1 — ps).

For comparison, consider the infinite moving average (Wold) representation
of the kernel, obtained by projecting log Tnt onto its past innovations. In the
example (and more generally with the normalization = 1), innovations are

= + 2L- Their variance is a2 = cr + a. The Wold representation is
equation (6) with

cr = Cov(cj,ej,_. + .g—2, e1_)/ Var(t_)) = (pa + po)/a2.

Unless Pi = P2, forecasts with this one factor representation are inferior to those
of the two factor model, since they are based on a coarser information partition.
The one-factor representation also generates different forward rates, as you can
see by comparing Ao2 with A71a + A71u for ii � 1.

This two-factor example leads to a two-dimensional vector autoregression in
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(say) f° and f and thus bears some resemblance to the interest rate dynamics
in Brennan and Schwartz (1979).

C ARMA Pricing Kernels

We show how the dynamics of the pricing kernel translate into dynamics of
the short rate. The only subtle feature of this translation is the impact of
autoregressive coefficients of the pricing kernel on moving average coefficients
of interest rates. To see how this works, consider an ARMA(2,O) pricing kernel:

—logmt = —(1 — — o2)l5 — log mj — log mg_2 +

The moving average coefficients of the Wold representation of the pricing kernel,
equation (6), are a0 = 1, a1 = , and a = piaj + p2aj_2 for j > 1. The
short rate is

= ( 2/ +a÷1_
= ( — 2/) + + (1a + 2a_I)t_

= (6— u2/2) + a1 + a÷1__1 + a__1
= (1 —

Sat
— 2)(8 c2/2) + 1rj_1 + 2r_2 + +

Thus, the autoregressive parameters of the pricing kernel show up in the short
rate as both autoregressive and moving average parameters, and an ARMA(2,O)
pricing kernel generates an ARMA(2,l) short rate.

More generally, consider the ARMA(p,q) pricing kernel of Section 5. The
kernel can be expressed in moving average form as

—logm = [$(1)/(L)]6+ [O(L)/(L)Jft.

The short rate is

= [4(1)/(L)](6 — ,.2/2) + [e(L)/(L)],1 —
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or
4(L)r = 4(1)(5 — 0.2/2) + [(L) —

Since p0 = = 1, chops out of the equation, leaving us with the remaining
p — 1 autoregressive and q — I moving average parameters in the moving average
component of the short rate. Therefore, an ARMA(p,q) pricing kernel generates
an ARMA(p,max(p,q)- 1) short rate.

The same logic can be applied to show that all forward rates have the same
autoregressive polynomial, 1(L), but the calculation of the MA parameters is
more difficult for higher maturity forward rates. Yields also have the autore-
gressive polynomial 4(L), since they are averages of forward rates, but again
the MA parameters are more complicated.

D Cox-Ingersoll-Ross as an ARMA(1,1)

We express Sun's (1992) discrete time version of the Cox-Ingersoll-Ross (1985)
model of bond pricing in a form similar to our ARMA(1,1) example. The
starting point is a state variable z that obeys the "square root" process

1/2= (1 — p)S + (pZt_i + )Z_1f,

with {} NID(O,ci2). This relation is AR(1), despite the unusual form of
the innovation. With the square-root process the conditional variance of the
innovation is proportional to z, which reduces the chance of getting a negative
value. As the time interval approaches zero, so does the probability that z turns
negative. The pricing kernel is

—log rn1 = zj_I +

which caii be rewritten as

— Iogm = (1
— )c5 — log mj_1 + + (A —

With the exception of the square-root terms, this is just our ARMA(I,l) ex-
ample with 0 = A — p. Since the kernel is conditionally log-normal, we can
approach bond pricing in much the same way we did in Section 3. Forward
rates and yields are linear functions of the state variable z. The short rate, for
example, is rt = (1 — 0.2/2)z, which allows us to express yields as functions of
r rather than z.
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E Stochastic Volatility

One obvious limitation of our pricing kernel is its constant conditional variance,
so stochastic volatility is high on our list of extensions. The cost is considerably
greater complexity in expressions for bond prices and forward rates. We illus-
trate how this might work in an environment that is simple enough to retain
linearity of forward rate functions.

Let us say that the pricing kernel is equation (6) with volatility Var(41) =
h that varies through time. With h = CT2 we are back in the constant volatility
world of the paper, and with h = z we get the Cox-Ingersoll-Ross model. We
focus on a tractable alternative, in which h is an independent linear process:

= 2 + 2-rii_,

with {,) NID(O, o) and Cov(tj, ) = 0. 1fy = 0 this reduces to the model
of the text. With this kernel, forward rates are

2f = — Ah/2 — cr,

(>A_17_1)
for n � 1. This is similar to equation (12), with h replacing the constant CT2,
but the last term illustrates how the dynamics of the kernel are intertwined
with those of volatility. The dynamics of the short rate reflect both the moving
average coefficients of the kernel, the c,'s, and those of volatility, the vj'

Despite the increase in complexity, some of the salient features of the con-
stant volaility model extend to this environment. One example is the relation
between mean reversion and the slope of the forward rate curve. Mean forward
rates are

2

E(f) = 8—ACT2/2—CT

For this to be increasing we again need the sequence {A} to be decreasing. If
converges to a nonzero limit, a similar requirement applies to the dynamics

of volatility — namely, the coefficients {) must be summable. Together they
imply eventual decreasing conditional volatility of bond prices, which we used
in our discussion of bond options.
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Table 1
Yields and Forward Rates: Summary Statistics

The data are monthly estimates of annualized continuously-compoundedzero-coupon
US government bond yields and instantaneous forward rates computed by McCul-
loch and Kwon (1993). Mean is the sample mean, St Dev the standard deviation,
and Auto the first autocorrelation.

Maturity
19

Mean
52:1 - 1991:2

St Dev Auto
198

Mean
2:1 - 1991:2
St Dev Auto

A. Yields

1 month 5.314 3.064 0.976 7.483 1.828 0.906
3 months 5.640 3.143 0.981 7.915 1.797 0.920
6 months 5.884 3.178 0.982 8.190 1.894 0.926
9 months 6.003 3.182 0.982 8.372 1.918 0.928
12 months 6.079 3.168 0.983 8.563 1.958 0.932
24 months 6.272 3.124 0.986 9.012 1.986 0.940
36 months 6.386 3.087 0.988 9.253 1.990 0.943
48 months 6.467 3.069 0.989 9.405 1.983 0.946
60 months 6.531 3.056 0.990 9.524 1.979 0.948
84 months 6.624 3.043 0.991 9.716 1.956 0.952
120 months 6.683 3.013 0.992 9.802 1.864 0.950

B. Forward Rates

1 month 5.552 3.140 0.979 7.781 1.753 0.915
3 months 5.963 3.200 0.981 8.334 1.961 0.921
6 months 6.225 3.256 0.976 8.579 1.990 0.923
9 months 6.263 3.169 0.981 8.925 2.050 0.933
12 months 6.358 3.169 0.984 9.320 2.149 0.942
24 months 6.516 3.037 0.986 9.472 2.093 0.943
36 months 6.696 3.071 0.989 9.923 1.966 0.943
48 months 6.729 3.026 0.990 9.833 2.050 0.949
60 months 6.839 3.062 0.991 10.182 1.972 0.953
84 months 6.838 2.997 0.992 10.068 1.900 0.952
120 months 6.822 2.984 0.991 10.058 1.522 0.908



Table 2
Estimates of ARMA Pricing Kernels

The table lists GMM estimates of ARMA pricing kernels. Date are monthly from
1952:1 to 1990:2 with the first 24 observations reserved for calculating autocovari-
ances of the short rate. Numbers in parentheses are standard errors. The number in
brackets below the J-statistic is its significance probability or p-value. The mean is
denoted 8, the innovation standard deviation a, the autoregressive parameters
and the moving average parameters 0,. The mean 5 is fixed to match the sample
mean of the short rate. The moment conditions used to estimate the remaining pa-
rameters are yield spreads for maturities 3, 12, 36, 60, and 120 months and short-rate
autocovariances of orders 0, 1, 3, 12, and 24 months, for a total of 10 conditions.
The weighting matrix is computed from first-stage A1tMA(2,3) estimates by the
method of Newey and West, using 48 autocovariances.

Parameter/Statistic ARMA(2,3) ARMA(2,2) ARMA(1,1)

0.528022 0.206633 0.030679

a 1.023141 0.635673 0.228415

(0.000733) (0.001033) (0.002688)

1.031253 1.234310 0.707288

(0.176372) (0.117500) (0.014194)

-0.073191 -0.278337

(0.166909) (0.107638)

-1.031448 -1.235127 -0.712387

(0.176429) (0.117473) (0.013901)

02 0.073011 0.279004

(0.167110) (0.107642)

03 0.000322

(0.000153)

J-Statistic 0.3683 9.0746 50.9837

[0.9850j [0.1061] [0.00001
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Figure 1
Mean Yield Curves for US Govt Bonds
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Figure 2A
Mean Yield Curve for ARMA(1 ,1) Example
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Black squares are data points, the line is theory.

Figure 3
Mean Yield Curve for ARMA(2,3)
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Figure 5
Price of Risk in Estimated Kernel
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Figure 6
Term Structure of Volatility

1

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
0 10

Months to Exercise (tau)
50 60


