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ABSTRACT

We examine the relationship between the intellectual capital of scientists making frontier

discoveries, the presence of great university bioscience programs, the presence of venture capital

firms, other economic variables, and the founding of U.S. biotechnology enterprises during 1976-

1989. Using a linked cross-section/time-series panel data set, we find that the timing and

location of the birth of biotech enterprises is determined primarily by intellectual capital

measures, particularly the local number of highly productive "star" scientists actively publishing

genetic sequence discoveries. Great universities are likely to grow and recruit star scientists, but

their effect is separable from the universities. When the intellectual capital measures are included

in our poisson regressions, the number of venture capital finns in an area reduces the probability

of foundings. At least early in the process, star scientists appear to be the scaice, immobile

factors of production. Our focus on intellectual capital is related to knowledge spillovers, but

in this case "natural excludability" permits capture of supranonnal returns by scientists. Given

this reward structure technology transfer was vigorous without any special intermediating

structures. We believe biotechnology may be prototypical of the birth patterns in other

innovative industries.
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The American biotechnology industry has developed rapidly from nonexistent to

about seven hundred active firms in less than two decades. We believe that the birth of this

industry is essentially intertwined with the development of the underlying science in a way

which has not been previously considered for this industry or any other in either the

economics or the organizations literature. Indeed we present here strong evidence that the

timing and location of new biotech firms (NBFs) and new biotech subunits of existing firms

(NBSs) are primarily explained by the presence at a particular time and place of scientists

who are actively contributing to the basic science as represented by publications in major

academic journals.

The novelty of our approach lies first in treating the "intellectual capital" of these

scientists, which we shall discuss at length below, as the crucial resource for founding new

biotech enterprises (NBEs = NBFs + NBSs). In the mainstream economic literature, where

the timing and location of firm births is related at all to localized resources, it is normally

either at the country level as in the doctrine of comparative advantage or in terms of natural

resources as in the discovery of gold deposits. Comparable to measures for traditional

economic inputs, we develop detailed quantitative measures of intellectual capital relevant

to biotechnology. Here we show that localized intellectual-capital resources were key for

the development of at least the biotech industry. This quantitative approach differs

methodologically as well as conceptually from the few case studies that have attempted to

link universities to new commercial enterprises.1

Our focus on intellectual capital is related to but goes beyond a related body of work
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which focusses on knowledge spillovers. Zvi Griliches (1992) has recently done a masterly

survey of that body of work and its potential importance in understanding continued

technical progress. We cannot compete with his effort, but we do want to focus on few

recent papers which we believe are related to and (implicitly) supportive of the approach

we take here. Adam Jaffe (1989) and Jaffe, Manuel Trajtenberg, and Rebecca Henderson

(1992) have exploited patent data to show that there is a very significant, geographically

limited connection between university and other research and the application of that

research to patentable innovations.2 Edwin Mansfield (1992, p. 17) confirmed in a survey

of 70 corporations that a "substantial portion of industrial innovations in high technology

industries ... have been based directly on recent academic research, although in many cases

the invention itself did not stem from the universities." Furthermore, he finds that "the

extent to which a university is credited by firms ... with making major contributions to these

firms' innovations tends to be directly related to the quality of the university's faculty in the

relevant department (according to the NAS ratings), to the size of its R and D expenditures

in relevant fields, and to the proportion of the industry's members located nearby." The

idea of intellectual capital provides a specific channel through which knowledge spillovers

were embodied and returns to them captured in the case of biotechnology. Michael Darby

(1984, 1993) has emphasized the importance of technological advances embodied in the

quality of the labor force, but intellectual capital will be seen to differ from that concept too

because it involves supranormal returns to education.

A second innovation in our approach is the use of panel data to analyze the

development of the industry: The entire United States is divided into the 183 functional
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economic areas (BEA areas) as defined by the U.S. Bureau of Economic Analysis. Much

of our data is available and coded at the zip-code or county level by year and then

aggregated to the BEA level. While we exploit the finer geographic detail in some analyses,

our primary focus in this paper is explaining the number of firms born in each BEA area

each year from the beginning 1976 through 1989. The use of panel data permits us not only

to better answer questions about the sources of births of biotech firms, but also to address

some fundamental questions of educational and scientific policy and regional development.

The next section presents our conception of intellectual capital and describes how we

implemented it empirically for biotechnology. Other factors which may also influence the

founding of biotech firms are introduced in Section II. Our empirical results on firm births

are reported in Section III. We conclude and summarize the main body of the paper in

Section IV. A Data Appendix is included to describe the extensive work required to

prepare the data set for this paper.
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I. Intellectual Capital and Natural Excludability

In this section we first define intellectual capital as distinct from intellectual property,

information, and human capital. We then describe our empirical implementation of this

concept to develop measures of intellectual capital applicable to biotechnology. In

particular we identii a group of "stars scientists who are endowed at particular times with

intellectual capital and their collaborators who may also become endowed with intellectual

capital. We then describe the process by which intellectual capital was created and diffused

in the 1970s and 1980s and present substantial evidence that our implementation of the

intellectual capital concept has predictive value for explaining the formation of NBEs.

l.A. The Concept of Intellectual Capital

In economics information is often treated as a public good — freely available to an

unlimited number of potential users at a zero marginal cost. In order to provide incentives

for the creation of information, and particularly for commercially valuable scientific

research, a system of property rights patents, trade secrets, and the like — has been

created so that the creator of information can control the use of his or her intellectual

property. The international protection of intellectual property is of such importance as to

be a key element in the current Uruguay round of the GAIT negotiations.

A complementary literature recognizes that some information requires an investment

of considerable time and effort to master. The human capital developed by this investment

is seen as earning a normal return on the cost of the investment, both direct costs and
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foregone earnings. The average level of human capital embodied in a countiy's labor force

should be an important factor in determining whether the nation's production is

concentrated in high-wage, high-skill industries or lower-wage, lower-skilled industries.

However, we do not expect a produced factor of production like human capital to be a

restrictive endowment such that particular kinds of firms arise where it is present and are

absent otherwise.

As we use the term, intellectual capital incorporates elements of both intellectual

property and human capital but is distinct from both. A person possesses Intellectual

capital if he or she embodies a specialized body of knowledge which enables the individual

to earn supranormal returns on the cost of obtaining that knowledge. How would this come

about? Consider first the discoverers of a radically new method for doing commercially

valuable research. Doubtless their discovery will lead to the creation of intellectual property

as for example did the 1973 discovery by Stanley Cohen and Herbert Boyer of the basic

technique for recombinant DNA (rDNA) which ultimately led to today's biotechnology

industry.3 However, in frontier science it is sometimes the case that the methodology

actually required to do the science has to be learned first-hand in the laboratories in which

it is done.4 One may need to license relevant patents, but scientists who have the ability

to actually do the science will initially be able to earn extraordinary returns. Some scientists

will choose to realize those returns by using their intellectual capital to create commercially

valuable products. Others may pursue more academic rewards, such as career acceleration.

sometimes the only path to realize intellectual-capital returns.

Techniques which must be learned first-hand through collaboration or apprenticeship
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may be described as possessing "natural excludability' when they are first discovered. Over

time as the techniques become widely diffused and their use represents routine rather than

frontier science, all major graduate schools come to have the capacity to teach the

techniques as part of the normal educational process of creating human capital. Thus our

intellectual capital has transient value until the "quasi-rents" to those who embody the

specialized body of knowledge is driven down to a normal return. We abstract some

evidence below from Lynne Zucker, Marilynn Brewer, and Darby (1994) which is consistent

with scientists taking informal actions, particularly when the information is most valuable,

to slow its diffusion.5

Intellectual capital is by its nature a transient property of disequilibria. It arises

because few people have mastered certain valuable techniques relative to the number that

will master those techniques and earn normal returns on that mastery when full equilibrium

is achieved. It is true that the supranormal returns during this period are analogous to

lottery winnings and do not imply that supranormal returns —given the considerable talents

and human capital of these individuals — are expected a ante. Rather our point is that the

winners who make certain frontier discoveries or very early learn their techniques will

command enormous wages in the early days of commercialization and the location and

timing of firm formation will be determined by where and when they are active.' While this

is a transient condition of disequilibrium for the labor market, industry creation is itself a

coincident disequilibrium process.

Economists and organizational theorists are not likely so much to object to the

theoretical construct of intellectual capital presented here as to doubt that it could be of
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both sufficient value and persistence to play an important role in the development of a

major industry. Furthermore, Karen Seashore Lewis, Blumenthal, Michael Gluck, and

Michael Stoto (1989) argue that scientific entrepreneurship leading to commercialization is

not distributed evenly across universities so that whether or not a given scientist is likely to

start a firm depends upon where he or she is located. Both of these objections to focussing

on the scientists who embody intellectual capital come down to empirical questions which

we believe are answered convincingly in the rest of this paper for at least the biotech

industry.

We hope that our work on the role of intellectual capital in the formation of

biotechnology firms will ultimately help us to understand the creation of firms in other very

highly technological industries. Harold Demsetz (1988) has argued that the costs of

mastering specialized bodies of knowledge play a central role in delimiting the boundaries

of the firm. Here we see that at least in one case the very existence of a firm requires

access to the very frontier of a science. Whether there are other industries in which

intellectual capital plays an equally important role remains the subject of future research.

I.B. Measuring Intellectual Capital in Biotechnology

Broadly enough defined, biotechnology has been used as long as people have baked

bread and drank wine. Cross breeding of animals and growing penicillin are other examples

of biotechnology. Sincç the mid-1970s the biotechnology industry has been driven by

advances in the biological sciences, particularly in fields such as genetic engineering and cell

hybridization. Accordingly today biotechnology refers principally to the application of
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genetic engineering based upon taking a gene from one organism and implanting it in

another (rDNA) and production of the outcome of this process. The other basic technology

is cell fusion in which lymphocytes are fused with myeloma cells to create rapidly

proliferating antibody-producing cells.7

A very important measure of research success is the discovery of nucleotide

sequences that determine the characteristics of proteins and other molecules. In the earlier

stages of the project, GenBank was used to identify all articles reporting gene sequence

discoveries up to 1990. The rDNA technology devolved from high to routine science in

the late 1980s: for example, a gene sequence discovery was no longer the basis for a Ph.D.

dissertation at a major university by the end of the decade. So 1990 is a good year to end

the literature base for identifying scientists possessing intellectual capital.

First, as detailed in Data Appendix A.1, we identified 337 leading researchers whom

we termed "stars" on the basis of the number of genetic sequence discoveries reported up

to 1990 for which they were an author and the number of such articles. These 337 stars

were listed as authors on 4,315 distinct articles in major journals. These articles were hand

collected (see Data Appendix A.2) to identify and locate institutional affiliations at the time

of publication for each of our stars and their coauthors.

Because research discoveries frequently occurred through teams, another 7,718

scientists who were coauthors with a star but who had not themselves met the star criteria

were labeled "collaborators." The left side of Table 1 provides some characteristics of those

4,196 stars and collaborators who were located in the United States at the time of their first

publication. The average citation data (see Data Appendix A.3) indicate that scientists in
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firms are not necessarily inferior to their academic colleagues. In the absence of tenure

pressures, it would not be surprising to see fewer "minor" publications produced by firm

scientists. Nonetheless, it is surprising that the IQIaI number of citations for all gene-

sequence-reporting publications should be higher for scientists located in firms than those

located in universities or in research institutes and hospitals. While the firm-born star

citations are dominated by a single individual, there are 390 firm-born collaborators who

similarly dominate their university and institution colleagues in citation rate.

Discussions with scientists in the field indicate that simple co-authorship may not

indicate that the individual in question had acquired substantial mastery of the rDNA

technology. Accordingly, we developed a screen to focus on those scientists who are actively

working -- presumably with mastery of the then-current state of the art — at a particular

time: a star or collaborator is "active" in any year in which he or she has published three

or more articles in the three-year period ending with that year. This is a substantial screen,

only 134 of the 213 U.S.-born stars are ever active in the U.S. while only 12.5 percent (498

out of 3983) U.S.-born collaborators are ever active in the U.S.' Note that some of the

stars and collaborators "born" in the United States may have returned to their native

countries after training and published sufficiently to be "active" there. Restricting our

attention to these ever-active individuals does not eliminate the higher citation rate for

scientists "born" in firms: While we might not put much weight on the single ever-active

firm-born star, the 46 ever-active firm-born collaborators are as productive of citations as

our ever-active university-born starsl

Intellectual capital is rather concentrated in location. In the United States, only 263
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distinct organizations were given at any time as affiliations of any of the stars or

collaborators in our articles data set. These organizations comprised 141 universities, 74

research institutes and hospitals, and 48 firms. Of course, scientists may have secondary

affiliations such as service on scientific advisory boards with a number of other organizations

which would not be reflected in our data set.

There is some ambiguity as to whether intellectual capital is best conceptualized

simply as mastery of a particular specialized body of knowledge or whether it also involves

the individual's capacity to utilize that knowledge. Obviously, anyone who meets our active

criterion has some substantial ability to apply the rDNA technology. Nonetheless, we plan

to use our citation data in future research to test whether it is enough to know how the

technology is applied or instead whether the interaction of "genius" with know-how is the

key determinant to where and when biotech firms will be born.

LC. The Diffusion of Intellectual Capital among Stars and Their Collaborators

After the 1973 discovery, rDNA technology diffused among the stars and their

collaborators primarily by bringing the new people in to work in labs where rDNA

technology was being utilized. We believe that doing so was consistent with optimizing

behavior by the individuals endowed with the intellectual capital. We plan to report on that

process in detail separately, but here will simply indicate how the diffusion occurred.

One way to see how the diffusion process occurred is to see how few articles even

our stars wrote reporting sequence discoveries each year from 1967 until 1977 when the

process began to take off (Figure 1). In the early years, the technique appears to have been
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at least informaliy bounded by excluding coauthors from other institutions (Figure 2); as

time goes on and the know-how declines in value, it becomes more likely that research

teams will include scientists from other institutions. The logit regression in Table 2 both

(a) confirms the declining probability over time of publishing with same-institution authors

even when other factors are held constant and (b) indicates that researchers from firms are

especially likely to write with coauthors from their firm in comparison with other authors.'°

Similarly, we see in Figure 3 that the number of coauthors rose over time as value of know-

how fell.

Restricting our focus henceforth to only scientists and firms located in the U.S., we

plot in Figure 4 the cumulative number of stars, collaborators, and new biotech enterprises

with location and birth date of scientists defined according to their first publication and

founding dates for firms present in the United States as of 1990.11 We can see that the

number of stars began to grow rapidly some years before either collaborators or firms.'2

The map (Figure 5) illustrates that firms seemed to follow stars not only in time but also

in place: The location of biotech enterprises in 1990 is well predicted by the areas in which

any of our stars first became "active in the period 1976-89. We will expand on these simple

correlations below after including other variables which might also be important, but the

basic message will remain. When and where star scientists are active, firms are likely to be

born.

I.D. Universities and the Production of Intellectual Capital

It is hardly novel that important discoveries are disproportionately made at great
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universities and diffused there from the original discoverers to colleagues and students. This

is true for biotechnology as well. In the United States, this incubator role of the university

is clearly indicated in Figure 6 where initially all the active stars and their active

collaborators are to be found in universities, while by the end of the period this share falls

below one half for both stars and their collaborators.

University faculties and administrators make fundamental investment decisions —to

grow a certain area (e.g., biochemistry) or to "go after" a top scientist -. and these decisions

at least early in the discovery process have major impacts on the direction and development

of science, including discovery rates. The faculties of great universities make these decisions

better because they are selected and rewarded on the basis of their individual records of

demonstrated productivity and the scientific intuition or "taste" that guides their research

and teaching as to what is really important.

Although we have been able to measure intellectual capital in the rDNA field more

directly by looking at research output, we expect that the presence of research universities,

and especially great research universities, should also be separately entered into the

equation explaining firm births for two reasons: First, to the extent that our intellectual

capital measures imperfectly capture all the scientists with the requisite rDNA know-how,

the university variables should improve the explanatory power of the equation along

standard specification analysis lines. Second, the biotech industry has substantial

components which do not require knowledge of gene splicing, e.g., growing proteins which

have been created by others or producing bases used by the gene splicers. These ancillary

technologies also require different forms of intellectual capital which we measure indirectly
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by the universities capable of producing these other forms. Obviously, it is an empirical

question as to whether our empirical measures of rDNA intellectual capital will continue

to enter in the presence of university variables or whether the university variables will have

any independent explanatory power in the presence of our measures.

For empirical purposes, we define biochemistry, cellular/molecular biology,

microbiology as "biotech-relevant." With reference to just these biotech-relevant

departments, we used two different types of measures for research universities: QUAL11

which is the number of universities in a BEA with one or more most highly rated programs

in Jones et al. and FEDGRANT which is the total number of faculty supported by 1979-80

federal grants to all universities in each BEA for biotech-relevant research.'3 (See Data

Appendix A.4 for details.)
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II. Other Factors Affecting Firm Births

The basic optimizing rule for firm birth is that a potential founder will start a firm

if and only if the net present value of the discounted expected cash flows is positive. In fact,

we could in principle expand on that simple insight following Boyan Jovanovic (1982) to

allow for an entrepreneur's choosing an optimal time to start a firm given a range of times

for which there are positive discounted expected cash flows. Given the limitations of the

available data, we do not believe very refined models are likely to be productive. Instead

we pursue a simple "at risk" modelling approach which views the following agents in a BEA

area as potentially starting a NBE: scientists with intellectual capital located in the area,

venture capital firms located in the area, pharmaceutical firms operating in the area, and

other economic agents active in the area. Thus at any time t the instantaneous probability

p of a firm founding in area i is determined by the numbers of these agents in the area, and

their respective probabilities of founding an NBE. Over finite periods, like years, the

number of firms actually founded will follow a poisson process.'4- In this section we will

discuss and motivate measures of each of the remaining agents and factors affecting their

probability of firm founding. The next section will report on the empirical results.

ll.A. Venture Capital Firms

The development of the U.S. biotech industry has largely been financed in the initial

stages by venture capital firms. These firms serve as intermediaries putting together private

financing for new and young firms. In doing so, the venture capital firms lower the cost of
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financial capital to the new firms during the lengthy period of research before there is either

product or intellectual property with significant market value.u These firms monitor their

investments for themselves and their partners, and in doing so provide management

expertise to their client firms (see Lerner 1993b).

We believe that the existence of the venture capital industry in America has had a

significant effect on the development of the biotech industry. In the U.S. 74 percent of

NBEs were started as independent firms compared to only 5percent in Japan where there

is no significant venture capital industry. The difference, as we see it, is that in the U.S.

there is the choice of starting a new firm or starting a new subunit within an existing firm

while the latter is effectively the only choice in Japan. Since where there is the option, new

firms are the dominant form of business, we conclude that this difference may be a

significant constraint on Japanese biotech firms. In principles the existence of venture-

capital financing in the U.S. may have permitted NBEs to have been founded sooner in the

U.S. and possibly closer to the intellectual capital resources than would otherwise be the

case. This systemic argument is the main one for an important role for venture capitalists.

Japanese participants in the biotech industry believe that the interaction between the

lack of venture capital firms willing to finance start-ups and the effective prohibition of

initial public offerings without a track record of substantial profits and revenues makes it

impossible for Japanese scientists to start firms as is done in the U.S. and thus to capture

fully returns to their intellectual capital (see Zucker and Darby 1993). It should be noted

that there are alternative explanations for the predominance of firms in the U.S., such as

our predilection for tort litigation so that existing firms may have greater reason to avoid
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risky new technologies and their associated product liabilities.

Quite another argument is frequently made: that venture capitalists are the key

catalysts for the birth of NBFs and that in areas where they are absent no firms will be

formed while where they are present we will see NBFs formed.1' A weaker form of the

same argument is that there is not an efficient national venture capital market; so the cost

of financial capital is much higher to start-up firms in areas where venture capitalists are

absent or not subject to vigorous competition. Because of the hands-on role of the venture

capitalist, it is argued, they are not likely to fund operations more than several hours from

their offices. The higher is the cost of financial capital in a particular area, the less likely

is it that a potential entrepreneur will compute a positive discounted expected cash flow

from founding a new biotech firm.

Since the venture capital industxy existed during the entire time the biotech industry

was developing we cannot in this paper test the systemic hypothesis for its importance. We

plan to do so, however, in future cross-country comparative work. We can and do test here

whether the number of venture capital firms in a BEA area VENTCAPk has a significant

positive effect on the rate at which NBFs are founded. If it does, it is evidence for the

absence of an efficient national venture capital market. If it does not, then we can conclude

that there is an efficient national market and that venture capital funds will flow to firms

of good potential regardless of where they are founded. By way of analogy, we might ask

whether great universities need to be founded in areas rich in good book stores or whether

such book stores will be induced wherever there are great universities. Stretching the

analogy further, the systemic argument is about whether it is a significant impediment to the
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development of universities if private book stores are not permitted and the universities

must found their own.

A caveat is in order at this point. Just as bookstores spring up when a university

opens, so too venture capital firms may arise in areas where there is new business to be

done. Hence, we should either restrict ourselves to looking at those venture capital firms

which existed before the birth of the biotech era or else use a simultaneous equation

method. The latter is problematic in the case of poisson-process estimation. As explained

in Data Appendix A.7, we have chosen to tiy to limit the simultaneity problem by freezing

our data on venture capital firms after 1981 when the main burst of biotech births begin.'7

fl.B. Other Economic Agents

We would like to identify other economic units at risk for starting NBEs. We believe

that pharmaceutical firms are the remaining agents most likely to start NBEs in the United

States. To date, primarily because of disclosure restrictions on government statistical

agencies, we have not found an acceptable measure of the presence of pharmaceutical firms

in a BEA area. We hope to add such a PHARM1 variable in future research.'5

Having accounted for individuals possessing intellectual capital and venture capital

firms — and unable to measure pharmaceutical firms — it is difficult to identify other

potential firm founders, but we also include total employment EMPk and average earnings

per job EJOBM as measures of other at-risk units not accounted for by our prime categories.

17



ILC. Carrying Capacity and Population Ecology

In Section I, we related measures of intellectual capital to NBEI, the number of new

biotech enterprises in particular BEA areas and years. The primary purpose of this paper

is to explain the birth of those enterprises or BNBE1. The measurement of these and

related concepts is detailed in Data Appendix A.6.

Once the commercial usefulness of biotechnology is appreciated, the net present

value of a prospective NBE should be a decreasing function of the number of enterprises

in existence when the period begins. Since the competition in the output market is at the

national level, it is appropriate that we use the national total of enterprises in the industry.

Hence, we would expect the lagged stock of new biotech enterprises NBE1.2 to have a

negative effect on the birth of NBEs in year t. Note that the national aggregate is indicated

by the absence of the subscript i.

Although we can be confident that at the national level the effect of the lagged stock

should be negative reflecting competition in the product market, there also may be a

separate, ambiguously signed effect on the birth of NBEs in area i from the lagged stock of

new biotech enterprises in that particular BEA area (NBE). We have not found previous

analyses that have considered the two effects, national and local, separately.1' For the local

effect, on the one hand, the more firms there are locally the more local competition exists

for inputs. But in the spirit of Adam Smith's dictum that "specialization is limited by the

extent of the market" or the geographer's concept of economic agglomeration, the existence

of a local biotech industry may lower the cost of goods and services to the firm. Therefore,

whether NBEU.I has a positive, zero, or negative effect is strictly an empirical question.
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Endogenous population dynamics are the cornerstone of population ecology models

of birth. Recent empirical studies rely, sometimes exclusively, on variables that describe the

population at an earlier time point (for an excellent review, see Singh and Lumsden 1990).

For example, in models of labor union birth at the national level the authors include the

number of national labor unions in the prior year and its square, the number of births in the

prior year and its square, plus period effects (Hannan and Freeman 1989, pp. 201-224;

Hannan and Freeman 1987). Other authors have introduced some other variables, but the

focus has remained on lagged births and stock of firrns2°

On our view, it is far better to explain the forces determining births in a particular

area and year than assume that the forces are pretty much like last year as is implicit in the

use of the lagged dependent variable (see Zucker 1989). Below we do run some models

with the lagged dependent variable for comparison purposes, but we believe that their

inclusion is both theoretically and econometrically suspect.

II.D. Other Factors

Two other factors are considered as determinants of the birth of new biotech

enterprises:2' the S&P500 earnings-price ratio E/PRATIO and a time trend YEAR,. The

S&P500 earnings-price ratio is a natural measure of the all-equity cost of capital in the

economy and hence should enter negatively as a determinant of births. In some regressions

we include a time trend not so much as an explanatoiy variable as a check on the

significance of omitted variables which vary with time. Note that these variables are

national observations and thus cannot enter when we do purely cross-section analyses.
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In earlier studies such as Mansfield (1962) industry profitability, capital requirements,

and minimum efficient firm size were important determinants of enuy and exit. We do

attempt below through period interactions to capture the declining profitability to scientists

of starting a firm as the technology diffuses, but firm profitability as conventionally

measured is essentially nonexistent throughout this period even as entrepreneurs made

fortunes taking their "unprofitable" firms public. We have no way to measure capital

requirements or minimum efficient firm size but see no obvious reason for there to have

been significant change in either of these parameters.
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Ill. Empirical Results

A formal model is premature if not presumptuous at this point. In what follows we

generally enter the variables identified in Sections I and II into poisson or OLS regressions

on BNBEE, the birth on NBEs in area i in year(s) t. These regressions are estimated using

the UMDEP package?3 As discussed in Jerry Hausman, Bronwyn H. Hall, and Griliches

(1984), the Poisson process is the most appropriate statistical model for count data such as

we are dealing with here. The poisson process assumes that births occur in a BEA area

with a probability LAMBDA per unit time. The logarithm of LA14BDA is a linear

function of the explanatory variables included in the regression. This process is consistent

with the dependent variable which is a non-negative integer with significant mass at zero.

OLS regressions are not really suitable for the structure which we are estimating, but are

included at times for comparison purposes.

Active stars and their collaborators are denoted by ACSTARM and ACCOLL(,

respectively. Squared values of these variables are ACSTARSQ and ACCOLLSQ,

respectively.

We also ran the same regressions for NBFs and NBSs defined both exclusive and

inclusive of the arguable case of joint ventures. The results were generally very similar for

the subcomponent regressions and accordingly are not reported or discussed here except in

Table 8 in connection with discussion of the venture capital variable.
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LILA. The Long-Run Model

Because of concerns about possible simultaneity biases once the industry became a

significant economic force, we begin our empirical discussion with models which relate the

number of firms in each BEA area at the beginning of 1990 to the distribution of

intellectual capital and other variables as of 1980. These results provide something of an

acid test of our approach.

In Table 3, we present cross-section poisson regression across the 183 BEA areas

explaining NBEL9O, the number NBEs at the beginning of 1990 when our data set ends. As

explanatory variables for the logarithm of the poisson parameter we use: ACSTAR7,

ACCOLLI7 QUAL11, FEDGRANT1, VENTCAP EMP. EJOB.and NBE where

the variables with 76-80 subscripts are defined as:

ACSTAR17 the cumulative number of stars "active" at any time during the

years 1976-1980 in area i

ACCOLL, the cumulative number of their collaborators "active" at any

time during the years 1976-1980 in area i

The other variables are values for or about 1980. The earnings-price ratio had to be

dropped for these analyses because it is available only nationally over time.

The first column of results restrains the analysis to only stars and collaborators, while

the second column adds in the other intellectual capital variables. The third column adds

in the number of venture capital firms, the fourth adds employment and average earnings

by area, and the fifth adds those births which occur during the very early years of the

industry. Since those births also appear in the variable to be explained by the regression,
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Table 4 reports the same regression with the dependent variable NBE,1.,O instead of

NBE,O, where the former variable excludes those firms alive at the beginning of 1990 which

were born before 1981. The results are essentially identical which reflects the fact that bulk

of new biotechnology enterprises were founded after 1980.

In the fourth column (and generally before, where applicable) the four intellectual

capital variables all enter significantly. The coefficient on collaborators is negative, however.

The effect of collaborators is unstable in other regressions both reported below and

unreported. We believe that this may reflect the fact that training collaborators, a useful

and rewarded thing particularly for the academic stars, may take more of the stars' energy

than it is worth if firm birth were the only criteria. We shall see below that this is

particularly the case for the earlier years of the industiy.

In the fifth column, the only significant effects are (a) to lower the overall size of

coefficients as generally occurs with lagged dependent variables,2' and (b) to eliminate any

significant effect for the number of great university programs and the number of venture

capital firms in the area. As to the latter, it appears that the proto-industry's geographical

distribution in 1980 is so highly correlated with QUAL1I and VENTCAPUO that the latter

variable has no significant independent effect. We should note that the properties of

Poisson regressions in the presence of lagged dependent variables are not well worked Out

and these results should be approached with caution.

The significant negative sign of the VENTCAPO variable in columns 3 and 4 is the

most surprising result in Tables 3 and 4. As we discussed above, there is a significant body

of literature which argues that the presence or absence of local venture capital firms is the
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key determinant of where the biotech industiy developed. We accordingly expected a

positive effect if this literature is correct or an insignificant effect if the venture capital

market is "efficient" in the sense that venture capital is allocated to its highest valued uses

regardless of the location of venture capital firms. As of this time, we have come up with

only one substantive and one statistical explanation for why venture capital firms would have

a negative effect: Where venture capital firms are numerous, firms may tend to be larger

and better capitalized using up more stars than in those areas where venturecapital is

scarce. Statistically, columns 5 of Tables 3 and 4 indicate that multicollinearity between

QUAL11 and VENTCAP may be affecting the estimates. In future research, we shall

examine aspects of firm development other than birth which should shedmore light on this

apparent anomaly.

If the VENTCAP variable is entered with only the economic variables (that is, with

the intellectual-capital variables excluded) then a significant positive coefficient appears'

log LAMBDA1 = -2.056 + 0.014 VENTCAP + 25E-8 EMP + 15E.5 EJOB
(.2712) (.0040) (37E-9) (13E.6)

Dep. Var. NBE% Log-likelihood = -864.0

log LAMBDA1 = -2.309 + 0.015 VENTCAP + 24E-8 EMP + 15E5 EJOB0
(.2985) (.0044) (41E-9) (15E-6)

Dep. Var. NBEUI. Log-likelihood = -7543

In Section IV.B below, we report veiy similar results in a cross-section/time-series context.

We also note that in the OLS regressions in Tables 5 and 6 V.ENTCAP appears to be

positive. Thus, it is certainly easy to see why the evidence for the importance of venture
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capital may have appeared stronger in previous work than seems warranted based on fuller

models and more appropriate estimation techniques.

Turning to Tables 5 and 6 briefly, we note again that we believe that the poisson

regressions are more appropriate than the 01_S regressions presented here. Nonetheless,

the results are qualitatively fairly similar except for the venture capital variable. The

explanatoiy power of these regressions is also impressive judging from the adjusted R2

values.

In conclusion, the intellectual capital variables play a strong role in determining

where the U.S. biotech industry developed during the 1980s. This strong role is most robust

for the variables which are related to particular individuals (counts of stars, their

collaborators, and scientists supported by federal grants) in comparison with the reputation

of the university programs with which most of these individuals are affiliated. The strong

role of venture capital variable reported previously is not supported. Indeed, if anything the

data tell us that there were fewer firms founded, other things equal, where there more

venture capital firms.

III.B. The Short-Run Model

Our data set permits us to examine the panel of 183 BEA areas for each of the years

1976 through 1989. Table 7 reports poisson regressions for this entire panel.

The first column reports the results using only the counts of stars and their

collaborators active each year in each BEA area. Examination of the data suggested that

these effects -- particularly for stars — were nonlinear so we add squared values in the
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second column. As the number of stars increases, their marginal contribution diminishes

eventually passing through zero.

We believed that these nonlinearities might reflect the declining value over time of

the intellectual capital as we have measured it. Basically, as the knowledge diffuses we

observe both more and more stars and less and less payoff to any one of them if he or she

were to start a firm. There is evidence in the data such that stars are less likely to result

in birth of NBEs after 1985 than before. This is illustrated in the third column of Table 7

where the prefix 8689 means that the variable has been multiplied by a dummy equal to 1

during 1986-1989 and 0 otherwise. The effect of stars virtually disappears while there is

some more positive effect from their collaborators who may provide labor to new firms.27

In the same regression, we see that university quality and federalsupport are also significant

measures of intellectual capital relevant to firm founding.

The fourth column repeats the results of Section lILA: The economic variables enter

significantly with the expected sign if the intellectual capital variables are omitted from the

regression. However, unlike the previous long-run case, we can now enter the earnings-price

ratio. Here this variable enters with the correct sign and insignificantly.

The final column of Table 7 presents the combined model incorporating the

intellectual capital and other variables. The results for the intellectual capitalmeasures are

robust while the sign of the venture capital variable turns significantly negative and the

employment variable turns insignificantly negative. Thus, taken as a whole the results

summarized in Table 7 support the strong role of intellectual capital variables in

determining the development of the American biotech industzy.
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The role of the economic variables, particularly VENTCAP is explored further in

Table 8. This table presents representative results for births in the NBF and NBS

subcomponents of NBE. We see in columns 1 and 2 that if only the economic variables are

introduced we get all the expected signs at appropriate significance including a nice result

that VENTCAPJ has a significantly positive effect on the birth of new firms but an

insignificant effect on the birth of subunits of existing firms which would not normally be

financed by venture capital firms. The combined model is reported in columns 3, 4, and 5

for births of firms, subunits, and enterprises, respectively.u Again, in the presence of

intellectual capital the nice simple economic stoly does not hold up: the coefficients of

VENTCAPk and EMP turn negative, significantly so in the case of venture capital.

To complete the short-run model, we next examine the dynamic nature of the birth

process. To do so, we need to explore the effects of the stocks of NBEs both locally and

nationally (i.e., NBEU1 and NBE1.1), the presence of a time trend YEARS (YEAR19J = 1,

YEAR1 = 2, etc.), and the effect of the statistically problematic lagged dependent

variable BNBEI. Collectively, these are the main variables that have been emphasized in

the population ecolo, models of firm birth. In Table 9 we see that like other extrapolative

forecasting methods, a combination of the dynamic variables —with or without the lagged

dependent variable —yields reasonable models. In column 4 or 5, we interpret the positive

coefficient on NBEU.1 as reflecting local agglomeration effect and the negative coefficient

on NBE.I as due to the depressing effect on profitability as the national total of biotech

firms rises. However, we believe that these models are misleading by themselves without

including the structural variables which explain much of the lagged values.
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In Table 10, we add these four variables to first the intellectual capital variables, then

to the other economic variables, and finally to the full fundamentals model. In the fourth

columnwe drop the statistically insignificant but problematic lagged dependent variable.

Comparing the log-likelihoods of column5, Table 7, columns 4 or 5 of Table 9, and columns

3 or 4 of Table 10, we see that the dynamic variables add some explanatoiy power to the

basic model, but do not alter the qualitative description of the structural variables:

intellectual capital asmeasured by the starvariables, QUAL1, and FEDGRANT remain the

dominant forces with supporting roles for the other economic and dynamic variables.

VENTCAPk and EMP1 continue to display significant coefficients of the wrong signwhile

EJOB, and E/PRATIO enter correctly and significantly. The local lagged stock of firms

NBEJ1 and the corresponding national stock NBEI retain significanceconsistent with both

local agglomeration effects and a national cariying capacity for the industiy. Of course, we

cannot distinguish between agglomeration or other "real" explanations for the significantly

positive coefficient on NBE1.1 and omitted or mismeasured variable interpretations. The

fourth column of Table 10 reflects our preferred model.

We conclude by observing that by and large the dynamic behavior of births of new

biotech enterprises reflects the dynamic behavior of the underlying fundamental variables,

principally the intellectual capital variables. The lagged local stock of firms, the lagged

national stock, and a time trend play a significant but supporting role.
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N. Conclusions and Summary

The American biotechnology industry which was essentially nonexistent in 1975 grew

to seven hundred active firms over the next 15 years. This industry is a testament to the

value of basic scientific research. In this paper, we show the tight connection between the

intellectual capital created by frontier research and the founding of firms in the industry.

At least for this high-tech industry, the growth and location of intellectual capital was the

principal determinant of the growth and location of the industry itself. Venture capital

firms, which appear to be significant determinants when intellectual capital variables are

excluded from the regressions, are at best insignificant as determinants of firm births and

generally exhibit anomolously significantly negative coefficients. This may reflect a tendency

toward fewer, larger firms in areas rich in venture capital firms, but that remains conjecture

until further research is done. The crucial importance of lagged variables and time trends

which have been popularized by the population ecologists also does not survive in the

presence of structural variables.

We conclude that the growth and diffusion of intellectual capital was the main

determinant of where and when the American biotechnology industry developed.

Intellectual capital tended to flourish around great universities, but the existence of

outstanding scientists measured in terms of research productivity was key. In future

research, we hope to resolve some of the puzzles we have raised and to extend the analysis

to other countries and industries.
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Appendix A: Data

In this paper we used the data sets developed for the Project on "Intellectual Capital,

Technology Transfer, and the Organization of Leading-Edge Industries: The Case of

Biotechnology," Lynne G. Zucker, Marilynn B. Brewer, and Michael R. Darby, Principal

Investigators. These data will be archived upon completion of the project in the Data

Archives at the UCLA Institute for Social Science Research. The project has been housed

at and supported in part by ISSR.

The data sets contain a variety of linkages, but are derived from distinct sources and

are most easily discussed sequentially. Before doing so, however, it is important to

understand a few salient features of the data sets.

First the data generally are in the form of panels: cross sections observed annually

from 1975 or earlier through 1989 or later. The cross-sections are generally defined

geographically. For this purpose, geocoding was originally done at the finest level possible

of the zip-code, county, BEA- area, and national levels of geography. For the analyses

reported in this paper, all data for finer levels of geography have been aggregated to the 183

BEA-defined functional economic areas in the United States. Eveiy U.S. zip code and

county is assigned to one of these areas.

Generally, natural geography exists only for institutions (universities, research

institutes and hospitals, biotechnology firms, and venture capital firms), but a variety of

economic data is collected at or can be aggregated to BEA level as well. Individual

scientists are linked to locations through the institutional affiliations reported in their
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publications in the article data set. The citations were also collected for articles if and only

if they appeared in the article data set; so scientists are credited with citations only insofar

as they are to the 4,315 articles reporting gene sequence discoveries and published in major

journals.

A..1. Scientist Data Set

As mentioned above, in the earlier stages of the project, GenBank was used to

determine for each scientist the total number of genetic sequence discoveries reported in

all articles reporting gene sequence discoveries up to 1990 for which that scientist was listed

as an author. On the basis of these total number counts, we identified 315 leading

researchers whom we termed "stars. We used a cutoff of at least 41 sequence discoveries.

However, total gene sequence discoveries is an imperfect measure of scientific output: many

technological breakthroughs in the 1970s and 1980s made gene sequencing more efficient,

and the discovery of sequences for some types of genes is either more difficult or more

important. Accordingly, another 22 stars were identified based on frequency of publication

of articles reporting gene sequences bringing the total to 337 stars.

Because research discoveries frequently occurred through teams, scientists who were

coauthors with a star but who had not themselves met the star criteria were labeled

collaborators. In terms of distinct individuals, we captured data for 7,718 collaborators in

addition to the 337 stars, or a total of 8,055 individuals worldwide. Each star and

collaborator was assigned a unique scientist ID number for use in linking to the other data

files.
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As discussed in Data Appendix A..2 below, we have the affiliations listed by each of

these scientists on 4,315 journal articles in our article data set. We use the institutional

affiliations to locate scientists: Generally a scientist is located for our analysis at the

institution given in his or her last publication; however, scientists are said to be "born" in the

year and at the institution of their first publication.

As discussed in the text, a star or collaborator is defined as "active" in any year in

which he or she has published three or more articles in the three-year period ending with

that year. The variables ACSTAR and ACCOLLI are counts of the number of active

stars or collaborators by year in each BEA area.

A.2. Article Data Set

Our article data set consists of all 4,315 articles in major journals listed in GenBank

as reporting genetic sequence discoveries for which one or more of our 337 stars were listed

as authors.3° All of these articles were assigned unique article ID numbers and collected

by hand. For each article, scientist ID numbers are used to identify the order of authorship

and the institutional affiliation and location for each author on each article. This hand

coding was necessary because, under the authorship traditions for these fields, the head of

the laboratory who is often the most prestigious author frequently appears last. Our stars,

for example, were first authors on 18.3 percent of the articles and last authors on 69.1

percent of the 4,285 articles remaining after excluding the 30 sole-authored articles.3'

Unfortunately, only first author affiliations are available in machine-readable sources.

The resulting authorship data file contains 20,669 observations, approximately 5
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authors for each of the 4,315 published articles. Each authorship observation gives the

article ID number, the order of authorship, the scientist ID number of one of our stars and

collaborators, and an institutional ID number for the authors affiliation which links him or

her to a particular institution with a known zip code as of the publication date of the article.

A.3. Citation Data Set

We have collected data for 1982, 1987, and 1992, on the total number of citations to

each of our 4,315 published articles listed in the Institute for Scientific Information's Science

Citation Index. These citation counts are linked to the article and authorship data set by

the article ID number.

A.4. University Data Set

Our university data set consists of all U.S. institutions listed as granting the Ph.D.

degree in any field in the Higher Education General Information Survey (HEGIS),

Institutional Characteristics, 1983-84. Each university is assigned an institutional ID

number, a university flag, and located by zip code based on the HEGIS address file.

Additional information was collected for those universities granting the Ph.D. degree

in biochemistry, cellular/molecular biology, and/or microbiology which we define as

"biotech-relevant fields. All of the following additional variables are based on data in the

National Academy of Sciences study by Lyle Jones, Gardner Lindzey, and Porter Coggeshall

(1982).

FEDGRANT is the total number of scientists in all biotech-relevant departments in
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BEA rea i supported by 1979-80 grants from the NSF, NIH and the Alcohol, Drug Abuse

and Mental Health Administration (ADAMHA).

R&DEXP1 is the sum in thousands of dollars of total reported university expenditures

for research and development in the biotech-relevant departments over all the universities

listed in Jones et al. which are located in the BEA area. We note that reporting practices

for these expenditures seemed inconsistent across universities, perhaps because they do not

keep accounts as would have been required to accurately answer the survey.

We define university quality level based on the scholarly quality rating in the

reputational survey in Jones et al. Reputational ratings were based on responses from

approximately fifteen percent of the faculty in the fields studied. Since we were interested

in identifying the very best programs, we considered only the highest rated of the

biochemistry, cellular/molecular biology, and/or microbiology programs offered by a

particular university. The number of universities in a BEA with one or more most highly

rated programs (rated above 4) is our variable QUAL1. Similarly, QUAL2, QUAL3, and

QUAL4 represent the numbers of universities with rated programs of above 3 through 4,

of above 2 through 3, and of 2 and below, respectively. That is, QUAL1 is the count of the

very best universities in an area while QUAL4 is a count of those of the lowest quality to

be rated at all.

A.5. Research Institute and Hospitals Data Set

For those U.S. research institutions and hospitals listed as affiliations in the article

data set, we assigned an institutional ID number and an institute/hospital flag, and obtained
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an address including a zip code as required for geocoding. No additional information has

been collected on these institutions.

A.6. Biotechnology Firm Data Set

The starting point for our firm data set covered the industry as of April 1990 and was

purchased from the North Carolina Biotechnology Center (1991), a private firm which tracks

the industry. This data set identified 1075 firms; some of which were duplicates or foreign

and others of which had died or merged. Further, there were a significant number of

missing firms which had died earlier. For these reasons, an intensive effort was made to

supplement the NCBC data with information from Bioscan (1989-1993) and an industry data

set provided by a firm in the industry which was also the ancestor of the Bioscan data set

(Pre-Bioscan 1988). Each of the firms was assigned an institutional ID number and an

enterprise flag.

We combined these three sources to identify 751 distinct U.S. firms for which we

could determine a zip code and a date of founding (or entry into biotechnology for subunits

of preexisting finns). Of these, based on the financial information in the NCBC data

supplemented where necessary and possible by our other sources, 511 are classified as NBFs,

150 as NBSs, and another 90 could not be classified clearly into either subcategory but were

retained as NBEs. Of the 90 others, 18 were in the problematic category of joint ventures

and the remaining had insufficient data to classify as independent firm or subunit. We also

obtained for 52 of these 751 firms the date of their exit by death or merger.

Based on these data, we have developed a continuous series on the number of active
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new biotech enterprises NBE (and its subcomponents NBFk and NBS1) and their births

(BNBEV BNBFV and BNBS), all series being by year and BEA area.TM The national

stock of new biotech enterprises NBE1 is simply the annual aggregate of the BEA area

values.

A.7. Venture-Capital Firm Data Set

We created a venture-capital firm data set by extracting from the Stanley Pratt (1982)

directory the name, type, location, year of founding, and interest in funding biotech firms.

This information was extracted for all venture capital which were legally permitted to

finance start-ups. This latter requirement eliminated a number of firms which are chartered

under government programs targeted at small and minority businesses.

We developed two alternative measures of the availability of venture capital:

VENTCAPM which is the total number of eligible venture capital firms in BEA area i in year

t and VCBIO which counts only the subset of those firms indicating a specific interest in

their Pratt listing in funding biotech firms. This approach accounts for the founding date

of firms appearing in the 1982 Pratt directory, but not for those firms that may have either

entered thereafter or existed in earlier years but exited before the Directory was compiled.

A.8. Economic Data Set

This data set consist of three variables EMPE, EJOB, and POP observed at the BEA

area and year level, one variable SIC283O which varies across BEA areas but not over time,

and three national variables UNEMP1, E/PRA11OI, and YEARS which vary only with the
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year.

Total employment EMP, average earnings per job EJOBk, and total population °M

are all reported by the BEA at the BEA area level from county level data in U.S.

Department of Conunerce (1992):

EMP Table K, line 010

EJOB Table V, line 290 (wage & salaiy disbursements, other labor income, and

proprietors income per job) deflated by the implicit price deflator for personal

consumption expenditures

POP Table B, line 020

S1C28301 is the number in the BEA in 1980 of establishments producing goods with

SIC code 2830 (Drugs, Total; Number of Establishments). This variable is aggregated to

the BEA area level from county level data in U.S. Department of Commerce, Bureau of the

Census, (1982).

The total unemployment rate UNEMPI and the S&P500 earnings-price ratio

E/PRATIO, were taken from CITIBASE (1993), series LHUEM and FSEXP, respectively.

The time trend YEAR1 is I in 1976, 2 in 1977, etc.

37



References

Bania, Neil, Randall Eberts, and Michael Fogarty, "Universities and the Startup of New
Companies: Can We Generalize from Route 128 and Silicon Valley," Review of
Economics and Statistics, November 1993, in press.

Beesley, Michael, 'The Birth and Death of Industrial Establishments: Experience in the
West Midlands Conurbation," Journal of Industrial Economics, October 1955, 4: 45-
61.

Bilofsky, H.S., and C. Burks, "The GenBank (R) Genetic Sequence Data Bank," Nucleic
Acids Research, 1988, j: 1861-1864.

Blumenthal, David, "Academic-Industry Relationships in the Life Sciences: Extent,
Consequences, and Management," Journal of the American Medical Association,
December 16, 1992, 2: 3344-3349.

Carroll, Glenn R., Publish and Perish: The Organizational Ecology of Newspaper Industries,
Greenwich, CT: JAI, 1987.

Carroll, Glenn R., and Yangchung Paul Huo, "Organizational Task and Industrial
Environments in Ecological Perspective: Findings from the Local Newspaper
Industry," American Journal of Sociology, Januaiy 1986, 21: 838-873.

Cohen, Stanley, A. Chang, Herbert Boyer, and R. Helling, "Construction of Biologically
Functional Bacterial Plasmids in vitro," Proceedings of the National Academy of
Sciences, 1973, 20: 3240-3244.

Darby, Michael R., 'The U.S. Productivity Slowdown: A Case of Statistical Myopia,"
American Economic Review, June 1984, 24: 301-322.

Darby, Michael R., "Causes of Declining Growth," in Policies for Long-Run Economic
Growth, proceedings of A Symposium Sponsored by The Federal Reserve Bank of
Kansas City, Jackson Hole, Wyoming, August 27-29, 1992, Kansas City: Federal
Reserve Bank of Kansas City, 1993.

Delacroix, J., and Glenn R. Carroll, "Organizational Foundings: An Ecological Study of the
Newspaper Industries of Argentina and Ireland," Administrative Science Quarterly,
1983, 2: 274-291.

Delacroix, J., and M. E. Soil, "Niche Formation and Foundings in the California Wine
Industry," in Glenn R. Carroll, ed., Ecological Models of Organizations, Cambridge,
MA: Ballinger, 1988.

38



Demsetz, Harold, 'The Theory of the Firm Revisited," Journal of Law, Economics, and
Organization, Spring 1988, 4: 141-161.

Dorfman, Nancy S., "Route 128: The Development of a Regional High Technology
Economy," in David Lampe, ed., The MassacluisertsMiracle: High Technology and
Economic Revitalization, Cambridge, MA: MIT Press, 1988.

Dunne, Timothy, Mark J. Roberts, and Larry Samuelson, "Patterns of Firm Entry and Exit
in U.S. Manufacturing Industries," Pennsylvania State University, working paper,
December 1987.

Evans, David S., "Tests of Alternative Theories of Firm Growth," Journal of Political
Economy, August 1987, 2: 657-674.

Greene, William H., LIMDEP: User's Manual and Reference Guide, Version 6O, Beilport,
NY: Econometric Software, Inc., 1992.

Griliches, Zvi, "Patent Statistics as Economic Indicators: A Survey," Journal of &onomic
Literature, December 1990, Za:1661-1707.

Griliches, Zvi, "The Search for R&D Spillovers," Scandinavian Journal of Economics, 1992
Supplement, 24: 29-47.

Hannan, Michael T., "A Model of Competitive and Institutional Processes in Organizational
Ecology," Technical Report 86-13, Department of Sociology, Cornell University, 1986.

Hannan, Michael T., and Glenn R. Carroll,Dynamics of Organizational Populations: Density,
Legithnation, and Competition, New York: Oxford University Press, 1992.

Hannan, Michael T., and John Freeman, "The Ecology of Organizational Founding:
American Labor Unions, 1836-1985," American Journal of Sociology, 1987, 22: 910-
943.

Hannan, Michael T., and John Freeman, Organizational Ecology, Cambridge, MA: Harvard
University Press, 1989.

Hause, John C., and Gunnar Du Rietz, "Entry, Industxy Growth, and the Microdynamics of
Industry Supply," Journal of Political &onomy, August 1984, 22: 733-757.

Hausman, Jerry, Bronwyn H. Hall, and Zvi Griliches, "Econometric Models for Count Data
with an Application to the Patents-R&D Relationship," Econometrica, July 1984, 2:
909-938.

39



Jaffe, Adam B., "Real Effects of Academic Research," American Economic Review,
December 1989, 22: 957-970.

Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson, "Geographic Localization of
Knowledge Spillovers as Evidenced by Patent Citations," NBER Working Paper No.
3993, February 1992.

Jovanovic, Boyan, "Selection and the Evolution of Industry," Econometrica, May 1982, Q:
649-670.

Kenney, Martin, Biotechnolgy: The University-Industrial Compla, New Haven: Yale
University Press, 1986.

Lerner, Joshua, "Venture Capitalists and the Decision to Go Public," working paper,
Harvard Business School, August 1993. (1993a)

Lerner, Joshua, "Venture Capitalists and the Oversight of Private Firms," working paper,
Harvard Business School, August 1993. (1993b)

Louis, Karen Seashore, David Blumenthal, Michael E. Gluck, and Michael A. Stoto,
"Entrepreneurs in Academe: An Exploration of Behaviors among Life Scientists,"
Administrative Science Quarterly, March 1989, 4: 110-131.

Mansfield, Edwin, "Entry, Gibrat's Law, Innovation, and the Growth of Firms, American
Economic Review, December 1962, : 1023-1051.

Mansfield, Edwin, "Academic Research Underlying Industrial Innovations: Sources and
Characteristics," working paper, University of Pennsylvania, no date/circa 1992.

Pisano, Gary P., "Using Equity Participation to Support Exchange: Evidence from the
Biotechnology Industry," Journal of Law, Economics, and O,anization, Spring 1989,
: 109-126.

Pisano, Gary P., The R&D Boundaries of the Firm: An Empirical Analysis," Administrative
Science Quarterly, March 1990, : 153-176.

Pisano, Gary P., and Paul Y. Mang, "Collaborative Product Development and the Market
for Knowhow: Strategies and Structures in the Biotechnology Industry," in Richard
Rosenbloom and Robert Burgelman, eds., Research on Technological Innovation
Management, vol. 5, Greenwich, CN: JAJ Press, in press 1994.

Singh, Jitendra V., and Charles J. Lumsden, "Theory and Research in Organizational
Ecology," Annual Review of Sociology, 1990, J.: 161-195.

40



Singh, Jitendra V., DJ. Tucker, and A.G. Meinhard, "Institutional Change and Ecological
Dynamics," in Walter W. Powell and Paul J. DiMaggio, eds., The New Institutionalism
in Organizational Analysis, Chicago: University of Chicago Press, 1991.

Smilor, Raymond W., George Kozmetsky, and David V. Gibson, Creati'ig the Technopolis:
Linking Technology, Commercialization, and Economic Development, Cambridge, MA:
Ballinger Publishing Co., 1988.

Teece, David J., "Profiting from Technological Innovation: Implications for Integration,
Collaboration, Licensing, and Public Policy," Research Policy, 1986, j: 285-305.

Trajtenberg, Manuel, Rebecca Henderson, and Adam Jaffe, "Ivory Tower versus Corporate
Lab: An Empirical Study of Basic Research and Appropriability," NBER Working
Paper No. 4146, August 1992.

Tucker, DJ., Jitendra V. Singh, and AG. Meinhard, "Organizational Form, Population
Dynamics, and Institutional Change: A Study of Founding Patterns of Voluntary
Organizations," Academy of Management Jownal, 1990, : 151-178.

Zucker, Lynne G., "Combining Institutional Theory and Population Ecology: No
Legitimacy, No History," American Sociological Review, 1989, : 542-545.

Zucker, Lynne G., Marilynn B. Brewer, and Michael R. Darby, Information Dilemmas and
Collaboration Structure in Biotechnology: Interpersonal and Organizational
Boundaries as Trust Production," in Barry Markovsky, Jodi O'Brien, and Karen
Heimer, eds., Advances in Group Processes, Volume 11. Greenwich, Connecticut: JAI
Press, in press 1994.

Zucker, Lynne G., Marilynn B. Brewer, Amalya Oliver, and Julia Liebeskind, "Basic Science
as Intellectual Capital in Firms: Information Dilemmas in rDNA Biotechnology
Research," working paper, UCLA Institute for Social Science Research, 1993.

Zucker, Lynne 0., and Michael R. Darby, "Perceptions on the Organization of
Biotechnology Science and Its Commercialization in Japan," working paper, UCLA
Institute for Social Science Research, December 1993.

Data Sources

Bioscan, Volume 3-7, 1989-1993.

CITIBASE: Citibank Economic Database, machine readable database, 1946-June 1993, New
York: Citibank, N.A., 1993.

41



GenBa,ilg Release 65.0, machine readable data base, Palo Alto, CA: IntelliGentics, Inc.,
September 1990.

Insthute for Scientific Information, Science Citation Inder, IS! Compact Disc Editions,
machine readable data base, Philadelphia: Institute for Scientific Information,
various years through 1993.

Jones, Lyle V., Gardner Lindzey, and Porter E. Coggeshall, eds.,AnAssess,nent of Research-
Doctorate Programs in the United States: Biological Sciences. Washington: National
Academy Press, 1982.

North Carolina Biotechnology Center, North Carolina Biotechnology Center U.S. Companies
Database, machine readable data base, Research Triangle Park, NC: North Carolina
Biotechnology Center, April 16, 1992.

[Pre-Bioscan], "Biotechnology Company Data Base," predecessor source for Bioscan,
provided in printout form by a major biotechnology company, 1988.

Pratt, Stanley E., Guide to Venture Capital Sources, 6th ed., Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1982.

U.S. Department of Commerce, Bureau of the Census, County Business Patterns, 1980: U.S.
Summary, State, and County Data, machine readable data base, Washington: Bureau
of the Census, 1982. [Ann Arbor, MI: Inter-University Consortium for Political and
Social Research, 1986 (distributor)]

U.S. Department of Commerce, Economics and Statistics Administration, Bureau of
Economic Analysis, National Income and Product Accounts of the United State.s,
Volume 2, 1959-88, Washington: U.S. Government Printing Office, 1992. (1992a)

U.S. Department of Commerce, Economics and Statistics Administration, Bureau of
Economic Analysis, Regional Economic Information System, Version 1.3, CD-ROM,
machine readable database, Washington: Bureau of Economic Analysis, May 5, 1992.
(1992b)

U.S. Department of Education, National Center for Education Statistics, Higher Education
General Infonnation Survey (HEGIS), Institutional Charactetistics, 1983-84, machine
readable data base, ICPSR 8291, Ann Arbor, MI: Inter-University Consortium for
Political and Social Research, circa 1985.

42



Footnotes

1. Nancy Dorfman (1988) and Raymond Smilor, George Kozrnetsky, and David Gibson

(1988) report recent case studies relating industrial development to M.I.T. and the

University of Texas at Austin, respectively. Neil Bania, Randall Eberts, and Michael

Fogarty (1993) in an exploratoiy regression study of firm founding in six industries (including

two high-tech industries but not including biotechnology) find that university research

expenditures produced higher local foundings only for the Electrical and Electronic

Equipment industry.

2. For a discussion of the potentials and pitfalls of use of patent statistics, see Griliches

(1990). Trajtenberg, Henderson, and Jaffe (1992) present empirical evidence based on

patterns of patent citations showing that university research is indeed more "basic" than

corporate research efforts.

3. Cohen, Chang, Boyer, and Helling (1973).

4. High temperature superconductivity was certainly a Kuhnian paradigm shift of dramatic

magnitude comparable to those underlying biotechnology, but we do not believe any

comparable element of intellectual capital was created there. The difference is that the

technique of research for these superconductors was widely known and easily replicable by

any competent chemist. Thus, the publication of the discovery of a ceramic superconductor

embodying rare earths broke the bounds of the existing science and set off an international

search for superconductors which worked at yet higher temperatures or which possessed

more usable mechanical properties.
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5. There is a tension between the academic norms of openness and free publication and the

creation of intellectual property. David Blumenthal (1992) and many Japanese academics

(see Zucker and Darby 1993) view these ends as antithetical. Natural excludability goes

part way toward resolving such conflicts since one can publish without really giving away the

commercially valuable information.

A different philosophy underlies much recent federal legislation and regulation: If

commercially valuable discoveries are made available to everyone, then no single firm will

have the incentive in many cases to invest the large additional sums to transform a discovery

into a commercially valuable product. Thus most federally funded research now grants

patent rights to the discoverer so that the incentives are aligned to promote and

commercialize a discovery to the benefit of society. Since this is known at the time of

contracting, there is no ethical issue of private benefit from publicly funded research as the

federal government pays less in view of its assignment of rights to the discoverer.

6. Because of very obvious principal-agent problems, these enormous wages are generally

seen to be taken in the form of equity in the firms built around the scientists. For those

who became scientific entrepreneurs, the rewards for successful application of their

intellectual capital easily ran up into the hundreds of millions of dollars.

7. This technology is also identified by the terms monoclonal antibodies, MABs, or

hybridomas.

8. See Zucker, Brewer, Oliver, and Liebeskind (1993). The Genbank data set and our

methods of identifying stars and their collaborators is discussed in more detail below in the

Data Appendix. As will be obvious, much of the time since 1990 has been spent in
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developing reasonable measures of intellectual capital and in collecting and coding data

necessary to locate the authors of the discoveries reported in the articles in question and to

trace the diffusion process.

9. Because of the way the data set was constructed, the screen is in fact more severe for

collaborators than for stars: If a collaborator wrote any articles reporting gene sequence

discoveries which were not coauthored with any of our stars, they would not appear in our

set of 4,315 articles and hence not count toward active status.

10. In this paper we are limiting our consideration of collaborations to those involving joint

publications. David Teece (1986), Gary Pisano (1989,1990), and Pisano and Mang (1994)

analyze a variety of forms of collaboration within the biotechnology industry. We intend to

extend our work along these lines in future research.

11. In order to achieve scales conformable to the stars, the collaborators are measured in

units of 20 people and the NBEs are measured in units of 4 firms.

12. The comparison is somewhat misleading since prior to the discoveries of the early 1970s

there was no apparent commercial application of rDNA and we accordingly date the first

biotech firms established in response to the scientific revolution in 1976. Even if we look

at the firms established between 1967 and 1975 which ultimately adopted or established

subunits using biotechnology, there were only 89 firms founded in these nine years with no

more than 16 founded in any one year.

13. Besides the counts of universities with one or more great biotech relevant departments,

we also had counts of the number of universities with only lower ranking departments,

QUAL2, QUAL3, and QUAL4. We also tried a third quality variable R&DEXP which is
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the sum in thousands of dollars of total reported university expenditures for research and

development in the biotech-relevant departments in the BEA area.

We found that because of high multicollinearity among the various university

variables it is generally necessary to restrict the analysis to two of these variables. QUAL1

and either FEDGRANT or R&DEXP seemed to capture nearly all the explanatory power

in the data. We preferred the FEDGRANT data supplied from the granting agencies to the

raw data supplied by the universities which was the basis of R&DEXP; reporting practices

for the latter seemed inconsistent across universities, perhaps because they do not keep

accounts as would have been required to accurately answer the survey.

The eighteen universities with sufficiently high ratings in biotech-relevant departments

to count in the QUAL1 variable were: Brandeis University, California Institute of

Technology, Columbia University, Cornell University, Duke University, Harvard University,

Johns Hopkins University, Massachusetts Institute of Technology, Rockefeller University,

Stanford University, University of California-Berkeley, University of California-Los Angeles,

University of California-San Diego, University of California-San Francisco, University of

Colorado at Denver, University of Washington (Seattle), University of Wisconsin-Madison,

Yale University.

14. We are indebted to Zvi Griliches for suggesting estimation using the poisson process.

15. Lerner (1993a) shows that venture capitalists are effective at maximizing the initial

public offering value of biotech firms which is one way of lowering the cost of capital to

these firms.

16. Few advocates of venture capital would go as far as Martin Kenney (1986, p.133) to say
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'Biotechnology has emerged as an industiy largely because of one economic institution:

venture capital."

17. We also tried a variable VCBIO1 which counts only the subset of those firms indicating

a specific interest in their Pratt listing in funding biotech firms. We found that VENTCAP1

and VCBIO yielded substantially identical results and we report only the VENTCAP1

results in this paper.

Our (marginal) preference for the VENTCAP rather than VCBIO measure may need

some explanation. Although the latter is more appealing on the surface, appearances may

be misleading. Firms that funded biotech firms before responding to the questionnaire may

not then be particularly looking for more such firms. Furthermore, we note that some

venture capital firms expressing a desire to fund biotech firms in areas with no biotech

activity may be expressing a forlorn hope for the profitable opportunities which had been

available to their peers in other areas.

18. In empirical work not reported below, we have measured their presence in a SEA area

in two alternative ways: S1C2830, is the number in 1980 of establishments producing goods

with SIC code 2830 in the BEA. PRE67BE is the number of enterprises founded before

1967 engaged in biotechnology in 1990. Each measure proved less than ideal.

S1C28301 had to be defined based on an SIC code which included biological products,

medicinals, and pharmaceuticals because confidentiality rules limit the detail which the

Census Bureau reports in the county level data from which we constructed this variable.

PRE67BE1 is more precisely focussed, but may merely account for the birth of the NBSs

represented in this variable. After trying both in a variety of regressions, we concluded that
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the results with these variables were to unstable and problematic to warrant reporting.

19. Care should generally be given to the issue of the extent of the market appropriate for

analysis of competitive pressures on firm foundings. As in this case, there may be national

competition in the output market and significant local competition in the input market. A

number of authors use only one lagged number of firms variable without apparent regard

for whether local, regional, national or several levels of competition might be significant.

For example, Michael Hannan and Glenn Carroll (1992, p. 85)use either local or national

counts on numbers of newspapers without apparent concern for whether one, the other, or

both are appropriate definitions of significant newspaper markets.

20. See, for example, Delacroix and Carroll (1983). Carroll and Huo (1986), Carroll (1987),

Delacroix and Solt (1988), Tucker, Singh, and Meinhard (1990) and Singh, Tucker, and

Meinhard (1991).

21. We also planned to include the national unemployment rate UNEMPI which is a

generally robust measure of the cyclical state of the economy. Higher values of UNEMP

were expected to discourage births. However, when this variable is included it always enters

positively, higher unemployment encourages births. We are indebted to Zvi Griliches for

the observation that this is an artifact of the high unemployment rates during the early 1980s

when the time was ripe for starting biotech firms. We judge the estimated effect to be

spurious and dropped the variable from the regressions reported here, but do not believe

that its inclusion would have qualitatively affected any of the results.

22. See also Beesley (1955), Hause and Du Rietz (1984), Dunne, Roberts, and Samuelson

(1987), and Evans (1987).

48



23. See Greene (1992, pp. 539-549) for a discussion of this procedure.

24. This can be understood in the simple case of y, = ax, + by,.1, by noting that the long-run

value of y, is a.x/(1 - b).

25. This hypothesis is problematic too, however. In Table 8 below we present evidence that,

in the presence of intellectual capital variables, the coefficient on VENTCAPU is negative

in predicting the births of NBSs as well as NBEs and NBFs. Since venture capital firms are

not a major source of financing subunits of incumbent firms, it is hard to see how their

presence could affect the scale of those units.

26. All coefficients in these poisson regressions are significant at the .001 level.

27. We examined also interactions with dummy variables for 1976-1980 and with a time

trend. Since the 1976-1980 dummies did not enter significantly, we believe that the reported

form more accurately reflect the time or diffusion dependence than a negative trend

througbout the period.

28. Column 5 reproduces for ready comparison column 5 from the previous table.

29. We used GenBank Release 65.0 which combines data from DNA Data Bank of Japan

(Mishima, Japan), EMBL Data Library (Heidelburg, Germany), and GenBank (Los Alamos,

New Mexico). See H.S. Bilofsky and C. Burks (1988) for a description of the GenBank.

30. A small number of unpublished papers and articles appearing in proceedings volumes

and obscure journals were excluded to permit the hand coding detailed below.

31. This positional tradition holds across national boundaries: As a percentage of articles

co-authored by their fellow nationals, American stars are 16.4 percent of first authors and

71.2 percent of last authors, compared to 21.2 percent and 63.1 percent, respectively, for
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Japanese, and 19.7 percent and 69.2 percent for other nationalities.

32. See U.S. Department of Education, National Center for Education Statistics (1985).

33. The respondents were asked to rate programs using the following scale: 5 for

distinguished, 4 strong, 3 good, 2 adequate, 1 marginal, and 0 not sufficient for doctoral

education. The reported scores are the averages among respondents.

34. Where a new enterprise enters the data set due to the merger of a NBF and another

firm, we count it for the purposes of this paper as a continuation of the original NBF and

not a new birth (the older NBF if two are involved). If enterprises already in the data set

merge and one continues with the other(s) absorbed, the enterprise is counted as the

continuing enterprise and not a new birth.

35. The annual data for the implicit price deflator for personal consumption expenditures

were taken from U.S. Department of Commerce (1992a, p. 247, line 16) as updated in the

July 1992 Suivey of Current Business, (p. 92, line 16).
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Table 1
Distribution of U.S.—Born Stars
and U.S.—Born Collaborators

Full Data Set' Ever Active in U.S.b
Organization Number of Citationsd/ Number of Citatjonsd/
Type Scientists Scientist/yr. Scientists Scientist/yr.

Stars;

University 163 969 108 126.9

Institute 44 72.2 25 111.9

Firm 6 144.8 1 822.0

Dual 0 n/a 0 n/a

Total 213 134

Collaborators:

University 2887 11.8 367 30.8

Institute 703 16.1 85 40.4

Firm 390 38.0 46 132.4

Dual 3 10.8 0 n/a
Total 3983 498

Notes:
a. "U.S. —Born" scientists are defined by the location of the

affiliation listed on their first publication.
b. Ever active in the U.S. means that in at least one three year

period beginning 1974 or later and ending 1989 or earlier, the
scientist was listed on at least three articles appearing in
our data set of 4,315 articles which reported gene sequence
discoveries and were published in major journals and that the
affiliation listed in the last of the three articles was
located in the United States.

c. Citation counts are for 1987 and 1992 for all articles in our
data set (whenever published) for which the individual was
listed as an author.
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Table 2
Logit Regression

Probability that a Pair
of Coauthors Are from Same Institution

1967—1990

Intercept 6.778** (.393]

Year —0.063** [.005]

Both Foreign 0.714** (.031]

No. Coauthors —0.162** (.005)

Both in a Firm 3.356** [.203]

Both Stars 0.147** (.052]

Chi-square for —2 log likelihood (5 d.f.) = 2219.5

Concordance of predicted probabilities & observations:
Concordant 68.6%, Discordant 30.9%, Tied 0.5%

Notes:
Standard errors in square brackets.
** Parameter significant at the 0.01 level.
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Table 3
Poisson Regressions on Stock of

New Biotech Enterprises at the beginning of 1990

Constant 0.927*** 0.592*** 0.379*** —4.981*** —3.666***
(.0467) (.0545) (.0619) (.4253) (.5107)

ACSTAR76O 0.574*** 0.228*** 0.505*** 0.378*** 0.303***
(.0499) (.0397) (.0403) (.0417) (.0428)

ACCOLL768O —0.084*** —0.042 —0.142*** —O.154*** —0.193***
(.0196) (.0255) (.0215) (.0208) (.0200)

QUAL1 0.606*** 1.0l0*** 1.205*** —0.209
(.1619) (.1295) (.1220) (.1516)

FEDGRANT 65E—4*** 96E—4*** 69E—4*** 64E—4***
(89E—5) (73E—5) (80E—5) (85E—5)

VENTCAP80 —0.036*** —0.039*** —56E—4
(.0029) (.0036) (.0049)

E}P80 .12E.8*** 13E8***
(33E—9) (34E—9)

EJOBjo 28E5*** 20E5***
(21E—6) (27E—6)

BNBE76..80 0.375***
(.0287)

Log—likelihood —826.8 —583.5 —516.2 —438.2 —339.5

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, *** < .001
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Table 4
Poisson Regressions on Stock of New Biotech

Enterprises born 1981—89 at the beginning of 1990

Constant 0.709*** 0.389*** 0.162* _5.381*** _4.183***

(.0522) (.0601) (.0689) (.4678) (.5541)

ACSTARL.Th8O
0.650*** 0.267*** 0.542*** 0.411*** Q339***
(.0530) (.0437) (.0439) (.0454) (.0468)

ACCOLL7680 _0.113*** _0.062* _0.159*** _0.171*** _0.204***

(.0208) (.0279) (.0233) (.0225) (.0218)

QUAL1 0.660*** 1.040*** 1.243*** —0.081
(.1775) (.1411) (.1327) (.1689)

FEDGRANT 62E—4*** 96E—4*** 70E_4*** 67E_4***
(97E—5) (80E—5) (87E—5) (92E—5)

VENTCAP50 _0.036*** _0.038*** —79E—4
(.0032) (.0040) (.0054)

EMP80 _13E_8*** _14E—8***
(37E—9) (37E—9)

EJ0B180 29E_5*** 22E_5***
(23E—6) (29E—6)

BNBE7680 0.345***
(.0313)

Log—likelihood —712.4 —514.2 —456.5 —388.3 —317.6

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, * < .001
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Table 5
OLS Regressions on Stock of

New Biotech Enterprises at the beginning of 1990

Constant l.945*** 0.751 0.799* —6.703 —3.303
(.4960) (.3994) (.4004) (3.906) (2.246)

ACSTAR76.8O 4.135*** 2.797** 2.583** 2.442** 3.595***
(1.145) (0.887) (.9010) (.8860) (.5114)

ACCOLL1,76.80 l.448** 0.018 0.030 0.081 —1.782***
(.4849) (.4469) (.4463) (.4338) (.2673)

QUAL11 10.30*** 9.758*** 10.28*** 2.498
(2.150) (2.187) (2.132) (1.289)

FEDGRANT1 0.070*** 0.064*** 0.037* 0.014
(.0124) (.0132) (.0152) (.0088)

VENTCAP80 0.106 —0.050 0.223***
(.0833) (.1029) (.0652)

EMP80 14E7* —59E—8
(70E—8) (42E—8)

EJOB,8O 38E—5 19E—5
(22E—5) (13E—5)

BNBE76..80 4.562***
(.2408)

Adjusted R2 .6347 .7902 .7910 .8030 .9353

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, *** < .001
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Table 6
OLS Regressions on Stock of New Biotech

Enterprises born 1981—89 at thebeginning of 1990

Constant l.559*** 0.554 0.609 —5.958 —3.297

(.4223) (.3425) (.3421) (3.357) (2.243)

ACSTAR768O 4.211*** 3.085*** 2.838*** 2.699*** 3.601***
(0.975) (.7604) (.7697) (.7614) (.5108)

ACCOLL780 0.859* —0.351 —0.336 —0.301 —l.759***
(.4129) (.3833) (.3813) (.3728) (.2670)

QUAL1 8.716*** 8.096*** 8.528*** 2.440
(1.844) (1.868) (1.832) (1.287)

FEDGRANT 0.059*** 0.052*** 0.031** 0.014
(.0106) (.0113) (.0131) (.0088)

VENTCAP,8O 0.123 0.011 0.225***
(.0712) (.0884) (.0606)

EMP80 97E—8 —59E—8*
(60E—8) (42E—8)

EJOB0 34E—5 19E—5
(19E—5) (13E—5)

BNBE,76..80 3.571***
(.2405)

Adjusted R2 .6214 .7794 .7819 .7920 .9077

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, *** < .001
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Table 7
Poisson Regressions of Annual Births of

New Biotech Enterprises, 1976-89

Constant —1.572*** 1.871*** 2.030*** .4.262*** 4.274***
(.0429) (.0501) (.0533) (.2662) (.3475)

ACSTAR 0.160*** 0.525*** 0.337*** 0.394***
(.0145) (.0394) (.0526) (.0520)

ACCOLLL 0.039*** 0.069** 0.0342 —47E—4
(.0089) (.0255) (.0322) (.0328)

ACSTARSQL —0.022*** —0.017*** —0.016***
(.0018) (.0030) (.0028)

ACCOLLSQi —78E—5 44E—5 12E-4
(64E—5) (88E—5) (90E—5)

8689STARj —0.269*** —0.360***
(.0769) (.0750)

8689COLL 0.146** 0.168***
(.0485) (.0472)

8689STARSQ1 89E—4* 0.012**
(.0040) (.0037)

8689COLLSQ1 —20E—4 27E—4*
(.0012) (.0012)

QUAL]. 0.213** 0.254***
(.0725) (.0696)

FEDGRANT 67E-4*** 91E—4***
(57E—5) (81E—5)

VENTCAPi 0.017*** —0.028***
(.0042) (.0041)

EMP 18E—8*** —13E—9
(34E—9) (37E—9)

EJOB1 15E—5*** 12E-5***
(11E—6) (16E—6)

E/PRATIO —0.026 —0.013
(.0152) (.0193)

Log—likelihood —1674.9 —1454.1 —1338.3 —1666.4 —1280.1

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, < .001
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Table 8
Poisson Regressions of Annual Births of

New Biotech Firms, Subunits, and Enterprises, 1976—89

Dep. Var. BNBFj BNBSL BNBF BNBSL BNBE

Constant _4.726*** —5.603*** 4.940*** _5.576*** —4.274***
(.3109) (.5624) (.4158) (.7367) (.3475)

ACSTAR 0.420*** 0.330** O.394***
(.0631) (.1096) (.0520)

ACC0LL —18E—5 0.019 —47E—4
(.0401) (.0677) (.0328)

ACSTARSQ _0.017*** —0.016** —0.016***
(.0033) (.0059) (.0028)

ACC0LLSQI 99E—5 14E—4 12E-4
(.0011) (19E—4) (90E—5)

8689STAR 0.274** _0.541*** _0.360***
(.0880) (.1637) (.0750)

8689C0LLj 0.122** 0.255** 0.168***
(.0563) (.0980) (.0472)

8689STARSQj 87E—4* 0.019* 0.012**
(.0044) (.0080) (.0037)

8689C0LLSQj —18E—4 —44E—4 —27E—4*
(.0014) (.0024) (.0012)

QUAL1 0.270** 0.279 0.254***
(.0831) (.1468) (.0696)

FEDGRANTL 97E_4*** 92E_4*** 91E—4***
(95E—5) (.0018) (81E—5)

VENTCAPi 0.023*** 86E—4 _0.028*** _0.029*** _0.028***
(.0053) (80E—4) (.0050) (.0084) (.0041)

13E—8*** 26E—8*** —71E—9 44E—9 —13E—9

(43E—9) (65E—9) (44E—9) (75E—9) (37E—9)

EJOB 16E—5*** 15E—5*** 13E-5*** 13E_5*** 12E_5***
(l3E—6) (24E—6) (19E—6) (34E—6) (16E—6)

E/PRATIO —0.036* —0.065* —0.018 —0.067 —0.013

(.0185) (.0326) (.0237) (.0415) (.0193)

Log—likelihood —1265.1 —529.0 —962.8 —434.2 —1280.1

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, *** < .001
For this table NBSs are defined inclusive of joint ventures.
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Table 9
Poisson Regressions of Annual Births of

New Biotech Enterprises, 1976—89

Constant _l.583*** —1.643*** —3.805*** —3.787***
(.0429) (.0606) (.0848) (.2527) (.2622)

NBE,.1 0.065*** 0.078*** 0.053***
(.0015) (.0021) (.0029)

61E—5*** —0.015*** —O.013***
(15E—5) (.0011) (.0012)

YEAR 0.052*** 0.826*** 0.763***
(.0092) (.0712) (.0740)

BNBE.1 0.178***
(.0115)

Log—likelihood —1713.4 —2181.9 —2173.2 —1599.9 —1516.2

Note: Standard errors are in parentheses below coefficients.
Probability t>x: * < .05, ** < .01, *** < .001
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Table 10
Poisson Regressions of Annual Births of NBEs, 1976—89

Constant —3.823*** —4.415*** —5593** —5.613***
(.2635) (.5020) (.5395) (1.788)

ACSTAR O.247*** 0.225*** 0.255***
(.0578) (.0561) (.0538)

ACCOLL —30E—5 45E—4 —69E—4
(.0329) (.0330) (.0325)

ACSTABSQI _0.018*** —0.014*** _0.016***
(.0034) (.0032) (.0029)

ACC0LLSQ 11E-4 45E—5 1OE—4
(93E—5) (93E—5) (88E—5)

8689STAR _O.351*** —0.273*** _0.328***
(.0827) (.0812) (.0747)

8689COLLj 0.107* 0.065 0.088
(.0487) (.0501) (.0480)

8689STARSQ 0.013** 86E—4* 0.011**
(.0043) (.0041) (.0038)

8689COLLSQ1 —11E—4 —35E—5 —11E—4
(.0012) (.0013) (.0012)

QUAL1 0.284*** 0.293*** 0.289***
(.0814) (.0817) (.0813)

FEDGRANTiL 55E—4*** 85E—4*** 86E—4***
(60E—5) (80E—5) (79E—5)

VEMTCAPI —0.018*** —0.018*** —0.016***
(.0034) (.0044) (.0043)

EMP 26E—8*** —11E—8** —12E—8E**
(26E—9) (36E—9) (36E—9)

EJOB 12E—5*** 15E—5*** 15E—5***
(16E—6) (16E—6) (16E—6)

E/PRATIO —0.196*** —0.149*** —0.144***
(.0283) (.0300) (.0298)

NBE..1 0.060*** 0.037*** 0.046*** 0.052***
(.0069) (.0038) (.0075) (.0068)

NBE..1 —0.010*** —0.018*** —0.015*** -0.015**
(.0012) (.0013) (.0014) (.0014)

YEARi 0.617*** 0.939*** 0.805*** 0.802***
(.0756) (.0748) (.0776) (.0774)

BNBE1,1 —66E—4 0.169*** 0.034
(.0181) (.0136) (.0190)

Log—likelihood —1262.8 —1368.8 —1197.0 1198.5
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