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counterparts of new ideas and knowledge spillovers, respectively, to estimate the model parameters. We 

find estimates of the annual rate of creative destruction in the range of 2 to 7 percent for the decade of 

the 1970s, which rates for individual sectors as high as 25 percent. For technological obsolescence, we 

find an increase over the century from about 3 percent per year to about 12 percent per year in 1990, with 

a noticeable plateau in the l970s. We find the rate of diffusion of knowledge to be quite rapid, with the 

mean lag between I and 2 years. Lastly, we find that the potency of spillovers from old ideas to new 

knowledge generation (as evidenced by patent citation rate) has been declining over the century: the 

resulting decline in the effective public stock of knowledge available to new inventors is quite consistent 

with the observed decline in the average private productivity of research inputs. 
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1 INTRODUCTION AND SUMMARY 

There has been a rapid growth in recent years in the theoretical literature on industrial 

research as an engine of economic growth.2 At a gross level, two key concepts are at the 

heart of the growth process in this literature. First, profit-seeking firms try to achieve 

market power by producing a better good than their competitors. Over time, new goods 

displace old ones, earn profits for some period of time, and are then displaced in turn. This 

process of "creative destruction" generates the incentive for and limits the private value of 

industrial innovation: 

The fundamental impulse that sets and keeps the capitalist engine in mo- 

tion comes from the new consumers' goods, the new methods of production 

or transportation, the new markets, the ncw forms of industrial organization 

that capitalist enterprises creates.... [examples]... [these examples] illustrate the 

same process of industrial mutation that incessantly revolutionizes the economic 

structure from ssithiss, incessantly destroying the old one, incessantly creating a 

new one, This process of Creative Destruction is the essential fact about capi- 

talism..." [Joseph Schumpeter, Capitalism, Socialism and Democracy (1942)]. 

Thus Schumpeter recognized that innovation was the engine of growth, and that innova- 

tion is endogenously generated by competing profit-seeking firms. The second key feature 

of models of this process is that public-good aspects of knowledge create economy- wide 

increasing returns. In the process of creating new goods, inventors rely and build on the 

insights embodied in previous ideas; they achieve their success at least partly by "standing 

upon the shoulders of giants."3 The public stock of knowledge that accumulates from the 

spillovers of previous inventions is thus a fundamental input in the technology to generate 

new ideas. This is clearly reflected in Schmookler's description of the inventor's problem: 

2See Grossman and llelpman (1991a) and the references titerein. In particular, Romer (1990), Grossmas 

and llelpman (1991b), Aghion and Howitt (1992), Segerstrom (1991). 
"If I have sees further (than you and Descartes) it is by standing upon the shoulders of Giants." Sir Isaac 

Newton, letter to Robert Hook, February 5, 1675. Nea'ton's aphorism was popsiarised by Robert K. Merton, 
On Ike Shualders sf Giants, New York (1965) 
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The joint determinants of inventions are (a) the wants which inventions sat- 

isfy, and (h) the intellectual ingredients of which they are made. The inventor's 

problem arises in a world of work and play, rest and action, frustration and sat- 

isfaction, health and sickness, and so on.... [I]n order to analyze the problem, to 

imagine possible solutions to it, to estimate their relative cost and difficulty, and 

to reduce one or more to practice, the inventor must use the science and tech- 

nology bequeathed by the past..." [Jacob Schmookler, Invention and Economic 

Growth (1966)]. 

The rich theoretical development of the growth literature can thus be seen as combining 
the insights of Schumpeter and Schmookler and embedding them in a general equilibrium 
framework. This modelling advance has not, however, been accompanied by the develop- 

ment of a parallel empirical literature.4 While there has been significant empirical work on 

different aspects of the microeconomics of technological change, there has been relatively 
little attempt to integrate individual micro empirical results into an overall framework for 

understanding growth. Our aim in this paper is to create a framework for incorporating 
the microetonomics of creative destruction and knowledge spillovers into a model of growth, 
and to do so in such a way that we can begin to measure them and untangle the forces that 
determine their intensity and impact on growth. 

We develop a model in the spirit of Grossman and Helpman (1991) and Aghion and 
Howitt (1992) that gives a simple relationship for the effect of new products on the value of 

existing ones. At any given time, the economy consists of a continuum of monopolistically 

competitive goods indexed by their quality, q E (—cc, Ni]. The newest goods are always the 

best, i.e., the process of research advances the frontier by increasing N. Due to the quality 

ranking implicit in this process, constant marginal cost producers see their profits — relative 

to those of the (new) leader — decline over time. The rate of decline depends (positively) 
on the degree of substitutability between new and old goods and on the pace at which 

4A notable exception is Kortunt (1993) 
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new goods are introduced. This captures the endogenous process of creative destruction 

described above and, after a few algebraic steps, yields intuitive equations relating the rate 

of growth in a firm's value relative to that of the industry to the firm's number of new 

ideas relative to the industry average. By relating the concept of new ideas to that of new 

patents, it is possible to use these equations to gauge the empirical magnitude of creative 

destruction. 

In order to estimate these equations, we use market value and patents data on 567 large 

U.S. firms. The data are annual for the period 1965-81, and the firms are assigned to 21 

technological sectors. We estimate 21 sectoral panels and find that, on average (over time 

and sectors), creative destruction is about 4 percent per year. That is, in an average sector 

at an average year a firm that does not invent sees its value relative to that of the industry 

erode by about 4 percent. This number varies widely across sectors; Drugs has the largest 

average creative destruction, with about 25 percent per year.5 Due to both, the endogenous 

variation in creative destruction and changes in estimated parameters, we also find a sharp 

decline in nverage (across sectors) creative destruction over our sample period, from a high 

of 7 percent per year in the mid 60's to a low of 2 percent in the late 70's. 

Turning from Schumpeter to Schmookler, we focus on the technology by which new ideas 

are produced, using as inputs private research effort and the public stock of existing ideas. 

We focus particularly on this ideas-stock, the process by which it accumulates, and the way 

in which it conditions the production of new ideas. 

It is well known that the standard form of the kind of "quality ladder" model that we are 

using embodies a strong form of research spillovers, because the same amount of resources 

are consumed producing the blueprint for product q = N1 at time t as were consumed 

producing the blueprint for product q = Ni_di at time t — dt, even though the former is 

strictly superior to the latter. To pursue Newton's metaphor, today's inventors stand on the 

5We srgue that, at least in part, this dispersion is due the difficulties in measuring dens, since patents 
play different roles in protecting innovation in different sectors. In other industries other mechanisms of 
appropiations, such as secrecy, learning curve advantages and marketing and product support efforts are more 

important than patents as means of securing rents (Levin et al 1987). 
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shoulders of giants that keep getting taller and never get old and weak. In order to move 

to a spillover formulation that can be implemented empirically, we specify how the height 
of the shoulders is endogenously determined by the path of previous invention. 

We postulate a simple linear technology at the firm level, mapping research-inputs into 

new ideas. This mapping changes over time as a function of the stock of public knowledge. 

That is, the productivity of private inputs in research varies as a function of aggregate 

knowledge, which is outside the control of any individual firm. We proceed to specify in some 

detail the process by which previous knowledge accumulates and feeds into the generation 
of new ideas. We postulate that it takes time for additional knowledge to diffuse sufficiently 

to be of use to other inventors; this tends to limit the usefulness of very recent knowledge in 

generating new knowledge. On the other hand, old knowledge eventually is made obsolete 

by the emergence of newer, superior knowledge. We call this phenomenon "knowledge" or 

"technological" obsolescence, and distinguish it from the obsolescence in value represented 

by creative destruction. That is, new ideas have two distinct effects on the current stock of 
ideas. They make the products represented by those ideas less valuable (creative destruction 

or value obsolescence) and they make the knowledge represented by those ideas less relevant 

in the production of new knowledge (knowledge or teclmological obsolescence). The strength 
of knowledge spillovers, and hence the growth of the economy, will depend on the parameters 
of the processes of knowledge diffusion and knowledge obsolescence. 

At any point in time, we define the stock of knowledge available to the production of 

new ideas as the sum of the contribution of all previous ideas. These contributions are the 

product of the number of ideas in each cohort and the usefulness of the average idea in that 

cohort to current inventions. We describe the usefulness of an idea generated at time s for 

the production of new knowledge at time t (i � s) in terms of a citation function. In order 

to capture knowledge obsolescence, this function declines with the distance between t and s 

in ideas-space — that is, with the number of inventions that occur between the recipient and 

source cohorts. In order to capture gradual knowledge diffusion, the usefulness of old ideas 

increases with the calendar time between these two cohorts. We also allow for a source- 
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cohort specific multiplicative constant that indexes the potency of the spillovers emanating 

from the average idea in the given cohort. 

In order to estimate the citation function we use a 1 in 100 random sample of all patents 

granted in the U.S. from 1975 to 1992, and track all their citations to previous patents 

hack to 1900. We assume that patents are proportional to ideas and that citations are 

proportional to ideas used, and we estimate time-varying proportionality factors for each 

along with the model parameters. Our sample contains 12,592 patents and over 80,000 

citations. 

Several interesting findings emerge from estimating the citation function and from con- 

structing the stock of public knowledge implied by this function. First, we find that ideas 

diffuse quite rapidly, with a mean lag between one and two years, which is consistent with 

previous estimates by Mansfield (1985) derived from survey results. Second, as postulated, 

knowledge obsolescence is clearly an endogenous function of the number of new ideas, rather 

an exogenous function of time. The sum of squared residuals falls by about 30 percent when 

straight time depreciation is replaced by endogenous obsolescence linked to the number of 

new ideas. Third, the average annual rate of knowledge or technological obsolescence over 

the century is about 7 percent, but both its secular and high frequency (endogenous) changes 

are quite large. It rises from about 3 percent at the beginning of the century to about 10 

to 12 percent in 1990, with a noticeable plateau during the 70's. Fourth, the average size of 

patents (measured in terms of the average number of new ideas embodied in each of these) 

increased over the century until the 60s or 70s and has declined since then. A patent in 1990 

seems to contain about three times more ideas than a patent in 1900, but about 10 percent 

less than a patent in 1970. Fifth, the potency of the spillovers emanating from each cohort 

seems to have declined dramatically over the century: controlling for obsolescence, we es- 

timate that the average idea at the beginning of the century generated about 5 times the 

level of spillovers as the average recent idea. Finally, as a result of this decline in spillover 

potency, we esthnate that the effective (or marginal) public knowledge stock declined by 

about 30 percent from 1960 to 1990, suggesting that private research productivity should 
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have fallen by that amount. 

This last result is subject to a number of caveats relating to assumptions about the exact 
nature of the relationship between spillovers and citations. Its implications are, however, 

remarkably consonant with the data on the observed productivity of inputs in research. The 
observed decline in the productivity of private research, as measured by patent production, 
has been a subject of much research.6 The ratio of patents to research inputs has declined 

steadily since the 50's, almost regardless of the way research-input is measured (e.g. R&D 

expenditures, number of scientists and engineers engaged in research).7 It is certainly in- 

teresting, if not surprising, that our independent measure of research productivity, which is 
based on knowledge flows as measured by citations, has about the same trend as directly 
measured productivity. Put differently, the fit of the aggregate innovation function — that 

is, the function that relates aggregate (private) research inputs to total innovations — im- 
proves markedly once we include our measure of the public stock of knowledge ore the right 
hand side. 

In the last step of the empirical section we relate aggregate consumption growth to the 
rate of new idea creation. In effect, this amounts to finding the normalization constant 
that allows us to estimate the overall average size of a patent — a parameter that is not 
identified from the citation estimation alone. With this, we have empirical estimates of all 
of the important model parameters. Combining these estimates with a free entry condition 
in the research sector and a labor market equilibrium condition, we close the model and 
calibrate it to fit the average rate of growth of the U.S. during the postwar period. The model 
can then be used to perform several positive and normative experiments. Though we are 
uncomfortable making too much of results that depend on a long sequence of assumptions 
and approximations, we note that the model's behavior: (1) is quite consistent with the 

aggregate productivity slowdown in the 1970s; (2) is also consistent with the stock market 

6See Gritiches (1989 and 1990); Kortum (1993); and Evesson (1991) 
7See Kortom (1993). Schroookler (1966) suggests that patents per research effort has been declining 

throoghoot the century. 
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boom of the l9SOs (because the estimated decline in the productivity of research implies an 

increase in the value of existing ideas); and (3) suggests that the optimal subsidy to private 

R&D expenditures is around 30 percent. 

We dp not view these specific results (which are perhaps better categorized as provocative 

conjectures) as the main contribution of the paper. Rather, we have shown that it is possible 

to construct an overall modelling framework into which the key microeconomic pieces of the 

processes of industrial innovation and growth can be fit, and empirical estimates of the 

model parameters do allow the model to mimic the economy's gross growth behavior. 

The next pages describe the details behind this summary. We begin in Section 2 with 

the complete presentation of the model itself. Section 3 presents the empirical methodology 
and results; for reasons explained therein it is organized in a different order than this 

summary and the model presentation, beginning with the citation function and ending with 

the creative destruction equation. Section 4 calibrates the model, and studies the impact 

of different policy and structural changes on growth and research incentives. Section 5 

concludes the paper with a discussion of the overall significance of the results and suggestions 

for future work. 

2 THE MODEL 

2.1 Goods markets 

There is a representative agent endowed with a stock of ideas, .t units of labor, which have 

no direct utility value, an instantaneous utility function that is logarithmic in an aggregate 

consumption index, C, and a discount factor, p. Using aggregate consumption as numeraire 

and letting r represent the real interest rate, we obtain the standard condition on the growth 

rate of consumption, C: 
C=r—p. (1) 

At any point in time, the aggregate consumption index is a composite of the quality 
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weighted output of a continuum of monopolistic competitors, which produce goods indexed 

by their quality: x2(q) for q E (—co P12]. Quality rises monotonically over time, so newer 

goods are better:8 
N, 

C2 f {xj(q)ee)adq 0 � � 1. (2) 

Given aggregate consumption and the prices of each of the components of it, pt(q). 
consumers choose x2(q) so as to minimize the cost of that level of aggregate consumption: 

p2(q t(q) dq. 

The first order condition for this problem yields the system of demands for goods of different 

qualities: 

x2(q) = p2(q)iterP5Ct. (3) 

At each point in time, producers take these demand functions, as well as factor (labor) 
prices, ni1, as given. For simplicity, let the production technology be linear and assume that 
process innovations have no distributive impact:9 

x2(q) = qjL]'(q), (4) 

where L'(q) is labor allocated to production of zt(q) and 'it is labor productivity in the final 

goods sector at time t. More generally, this may be taken as the reduced form of a constant 
returns to scale technology including other factors of production. In the latter case the 
rental price of other factors would combine to add a multiplicative constant to the reduced 

form production function. 

The linearity of technology, together with the common level of productivity and elas- 

51t is important to realize that the quality ladder aspect is in sddiUsn to the menopolistically competitive 
structure of the market. Stokey's (1992) elegant and general representation of preferences includes a discrete 
state space version of ours. 

51.e. these innovations affect £he technologies of goods of all qualities similarly. 
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ticities of demand faced by the infinitesimal producers of the different qualities, determines 

that at any given point in time all prices are identical and obey a standard markup rule:'° 

1 m1 
pi(q) = 

a 

Replacing this expression in (3) and the results of it in (2), determines the consumption 

wage: 
f1—a\ N 

oJg = aq e 

Thus the price can also be expressed in terms of labor's productivity in the goods sector, 

m and the quality level of the leading good, N: 

p1(q) = e". 

Profits accruing to a producer of a good of quality q can now he easily determined from 

the equilibriuns values of xi(q), pi(q) and wi:" 

= 

It is interesting to notice that profits do not fall with a for all levels of q. This is due 

to a scope effect. As goods become more substitutable, the profits generated by having a 

new —the best — good increase in spite of the reduced markup since the new product has 

a larger potential market. The other side of this is that goods become obsolete much faster 

(for a given rate of entry) since many newer goods can substitute them away: Simply put, 

a stronger creatjve destruction environment — indexed by a — is better for those that are 

'5llecause of their lower quality, older goods will have smaller market shares, but because of the assumed 

desire for variety they never disappear completely (except in the limiting case a = 1). 
iNote that if the number of varieties is "small," as is the case in the standard variety model without quality 

ranking where q c [O,?i], profits would be ir1(g) = acir1t('/(l — e-'). The ranking aspect of 

quality introduces a "discounting-like" component to the aggregators so we can work immediately with as 

"infinite—variety" model. This eliminates a host of short run dynamics issues that ace standard io vaciety 
models. Also see Stokey (1992). 
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creating and worse for those that have created in the past. 

2.2 Valuation, Innovation and Labor Market 

The fundamental value of a new market created at time I is: 

= f (N)e L rs ds dr. 

Dividing both sides by aggregate consumption, letting V a v1/C, differentiating this ratio 
with respect to time, and recalling (1), yields a differential equation characterizing the 

dynamic behavior of the value of an innovation in terms of units of consumption: 

/ a •\ ir(N2) V= 

Replacing the expression for profits in this equation, yields: 

(5) 

which is to be compared with the change in the value (in terms of units of consumption) of 

the idea that has just been left behind the frontier, V°: 

V7=pV—o. (6) 

Comparing (5) and (6) shows that the "obsolescence" rate faced by owners of blueprints 
is 1-°N, which we call the rate of creative destruction. It is proportional to -the rate of 

advancement of the knowledge frontier. It also depends on consumers' demand for variety; 
as a approaches unity, the market share of the newest product approaches unity, so we truly 
have a "gale" of creative destruction. One focus of our empirical work will be to provide 
estimates of this term for different industries and periods. We return to this below. 

The other side of the value of an innovation is the cost of generating it. As is standard in 
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the literature, we postulate a simple linear research technology at the firm level. A firm that 

invests L, units of effort in the time interval di generates O,L,dt new blueprints.'2 These 

blueprints are worth 8,L,V,C,dt to the inventing firm, thus free entry guarantees that: 

, � G,V,C,, 

with equality if there is positive innovation. 

Aggregating over all innovators yields the demand for labor by the research sector:'3 

N, — 

Similarly, we can obtain the demand for labor by goods producers, Lç: 

L' =1 f1-1dq = - 17 

Full employment equilibrium in the labor market is then obtained by letting: 

L+L=L. (7) 

2.3 Spillovers, Knowledge Diffusion and Knowledge Obsolescence 

The innovation function described in words above corresponds to the demand for labor in 

the research sector, rearranged: 

N,=O,L. (8) 

129, is assumed to be deterministic at the aggregate (sectoral) level; we will model it below as a function 
of past knowledge accumulation in the sector. We will assume that 9, is independent of current and previous 
actions by i, so the value of any pscticular firm is just the goods market value of its blueprints. In other words, 

firms do not have private stocks of past knowledge. We discuss this issue further in Section 3.2. 

'°Note that 9, may depend on aggregate quantities, ,ncluding L, although in the latter case the notation 
is less useful. 
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This equation hides in O most of what is of interest to economists. It is the average 

productivity of research in generating new blueprints; it may contain standard aggrcgtUc 

factors of production (e.g. capital and labor)'4 as well as spillovers from past knowledge 

production. We will focus on the latter but discuss briefly the former in the empirical 
section. 

With few exceptions, the standsrd endogenous growth model treats 9, as an arbitrary 

given constant. Such a specification conveys a strong form of intertemporal spillover, where 

the quality of new goods builds one for one on the top of the quality of the previous gen- 

eration of goods. Labor productivity in research — i.e. 8, — is independent of the level or 

pace at which ideas emerge, and is disconnected from the spillover process itself. 

In this section we explicitly model several aspects of the process of diffusion of informa- 

tion that should influence 8,. In particular, we consider three types of factors. First, there is 

the concept of endogenous obsolescence. Very old ideas are unlikely to contain much inde- 

pendent information that is useful for generating new ideas. Unlike the traditional notion of 

"depreciation," the obsolescence of old ideas ought to be connected to the distance between 

ideas in the state rather than the time dimension. That is, it is not the passage of time 

that makes old ideas less useful, it is the accumulation of new ideas. Second, inventors take 

time in seeing others' inventions, which suggests that there are diffusion lags. Unlike obso- 

lescence, we treat the diffusion of knowledge as a function of time rather than accumulated 

inventions." Third, the spillover intensity between cohorts of ideas may vary independent 
of the effect of obsolescence of old ideas. 

We capture these factors of the transmission mechanism by means of a "citations" func- 

tion, a(t, s) for it s. We assume that this function depends on the probability of seeing 
or knowing about an idea (it — 

.s) years old, and the usefulness of old ideas in generating 
new ones. We take the probability of seeing an idea (1 

— s) years old to be (1 
— e''1). 

t4With either positive or negative coefficients; thus with incressing or decressiog aggregate returns to scale 
in the research technology. 

"Some state dependency of knowledge diffusion is likely, but it seems plausible that time would he the 
primary factor. 
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As ' —* m, diffusion becomes instantaneous; y = 0 means that all old blueprints are un- 

available, so each inventor starts from scratch. In order to capture the first and last factors 

mentioned above, we assume an index of usefulness of the form 86_0(N, -N4 The term in the 

exponential reflects the notion that the usefulness of old ideas in the generation of new ideas 

depends on how far the technology has moved since the old idea. The parameter 8 could 

capture two distinct effects. it could represent the "potency" of the spillovers emanating 

from each cohort of ideas. It could also represent an "absorption" parameter, measuring 

the intensity of use of old ideas by new ideas. The former interpretation implies that 8 

might vary over s; the latter interpretation suggests the possibility of variation over t. In 

principle, one could imagine interaction effects, i.e. variations over (a, t) pairs. In the em- 

pirical section we focus on variation in 8 over a, that is, variations in the potency of the 

spillovers emanating from different cohorts of old knowledge. There are a combination of 

conceptual and practical reasons for this, as will be discussed below. For now we simply 

treat 8 as a constant, since this simplifies the explanation of the basic elements of the process 

of knowledge accumulation. 

The citations function is the product of the usefulness of old ideas and the probability 

of having seen them:'6 

a(t, a) = Sc_0(N_Ns) (i — e')) I � a, (9) 

with � 0, /3 >.0 and 0 � 8 � 1. 

We let 0, be the sum over all the potentially "citable" cohorts of ideas:'7 

N, 
a(t, s(q)) dq = o(t, s)N, da, 

"We have saved on notation by working with a single sector model, but it would be straightforward (from 

a modelling perspective) to add multiple sectors, with differing rates of obsolesceace and diffusion within and 
across sectors. Empirical implementation of the multi-sector version would not be trivial. We will comment 

further on this in Section 5 below. 
irIt is easy to add othec standard ingredients to 0,, including, e.g. decressing returns to current labor in 

research See eg. Kortum (1993), Stokey (1992), Jones (1992). We also comment on this possibility in Section 

3.3 below. 
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which can be written as: 

= — 5e('2) ds+ys(e) q• (10) 

This specification of the productivity of research effort, 0, has several interesting features. 

First, as the speed of diffusion goes to infinity, 8 converges to a constant: 

(11) 

The insensitivity of the research productivity parameter to the rate of invention in this 

limiting case is the result of two offsetting factors. The increased obsolescence of the existing 

knowledge stock that is inhereot in an economy moving (inventing) at a faster pace is 

exactly offset by the increased rate at which new knowledge is added to that stock. This 

is illustrated in Figure 2.1. There, we depict two economies — A and B — starting with 

the same level of knowledge (normalized to 0) but in A inventions occur at twice the rate of 
B (for reasons other than parameters of the innovation function). An inventor standing at 

11 in A has a larger number of inventions behind her, but the more rapid rate of invention 

means that a larger fraction of that stock is now obsolete. Equation (11) says that these 
forces exactly cancel each other when information diffusion is instantaneous, so that the 

marginal productivity of research in the two economies would be the same.5 Put differently, 
with instantaneous diffusion the right "clock" for spillovers is determined by the number of 
inventions: if the pace at which these occor increases, so does the speed of the economic 

clock, bringing about offsetting obsolescence, which leaves the amount of spillover unchanged 
at the margin. 

Second, for given {N},<2, 8 is proportional to 5, which is the fraction of total knowledge 
that is of potential use for new inventions. Also, if diffusion is instantaneous, 0 is inversely 

proportional to the rate at which new ideas outdate old ones, /1. Thus, putting aside 

'5That is, s given amount of research labor would generate the same N in the two economies. 
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diffusion lags, the strength of spillovers depends directly on the exogenous usefulness of old 

knowledge, 8, and inversely on the rate at which it is made obsolete, /3. 

The third important feature of our formulation for 8, is that lags in the diffusion of 

information — i.e. 7 finite — change the relation between the pace of inventions and the 

productivity of labor in research by introducing a form of dynamic decreasing returns. 

Returning to Figure 2.1, if -y is finite it is no longer true that the marginal productivity 

of labor in research at t1 is the same in economies A and B. Because of diffusion lags, an 

increase in the rate of innovation does not add to the stock of knowledge fast enough to 

offset the higher rate of obsolescence. The fraction of the stock of knowledge observed by 

inventors in an economy where the rate of inventions is relatively high is limited by the fact 

that a large amount of inventions have occurred only recently, when things are difficult to 

observe. In other words, in this case there is a second and exogenous clock that anchors the 

economy.'9 Thus the productivity of research 8, decreases with the rate of invention. 

The next step in presenting the model is to descnbe the dynamic equilibrium behavior 

of the model. We postpone this until after estimating the key parameters of the model, for 

then the examples used to characterize equilibrium can be made more meaningful. 

3 EMPIRICAL ANALYSIS 

3.1 Overview 

The previous section presented a general equilibrium model of the processes of knowledge 

accumulation, research, innovation, product market competition, and economic growth. To 

estimate the parameters of the model, and to test its predictions against economic experi- 

ence, requires finding measurable empirical constructs that correspond to the elements of 

the model. In this section, we plunge in and make attempts to estimate each of the impor- 

"Although the model makes a stack distinction between lags (which occur by the "time clock") and obso- 

lescence (which occurs by tbe "invention clock"), the effects discussed here will occur ss long as the speed of 

diffusion is less responsive to changes in the rate of innovation than is technological obsolescence. 
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tant blocks of the model. We do not attempt to estimate the overall system of equations 

implied by the model as a whole, because the theoretical and empirical compromises that 
are necessary to find empirical counterparts to the model constructs cannot really be applied 

consistently across the different parts of the model. For example, the model has a highly 

stylized notion of "firms" who own no assets other than blueprints. The creative destruction 

equation (5) describes the time path of the value of blueprints or ideas. To estimate this 

equation we will use data on real firms.2° To do this, we will derive the model's implications 
for the value of a firm, conceived as a collection of blueprints. This will involve assumptions 
that we believe are reasonable, but we do not go back and work out the overall implica- 
tions of these assumptions for the model as a whole. Similarly, confronting the data will 

require us to allow for lags between invention and patent applications, patent applications 
and patent grants, invention and new product introduction, etc. We try to allow for these 

lags in reasonable ways, but we do not formally incorporate them into the overall model. 

To say it differently, we recognize that the loose correspondence between the model and the 
data prevents us from interpreting the model too literally. 

In the following subsections we will discuss measurement issues in some detail. Overall, 
we will use patents as corresponding to ideas, implying the number of patents in a period, 

country, sector, etc. can be taken as proportional — sometime with lags — to the corre- 

sponding We treat firms as agglomerations of ideas, represented by their patent holdings; 
we take their market value as representing the value of their idea portfolio. We use counts 

of Research Scientists and Engineers to represent research labor, though we explore the use 

of R&D expenditures as well. Finally, we use consumption expenditure from the National 

Income Accounts to measure total expenditure. 

We present the empirical results in approximately the reverse order from the model 

25The closest thing to an empirical analogue nf the value of an ides is the work of Schankerman and Fakes 
(1986), Fakes (1986) and Pakes and Simpson (1989) on the value of patents. As these authors emphasize, 
however, they are estimating the value of patent protection, i.e., the dzffereace between the value of the idea 
if it is patented and its value if it is not. Fakes (1985) estimates the stock market response to the "news" 
represented by a new patent. Thus his estimates of the value of a patent exclude the portion that was 
predictable based on past patents asd R&D. 
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development. We begin with the construction of U, the productivity of labor in research. 

To do this, we use a random sample of all U.S. patents granted since 1975, and the complete 

history of previous patents cited by our sample patents. We take a citation as evidence 

that the earlier knowledge was used in the later invention, suggesting that the frequency of 

citation can be used to measure e(t, s) in equation (9). Since we obsen'e many (t, a) pairs, 

we can estimate the parameters S and -y of equation (9), while at the same time estimating 

a (time-varying) proportionality factor between patents and pAT. From this estimation, we 

construct an estimate of U (up to additive and multiplicative factors). 

Next, we move to the innovation function, equation (8). Using the constructed U, from 

the citation distributions, we estimate the relationship hetween patents and corporate re- 

search at thc aggregate level in the U.S. We show that by converting patents to N using the 

parameter csti,nates from the first step, including U,, and normalizing the research measures 

in the way implied by the model, we can improve the fit between patents and research, and 

shed light on the puzzle noted by many researchers of the falling patent/R&D ratio in the 

last several decades (Griliches (1989); Kortum (1993)). In Section 3.4, we look at the aggre- 

gate U.S. relationship between N and the growth rate of consumption, and compare it to 

the prediction of equation (21). We find that the low-frequency movements in consumption 

follow a pattern very similar to those in N, though displaced in time by a few years. We 

conjecture that this is consistent with the model if there is a lag (not in the model) be- 

tween the act of invention and the product market introduction of new goods. Finally, we 

return to the value side of the model. We estimate a version of equation (5), the "creative 

destructinn" equation, using data on firms assigned to technological sectors. We construct 

estimates of the rates of endogenous obsolescence or creative destruction for these sectors 

during the decade of the 1970s. 
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3.2 Knowledge diffusion, technological obsolescence and patent 
citations 

As discussed in Section 2.3, the limiting form of the model has a strong form of spillovers 

in which the incremental innovation always comes at the same cost, regardless of how far 

knowledge has advanced. More realistically, inventors can build on the existing stock of 

knowledge, but there are limits on its usefulness in creating the next idea. Equation (10) 

captures the more general case in which the research productivity parameter 8 depends on 

the stock of existing ideas, with each existing idea weighted by the probability that it is 
useful in generating new knowledge at time it. These probabilities are, in turn, dependent 
on the likelihood that the previous idea is known to a current inventor, and the likelihood 

that it is useful. 

To implement this approach, we use patents as an indicator of the creation of new ideas, 
and the "citations" (also called references) that patents make to previous patents as an 
indicator of "existing ideas used in the creation of new ideas.". There is a vast literature 
on the virtues and vices of patent data, which addresses such issues as the large number 
of inventions that are never patented; variations in the "propensity to patent" of different 

institutions, diffçrent industries and over time; and the large variability in the "size" or 

importance of individual patents.21 For our purposes, we will simply assume that N, is 

proportional to the rate of patenting at time it, with the proportionality factor treated as a 

(time-varying) parameter to be estimated. 

When a patent is granted, the patent document identifies a list of references or citations, 
which are previous patents upon which the current patent builds.22 The citations serve the 

legal function of identifying previous patents that delimit the property right conveyed by 
the patent. Since citations indicate that a current invention builds on an older one, we will 

use the total number of citations from patents issued in year it to patents issued in year s as 

21 For a recent survey, see Geiliches (1990). 
22References are also made to non-pstent materials such as scientific articles: we are not using this infor- 

mation. For an application that does, see 'ttajtenberg, Hendeeaon and Jaffe (1992). 
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an indicator of the use of knowledge of vintage s in the production of new ideas at time t. 

Of course, not all citations represent spillovers; it is possible, for example, that the inventor 

was not even aware of the earlier work at the time the invention was made.23 As with 

variations in the number of new ideas represented by the average patent, we will deal with 

variations in the relationship between citations and spillovers by allowing a (time- varying) 

proportionality factor between "ideas used" and citations, and estimating this factor as a 

parameter. Not surprisingly, the need to allow for this "slippage" between citations and 

spillovers will limit to some extent the conclusions that we can draw; we return to this issue 

below. 

Thus the empirical strategy of this subsection is to collect citation frequencies between 

patent cohorts, and use these to estimate o(t, s) for many I and s. We then estimate econo- 

metrically a version of Equation (9), obtaining estimates of the parameters S and , the 

"potency" of old ideas and the diffusion rate of knowledge, as well as the proportionality 

factors that map patents into ideas and citations into "ideas used." Producing these esti- 

mates allows us to do two things. First, we can use our estimates of the proportionality 
factor between patents and ideas to construct a time series for N from the patent series. 

Second, we use the estimates of the parameters from the citation function, combined with 

the N2 series, to construct &, the predicted contribution of old knowledge to the production 

25The final dscisioa as to what citations must appesr belongs with the pstent examiner, but it is ths result 
of sn interactive process involving the inventor, the inventor's attorneys, and the examiner. All of these 

parties can identify potential citations by searching the relevant "prior art." Until the late 1970s this was 

done by hand, using as a guide the Patent Office classification of the patent. Today, all parties have access 

to on-line text-search capabilities. The incentives faced by each of these parties are complicated. First, the 

applicant bears a legal obligation to disclose any prior art of which she has knowledge; the primary sanction 
for non-performance appears to be the danger of losing the good will of the examiner (who also makes the 

decisions as to whether the patent will issue, what claims will be permitted, and so forth). Second, the 

applicant would, in a sense, prefer fewer citations, since citations may limit the scope of the property right. 
On the other hand, omission of important references can be grounds for invalidation of the patent, giving 

the applicant an incentive to make sure that citations appear. For the exanuner, identifying citations not 

provided by the applicant is time-consuming. It appears that it is just as common for applicants and their 
attorneys to press for the inclusion of additional references as it is for them to resist inclusion of references 

(personal communication, Ms. Jane Myers, U.S. Patent Office). For more discussion on the interpretation of 

citations as evidence of knowledge flows, see Trajtenbsrg, Henderson and laffe (1992) sod Jaffc, Trajtenberg 
and Henderson (1993). 
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of new ideas. 

Our data consist of a 1 in 100 random sample of all patents in the U.S. granted between 

the beginning of 1975 and the fall of 1992. Simple statistics on these data are shown in 

Table 3.1. They consist of 12,592 patents containing 81,777 citations. The sample varies 

(due to variations in the overall grant rate) from a low of 443 patents in 1979 to a high of 

935 in 1991. We have valid citations going as far back as 1871.25 Thus we have observations 

over 'f' from 1975 to 1992 and "s" from 1871 to 1992. As can be seen from the Table, the 

distributions over (t — s) have extremely long tails. The mean lag in years is about 16 years; 

the median is about 10 and the mode is about 3. 

We want to use these citation frequencies to estimate o(t, 3). Let Ce,, be the observed 

citations in the sample from patents in year 2 to patents in year ,26 Let S2 be the number 

of sample patents in year t, and P5 be the number of total patents in the U.S. in year s. 

Define 

ts 
a(2,s) E 

Thus, a(t, s) is an estimate of the probability that a patent in year 2 cites a patent 
in year s. Panel (a) in Figure 3.1 shows the distribution of o(t,s) over s from 1900 for 

each 2. We restrict ourselves to the distributions since 1900; before that date the citation 

24lnventors from every country in the world take out patents in the U.S. Of course, othsr countries also 
grant patents. We will use the phrase "patents in the U.S." to refer to patents issued by the U.S. patent office, 
regardless of the nationality of the iaventor or other considerations. In this subsection, we utilize a sample of 
all such patents. In the next subsection, we will use the phrase "U.S. patents" to mean patents (in the U.S.) 
that derive from research in the U.S. 

25The citations are identified by patent number in a commercial database produced by Micropatest. Inc. 
Patent numbers can be used to assign grant years for the patents, because numbers are used sequentially; the 
patent number of the first patent issued each year back to 1836 is published in the Hislerical Slotistics of tile 
U.S. The Micropatent data contain a small but significant number (about .3%) of 5-digit cited patents, which 
if correct would be patents issued before 1871. On inspection of the actual patent documents, we determined 
that maay of these are, in fact, not patent numbers at all but "reissue" numbers. Thus, without manual 
inspection there is no way to know if any of these 5-digit citations are actually valid early patents. 'l'hus we 
have simply dropped them from the datsset summarized in Table 3.1. Citations with 6-digit or greater patent 
numbers appear to all be valid. Since patent number 100,000 was issued in 1870, we treat all citations 1871 
or later as valid. 

26Pateots are dated here by the time of grant. We will discuss timing issues further below. 
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frequencies are often zero or one, and hence are very noisy estimates of the true frequency.2T 

Panel (b) shows the function o(t, s) for an arbitrary year (19S5). The distributions shown 

in the Figure have the expected "double exponential" shape. Moreover, the increasing part 
is quite short, suggesting that speed of diffusion is fast. We return to this below. 

To go from o(t, s) to o(t, s) we must be explicit about the relationships between (i) 

citations and "used ideas" and (ii) patents and N. We assume that citations are proportional 

to "used ideas" with a proportionality factor 73t. That is, the patent office and its examiners 

have a set of rules and practices that determine what patents actually get cited. These do 

nut affect the actual use of old knowledge in the generation of new, but they do affect the 

number of citations. Further, these practices can change over time. We also assume that 

/3N is proportional to patents, with proportionality factor 528 We can think of 7//3 as 

the "average size" of a patent.29 Many interpretations can be given to this "size" and its 

variation over time. One can think of each patent as encompassing a set of distinct ideas. 

Alternatively, since not all ideas are patented, one can think of s/i/fl as the reciprocal of the 

probability that'any given idea is patented. Since we care about s/i only to the extent it 

lets us use patents for N, we will consider these different interpretations only to the extent 

that they help us think about the plausibility of the estimates. Using C,,3/s/1 for "ideas 

used" and (s/'//3)P for N, we can write an expression for o(t, s) in terms of observablea and 

parameters: 

l.s 2 —I —i — 9 o(t a) = = (/3 /&)s/' bb o (t s). (L) 
(1/fl2)/1514,p 

Since is purely a measurement parameter, we will absorb 1/732 into it and simply 

write from now on. This gets us almost to the point of being able to rewrite equation (9), 

2TWe could, of coarse, estimate the variaace of a(t, a) sad weight accordingly, hat thcsc cstioiations take 

very bag to raa as is. We decided that say additional information present ia the noisy early years was aot 
worth the increase in computational time necessary to include them. 

28We choose this parameterization to emphasize that the parameter is not idcatifled by the patent eqaation. 
We will identify it using the growth equation below. 

29The inverse of the "propensity to patent" (Griliches (1990)). 
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(the expression for the probability than an idea will be used as a function of elapsed time 

and elapsed N) in terms of observables. The only additional step is to note that (N1 
— N,) 

— the number of ideas between s and t — is, under our assumptions, just the number of 

patents granted between s and t, weighted by the appropriate b,/fl. Equation (9) can be 

rewritten: 

o(t,s) = 1,5,erp (—fl 9) (i — e')), t � s. (13) 

Equation (13) is the key empirical construct of the paper. Because of the multiplicity 

of parameters and unfamiliarity of this sort of data, it requires several comments before 

we proceed to the results. First, because of the need to estimate the proportionality factor 

between patents and N, we cannot estimate from the citation data. That is, we can 

use Equation (13) to recover from the citation data the relative size of patents in different 

cohorts in terms of ideas, but we cannot estimate the overall average size without bringing 
in additional information.35 (We will use the relationship between N and growth for this 

purpose.) Second, because we have multiple observations over both s and t, the parameters 
in this equation are all identified in principle, up to a normalization that sets one 5,31 

Third, though the parameters 4 and 5, appear symmetrically in Equation (13), we 

interpret them very differently. We treat — the proportionality factor between "ideas 

used" and citations — as a pure nuisance parameter, because the citations process holds 

nu interest for us other than as a window on the spillover process. We need to allow 

to vary over t because citations per patent have been rising rapidly, and there are good 
reasons to believe that institutional changes are the reason. On the other band, 5, is a 

key model parameter; its variation over time captures changes in the potency of knowledge 

spillovers. As already mentioned, we find a significant fall in this potency over the century, 

and associate this fall with the observed reduced productivity of private research. 

30Equivalently, we can estimate fiN but not N. 
3tTo see this, it is important to understand that and b, ace not different parameters; for any given year 

we have the same "propensity to patent" whether we are looking at that year as a citing or cited year. 
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It is, of course, crucial for identification that we do not have parameters S and , or 

8st and That is, we do not allow the potency of spillovers to depend on the receiving 

cohort, and we do not allow the proportionality factor between citations and "ideas used" 

to vary with the cited or "used" cohort, and we do not allow "interaction terms" in either. 

Each of these restrictions requires comment. By not allowing S to vary over t or st we 

are saying that new-invention cohorts do not vary in their ability to use the knowledge 

of the past, and that the potency of a given histori: cohort in generating spillovers is a 

once-and-for-all attribute that does not vary over the succeeding cohorts. In other words, 

today's inventors may have available to them more or less knowledge than was available to 

yesterday's inventors, but there is nothing intrinsic about the nature of today's inventions 

or inventive process that makes previous knowledge more or less useful to today's inventors 

than yesterday's knowledge was to yesterday's inventors. Further, (holding obsolescence 

constant) the potency of, e.g., 1920 inventions for facilitating new inventions was the same 

in 1960 as it is thday. In our model, in which quality is a unidimensional attribute so that 

the "nature" of inventions never really changes, these seem like natural restrictions. In a 
richer model, in which there were multiple quality dimensions, then one might imagine that 

the focus of invention today might be more or less similar to that of 1920 than the focus of 

invention was in 1960, suggesting that potency would vary with i and/or st. Of course, to 

the extent that variations in citation practices make it necessary to allow for variations in , it is not clear how variations in S across t could be identified. 

The restriction on , though not empty, seems more innocuous. What we are saying is 

that the "propensity to cite" past patents does not vary over the different historic cohorts, 

and that patent office practices may change over time and this may change the number of 

citations (holding spillovers constant), but that these changes do not affect past cohorts 

differentially. Both of these propositions seem to be consistent with our impressions of the 

examining process. The biggest changes have been computerization of the patent database, 

allowing on-line text searches to facilitate identification of citations, changes in the proce- 

dures for bringing citations to the examiners' attention that have made it easier for the 
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examiners to include citations in the patent document, and a perceived increase in the 

enforcement of the legal obligation on inventors to disclose knowledge of prior art.32 

A fourth observation on Equation (13) relates to the way the parameter b — number 

of ideas per patent over time — enters the equation. Because the flow of new ideas is not 

observed, any attempt to pin down variations in the propensity to patent requires having a 

second indicator (besides the rate of patenting) of the rate of knowledge generation.33 In this 

case, our second indicator is the rate of decline in the citation of old knowledge. That is, if 
the patents during some historical period were unusually large, in the sense of incorporating 

many ideas in each patent, then they should have made previous knowledge obsolete to 

a greater extent than would be expected based on the number of patents. This will be 

reflected in the data in the form of a reduced number of citations to these previous periods. 

Of course, a period with larger than average patents would also receive more citations itself, 

and that is captured by the presence of fr, in front of the exponential.31 Because of the 

presence of the and parameters, however, this effect probably contributes less to the 

estimation of the 5s than the exponential term.35 

Thus the model has two distinct parameters that relate to the average "importance," 

broadly speaking, of patents of a given eohort.ae The variation over time in the parameter 

captures any differences in the number of new ideas embeded in the average patent. 
The variation over time in the parameter fi captures variations in the potency (in terms of 

spillover generation) of the ideas themselves. 

Finally, we note that the diffusion of knowledge is assumed to occur at a rate that is 

measured in time rather than elapsed inventions. This seems natural. It is less obvious that 

32Personal communication, Jane Myers, U.S. Patent Office. 
See Pakes and Griliches (1984). 
°4Similarly, if a period's patents are bigger than average, they will make more citations; this is captured by 

the presence of 'i out fcnnt. 
351f we estimated the model with a free and complete set of the parameters 8,, there would be no contribution 

to the estimation of the time pattern of ' from its presence out front. Since, however, we constrain the Ss to 
follow particular functional forms, this is not the case. 

36Note that the "size" of ideas themselves, in terms of the product quality improvement they allow, does not 
vary except in the specific way defined by the exponential form in which q enters the aggregate ronsumption 
good (Equation (2)). 
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the diffusion parameter need be constant over time, but we did not explore its variation. 

We estimated variations of equation (13) by non-linear least squares on the set of ob- 

servations consisting of (s, 1) pairs with t varying between 1975 and 1992 and £ varying 

between 1900 and t.37 Though a model in which all of the Ss and 's are allowed to vary 

over all s and t is identified in principle, we did not attempt to estimate it. Rather, we 

followed a strategy of (1) always allowing a full set of multiplicative constants ,, to control 

for changes in citation practices, and (2) using a combination of dummies over longer time 

periods and polynomial functions of time to capture variations in both S and b over time. 

The results are presented in Table 3.2. The first column shows the simplest model one 

could imagine estimating, in which we ignore the "two clocks" and estimate both diffusion 

arid depreciation off of the lag in years between s ancP t. Not surprisingly (having seen Figure 

3.1) this model fits the data reasonably well. We get an estimate for of about .8, and an 

estimatc for the "obsolescence" rate of about .075 per year. As would be expected from the 

rising average citations made per patent shown in Table 3.1, the estimates of th rise from 

1975 to 1992. This is a result that is apparent in all specifications. Next, we substitute 

elapsed patents for time in the depreciation term, while still maintaining constancy over 

time in S. and 5,. To facilitate interpretation of the results, we use for the terms in the 

summation in Equation (13) the number of patents in each year divided by the sverage 

(over the whole sample, 1900-92) number of pateuts per year. This makes the parameter 

in front of the term (N, — N5) the average annual obsolescence rate; it is therefore directly 

comparable to the time-obsolescence rate estimated in Column 1. Estimating obsolescence 

based on patents rather than time improves the fit markedly, and also reduces the average 

obsolescence rate to just over 6 percent per year. Since the number of patents is greater in 

recent years, the observed prevalence of early citations is consistent with a lower average 

37Because the a(t, s) are estimated and the frequencies differ greatly, the model is heteroskedastic. We 

did not deal with this problem explicitly, but dropping the early observations can be interpreted as limiting 
ourselves tu that part of the data in which the heteroskedasticity is likely to be less. The standard errors 

reported are heteroskedasticity consistent, however. 
35The sum of squared residuals is reduced by about 30 percent. 
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annual obsolescence rate than when the rate is held constant over time. 

The third column of the Table "frees up" the parameter b to vary over both t and s, 

i.e., it allows for variations in the propensity to patent over time (while still keeping the 

spillover potency of ideas constant over time). Needless to say, there are many different 

ways to represent the movement in . We explored a number of these, and they generally 

give similar overall results. The version reported in Column 3 of Table 3.2 models 1' with a 

single dummy for the years 1900-1919; a second dummy for 1920-1939; a third dummy for 

1940-1959; and a cubic equation in the log of I for the period 1960-1992. This improves the 

fit further, and the parameter estimates are quite significant. The time path of y implied 

by these estimates can be seen in Figure 3.2a. Generally speaking, the path rises over the 

century, reaching a peak somewhere during the 1970s, and then begins to decline. Again, 
the patent counts have been divided by the average patents per year so that the magnitude 
of s/ can be interpreted as the annual rate of obsolescence created by an average year's worth 

of patents.3° 
Column 4 builds on Column 3 by freeing up 6,. The parameterization of 6, is parallel 

to that for tb,, with dummies for long periods early in the century and s cubic equation 
in I for the period 1960-1992. This yields a similar pattern for to what we had before, 

except in the very beginning of the century. But 6, moves significantly in the opposite 

direction, as shown in Figure 3.2b, falling significantly from the start of the century until 

about 1960, and then leveling off into a slower decline. As we will see below, the decline 

in 6, shown in Figure 3.2b translates into a secular decline in the predicted productivity of 

research, O. In other words, knowledge from successive patent cohorts over the century is 

being incorporated in current patents at rates that imply that the potency of later cohorts 

in facilitating new knowledge generation is markedly less than the potency of earlier cohorts. 

Since more recent cohorts get more weight (they are less obsolete) in current knowledge, the 

39The numbsr of patents per year also changes over time, of course, causiog the variation in the yearly rate 
of obsolescence to be much greater than the variation in ,. See Figure 3.3. 
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predicted effective spillover rate (and hence research productivity) falls over the century.4e 

As noted above, the estimate of the diffusion parameter y is not very sensitive to these 

specification issues. It is consistently about .7 to .8, suggesting an average lag until knowl- 

edge has diffused of between one and two years. 

For obsolescence, it is not ', that matters, but rather i,b,P1, which is equal to N' 9N. 

Figure 3.3 shows different estimates of N', compared to the overall patent series itself. 

What the picture shows is that first, the variations in b over time are small relative to the 

movements in patents. None the less, the "corrected" series does show a noticeably different 

pattern, particularly at the beginning of the century and from the end of World War II until 

the late 1970s. In this latter period, our estimate of N' increases almost 40 percent more 

than the patent series itself. After the early 1970s, ', begins to decline, exacerbating the fall 

in the rate of patenting itself that occurs between 1970 and the early 1980s. Then patenting 

picks up again, and although ', is still falling, N' picks up as well. In the next subsection, 

we turn to a more detailed analysis of trends in N' versus trends in patents. 
The last output of the citations analysis is the construction of the series 8,, our estimate 

of the productivity of labor in research. From equation (10), 8, is the integral over all past 

ideas q of o(t, s(q)). We do not observe o(t, s) but the estimated citation equation can be 

used to construct predicted values of n(t, a), using the parameters 'y, 6, and g, and the data 

series P,. This is easily done by replacing equation (13) in (12). 

Our estimate of 8, (up to a constant) is then easily obtained from a discrete representtion 

of the definition of 8:' 
8, a(t,s),P,. 

In the formulation described above, in which , enters the relationship between o(t,s) and 

n'(l, a) but does not affect a(t, a) itself, the parameters gi do not enter into the construction 

'0Ose manifestation of this pheeomenon is the presence of fat tails in the distrihution of the & (t, a) '5. This 

is not enough, however: allowing for fat tails in estimation improves the fit but it leaves — to a large extent 
— unaffected the declining path of 6,. 

41The fact that the summation starts from 0 rather than minus infinity is empirically irrelevant since the 

first I we study is sufficiently large (00) so the value of the excluded nO, a)I'J, is negligible. 
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of o(t, s) or 9. We also explore a variation in which we interpret the parameters as 

representiog something real about the use of knowledge rather than a citation artifact. This 

will change the estimated path of O after 1975. 

Two potential estimates of O from the citation function are plotted in Figure 3.4. The 

solid line corresponds to Column 4 of Table 3.2, in which 8, is allowed to vary over time. It 

shows a dramatic fall in the predicted productivity of research labor, very rapid from the 
1950s to the early 1970s, and then somewhat slower after that. The heavy dashed line in 

Figure 3.4 corresponds to Column 2 of Table 3.2; that is, it holds 6, constant over time. 

It shows a much flatter pattern of research productivity. In the next subsection, we will 

relate the estimated 8 to the observed productivity of research in the U.S. For now, it is 

important to emphasize that this time series is not generated from data on the productivity 
of research. Rather, it is the model's prediclion about the path of research productivity, 
based on the pattern of old knowledge used, as represented by citations, in the production 
of new knowledge. What is driving the trend is the path of 8,. In a nutshell, the citations 
data show that recent cohorts of patents are less cited than older ones (controlling for ob- 

solescence), suggesting that they are less potent in generating spillovers. Since obsolescence 

makes recent patents more important in the overall stock, the current stock is less potent 
overall than the stock that was available to previous inventors. With shorter shoulders to 
stand on, current inventors have to spend more on telescopes in order to see as far as their 

predecessors did. 

Note that the estimated decline in O is conditional on our assumption that the parameter 
ô, captures only citation behavior and not any change in the actual use of old knowledge. If, 
on the other hand, one believed that the increase in the raw citation rate that can be seen 

in the data is a real (exogenous) increase in the use of old knowledge, then we would expect 
this increase to feed through into rising research productivity. It seems likely, a priori, that 
the large increase io citation intensities reflects primarily a change in citation practices. In 

additioo, as we will show below, actual research productivity shows oo evideoce of iocreasiog 
after 1975 as would be predicted if 0, were rising steeply. 
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3.3 Tn INNOVATION PRODUCTION FUNCTION 

Equation (8) above describes the production of innovations as a function of the research labor 

force L and a research productivity function or paranseter 8. In the previous subsection 

we have developed a method for constructing an estimate of 8 based on the "use" as 

evidenced by citations, of older knowledge. In this subsection we will incorporate this 

estimate into estimates of the innovation function itself.42 We estimate the innovation 

function on aggregate time series for patents and two measures of research inputs — 

spending and research scientists and engineers — for the period 1957 to 1989. If the data 

and model are interpreted literally, equation (8) leaves large serially correlated disturbances 

unexplained. Orre possibility is to correct for serial correlation, leaving this dynamic pattern 

in the disturbance unexplained. Another possibility is to modify the theory so innovations 

are a direct function of current and lagged research. Doing the latter modifies our model only 

slightly if the lagged research that matters is the aggregate one, while it makes the theory 

more cumbersome if lagged research is private. From the point of view of estimation in this 

section, however, this distinction does not matter. Moreover, this common specification 

is indistinguishable from a third explanation where the serially correlated disturbance is 

attributed to the timing of research, innovation and patenting. We explain and adopt the 

latter, but it should be clear that we have no strong position on the relative importance of 

these sources of serial correlation. 

/Te will treat the fundamental innovation equation (8) as holding with respect to unob- 

served new ideas. These ideas do not, however, lead instantaneously to patent applications. 

Rather, patent applications P2 are given by: 

= ot = (1-p)'i 

Thus, as above, we allo;v for a time- varying propensity to patent or proportionality 

42We will also sse the estimates of from the previoas subsection to convert patents to N'. Given the 
large inflow of foreign patents, this is likely to underestimate the change in sire of U.S. patents, for on average 
there will be more inventions in between subsequent U.S. patents. 
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constant between ideas and patents; we call this il' and we will use the estimates from the 

previous subsection to convert P2 to N2°6. In addition, however, we allow for lags in the 

conversion of ideas into patent applications. We will estimate these lags, parameterized by 

p from the innovation function itself. We take the actual productivity parameter, O, to 

depend on the 8 estimated above and exogenous research productivity: 8, = 
7)o + rii8t. The 

parameters '/s and ,j, will also be estimated from the innovation function. 

Note that patents are not actually granted until some later date, usually within 2 to 3 

years of application but occasionally much later. Because this second lag is variable and 

results from the vagaries of the patent office, we estimate the innovation function using 

patents by year'of application.43 This is in contrast to our construction of 8,, and the 

knowledge diffusion analysis more generally, which used patents by grant year. This was 

prcdicated on the assumption that knowledge does not begin to spread until the patent is 

actually granted. This seems plausible, since patent applications are secret. Only when 

the patent is granted is the technical knowledge contained in them published. We should 

note, however, that we will look below at the response of firms' market value to (ultimately 

successful) patent applications. We are implicitly assuming that, at the time of application, 
the market knows that an idea has been generated, and responds to that knowledge, even 

though its technical content is still secret. 

We estimate the innovation function using measures of U.S. research inputs, and a mea- 

sure of U.S. patents. Again, this differs from the previous subsection where, though we 

are using "patents in the U.S.," we include patents granted in the U.S. to foreigners in N. 

This means that, in estimating the relationship between U.S. research and U.S. patents, we 

include in the spillover function 8, all patents, not just U.S. patents. Thus we are assuming 
that U.S. research produces U.S. inventions, but it draws upon (and is made obsolete by) 
worldwide inventions. 

It is well known that the productivity of research, as measured by patent output, shows 

a long-term decline from the 1950s until the mid-l9SOs (Griliches (1989); I'Cortum (1993)). 

43This is th€ standard practice in the patent literatnre. See e.g., Ilausman, flail and Griliches (1984) 
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This is shown in Figure 3.5. The top panel shows the ratio of patents to several measures 

of research input; the bottom panel plots N', that is times patents. The patent series is 

total "U.S. priority" patents,44 by year of application. The research input measures include 

real non- government R&D expenditures and total research scientists and engineers, as 

well as each of these scaled by U.S. population,45 and nominal R&D scaled by nominal 

expenditure. Explanations that have been put forward for the downward trend in patent 

productivity include (1) an exogenous fall in "technological opportunity;" (2) aggregate 

decreasing returns to research, producing a fall in average productivity because research 

has risen significantly; and (3) a decline in the propensity to patent (Kortum (1993)). 

Our estimates from the previous section shed significant light on these issues. First, as 

can be seen from Figure 3.5 (as well as Figure 3.3), correcting for patent size using the 

estimated , does mitigate the fall in productivity up until 1970. Thereafter, unfortunately, 

the estimated eJ, begins to fall, aggravating the apparent fall in productivity. Our estimates 

for 9, do, however, provide an explanation for much of the overall trend in patent produc- 

tivity. This can he seen from Figure 3.5, in which the estimated 9, is plotted along with the 

observed productivity. In both panels, it is clear that the overall downward movement in 9, 

is quite consistent with the fall in research productivity, though it does not explain the high- 

frequency movements, including the precipitous drop in the late 1970s and the rapid rise in 

very recent years. In the terms of the previously offered explanations for the fall in patent 

productivity, our estimates suggest that "technological opportunity" has indeed fallen. In 

our model this takes the form of decreased usefulness of the stock of existing knowledge in 

generating new ideas.46 The previous section shows that this fall can he observed in the 

pattern of actual use of older knowledge, as evidenced by patent citations. 

44This means thst the patent was applied for in the U.S. before being applied for anywhere else in the world. 
iSCivilian population over the age of 16 (1991 Economir Report of the President) 
45Note that the fi shown in Figure 3.5 is the one that results when we treat the increase in i as an artifact 

of citation practices rather than a real phenomenon. On one hand, the close correspondence of the resulting 0, 
to measured productivity provides further support to our conjecture that the movements in ', are not "real." 
On the other band, if this is wrong and the "abnormal" trend in citations corresponds to a trae increase in 
spiliovers, our measure of 0 exacerbates rather than eliminates the patent/R&D ratio purrle, at least outil 
1986. 
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Figure 3.5 suggests that the estimated 8, explains much of the observed trend in patent 

productivity. To push this a little further, we estimate the equation:47 

= ae + (1 — 
p)U,R, + PA',_,, 

with R, a measure of research input and 

= 
Tic, + '7i8t. 

The parameter estimates are presented in Table 3.3. The columns correspond to different 

measures of research input. In column 1, we use research scientists and engineers. The fit is 

quite good, and the estimates are all reasonable and statistically significant. As suggested 

above, 8 is highly significant. The next column uses research scientists and engineers as a 

fraction of the population. The fit is approximately the same, and the role of 8, is smaller 

but still positive and significant. In the next three columns we report results for research 

input measured as real R&D expenditure, and R&D expenditure divided by consumption 

and population, respectively. Except for unscaied R&D (where the signs are correct but the 

coefficients are not significant), the results are similar to those obtained with scientists and 

engineers. 

Thus the regression results confirm what can be seen in the pictures, that our estimated 

decline in 8,, inferred from patent citations, "explains" much of the secular decline in mea- 

sured patent productivity. In interpreting this, we must consider the factors determining 

the almost monotonic decline in 8 through our sample period. First, there is the decline 

in 5, indicating a reduction in the usefulness of successive cohorts of ideas in generating 

spillovers to the creation of new ideas.48 In principle, there is a second force potentially 

4mWe also estimated versions allowing for decreasing returns with respect to research ioput. The standard 
specification with decreasing returns hut q = 0 was uniformly and very significantly outperformed by the 
linear model with q' unrestricted. Adding decreasing returns to the model with 'h unrestricted yielded 
unrealistically low and very imprecise estimates of the returns to scale parameter. 

48The empirical regularity is that the citations to early patents are more frequent than would be expected 
based on the estimated rate of exponential obsolescence. We interpret this in terms oft, having heen larger in 
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at work; 9 is constructed using all patents, not just U.S. patents. The fraction of U.S. 

patents going to foreigners rose from about 11 percent in 1957 to about 44 percent in 1989. 

Fom the point of view of U.S. inventors, this increase in foreign patenting in the U.S. has 

the effect of speeding up the "N clock" without affecting the "time clock." New ideas are 

coming faster in the aggregate, making it harder for any inventor to take a step, and much 

of this new knowledge is too recent to have diffused and thereby spilled over to helping new 

invention. 

The top panel of Figure 3.6 shows that it is actually only the decline in S. that mattered. 

The solid line shows what 8 would have looked like if S. had been constant; it is itself quite 

constant. The Figure also shows why the increase in N' due to foreign patenting did not 

matter; the rate of knowledge diffusion is fast enough so that the spillovers from this influx 

roughly halanced the increased obsolescence. This can be seen from the dashed line, which 

shows what 9 would have looked like if y were much smaller, i.e. .001. In that case, we 

would havc had a marked decline in O even if S had been constant. The bottom panel 

reproduces these two cases for the actual (declining) path of 5,. It shows that, if y had 

been smaller, there would have been an additional downward effect on productivity from 

the influx of foreign patenting. But, given the actual y, this effect is small; diffusion is close 

enough to instantaneous that we are, in effect, in the world described in Section 2.3 in which 

S does not depend on N. 

3.4 N AND GROWTH 

As shown in equation (21),the theoretical model predicts an extremely simple linear relation- 

ship between the growth rate of consumption and N. Casual inspection of the data makes 

clear that such a relationship does not hold for annual data in the U.S. The high frequency 

movements in these series are not likely to be well explained by a growth model. Therefore, 

the early years. Alternatively, one could say that the true obsolescence functiou is "slower" than exposential, 
i.e., the citation distributions have fatter tails than predicted by exponential ohsolescence. Either way, the 
effect is similar; we would predict a decline in the effective spillover base as knowledge accumulates. 
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to explore whether we can find evidence of the predicted relationship, we smoothed both 
time series by using predicted values from a regression of the actual series on a filth- order 

polynomial in the log of time. The top panel of Figure 3.7 shows the resulting smoothed 

consumption growth rate and N, using the same U.S. priority patent series, corrected by 
the estimated from the citation data. The shapes are strikingly similar, especially con- 

sidering that it is not clear that one can expect consumption, as actually measured in the 
National Income Accounts, to move as predicted by the model.49 

Given the previous discussion, it is not clear how seriously one should take precise timing 
issues. For completeness, however, we mention that the N series appears to be displaced 
forward by 1 or 2 years up until the early 1980s. This suggests either that new ideas are 

incorporated in new products even before the date of patent application, or, perhaps more 

likely, that both series are moved by other shocks but exhibit different dynamic responses 
to these. 

From equations (2) and (4) it is possible to write: 

C N, _ir 
f{J'(q)e9}0dq 

but since 
N, N 

fL'(q)dq = L — 

and 

L,(q) = 

45The essence of technological chsnge in this model is the introduction of new goods. As has been emphasired 
by Griliches (1979) and others, the extent to which the statistics capture the increase in consumption that 
occurs when new goods are introduced varies greatly across industries. The authorities measure revenues, not 
output, and convert revenues to output using price deflatora that generally ignore the quality improvement 
associated with new goods. 
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we can express the rate of growth of consumption as:50 

+ N: 
- A (i-). 

We estimated the following empirical version of this equation: 

a1=Ae+AsI_A2A(f). 

The coefficient A2 was never significant so we omit the lsst term in the regressions reported 
below in Table 3.4. Columns 1 and 2 present results for the growth rate of consumption, with 

and without a serial correlation correction. Columns 3 and 4 present the same results using 
the growth rate of lahor productivity instead of consumption as the dependent variable. All 

versions tell a similar story. The coefficient on N' is about .5 to .6 and significant.51. 

The bottom panel of Figure 3.7 shows the (smoothed) growth rate of labor productivity 

(CNP over employment), and thc "true" N that can he derived from N°5 using the estimated 

parameters front the innovation equation. Again, the movements are very closely related. 

Though we stress that the lag we have incorporated between the true and observed N is 

something of a black box, the model does seem to do a good job at predicting the longer 
term movements in the productivity series. 

3.5 CREATIVE DESTRUCTION 

All of the previous empirical subsections can be thought of as conditional on the path of 

research. In the model, the allocation of labor to research is determined by the value of new 

ideas, whose time path is given by equation (5), the "creative destruction" equation. In this 

subsection, we present some empirical estimates of that equation. 

50For this we use the approximation In (1 
— a) —x, fcr r small. 

stAll coefficients appear significant but our transformation introduces large hisses in the standard errors, 
so these should not be taken too seriously. Agaio, we only emphusire the coincidence in the general shape of 
the curves in Figure 3.7. 
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As noted above, estimation of this equation requires confronting the notion of firms. It 

also requires identifying the concept of sectors, which have not been explicitly described 

in the models but whose dynamic properties can be easily understood by extension of the 

results from the single sector model. We will treat firms as agglomerations of blueprints, 

though we will not seek to explain why any particular firm holds the particular portfolio of 

blueprints that Ft does.52 We will assign firms to sectors, which will be defined as groups 
of firms whose research activities have historically focussed on similar areas. With these 

assumptions, we can derive a version of the creative destruction equation that relates the 

deviations from the sector mean in firms' value growth rates to the deviations from the 

mean of the firms' N. 

Let P123 .&, and .2)',, represent the value of a firm r in sector s, the value of the entire 

sector, and the value of the firms in sector s that are included in the sample; all of them at 

time t and in terms of units of consumption. Letting A1(q) and wg,(q) be indicator functions, 

we have: 

= I-: A1(q)V2(q) dq, 

= w,(q) 172(q) dq, 

= Vi(q)dq. 

Differentiating these expressions with respect to time, using equation (5), letting N12, as 

A1(N24N23, and assuming w23(q) as w23, we obtain our basic estimating equation:53 

52Although this definition of firms is consistent with the non-excludability of knowledge implicit in the 
model, it is unlikely to hold true in reality. In other words, research know-how, organizational capital and 
other forms of private knowledge must add value to a firm beyond the value of its patents. 

53An alternative derivation of the same equation can be obtained by letting A1(N,,) he a raodom variable 
independent acrosn i, so the best predictor of its realization is the share of the firma value in the lodustry. 
Also, assuming that each sector is comprised of a large number of firms, the total number of new patents in 
the industry together with its chaoge in value can be taken as known io advance (or at least uncertainty about 
these can be assumed to be negligible relative to the same concepts at the firm level). 
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- Ii's = A1 
[ic' 

- 
where 

a 1 

1 — a 
We estimate equation (15) on an unbalanced panel of firms from the NBER R&D panel 

(Hall, et al (1988)), which contains Compustat financial information and U.S. patent data. 

The assignment of these firms to technological sectors is described in Jaffe (1986). Briefly, 

the distribution of the finns' patents across patent classes for the period 1965-1972 was used 

in a multinomial clustering algorithm to identify groups of firms with "similar" patent class 

distributions. The 567 firms are assigned to a total of 21 sectors. Simple statistics for the 

sectors are presented in Table 3.5. In general level of aggregation the sectors are comparable 

to 2 to 3 digit SIC industries. The assignment is made, however, on the basis of areas of 

inventive activity rather than sales. 

To estimate equation (15), we need to parameterize the variation in the parameter A31 

over s and i. This parameter encompasses variations in the CES parameter a, in the share of 

the sector represented by the firms in the sample, and also variations in the proportionality 
factor between patents and new ideas. We treat it as the product of a sector-specific constant 

and a cubic polynomial in t. We constrain A to be positive by using an exponential time 

polynomial.54 Although equation (13) implies that the two terms in square brackets are 

constrained to have the same coefficient A0, we allow a free parameter on the sector patent 
total N. We also allow for year- and sector- specific intercepts, leading to the equation 

actually estimated: 

— I = a0 + A1A, [i14c±- 
— 

The results of estimating this equation on 8457 observations are presented in Table 

541f we do not constraint these estimates to be positive we obtaia negative estimate at the end of the sample, 
although these are insignificant. The overall fit wss statistically anaffected by our non-negativity constraint. 
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3.6. The coefficients A, are generally positive, though many are not significant.55 The 

parameter p which should be unity if the proportionality (implied by the model) between 

value and patents holds, is about 1.4. This says that firm patents scaled by the ratio of firm 

to sector value averages less than sector patents. This is consistent with the general and 

intuitive finding that large firms have proportionally fewer patents than small firms.56 The 

parameters P5 P2 and P3 in the table are the coefficients of the cubic time polynomial for 

To interpret these results, we use the parameter estimates to calculate rates of creative 

destruction. The most straightforward way to do this is to multiply the estimated A35 times 

the estimated p times the number of patents in the sector in each year. Doing this yields 
estimates of the rate of creative destruction by sector by year. The average over the sample 

years of these numbers are presented in the last column ef Table 3.5. They range from 

essentially zero for a number of sectors, including computers, to a high of 25 percent per 

year for drugs. The (unweighted) average across all sectors is about 3.5 percent per year. 
Some aspects of these results are quite consistent with previous findings. In particular, 
the very high rate of creative destruction for drugs is consistent with the general view 

that this is a very progressive sector and one in which patents are a very good measure of 
technical advance (Mansfield (1986); Levin et al (1987)). We also find relatively fast creative 

destruction as measured by patents in machinery, electrical equipment and communications 

equipment. These are all sectors where patents are reasonably important. In contrast, 
our inability to find creative destruction in computers is probably related to the relative 

unimportance of patents in that sector (Bound, et al; Levin et al), rather than a low rate 

of technological change. 
We can also look at variations over time. Again, the most straightforward way to do this 

is to simply multiply the estimated A,5 and p times the yearly sectoral patent total. If we do 

this, and average over sectors, we get the path shown in Figure 3.8. Beginning at a high of 

55The time and sector intercepts are not generally significant. 
55See, e.g., Bound, et al (1984). 
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about 7 percent in 1965, creative destruction falls quickly into the range of 3 to 4 percent, 

and then falls close to zero at the end of the sample period in 1981. There is, however, 

reason not to take the time variation in total patents in these data too seriously. First, it 
is affected by the changing firm composition in the unbalanced panel. In addition, total 

patents in this sample fall precipitously in 1980 and 1981, because of the way the dataset 

was created.57 For these reasons, the very low rates at the end of the sample period should 

probably be ignored. 

4 GENERAL EQUILIBRIUM, CALIBRATION, AND 

IMPLICATIONS OF THE EMPIRICAL RESULTS 

In the previous section we used the basic structure of the growth model presented in 

Section 2 to guide our search for empirical manifestations of creative destruction and knowl- 

edge spillovers. In this section we go back to the model itself and examine its properties, 

using the estimates obtained in the empirical section for the parameter values. The primary 

purpose of this section is simply to explore the static and dynamic behavior of the model 

using reasonable parameter values. We will also, however, go a little further and examine 

some strong positive and normative conjectures that arise from the behavior of the model 

when calibrated with the empirical parameter values. 

In Section 2 we identified the following key parameters: p, cs 6, L, -y and . Section 3 

provides estimates of a, -y, and fi, as well as of changes in 8 (but not its level) and in a over 

time. Initially, we focus our attention on the average value of the parameters, and postpone 
the discussion of the impact of changes in parameters until later in this section. We set 

the discount rate, p, to o03,se and use average U.S. consumption growth together with the 

'7Recall that the data is patents by year of application. Because the dataset was created in 1982, some 
ultimately successful applications from 1980 and 1981 had not yet been granted, leading to a systematic 
undercount in those years. 

Qualitative cooclusions are not affected by other "reasonable" assumptions about the discount rate, p. 
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steady state of the model to calibrate S and .t. In order to calibrate these parameters, we 

first need to go back to the model itself and characterize its equilibrium. 

The dynamical system that emerges from the model described in Section 2 has a range 
of parameters for which innovation is unprofitable so growth does not occur. We focus our 

analysis on cased where steady state growth is strictly positive. 

From the innovation function, labor market equilibrium and free entry conditions, we 

obtain an expression for the rate of innovation as a function of the productivity of labor in 

research and of the value of the leading idea in units of consumption: 

(17) 

Replacing this in the valuation equation (5), yields the dynamic equatioo for V as a function 

of itself and B: 
( -\ a 

(18) \ 1—a / 1—a 

Finally, the dynamic equation for labor productivity in research is obtained by differentiating 

(10) with respect to time: 

which combined with (17) yields: 

(19) 

Equations (18) and (19), together with initi conditions on 8 and a transversality condi- 

tion, form a self-contained dynamical system. After solving for the paths of 8 aod l' from 

this system, the rate of innovation can be recovered from equation (17). 

Since we found large values of — i.e. a high speed of diffusion of ideas — in the previous 

section, it is convenient to first characterize the case where diffusion is infinitely fast; this 

is a good approximation and it has the advantage of ao extremely simple set of dynamic 
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equations. 

If there are no lags in the diffusion of knowledge, the system has no transitional dynamics.59 

As shown in Section 2, in this case = S//3; which by (18) and the transversalitv condition 

implies: a 1 V=x -. 
1—a 

while the rate of innovation is: 

(20) 

and consumption growth is: 

(21) 

These expressions provide a simple setup to understand the main role of a. . /3 and p in 

determining the equilibrium valuation of new ideas, knowledge spillovers and the economy's 

rate of growth:6° 

DV pV2 ON N 3 / oN \ N 
—=———>0; —=————-<0; —(————=—-—>0, (22a) Do a2 Da 1—a Da\1—a) 1—a 

DV fi DV LV2 ON ON (1 — a)L >0 (92b D /38/9 /3 
' 08 /33/9 /9 

DV (1—a)V2 511 
<0; —=--(1—a)<0. (22c) 

op a op 

When the degree of substitutability among goods (a) rises, the value (per unit of con- 

sumption) of a new idea rises. - This may seem surprising since an increase in a lowers the 

59Obviously, anticipated changes will lead to non-steady state dynamics. The absence of transitional dy- 
namics refers to the response of the system to a once and foe all unexpected change in a constant of the 
model. - 

600ne could also study the impact of L, but we take this as a nuisance parameter. It is at best unclear 

which is the appropriate normalization. 
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markup charged by firms. There are, however, three other effects that must be considered. 

First, as discussed in Section 2, the fall in the markup is outweighed by an increase in the 
size of the market faced by new ideas (the "scope effect'), so that the initial profit of the 
newest idea rises with a. Second, an increase in a raises creative destruction, which reduces 

expected future proflts and hence the initial value of ideas. Third, it can be shown that 
from these effects alone, the ratio of the value to the wage would fall.61 From the free entry 
condition, this would be inconsistent with positive invention. Therefore, there must be an 

endogenous decline in creative destruction (fall in N) in order to offset the fall in the value 
to wage ratio.62 

The impact of an increase in the potency of spillovers (6) as well as that of a reduction 
in the technological destructiveness of new ideas () is shown in equation (22b). They 
increase the pace of innovation, and through the impact of this on creative destruction, 
lower the equilibrium value of new ideas.52 Finally, equation (22c) shows that an increase 
in consumers' impatience, p, lowers both the value of new ideas and the rate of invention 

through standard discounting and savings mechanisms. 

Although the intuition as well as the sign of the relations described above survive the 
introduction of a finite 7' it is worth describing briefly the implications of frictions in the 
diffusion of ideas. 

If 'p is finite, the system exhibits transitional dynamics since "the clocks have to syn- 

chronize to the new pace." That is, if information diffuses slowly, "shocks" that lead to 

changes in N disrupt the balance between technological obsolescence and increases in the 

51An important mechanism behind the monotonic relation between growth and markups is that labor sopply 
is completely inelastic. If this assumption is relaxed, then as the wage falls (i.e. markopa rise) there seooid be a reduction in resources available and, under the appropriate fonctional assumptions, an eventoal decline in 
equilibrium growth. 

521n the y finite case, the eadogenous decline in creative destruction would not completely offset the initial 
decline in the value to wage ratio. 

53Alternatively, the fall in equilibrium value can be explained in term of the increase in the productivity of 
research. This and the creative destruction interpretations of the decline in value are related in equilibrium 
by the free entry condition. 

e4Thl5 is particularly true for large values of y, as is the one estimated in the empirical section. 
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base of knowledge. Transitional dynamics occur while the new level of 9 that restores this 

balance is reached. Before discussing dynamics, however, it is worth pausing to study the 

steady state and to calibrate the remaining parameters using average U.S. growth data. 

The steady sate can be found in closed form, although the equations are somewhat less 

informative than before: 

p(1_a)fi_7+(p(.l_a)fly)2+467L(1_a) 23 — 

2fi(i—a)L 

2/3 

and 

(23c) 

It is apparent from these equations that using average growth data only (which we do 

here), it is neither possible nor relevant to separate L from 6; thus we set L = 1. We can 

now recover all the parameters of the model, which are summarized in Table 4.1. In words, 
we obtained -y = 0.7 directly from the citation function, and /3 = 1.67 is the inverse of the 

coefficient on the change in the number of ideas, as normalized in the citation function, in 

the growth equation. We recover cv from the average of our creative destruction estimates, 

0.035, which corresponds to aN/(l — a), and the average of N, 0.042. The estimate of n 
so obtained is 0.463. The last parameter, 6, is obtained from the steady state equilibrium 

equation fbr N (equation 23b) and is equal to 0.199. 

Figure 4.la plots the steady-state growth rate for an economy with the same base pa- 

rameters of the U.S. and a range of values of cs the index of creative destruction, and 6, 

the spillover potency index, that contain the U.S. values. Figure 4.lh does the same for the 

equilibrium value/consumption ratio. U.S. "average" equilibrium is depicted by a black dot 

65For this we use that N = N'°5//3, and N' = 0.07. Our sample for the estimate of creative destruction 
is 1965-1981, while we use the period 1960-1989 to compute the average change in ideas. 
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in each figure. 

One of our main empirical findings is that productivity of labor in research has declined 
sharply over the sample, and this seems to be mostly due to a decline in 8. According to 
figure 4.1, this ought to lower the equilibrium rate of innovation, N, and raise the value of a 
new patent to consumption ratio, V. On the other hand, our empirical evidence on creative 
destruction suggests that a has decreased over time; this should raise N and V. 

Splitting the sample into two periods, 1960-74 and 1975-89, associating the 1965-74 
and 1975-81 averages of creative destruction to each of these periods, respectively,ee we 
can calculate the model's predicted steady-state changes in N and V. We find that the 
effect of the decline in the power of spillovers dominates the effect of the decline in creative 
destruction on equilibrium growth, leading to a prediction that N should have fallen by 
about 50 percent from the first to the second periods. With respect to value, both of these 
effects go in the same direction, leading to a predicted increase of about 25 percent in the 
value to consumption ratio. 

In reality, N (the patent series adjusted by our estimated ') fell about 15 percent. If we 

proxy the value to consumption ratio by the ratio of stock prices to nominal consumption, 
we find an actual rise in V of about 20 percent.67 Thus the qualitative predictions of the 
model are confirmed, though the actual magnitudes changed less than the model implies 
they should have. 

We conclude this section by briefly addressing several issues that are tangential to our 
main concerns: (i) a description of the transitional dynamics of the model; (ii) the long run 
effect of changes in the speed of diffusion of ideas () and in technological destructiveness 

(fi); and (iii) optimal R&D subsidy rates. 

Figure 4.2 shows the phase diagram corresponding to a case with non-instantaneous dif- 

55Remember that the sample used to estimate the path of creative destruction goes from 1965 to 1981 only. 
57Thsre ars several reasons to think that an index of aggregate stock prices is not a great proxy for the 

value of patents. In particular, ths number of patents a firm bus is likely to be an important component of 
the value of its stock and, for the experiments we discuss hers, value and number of patents at. the firm level 
are likely to be negatively correlated. 
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fusion. Point A corresponds to a steady state equilibrium with the parameter configuration 

of the 1960-74 period described above, while point B illustrates the steady state emerging 

from the 1975-89 period. The thick line with srrows illustrates the saddle path of the new 

equilibrium. Since in reality the shift in parameters may have been slow and the decline in 

6 seems to have compromised only newer cohorts, it seems unreasonable to assume that the 

actual dynamics can be characterized in terms of the new saddle path. Instead, a path like 

the one depicted by the thin line with arrows seems more likely. 

Figure 4.3. illustrates the long run effect of changes in the speed of diffusion of ideas (-y) 

and in technological destructiveness (fi), with the black dots representing the steady state 

of an economy with the parameter values we found for the U.S. It shows that 'y is large, 

in the sense that further increases in it do not increase equilibrium growth significantly. 

An increase in the destructiveness parameter fl by lowering the equilibrium productivity of 

labor in research, reduces equilibrium growth and raises the required value of a new idea. 

Finally, we address the optimal subsidy issue, focussing on the case where y — cc. We 

also assume that the subsidy to labor used in research is financed with a tax on labor used 

in production of consumption goods. 

Setting L = = 1, and letting s be the subsidy rate (in terms of units of consumption). 

it can be shown that in equilibrium, N is: 

(24) 

which is clearly maximized as a —* 1. As always, however, there is a tradeoff between long 

run growth and current consumption. Indeed: 

___ aS 

6(1-s) +))C . La) 

58Note that the initial jump in ü is possible only if the initial change ia involves the poteacy of older 

patents. 
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which, for given N5, is decreasing with respect to s, and reaches zero when s = a. Since the 

utility function is logarithmic, the optimal subsidy rate must he less than a. 
Since we have assumed that exogenous technological progress is negligible, we have that 

Cs = N, so we can write the present-value utility of the representative agent, U5, as: 

U5 = ln Ca + 
Pt. P 

Maximizing this equation with respect to s, subject to equations (24) and (25), yields the 

optimal subsidy rate, s: 

* — cs2(6//3 — p) 

p+a(8/—2p) 
Replacing the parameters calibrated in the previous subsection, yields an optimal subsidy 

rate of 33% if p = 0.03. Turning back to equation (24), such subsidy rate almost doubles 

the rate of growth of an unsubsidized economy characterized by the parameters calibrated 

for the U.S..55 

5 CoNcLusioN 

We have constructed a model of economic growth through the creation of new goods, in 

which the phenomena of creative destruction and knowledge spillovers play prominent roles. 

The model has fairly simple and intuitive relationships between the existing public stock of 

knowledge and new ideas, between new ideas and growth, and between grotvth and the value 

of ideas or blueprints. The model produces endogenous growth for appropriate parameter 

values, and it highlights the importance of the speed of diffusion of existing knowledge and 

the endogenous rate of knowledge obsolescence. 

ttThs optimal sohsidy rate experiment raises the issue os whether oor ralibratioa exercise should he cor- 
rected to consider the fact that la the U.S. the subsidy rate is aos-sero. We do aot think that the precise 
oumbers should be taken that literally. 
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We implemented the model empirically using patents as proxies for new ideas. First, we 

showed that it is possible to use patent citation information to put a fairly rich structure of 

knowledge diffusion and knowledge obsolescence onto the notion of research spillovers. We 

find that the rate of knowledge nbsolescence rose frnm about 2 or 3 percent per year early in 

the century to about 10-12 percent per year at the end of the 1980s. Our results show that 

the process of knowledge diffusion is quite rapid; indeed sufficiently rapid that the model 

performs essentially as if diffusion were instantaneous. In this context it is important to 

note that the lag we are measuring is between the grant date of the cited patent and the 

grant date of the citing patent. It seems plausible to view diffusion as beginning with the 

patent grant, since that is when the patent information is public. But the grant date of the 

citing patent is, of course, several months to a few years after its application date, and we 

take application date as being associated with invention. Thus, from the grant date of the 

cited patent to the application date of the citing patent would be even a shorter lag. Our 

results on the speed of diffusion seem to be broadly consistent with earlier work, particularly 

that of Mansfield (1985), who found that 70 perccut of product iruiovations were known and 

understood by rivals within 12 months of the innovation, and only 17 percent took longer 

than 18 months. 

This rapid diffusion rate prevented the large influx of foreign patenting in the U.S. in 

recent decades from lowering U.S. R&D productivity even further: with diffusion this rapid. 

the spillovers from the foreign knowledge creation approximately balance the increased rate 

of knowledge obsolescence that they also create. 

This "good news" is overshadowed, however, by a measured reduction in the usefulness 

of existing public knowledge in generating new knowledge. as reflected in citation patterns. 

The estimated spillover potency (6) fell by a factor of 5 over the century. with roost of this 

occurring in the first few decades, and a fall of about 25 percent in the post-war period. 

When we translate this into the change in effective accumulated public knowledge, we predict 

a fall in the private productivity of research inputs of about 30 percent between the late 

1950s and 1990. 
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We then move to the estimation of the innovation production function, the relationship 
between aggregate U.S. private research inputs and aggregate U.S. idea generation, as rep- 
resented by U.S. patents. We confront the well-known "puzzle" of the large fall in the ratio 
of U.S. patents to U.S. research inputs in the post-war period. The citation function esti- 
mation could, potentially, explain this in 2 ways. If the size of patents was increasing fast 

enough, then the idea/research-input ratio may not be falling even if the patent/research- 
input ratio is. Second, if the effective stock of public knowledge is falling, then the reduced 

spillovers would explain the fail in the productivity of private research inputs. We find 
evidence of both effects, although the increase in patent size peaks in the early 1970s. so 

that our ideas/research-input ratio actually falls faster than the patent/research-input ratio 
after that. For the entire 1958-1990 period, we can explain the overall patent-productivity 
trend quite well, but we do not explain the accelerated decline in research productivity that 
occurred in the late 1970s, nor the apparent reversal of the trend in the mid l9SOs. One 

difficulty with understanding the very recent movements is that these patents have not had 
much time to be cited, so our estimates of both 8 and are very imprecise for the late 
1980s. Given the large increases in the number of patents in this period, it \vill be interesting 
to see how these patents fare as time goes by. 

As noted, we also found evidence that the "size" of patents has grown over the century, 
increasing by a factor of 3 from 1900 until 1940, and then by an additional 20 percent 
until it peaked in about 1970. This is consistent with previous conjectures about changes 
in the propensity to patent. The early rise, in particular, is probably traceable to changes 
in the legal treatment of patents and the "corporatization" of research. (See Sehmookler 

(1966).) It may also be that innovation has become more "systems" oriented as it has 

become increasingly science-based, so that each "invention" is actually a larger and larger 

package of component ideas. It is also interesting that we find the size of patents to he 

falling in recent years. There are two major institutional changes in the 1980s that might 
have been expected to affect the propensity to patent, in opposite directions. First, patent 
application fees were increased, and fees for patent renewal were instituted for the first 
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time in the U.S. in 1981. These changes should have operated to increase the threshold for 

inventors to decide to make a patent application, reducing the propensity to patent. At 

approximately the same time, there has been a perceived increase in the strength of patent 

enforcement in the U.S. This makes patents more valuable and should thereby increase the 

propensity to patent. Our results suggest that the latter effect may he empirically more 

important.7° 

Next we looked at the relationship between the rate of idea creation and consumption 

or productivity growth. We showed that, after removing high-frequency movements, the 

growth rates of either consumption or labor productivity display movements over the last 

several decades that correlate quite closely with the rate of invention that we measured. 

Thus in our model the productivity slowdown — the long fall in the smoothed growth rate 

of productivity from the mid 1960s — can be traced back to a fall in the rate of new product 

creation, which itself can be traced to a fall in research productivity connected to a decrease 

in the potency of old knowledge in generating new ideas. 

The coincidence in timing of the fall in patenting in the 1970s and the slowdown in 

aggregate productivity has been noted by others. We have a story consistent with those 

facts, but we cannot push it too hard because so many of our assumptions about lags 

between observables and unobservables cannot be tested. 

Our final empirical innovation is the measurement of rates of creative destruction, using 

data on patents and value at the firm and sectoral level. Unfortunately, these estimates can 

only be made for a shorter time period in the 1960s and 1970s, because the construction 

of patent totals for these firms in the 1980s has not been carried out. This exercise does 

give reasonable estimates for many sectors, varying between 0 for Petroleum Refining and 

25 percent per year for Drugs, with a mean of about 3.5 percent per year. The estimated 

time path of the average rate of creative destruction is some\vhat surprising, falling from a 

high of 7 percent in the mid-60s towards zero by 1981. A challenge for futurc work will be 

75As can be seen from Figure 3.5, there has been a large iscresse is the patest/research ratio is the late 
1980s. This woald also suggest a possible rise in the propessity to palest (fall in the size of patests). 
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to try to find alternative data series that would permit a richer analysis of rates of creative 

destruction by sector and over time. 

We then took the empirical parameter estimates back to the model, and showed that the 
observed decline in the productivity of research has implications for the innovation rate, the 

growth rate and the value of new ideas that are all roughly born out. The model simulation 
also emphasizes the importance of the apparently rapid diffusion rate of knowledge. The fact 
that knowledge diffuses rapidly prevented what could otherwise have been an even greater 
productivity slowdown in the 1970s and early 1950s. 
- 

Stepping hack from particular parameter estimates and the consistency of particular 
model blocks with observed trends, we have suggested an organizing framework for empirical 
research on the contribution of industrial innovation to aggregate growth. We helieve that 
this framework offers many avenues for fruitful future work. Having demonstrated that the 

citation function works reasonably well, it would he interesting to go back to it and focus in 

more detail on issues of stochastic structure and identification. Further, to really understand 
the significance and interpretation of the observed decline in spillover potency, we need to 
look at the variations across sectors and geographic space in the size of patents, and in 
the diffusion and obsolescence rates. In principle, one could categorize citing patents by 

technological sector, and by the national origin or U.S. state of origination. This would allow 

one to put a finer structure on our homogenous, public good called knowledge, examining, 
for example, whether foreigners are slower to pick up knowledge in U.S. patents than are 

Americans. One could also, to some extent, examine whether knowledge seems to have a 

private component, by looking at whether the firm cites its own patents more often or more 

rapidly than it does patents owned by other firms.7' 

Consideration of cross-country citation patterns suggests that more thought needs to 
be given to how to think about the rate of invention, the rate of consumption growth and 

71There is evideace, for example that such 'sslf-citatioas" are more prevaleat for private firms thsa for 
universities, and that they come aooaer io time than aon-self-citationa. See Trajtcnhcrg, Hcodcrsoo aad Jaffs 
(1992). 
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the stock of public knowledge in an open economy. We have modelled U.S. consumption 

growth as depending on U.S. invention, U.S. invention as depending on U.S. research, hut the 

"public" stock of knowledge available to U.S. researchers as being the worldwide stock. With 

respect to each of these, our assumption seems superior to the alternative polar extreme, 

but reality is probably somewhere between the extremes. 

An interpretation of the decline in 8, is that research is steadily becoming "narrower" and 

hence generates fewer spillovers because each new idea is relevant to a smaller and smaller 

set of technological concerns. Empirical testing of this notion would necessitate incorporat- 

ing multiple dimensions of product quality into the model, so that there would be a notion 

of "technological distance" between different inventions.72 This could perhaps he imple- 

mented empirically using the patent classification information,73 although the classification 

information is not available in computerized form for patents before the late 1960s. 

Finally, it would be interesting to look at the connections among the private valoe of 

particular inventions, the creative destruction they produce, and the knowledge spillovers 

they generate. To some extent, one would expect that important patents would he high on 

each of these scales, but ideas also probably vary in the magnitude of hoth the negative and 

positive externalities they generate. 

72Ariel Pskes eniphssizes this point in his Discussion of this psper. 
73A version of this is presented in Trsjtenberg, Henderson and Jaffe (1992). 
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TABLE 3.1: PATENT STATISTICS BY CITING COHORT 
number average modal 

of total citations average median lag average median 
citing sample sample made per lag in lag in in lag in lag in 
year patents citations patent years years years patents patents 
1975 694 3493 5.03 15.30 9 2 838,442 631,512 
1976 689 3352 4.87 14.67 8 2 820,938 569,471 
1977 650 3322 5.11 15.21 8 2 857,036 580,613 
1978 651 3385 5.20 14.93 8 3 846,948 578,342 
1979 443 2391 5.40 15.65 9 3 891,220 644,482 1980 648 3690 5.69 15.67 9 4 883,639 624,897 
1981 650 4044 6.22 16.12 9 3 908.679 611,175 
1982 571 3716 6.51 16.22 10 4 927,214 677,083 
1983 550 3520 6.40 15.99 10 5 914,550 658,850 
1984 662 4058 6.13 15.39 10 3 887.513 641,609 
1985 706 4733 6.70 16.10 10 3 924,547 632,644 
1986 700 4801 6.86 16.31 11 2 952,094 704,355 
1987 821 5665 6.90 16.39 11 2 970,055 703,255 
1988 766 5487 7.16 15.77 10 3 958,933 650,782 
1989 932 7130 7.65 16.43 11 2 1,003,940 728,840 
1990 928 7458 8.04 15.35 10 3 986,169 713,108 
1991 935 7017 7.50 16.39 10 3 1,056,534 737,182 
1992 596 4515 7.58 16.46 10 3 1,082,150 761,274 
All yrs. 12592 81777 



TABLE 3.2: CITATION FUNCTION REGRESSION RESULTS 

Parameter 1 2 3 4 

y .816 
(.019) 

.703 
(.015) 

0.707 
(0.012) 

0.705 
(0.016) 

.074 

(.001) 
.062 

(.001) 
1973 1.000 1.000 1.000 1.000 

1.244 

(.028) 
1.444 

(.027) 

1.495 

(0.012) 
2.066 

(0.021) 
MSE 0.184 0.130 0.124 0.122 

2 (LLK-LLKpc) — 537.6 70.6 15.0 

Notes: 
Dependent variable: Sample citations from year t to year s/((Sample patents)( total patents)). 
Sample: t from 1975-1992; s from 1900 to 
* See Figure 3.2. 
Estimates of j976 — are omitted to conserve space. 
(LLK-LLKpc): log-likelihood minus the log-likelihood of the previous column. 



TABLE 3.3: INNOvATIoN FUNcTIoN RESULTS 

I & S-E/Pop. R&D R&PI 
Parameter 1 4 

c 
p 

i 

LLI< 

-0.012 

(0.008) 
0.953 

(0.069) 
-0.380 
(0.134) 
0.759 

(0.223) 
180.0 

-0.013 

(0.007) 
0.934 

(0.062) 
0.002 

(0.056) 
0.259 

(0.071) 
182.4 

0.002 
(0.009) 
0.887 

(0.076) 
-0.133 

(0.133) 
0.188 

(0.189) 
176.6 

-0.009 
(0.062) 
0.912 

(0.074) 
-0.042 

(0.052) 
0.207 

(0.104) 
177.9 

-0.013 
(0.007) 
0.934 

(0.062) 
0.028 

(0.056) 
0.254 

(0.071) 
178.6 

Dependent variable: t,b weighted aggregate US priority patents by year of applica- 
tion. 
Sample: 1958-1989. 



TABLE 3.4: GROWTH EQUATION REGRESSION RESULTS 

Parameter 1 
-0.0092 

(0.0044) 

-0.0098 

(0.0032) 

-0.0248 

(0.0132) 

-0.0311 

(0.0083) 
.\ 0.6121 

(0.0629) 

0.5999 

(0.0434) 

0.5162 

(0.1872) 

0.5440 
(0.1128) 

p — 

— 

0.9037 
(0.042) 

— 

— 

0.8993 

(0.0362) 
R2 — - - - 

LLK 5.752 7.237 4.697 6.315 

N: Dependent variable: smoothed growth rate of US consumption expenditure 
Sample: 1958-1989 



TABLE 3.5: STATISTICS FOR CREATIVE DESTRUCTION SAMPLE FIRMS 

firm average 
average patents average average estimated 

number average patents growth times total total rate of 
of total firm per rate of firm/sector sector sector creative 

sector firms observations value firm value value value patents destruction 
1 30 441 542.23 72 0.04455 352.45 l4735.4fi 167.02 0.0145 
2 44 684 2351.03 67.0877 0.0743 3768.71 96900.08 2889.46 0.0318 
3 16 226 4070.11 78.0487 0.03546 4622.25 57903.42 1141.43 0.0129 
4 21 318 2652.53 45.1792 0.05299 1123.76 49921.29 907.29 0.2511 5 16 239 706.93 16.841 0.05748 337.34 9956.7 25.5.97 0.0304 6 20 303 8224.99 79.8119 0.05127 5477.57 146432.80 l544.fi5 0.0018 7 24 341 208.75 5.0469 0.07579 143.5 4158.79 112.46 0.0411 
8 21 326 4530.83 58.7791 0.14140 3378.6 88065.11 1209.72 -0.0012 
9 33 489 1286.94 54.1984 0.09234 2063.89 38265.89 1708.56 0.1313 
10 27 418 1607.58 57.2847 0.12077 2159.74 39483.43 1508.15 0.0693 
11 27 393 1147.94 34.916 0.02499 1349.37 27557.80 877.26 0.0246 
12 34 511 1071.48 6.3053 0.03260 226.17 32952.44 205.77 0.0115 
13 31 451 502.24 14.6386 0.08774 695.64 13135.86 418.41 5.0056 
14 13 200 1726.71 15.34 0.08214 475.53 20197.74 195.03 0.0065 
15 33 493 1333.17 16.7728 0.04794 872.42 39768.57 525.17 0.0105 
16 23 342 547.36 9.462 0.07767 518.28 11241.32 207.74 0.0205 
17 49 757 2145.09 41.749 0.06716 3995.33 99554.18 2018.69 0.0205 
18 24 339 587.77 9.6962 0.04060 285.85 11881.87 208.21 0.0084 
19 29 425 751.29 12.4965 0.05136 931.02 19417.10 346.84 0.0101 
20 27 393 300.32 3.4122 0.10359 318.63 6767.87 85.57 0.0152 
21 25 368 632.95 15.9484 0.05136 653.64 13540.95 375.9 0.0297 
All 

sectors 567 8457 1658.93 31.3948 0.06210 1712.52 43774.37 940.05 0.0355 

Notes: 

Sectors: 1. Adhesives and coatings; 2. Chemicals; 3. Electrochemistry; 4. Drugs; 5. Cleaning and 
abrading; 6. Petroleum and refining; 7. Machinery (non-dec.); 8. Computers and data processing; 
9. Electrical equipment; 10. Electronic communications; II. Stone, clay and glass; 12. Food; 13. 
Instruments; 14. Medical; 15. Primary metals; 16. Misc, consumer goods; 17. Automotive; 18. 
Paper and packaging; 19. Refrid. and heat exch.; 20. Static structures; 21. Farm and construction 
equipment 



TABLE 3.6: CREATIVE DESTRUCTION REGRESSION RESULTS 

Notes: Dependent variable: firm value growth rate minus sector value growth rate. 

Sample: 8457 observations on 567 firms, 1966-1981. 

Parameter Coefficient Standard Error 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

A11 

A12 

A13 

14 
A15 

A16 

A17 

18 

A19 
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A21 

P1 

P2 
P3 

R2 = .0366 
MSE = .1612 

1.383 
.318 
.037 
.040 

1.034 
.425 
004 

1.397 
- .003 
.283 
.157 
.098 
.187 
.045 
.135 
.072 
.376 
.038 
.146 
.108 
.695 
.316 

-.808 
.113 

-.0048 

.245 

.185 

.025 

.019 
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.030 
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.177 
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.271 
.063 
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.158 

.206 
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.0016 
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Figure 4.2: Phase diagram 
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