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1. INTRODUCTION

There 1s now considerable cvidence that the expected return on the aggregate
stock market varies through time. One interpretation of this fact is that it results from
the interaction between different groups of investors. Suppose that some investors,
ally

ons. Other investors are risk-averse utility mas

“liquidity” or more ger “non-informational” investors, desire to sell stock for

eX0genous zers; they are willing
to accommodate the selling pressure, but they demand a reward in the form of a lower
stock price and a higher expected stock return. If these invesiors accommodate the

fluctuations in non-informational traders’ demand for stock, then they can

of as (relatively long-term}) “market makers” in the sense of Grossman and Mi
even though they may not be specialists on the exchange.!

It is hard to test this view of the stock market using data on

because very different models can have similar implications for the time-series behavior
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..;,
\’.J

of returns. In this paper, we use data on stock market trading volune to help so
identification problem. The simple intuition underlying our work is as follows. Suppose

that one observes a fall in stock prices. This could be due to public information which

has d all traders to reduce their valuation of the stock market, or it could be
due to exogenous selling pressure by non-informational traders who have become more
risk-averse. In the former case, there is no reason why the expected return on the

stock market should have I the latter case, market makers buying stock will

require a higher expected

—
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, 80 there will tend to be price increases on subs

days. The two cases

suished by looking at trading volume. If public
information has arrived, there is no reason to expect a high volume of trade, whereas
selling pressure by non-informational traders must reveal itself in unusual volume. Thus

1

the model with heterogeneous traders suggests that price changes accompanied by ki

/r‘
gh
volume will tend to be reversed; this will be less true of price changes on days with low

volume.

Intergroup shifts in risk aversion can cccur at low frequencies or at high frequencies.
Daily trading volume is a signal for high frequency shifts in intergroup risk aversion.
Changes in risk aversion which occur slowly through time are harder to detect using vol-

ume data because there are trends in volume associated with other phenonr

the deregulation of commissions and the growth of institutional tradi
& o



~

focus on daily trading volume and the daily autocorrelation of returns. These auto-
correlations are predominantly positive [Conrad and Kaul, 1988; Lo and MacKinlay,
1988], but our theory predicts that they will be less positive on high volume days.

The literature on stock market trading volume is extensive, but is mostly concerned
with the relationship between volume and the volatility of stock returns. Numerous pa-
pers have documented the fact that high stock market volume is associated with volatile
returns; October 19, 1887 is only the best known example of a pervasive phenomenon.?
It has also been noted that volume tends to be higher when stock prices are increasing
than when prices are falling.

In contrast, there is almost no work relating the autocorrelations of stock returns to
the level of volume. One exception is Morse [1980], who studies the autocorrelation of

returns in high-volume periods for 50 individual securities. He finds that high-volume

periods tend to have positive autocorrelation of returns, but he does not compare
high-volume with low-volume periods.” Several recent papers study autocorrelations in

relation to volatility: LeBaron [1992a] and Sentdana and Wadhwani [1990] show that
the autocorrelations of daily stock returns change with the variance of returns, while
Duffee [1989] obtains a similar result in monthly data. Below we compare the effects
of volume and volatility on stock return autocorrelations.

The organization of our paper is as follows. In section Il we conduct a preliminary
exploration of the relation between volume, volatility, and the autocorrelations of stock
returns. In scction III we present a theoretical model of stock returns and trading
volumme. In section IV we show that the model can generate autocorrelation patterns
similar to those found in the actual data. We use both approximate analytical methods

and numerical simulation methods to make this point. Section V concludes.



VOLUME, VOLATILITY, AND SERIAL CORRELATION:
A PRELIMINARY EXPLORATION

L83UES

ics used in this paper is the daily return on a value-weighted

the New York Stock Exchange and American Stock Exchange,
measured bj; the Center for Research in Security Prices (CRSP) at the University of

1

through 12/30/1988. Results with daily data over

Chicago over
this period wre likely to bf‘ dominated by a few observations arcund the stock market

crash of October lG, 1937.

1t the maln sample period we use in this paper

2 through 9/30/1987 (1962-1987 for short, or

sa Aiple AJ W subsamples: 7/3/1962 through 12/31/1974
{1962-1974 for short, or sample B}, which is the first half of the shorter sample and

which excludes the period of flexible commissions on the New York Stock Exchange;
and 1/2/1975 through 9/30/1987 {1675-1987 for short, or sample C), which is the
remainder of the shorter sample period. Finally, we use the complete data set through
the end of 1088 in order to see whether the extreme movements of price and volume

ST sirengthen or weaken the results we obtain in our other samples. We call

sanple 1962-1988 for short, or sample D.

so study the behavior of some other stock return series. For the period before

CRSP

afy ind

G. William Schwert [1990] has constructed daily returns on

:omparable to the Standard and Poors 300, We use this series over the
period 1/2/15206-6/29/1962. The behavior of large stocks is of particular interest, since
measured returns on these stocks are unlikely to be affected by nonsynchronous trading.

The Dow Jones Iudustrial Average is the best-known large stock price index, and so

we study its changes over the period 1962-19388. Individual stock returns also provide

useful evidence robust to nonsynchronous trading, so we study the returns on 32 large

that were traded throughout the 1962-1988 period and were among the 100
largest stocks on both 7/2/1962 and 12/30/1088.%

Stock market trading volume data were kindly provided to us by J. Harold Mulk-
herin and Mason S. Gerety. These researchers collected data from The Wall Street
Journal and Barron’s on the number of shares traded daily on the New York Stock
Exchange from 1900 through 1988. They also collected data on the number of shares

outstanding on the New York Stock Exchange. For a detailed description of their data,
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sharcs traded to the number of shares outstanding

.

is known as turnover, or sometimes relative volume. Turnover is used as the volume

previous studies (for example Jain and Joh [1988] and Mulherin and

number of shares outstanding and the nwnber of shares

1

own steadily over time, the use of turnover helps to reduce the

guency variation in the series. It does not eliminate it completely, however, as

£,

rom the plot of the series presented in Figure I Turnover has an upw
ate 1960’s and in the period between the elimination of fixed commissions
he stock market crash of 1687. The growth of turnover in the 1980’s may

to technological innovations which have lowered transactions costs. In

our (vfmpirical work, we want to work with stationary time series. “Wﬂen we relate

pirical results to our theoretical model, we want to measure trading volume

ive to the capacity of the market to absorb volume. For both these reasons we

ish to remove the low-frequency variations from the level and variance of the turnover

To remove low-frequency variations from the variance, we measure turnover in

m

ather than absolute units. To detrend the log turnover series, we subtract a 1-

backwards moving average of log turnover. This gives a triangular moving average

e
=]

growth rates, similar to the geometricaliy declining average of turnover

[1989] to explain stock return volatility. We explore
some alternative detrending procedures below.

Cur detrended volume measure is plotted in Figure II. The figure shows no trends

but it dees show considerable persistence. The first daily auto-
is about 0.7, and the fifth daily autocorrelation is still

tion of the series is close to 0.25; all these moments are

. We take the conditional variance

atility
s estimated by Campbell and Hentschel [ 9932} using daily return data o

d 1926-88. Campbell and H

Tentschel used a quadratic generalized autor

m, tWo moving av

ARCH) model with one autoregressive te

on to volatility. The GG

modei is very similar 7, but it allows

ity more than positive returns do

negative returns to increase volat

_4-



B. Forecasting Returns from Lagged Returns, Volatility, end Volume

Table I summarizes the evidence on the first daily autocorrelation of the value-

1

Weighted index return. For each of our four sample periods, the table reports t
o i standard error. and il PQ,(-.',“
sticity-consistent standard error, and the R* statistic

u. This

autocorrelation with ¢

it and the curre

for a rEEression OL 1 return on a cons

statistic, which we write as R“(l) in the table, 1s just square of the autocorrelation,
The remarkable fact is that the autocorrelation exceeds 0,15 in every sample period; it
1s about 0.2 over the full sample and nearly 0.3 in the 1662-1974 period.

Table I wlso shows the improvement in 2% that can be obtained by allowing the
first autocorrelation to vary with the day of the week. A regression of the one-day-

B

ahead return on the current return interacted with five day-cof-the-week dummies has
5

2 o 209y o : ; .

an It* statistic, labelled R*(2) in the table, that is at least 0.5 percentage points larger
. o . . . .

than the &7 of the basic regression. The increase in R is even greater in the 1962-1988

period, but mucl of this is due to the single week of the stock market crash. The day-

of-the-week dwinaies are significant enough that we include them in all our subsequent

Table II looks at the relationship between volume and the first autocorrelation
of the value-weighted index return. We regress the one-day-ahead stock return on

. return interacted not only with day-of-the-week dummies but also

the current stock
with volume. atively, we interact the current return with dummies and with
estimnated conditional variance. Finally, we report a regression in which the current

racted with dumnies, volume, volurne squared, and conditional variance.

return 1s int

Panel A of Table II uses the sample period 1962-1937. Owver this period Table

1 showed that 3.7 percent of the variance of the one-day-ahead value-weighted index

i on current return interacted s

return can be explained by a

week dummies. The first row of panel A shows that this R? statistic cas
6.5 percentage points by interacting the regressor with dummies and detrended trading
volume. The coefficient on the product of volume and the stock return is -0.33 with

a heteroskedasticity-consistent standard error of 0.06. This is ec Uly as well as

statistically significant. The standard deviation of detrended volume is about 0.25;
thus as volume moves from two standard deviations below the mean to two standard

luced by about

deviations above, the first-order autocorrelation of the stock return is re

0.3.



117y

These strong results for volume are not matched by our volatility measure. When
volume is excluded from the regression, volatility enters negatively, but it is statisti-
cally and economically insignificant. When volume and volume squared appear in the
regression, volatility enters positively but is again insignificant. The quadratic term
on volume is positive and not quite significant at the 3 percent level. Thus in panel
A there i1s only weak evidence for any more complicated specification than the lincar
volume regression reported in the second row.

In panels B and C of Table II, we break the 1962-1987 period into subsamples

1962-1974 and 1975-1987. The strongest results come from the earlier subsample 1962-

74. In this period the average first-order autocorrelation of the stock return is almost
0.3, and a regression of the one-day-ahead return on the current return interacted with

of-the-week dummies gives an R? statistic of 8.4 percent. This can be increased

by more than a percentage point by taking account of a linear relationship between
the autocorrelation and trading volume. Once again volatility and quadratic volume
terms add little. In the later subsample, 1975-1987, the first-order autocorrelation is

much smaller on average. Volume raises the regression R? from 4.3 percent only to 4.6

percent, although the linear volume term is still statistically significant with a t-statistic
of 2.8, In this period there 1s & stronger negative relationship between volatility and
autccorrelation, although volume is still slightly superior to volatility when both are

included in the regression.

™

Finally, in panel D of Table II we ask whether the addition of the stock market
crash period to the sample weakens or reinforces our results. It turns out that the most
recent data weaken the effect of volume on the first-order autocorrelation of returns.

Even in the 1962-1988 period, however, volume remains significant at the 5 percent

note also that the 1962-1988 period is the only one for which day-of-the-week
dummies make a major diffcrence to the results. When these dummies are excluded,
the volume effect becomes much stronger in the 1962-1988 period than in the 1962-1987
period. This is because the stock price reversals of the week of October 19, 1887 are
captured by day-of-the-week dummies when these are included, or by volume when
dummies are omitted.

Table 11T has exactly the same structure as Table I, but now the dependent variable
is the two-day-shead stock return so the table describes the second-order autocorrela-

tion of the return. The average second-order autocorrelation is small and statistically



insignificant in every sample period. Even when day-of-the-week dummies are inter-
acted with the current return, the R? statistic of the regression is less than 1.5 percent.

Table IV, which has the same structure as Table I, shows some evidence for volume
effects on the second autocorrelation; however the evidence is much weaker than that
for volume effects on the first autocorrelation. Gver the 1962-1987 sample period (panel

1

A}, we find that volume enters the regression significantly only when it is included in

quadratic form. The linear coefficient is -0.23 with a standard error of 0.08, while the

S

quadratic coefficient is 0.55 w error of 0.15. These coefficients imply

that the second-order autocorrelation falls with vols

viation above its mean. At hig levels of volume, the positive

quadratic term dominates and the antocorrelation :

at subsamp 1 panels B and C, we find that the evidenc ume effects on the

second autocorrelation comes entirely from the 1962-1974 period. Finally

L=y
=]
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we see that the addition of the stock market crash period leads to stronger evidence
for a volume effect on the second autocorrelation.

One might also ask whether higher-order autocorrelations also change with trad-
ing volume. As a crude way to answer this question without having to lock at each
autocorrelation individually; we have run regressions of stock returns on moving av-
erages of past stock returns and on moving averages of past stock returns interacted

with trading volume. Regressions of this sort {where the lags in the moving averages

run from 1 to 5 or from 2 to 6) yield similar results to those reported
and IV, with somewhat reduced statistical significance. This suggests that the main
volume effects are in the first couple of autocorrelations, but that there are at least no

offsetting effects in higher autocorrelations out to lags 5 or 6.

C. Alternative Volume and Volatiity Measures

So far we have worked exclusively with detrended volume. It is natural to ask

whether similar results could be achieved v

hout detrending.

ng total volume i

V we run similar regressions to those in Table II, but

ed series and the

detrended volume. We also run regressions including both the

trend. The general pattern is that detrended volume has superior explanatory power

to total volume, although this is not true in 1973-1987. detrended and

trend volume are included, the coefficient on detrended volume is always negative and
4

significant, whereas the coefficient on the trend switches sign from

7 -



to negative in 1975-1987.

In an earlier version of this paper we also used an unobserved components model
to stochastically detrend volume. The resulting series was much less persistent than
the detrended series used here, having a positive first-order autocorrelation and then a
series of negative higher-order autocorrelations. The stochastically detrended volume
series gave results similar to but systemnatically weaker than those in Table II. This
can be interpreted in terms of our theoretical expectation that the serial correlation of
stock returns declines when volume increases relative to the ability of market makers
to absorb volume. A one-year backward moving average of past volume, which reacts
sluggishly to changes In volume, seems to be a better measure of market making ca-
pacity than an estimated random walk component from an unobserved components
model, which reacts very quickly to changes in volume. LeBaron [1992b] builds on the
work of this paper to explore this more thoroughly. To check the robustness of this

finding, we have also tried alternative volume measures as deviations of log turnover
from 3-month and 3-year backward moving averages. Both these alternative moving

e similar results to those reported in Table II. Thus it seems to be

average mMeasure
important to measure volume relative to a slowly-adjusting trend, but the exact details
of trend construction are not crucial.

The results reported above also use 2 single measure of volatility, the fitted value
from a QGARCH model. The choice of this particular model in the GARCH class is not
critical since all models inn this class give very similar fitted variances. As discussed by
Nelson [1991], high-freguency data can be used to estimate variance very precisely, even
when variance is changing through thme and the true model {for variance is unknown.

It could be objected, however, that estimated conditional volatility cannot compete
equally with trading volume because each day’s conditional variance uses information
only through the previous day. A simple way to respond to this is to add the current
squared return to the regression, since in any GARCH model the squared return is the
innovation in conditional variance.- When we do this we find that the current squared
return sometimes enters significantly but does not have any important effect on the

estimated volume effect. To save space we do not report results for this specification.
D. Fuvidence from Earlier Periods

4s a further check on the robustness of our results, in Tables VI and VII we look

at Schwert’s [1989] daily stock index return over the period from 1926. The tables use

_8-



five different samples: 1/2/1926-6/29/1962 (sample E); decadal subsamples 1/2/1926-
12/30/1939, 1/2/40-12/31/49, and 1/3/50-6/29/62 (samnples F, G, and H respectively};
and a long sample splicing together Schwert’s series with the CRSP value-weighted
index over the period 1/2/1926-9/30/87 (sample I).5

Table VI

considerably over the decades. In the 1930°s it was very small at 0.013, but it increased

ows that the average first autocorrelation of stock returns has varied

to above 0.1 in the 1940’s and 1950°s. Table VII shows that the effect of volume

1

on autocorrelation has always been 1 ive, although in many sample periods it is

statistically significant only when squared volume and volatility are also included in

e

the regression. Volatility is statistically significant only in the period 1950-1962.

E. Nonsynchronous Trading

All the empirical results so far have used the return on a value-weighted stock
index. It could be objected that the autocorrelation of the index return is mismeasured
because the individual stocks in the index are not all traded exactly at the close. In
principle nonsynchronous trading can lead to spurious positive autocorrelation in an

index return, although Lo and MacKinlay [1990] have shown that this effect is very

small ur s fail to trade for implausibly long periods of time.

As one way to respond to this objection, in Tables VIII and IX we repeat our

=

basic regre

sions using price changes of the Dow Jones Industrial Average. Although

this series s dividends, this has only a minimal effect on daily autocorr

Nonsynchronous trading should also have only a trivial effect on the behavior of the

Dow Jones. The aver autocorrelation of the Dow Jones is much smaller than the

average autocorrelation of the value-weighted portfolio, only one half as large in some

ignificant estimated effect of volume on the

periods. However there 1s still & hig
autocorrelation.

Another way to respond to the nonsynchronous trading concern is to use data on
individual stock returns. Nonsynchronous trading creates spurious positive autocorre-
lation in an index return because today’s market return is measured contemporaneocusly
for those stocks that trade today, but only with a Iag for non-traded stocks. However

nonsynchronous irading has only a trivial effect on measured individual stock return

autocorrelations [Lo and MacKinlay, 1990]. Even when one uses individual stock re-

turns, aggregate volume is probably a better variable than individual volume because



idiosyneratic buying or selling pressure does not create systematic risk for market mak-

ers. Accordingly we combine individual stock returns with the single aggregate volume
series.

Table X summarizes results for 32 large stocks that were traded throughout the
period 1962-1988 and were among the 100 largest at both the beginning and end of the
period. The first column of the table reports the volume effect on the autocorrelation
of an equally-weighted index of these stocks. The index is very similar to the Dow
Jones, having an almost identical first autocorrelation and a correlation with the Dow
Jones of about 0.95. Not surprisingly, therefore, the effect of volume on the index
autocorrelation 1s similar to the effect reported in Table IX. The second column of

le X shows the volume effect on the correlation of each stock return with its own

first lag, where the individual returns are stacked together in a single pooled regression.

The standard error is corrected for heteroskedasticity and for the contemporaneous

correlation dividual stock returns, using the method of White [1984]. The volume

effect on the own autocorrelation of each stock return is smaller than the volume effect

on the index return, but the statistical significance of the effect is not much reduced.
The third column of Table X shows the average effect of volume on the first au-

tocorrelation across 32 separate OLS regressions, one for each individual stock. Not

surprisingly the cross-sectional average effect is close to the effect in the pooled regres-

sion. The number of negative individual coefficients is also reported; at least 25 of these

coefficlents are negative in every sample period. Finally, the fourth column of Table X

shows the cross-sectional average t-statistic for the effect of volume on the autocorre-
lation, and the number of individual ¢-statistics that are less than -1.64 (the 5 percent
level for a 1-tailed test, or the 10 percent level for a 2-tailed test). The cross-sectional
average t-statistic 1s less than -1 in every period except 1975-1987, and as many as' a
third of the individual ¢-statistics are less than -1.64.

We interpret these results as strong evidence that nonsynchronous trading is not

solely responsible for the effect of trading volwme on stock return autocorrelation.

~ 10—



. VOLUME AND STOCK RETURNS: A THEORETICAL MODEL

111

ection we develop a heterogeneous-agent model that can be used to study

the joint time-series behavior of trading volume and stock returns. We then show that
to an econometrician, the pattern of past trading volume, in addition to that of prices

nformation in forecasting future returns.

A. The Economy

Consider an economy 1n which there exist two assets: a risk-free asset and a risky

1

that innovati

asset (Cstock™ ). ns in the stock price are driven by three random

variables: (i} the innovation to the current dividend, (ii) the innovation to information

idends, and {ii1) the innovation to the time-varying risk aversion of a

about future ¢

subset of investors. Shock (1) causes the payoff to the stock to be stochastic so that a

premium is demanded by investors for holding it. Shock (iii) generates changes in the

market’s ag wve risk-aversion, which cause the expected return on the stock to vary.

Shock (i1} is in the model so that prices and dividends do not fully reveal the state of

the economy and volume provides additional information.

The autccorr on of returns and its relationship to trading volume can be un-

derstood as follows. If a large subset of investors becomes more risk averse, and the rest
of the economy does not change its attitudes toward risk, then the marginal investor is

in equilibrium, the expected return from holding the stock must

more risk averse o
nse to compensate the marginal investor for bearing the risk. Simultaneously, risk is
reallocated from those people who become more risk averse to the rest of the market.
The reallocation is observed as a rise 1n trading volume. Note that the rise in expected
future returns 1s effected by a fall in the current stock price which causes a negative

current return.” Therefore, large trading volume will be assoclated with a relatively

large negative serial correlation of returns.
or f=3

We mntroduce shocks to investors’ risk aversion as the source of their exogenous

trading motives only for simplicity in exposition. There are many ways to model

)

ifer, Summ

imvestors' trading motives. For example, one can follow De Long, S
and Waldmann {1990] by as

change their beliefs about the stock’s future payoffs. Or one can mtro

uming that some investors (nolse traders} exogenounsly

¢ non-tradable

£,

income that makes investors trade to rebalance their portfolios. The basic intuition of

our model carries through regardless of how exogencus trading motives are introduced.

i
o
ot
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The risk-free asset, which isin elastic supply, guarantees a rate of return R = 1+4-r
with 7 > 0. We assume that there is a fixed supply of stock shares per capita, which is
normalized to 1. Shares are traded in a competitive market. Each share pays a dividend
in period t of Dy = D + Dy. D > 0 is the mean dividend, while Dy is the zero-mean
stochastic component of the dividend. (We use similar notational conventions for other

variables below.} Dy follows the process:

(1) Dy = apDiy + upy, O0<aep<l.

We assume that the innovation up; is 1.1.d. with normal distribution up ¢ ~ M(0, UZ).
. .

There are two types of investors in the economy, type A and type B. Both types
of investors have stant absolute risk-aversi T e A inv s’ risk-aversios
of investors have constant absolute risk-aversion. The type A investors’ risk-aversion
parameter is a constant a while the type B investors’ risk-aversion parameter is by,
which may change over time. Let w be the fraction of type A investors.

Fach period, investors solve the following problem:

(23 max Ejf—exp(—=TWi 1)}, T = a,b

subject to Wiep = WiR + Xi( Py + Dy — RPY,

where 17 s wealth, Xy is the holding of the risky assct, and Py is the ex-dividend share
price of the stock, all measured at time ¢. E; is the expectation operator conditioned
on investors’ information set 7y at time t.

The set Z; contains the stock price P, and the dividend D;. It also contains a

4

signal, Sy, which all investors receive at time ¢ about the future dividend shock up¢11:

e

(3\ UDyl = S; + €Di+1-

For simplicity we assume that S; and ep ;41 are jointly ii.d. normal, Elupy41|5i] = Sy,
¢p s~ N0, 02), and S ~ M(0,0%).

~ 19~




B. The Equilibrium Price of the Risky Asset

Let Fy (the “fundamental value” of the stock) be the present value of the expected
future cash flow from a share of the stock discounted at the risk-free rate. It is easy to

show that

oo ﬁ
1 - D R - 1
(4 £ = E — Dy 61Dy, S = — + D
) ¢ ;}m tstDe, 5t - R-ap Reap
and that the innovation variance of Fy, U%’: is given by
R? 9 1 9

2
I

—~
(<1}
e

®-ap)® " R-apr s

In the case that investors are risk-neutral, Fy gives the equilibrium price of the stock.
When investors are risk-averse, however, the equilibrium price will depend on the risk-
aversion of the market.

Define a variable Z; that can be interpreted as the risk-aversion of the marginal

Investor in the market:

aby
(6) Zy =

{(I—w)a+wh

Let Z¢ = Z + Z;. We assume that Z; follows an AR(1) process:

(7 Zy = QZZK—I + ugys 0<Lag <1

We also assume that uz, is independent of other shocks and is 1.i.d normal: ugy ~

/V’(0,0’%). This assumption allows Zj, and thus b, to be negative. This could be

- 13-



avoided, however, if we replaced the exponential utility assumption (2) by the assump-
tion that investors have mean-variance preferences, that is, they maximize the objective
function ExW, 41— ¥ Var; Wiy 1/2. All the results in the paper would follow and we could
restrict the Z; process to be bounded away from zero.

Finally, we assume that Gi < O’}Q = (R - az)‘z/40%. This assumption is used

to derive an equilibrium price function where the price of the stock is a decreasing

by

unction of the aggregate risk aversion Z;.

Theorem 1. For the economy defined above, there exists an equilibrium price of the

stock which has the following form:

(8) Fo= F + {py+pzZy),

where py = —((R ~ oZ)/ZU%)[l — /1= (U?Z/U*ZQ)] and pg = (1 —azpg Z/r < 0.

Proof: See Appendix A.

C. Ezcess Stock Returns and Trading Volume

The excess return per share on the stock realized at time ¢ + 1 is written as
Giv1 = Pyp1+ D — RP. Given the equilibrium price, the expected excess return

anticipated by investors in period t, denoted by ¢, is

(%) o = EQull] = ojZ, oh = oF + phod,

where UQQ = Var[@;+1|Z;]. Then, we have

(10) Qi1 = e + wfayr — Bfea1]) + {Fyr — B[R]},

where £ = o2, Equation {9) states that the unexpected excess stock return per
pzi9g 1 L7/ P P

re has two components: innovations in expected excess returns per share and inno-

sha

vations in expected future cash flows per share.
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Given the return process (10), the serial correlation in returns can be easily calcu-

lated:
11 1 ; (R—ay)(1-azR)p% 0%
(11} 0,0, = —Cov[@Qi, Gis1}] = — 5 5
Yl g2 - I
Q Z Q

Clearly, pg o, ) is positive if oy > % and is negative if ay < %ﬂ
Let X{ and X} be respectively the optimal stock holdings of type A and type B

investors. The solution of the optimization problem (2) yields:

w  ElQulP Dy, 1 b BlQulP, Dy, S 1
Vo= o = -7, X = = 27,
aNar{Q 1P, Dy, S a by Var[Qre (1P, Dy, 54 by

ors’ preferences relative to one another generate trading. X[

oS i iVes

(and _\f,b) change as Zy changes:

‘ a 1
(13} Xp-X2, = E(Zl—Zt_l) .
Trading volume is then
(14) Vo= wlXF X = 2% Z)

Given the Z; process, mean trading volume is V = E[V}] = (woz)/(a/7(1 + agz).
FEquation {14) completes the solution of the model for the joint behavior of volume and

stock returns.



IV. IMPLICATIONS OF THE MODEL
FOR VOLUME AND SERIAL CORRELATION

Investors in the economy have perfect information about the current level of Z;.
They can use Z; to predict future excess returns as shown by equation {8). When Z;
is high, the type B investors are highly risk-averse and less willing to hold the stock.
The price of the stock has to adjust to increase the expected future excess return so
that the type A investors are induced to hold more of the stock.

We, as econometricians, do not directly observe Z; or 5;. We observe only re-
alized excess returns and trading volume.” However, these variables do provide some
information about the current level of Z; and can help predict future returns. A low
return due to a drop in the price could be caused either by an increase in Z; or by a
low realization of 5y, i.e., bad news about future cash flow. However, changes in Z
will generate trading among investors while public news about future cash flows will
not. Therefore, low returns accompanied with high trading volume are more likely due
to increases in Z; while those accompanied with low trading volume are more likely
due to low realizations of 5y. In the case of an increase in Z;, the expected excess
return for next period will be high while for the case of low S, it will not. Thus the

autocorrelation of the stock return should decline with trading volume.

A. Analytical Results

In this subsection we use analytical methods to develop this intuition more for-
mally. In the next subsection we use simulation methods to a similar end.

YWe want to calculate the predictable component in the excess return based on the
current return and volume: E[Qy11]|@¢, Vi) = aéE[Ztth,Vi]. The following theorem

holds.

Theorem 2. Under the assumptions we have made about the structure of the economy

and the distribution of shocks, we have

(15) BlQu1lQn Vil = 6901 — 6y tanh (97iQ1) Vi

A quadratic approximation to equation {15) is
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(16) Q1100 Vil = (¢q - 88y W) Q1)

where (¢, ) > 0.
Proof: See Appendix B.

In order to understand the results in Theorem 2, first consider the case where
volume V; = 0. Iu this case, there is no change in the investors’ relative risk aversion

i
{i.e., Z¢ has remained the same). Hence, there should be no change in the expected

return from the previous period. The realized excess return approximates the

expected ex

s return in the previous period. Thus, E{Qy11Q;, Vi=0] = g')QQt.
Now consider the case where volume is not zero. This implies that a risk preference

ote that if ¢y = 0 (i. ¢., there were no unusual date t returns),

. '&/f = 0, independent of the value of 1}, Although volume imples
from Zg i, it does not reveal the direction of the change.. If Q/ is
v that Z; is more likely to huve increased than decreased,
«cted value of Z; is high. Given a negative (g, the higher is V4, the

,h([ value of Zg

We can re-cxpress equation {16) i a form that looks more simuilar to the regression

P - oo i} .
COLILALIOIS 1seu 11 (e pr

1l
o,
-
o

g‘
N
Lo

@]

where ¢ is positiv gu of ¢y 1s ambiguous. (See Appendix B.)

In theorem 2, we only cousider how current volume in addition to the current

ficting future returns.  In principle, we could use the whole

return can help in pre z

history of returns and volume to forecast future returns. Let Ir = 1@+, Vy o7 <t} be

the information set that contains the history of excess returns and volume up to and
including period £. The forecasting problem faced by an econometrician is to calculate
the conditional expectation: E{Qe1|Z] = GQEth {Z;}. This is a non-linear filtering

sroblem: for which there is no simple solution.  We could calculate the conditional
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expectation iteratively: Having calculated the expectation conditional on the return
and volume in the current period, we could calculate the expectation conditional on
the return and volume in the current and the previous period, and so on {Wang, 1991].
This process would reveal higher-order dynamic relations between return and volume,
which could be related to empirical work like that of Brock, Lakonishok, and LeBaron
[1992]. However this is outside the scope of the current paper.

Theorem 2 provides some justification for the exploratory regressions we reported
in Tables 2 through 5. The theorem states that aggregate risk aversion {and hence the
expected stock return) is related to the lagged stock return and to the lagged return
interacted with volume. The coefficient on the volume-weighted lagged return should
be negative, as we found in the data. Note that there is some slippage between the
theoretical variables in our model and the variables measured in our empirical work.
The model generates predictions about the level of turnover and the serial correlation
of returns per share, while our empirical work concerns the detrended log of turnover

and the serial correlation of log returns per dollar invested.

B. Simulaiton Results

Although the analysis of the previous subsection makes our basic point, that vol-
ume and serial correlation should be negatively related in our heterogeneous-agent
model, it is not clear whether this effect is quantitatively important for plausible pa-
rameter values. In this subsection we run some simple simulations to address this
auestion. The model of section III, with normal driving processes, is straightforward
to simulate because it is a linear model conditional on investors’ information. It only
becomes nonlinear when we condition on the smaller information set containing volume
and returns alone. The key question is how to calibrate the parameters of the model.

We begin by describing the riskless and risky assets in the economy. We set
the riskless interest rate R equal to 1.01 at an annual rate, or 1.00004 at a daily rate
assuming that there are 250 trading days in a year. We set the autoregressive parameter
for the stock dividend, ap, equal to one. This makes the dividend a random walk. In
daily data any plausible dividend process will have ap very close to one, and the model
is simplified by setting it equal to one. Next we normalize the stock price so that it
equals one when all the stochastic terms equal zero, and set stochastic terms to zero at

the beginning of our simulations. This normalization means that the average stock price
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> too far from one during our simulation periods, although the stock price

a unit root so there is no fixed mean. The normalization makes absolute

s¢ 1o percentage price variability, and it ensures that the coefficient

ion and the coefficient of relative risk aversion are similar if initial

plausible value for the innovation variance a%,-. of the

We choose O’j;x = (0. , 5o that the standard deviation

absence of shifting risk ave is 1 percent. This is

the implications of

than the average in pos

the dividend s 1d the contemporaneous dividend
. . , . 5 .
innovation ;. If there is no dividend signal, thcu ¢ = 0 and the implied variance of the
r 29 ; .
‘o /R* ormation is received

ilts are

signal and the

n of the two groups of investors. Suppose initially

sk aversion coeffic : this coefficient

wen all investors have con

te. This procedure

ant of that proposed by Friend and Blume

roportion of market-makiug agents. Given the Z; process,

First, in equation (14} the trading volumne generated

Z; is proportional to w/a. Second, in equation {6} the mapping

isk aversion of liquidity traders by is determined by w. When w is

—one with by; when w is large, on the other hand, large

shifts in by result in

It turns out that if we set « == 3, then we must also pick a very small value of w,

0005. Figure I

sirnulations, the va

tion in Z; required to explain the effect of volume on autocorrela:
bion CEnerates Loo mue ding volume wh arket-makers risk aversi =3
tion generates too much trading volume when market-makers have risk aversion ¢ .

We can however increase the fraction of market-makers if we also make market-mmakers
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more risk averse, since volume is determined by the ratio w/a. We obtain almost iden-
tical simulation results, for example, if we set w = 0.005 and a = 30, while keeping the
mean of Z; equal to 3 to match the mean stock return.

The trickiest part of the calibration is to specify the dynamics of the Z; process.
We would like to pick a process that generates realistic stock price behavior. Equation
(7) gives the price innovation variance as pQZJQZ +<72F. Unfortunately, the coefficient py
is itself a function of O’% and the other parameters of the model. When U’% = {3, however,
Appendix A shows that py = pz(0) = —U%/(R—az). The coefficient pz(0) is the value
of p7 that obtains when Z is deterministic. As a simple way to calibrate the model,
we define a coefficient X equal to the standard deviation of price innovations caused
by randomness in Z divided by the standard deviation of innovations in fundamental

vulue, evaluated using pz(0):

pz(Q)oz _  oFog
op R-ayz

Solving this equation for 0'22, we find that

(19) 0% = M (R-ag)/o}.

This equation can be substituted into the condition that UQZ < 022, which guarantees
a real solution for the coefficient py. We can then restate that condition in the simple
form A < 0.5. Thus only limited extra stock price variability can be generated by
shifting risk aversion.

In preliminary simulations, we varied A over the permissible range from 0 to 0.5,
while at the same time varying the persistence parameter ay over its permissible range
from 0 to 1. We found a strong negative relation between trading volume and the first
return autocorrelation only for A values above about 0.2, and a7 values below about 0.5.
With smaller values of A, shifting risk aversion did not have a sufficient effect on stock
price behavior to be readily detectable, even with very large numbers of observations.

With larger values of az, price changes caused by changing risk aversion are largely
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permanent so trading volume does not strongly signal that price movements will be
reversed. For the final simulations reported below, we picked A = 0.25 and ay = 0,
0.25, and 0.5.

Once we have chosen parameter values, we can solve for the price coefficients
py and pz, and p3. The final step is to choose an initial dividend Dy to meet our
requiremnent that the initial price equals one. We then draw normal innovations with
the appropriate variances and create artificial data on stock prices and trading volume.
We create series which have 3000 observations (roughly the number of observations in

our 1962-1974 and 1975-1987 subsamples) after dis first 100 observation

[lustrative simulation results are reported in Table XI. The table shows regression
results for a standard AR(1) return model and for our model interacting the return with

trading volume. All parameters are fixed as described above, except for the parameter

az which describes the persistence of shifts in risk aversion. This parameter is.0 in
panel A of Table 6, 0.25 in panel B, and 0.5 in panel C. In panel 4 we find a strong

m st

the first autocorrelation of returns. The t-statistic on volume is

to the regression increases thie I2° statistic by more

3.67, and the addition of vo

§3L-1

lthough of course the R? remains very low in absolute terms). The

standard deviation of volume (not shown in

coetficient on volume is -

from two standard deviations below the

ve, the autocorrelation of the stock return falls by

rence of risk aversion increases, the relation between volume. and

autocorrelation wenkens, Results in pauel B are only slightly weaker than those in

panel &, but in panel C the co it on volume is statistically insignificant although
he point estimate is still negative. Even with az = 0.5, the half-life of a shift in risk
aversion is only one trading day, so it is clear that risk aversion shifts must be highly
transitory for our model to fit the data.

A related problem for our model is that the parameter values in Table XI imply
extreme movements in avcra.ge risk aversion Z;. The simulation reported in pancl A

has a sample average for Zy of 3.42, close to the population value of 3. The sample

standard ¢ on is 25.2, with a minimum of -89 and a maximum of 88. Given that
market-makers are assumed to be a very small fraction of the market, the implied
movements of liquidity traders’ risk aversion by are almost equal to those of Z;. (As

noted above, o lurger value of w would imply larger movements in by relative to Zy,
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worsening this problem.) As ay increases, the movements in Z; are slightly dampened,
but they remain extreme even when ayz = 0.5. The sample average Z; in panel C is
2.80, with a standard deviation of 14.4, 2 minimum of -46, and a maximum of 57.
This difficulty arises for the following reason. Persistent shifts in Z; have large
effects on prices but, as noted above, they do not generate a strong high-frequency
relationship between volume and serial correlation. Volume interacted with the lagged
stock return helps to identify the recent change in the expected stock return; but
this is not a good guide to the current level of the expected stock return when the
expected return follows a persistent time series process. Transitory shifts in Z;, on
the other hand, have small effects on prices because small temporary price movements
can create large temporary changes in expected returns. Equation {19) shows that as

he persistence parameter o7 falls, Z; must become more variable for any given price

o

e

impact parameter A. Thus to get a strong effect of volume on serial correlation we need
very large transitory shifts in risk aversion. This is an example of the well-known fact
that high-frequency predictability in asset returns is hard to explain using a frictionless
model with utility-maximizing risk-averse agents. Our model has an advantage in that
it allows for heterogeneous and time-varying risk aversion, but it does not entirely
escape this problem.

Our model has another empirical difficulty related to persistence. We have found
that the autocorrelation of stock returns depends on a detrended volume measure that
is fairly persistent, having a first daily autocorrelation of about 0.7 and a fifth daily
autocorrelation that still exceeds 0.5. When one extracts the high-frequency component
of volume by using an unobserved components model or subtracting a few days’ moving
average of volume {LeBaron [1992b]), the relation between volume and autocorrelation
becomes much weaker. This contradicts the implication of our model that volume is
an MA(1) process when market average risk aversion Z; is white noise {(and close to an
MA(1) process when risk aversion is a transitory AR(1) process). It should however
be possible to generalize the model to mitigate this problem. Since volume depends
on the absolute value of the change in market average risk aversion Zj, a conditionally

heteroskedastic process for Z; could produce persistent volume.




V. CONCLUSION

In this paper we have documented a striking fact about short-run stock market
behavior: The daily serial correlation of stock returns is lower on high-volume days
than on low-volume days. We have shown that this phenomenon appears even in very
large stock indexes and individual stock returns, so that it is unlikely to be due to
nonsynchronous stock trading. We have proposed an alternative explanation relying
on the idea that trading volume occurs when random shifts in the stock demands
of liquidity traders are accommodated by risk-averse market-makers. Our model fits
many of the features of the data, although we note that if the changing demands of
liguidity traders are attributed to shifts in their risk aversion, then these shifts must

be transitory and extremely large.



APPENDIX A: PROOF OF THEOREM 1

The procf of Theorem 1 follows a fairly standard pattern. First, we conjecture
that the equilibrium price function has the given form. Second, we solve the opti-
mization problem of both type A and type B investors given the conjectured price

function. Finally, we impose the mdrixe‘f clearmg condition to verify the conjectured

price function.

t1 ice function takes the conjectured form, the excess return per share of the
&l 3y

stock, denoted by Q11 = Pry1 + Dys1 — RFP;, can be expressed as

.

1 R
Grv1 = —7py T pz(Ziv1— R + R—ay Sp1 + Roagy Dttt

4

The conditional distribution of the future excess return is normal and has th

moments:

BlQisi17] = —r(po+p22) + pz(0z—R) 2y, VarlQuulT] = o = o + phol.

Given the price function, the solution to the optimization problem (2} gives the

optimal holdings of type A and type B investors:

: . E[Qi+1]P, Dy, S 17 .1
A2 X2 = X = o 7y
(422 Y7 aVar|Qu 41| Py, Di, Si] aaé |~rlpotrz Z)+ ez =Rz e
E{Q1111P, Dy, 5] 1 5 5]
A2b X = = — |- g —Rypz)2i .
B S Va{@ual P D, S B [-rtpo+222) + (az=Riwz) 2]
The market clearing condition states that
(4.3) WX+ (1 -w)xt =1
Hence,
N w  l-w , = 51 _ 2
(4.4) (2+52) [=rtootns2) + (o7 - Ripz 2] =
Since w/a + (1 —w)/b = 1/Z;, we have
(4.5) (az-Rypz =0k,  —rlpo+pzZ) =cp2.
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Under the condition that a% < G*ZZ, we have two real roots for py:

(A.6) p7 = % {—1 £4/1— (a?z/az.?)} ‘

z

For az < 1, both roots are negative. We choose the root that gives the right limit
when U%. goes to zero. In the case that U% — 0, pz should go to zero. This leads

to the solution for py which is the root with the positive sign. pg is then given by
po=(1-azpzZ/r



APPENDIX B: PROOF OF THEOREM 2

Define 4y = (w/a)(Zy — Z;1). Thus, V; = |Ay]. Also, define ey = F| — Ey1[F].

€y gives the innovation process to Fy. Then,
(B.1) Qi1 =pz(Zes1 — Zt) + epps1-
Let T be the covariance matrix of (Qf, Ay).

Lemma. Given that Qy1, G and 4y are jointly normal, we have

(B.2) E[Q1411Q:, Vil = 650Gt — ¢, tanh (%4 Oz) Qr,

Aw/a) N (V- L O ard A e
where 8 5] UQév-"—‘*c’ ‘OQ = ES! (VQi-H:QiU‘:"f'At_GQt%‘i’Acht‘ét}? and &, =
{w/a) ( 3

[=f Quy1:Q0 Qs Qis Q@i )"

Proof. See Wang [1991].

It is easy to show that

5 5 .
. =l (1+R‘—2012R)pzza% (w2 ZO’%
Qe T YFT 1_&,% i Bpdy T \a) l4+ay Qundy
_ (a:=R)(1—agR)p2o} w(1+R)pso%
UQH-MQ/ - 2 ' Qie1.4¢ = P :
1@y 1-a? +1 a l4+ay
Hence,
4 = (w/a)? (r+ag)(R—ag)phol -
°T B (taz)(i-ad)
(w/a) (R—az)pzo? (1+azR)rphod | Ja) 1+ Rpgo
q).:—* i) | ZIPZ%7 Pl zR)rpyo5 g (L"/LU_;’_(‘/_/‘Z(LW
’ |Z] I+ay o E—Q'QZ I’ i Loy

To a guadratic approximation, Eq.{B.2) can be re-expressed as
IS 5 1 &

(B.3) ElQu11Qu Wl = [600: — (8¢, V2] O,

Clearly, 84, > 0. This completes the proof of Theorem 2. We can further write

Y, = V4V, where V = E[¥] is the mean volume. To the same order of approximation,

Eq.(B.3) becomes
(B.4) EQi4110:, Vi) = <¢o - ¢1T7t) Qs

where ¢ = oQ — (0, )V 2 and o1 =209,V >0.
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NOTES

1. See also Campbell and Kyle [1992], De Long, Shleifer, Summers, and Waldmann
[1989], Wang [1991, 1992], and others.

2. See Gallant, Rossi, and Tauchen [1992], Harris [1987], Jain and Joh {1988],
Jones, Kaul, and Lipson {1991}, Mulherin and Gerety [1989], and the survey in Kar-
poff {1987]. Lamoureux and Lastrapes {1990] argue that serial correlation in volume
accounts for the serial correlation in volatility which is often described using ARCH

models.

3. LeBaron [1992b] uses nonparametric methods to study the relation between

trading volume and autocorrelation in more detail.

4. The 32 stocks are American Home Products, AT&T, Amoco, Caterpillar,

<

Chevron, Coca Cola, Commonwealth Edison, Dow Chemical, Du Pont, Eastiman Ko-
dak, Exxon, Ford, GTE, General Electric, General Motors, ITT, Imperial Oil, IBM,
Merck, 3M. Mobil, Pacific Gas and Electric, Pfizer, Procter and Gamble, RJTL Nabisco,
Royal Dutch Petroleum, SCE, Sears Roebuck, Southern, Texaco, USX, and Westing-

house.

5. Sample I is long enough that adding the stock market crash period has very little

effect on the results, so to save space we do not report results for 1/2/1926-12/30/1988.

6. In our model, all investors are perfectly informed about the state of the economy.
There is no information asymmetry among investors. Thus, trading volume does not
provide additional information for investors. However, volume is informative to an
econometrician who does not have all the information that investors have. Blume,
Easley and O'Hara [1991] consider a model in which heterogeneously informed investors

extract information from volume in addtion to prices.

7. We could actually use a finer information set containing dividends, prices and
volume. This would improve our inferences about Z;. For simplicity, however, we use

only excess returns and volume in this paper.

8. Note that riskless asset holdings of the agents are not identified by the model.

With exponential utility, these holdings do not affect demand for the risky asset.

~30 -



TABLE I

The First Autocorrelation of Stock Returns

(1 (et

(73 rer = a4+ (S, BiDior

= a + fr

(0.036)

Sample period g R*(1) R*(2)
(se)

A: 7/3/1962-9/30/1987 0.219 0.048 0.057
(0.016)

2 7/3/1962-12/31/1974 0.280 0.079 0.084
(0.026)

2 1/2/1975-4/30/ 1987 0.166 0.028 0.043
(0.020)

2 7/3/1962-12/30/1988 0.190 0.036 0.058




Volume, Volatility, and the First Autocorrelation

rer = o + (S0 AiDi+ Vi + 12 Vi + 73(100002) )7,

TABLE II

Sample period and 71 2 73 R
specification (s.e) (s.e.) (s.e)
A:7/3/1962-9/30/1987
Volume -0.328 0.065
(0.060)
Volatility -0.047 0.057
(0.241)
Volume and -4.427 0.265 0.055 0.066
volatility {0.077) (0.140) (0.248)
B: 7/3/1962-12/31/1974
Volume -0.445 0.095
(0.114)
Volatility -0.058 0.084
(0.283)
Volume and -0.546 0.511 0.112 0.097
volatility (0.112) (0.259) (0.290)
C: 1/2/1975-9/30/1987
Volume -0.214 0.046
(0.073)
Volatility -0.879 0.045
(0.392)
Volume and -0.212 0.056 -0.661 0.047
volatility (0.110) (0.179) (0.391)
D:7/3/1962-12/30/1988
Volume -0.169 0.062
(0.080)
Volatility -0.068 0.059
(0.106)
Volume and -0.290 0.173 -0.025 0.064
volatility (0.148) (0.118) (0.105)




TABLE III

The Second Autocorrelation of Stock Returns

(hH

rpr = a + fry

(2) e = a + (Timy AiDire

Sample period g RA(1) R*(2)
(se)

A: 7/3/1962-9/30/1987 0.016 0.000 | 0.004
(0.017)

B: 7/3/1962-12/31/1974 | 0.017 0.000 | 0.009
(0.030)

C: 1/2/1975-9/30/ 1987 0.013 0.000 | 0.002
(0.019)

D: 7/3/1962-12/30/1988 -0.011 0.000 0.012

(0.039)




Volume, Volatility, and the Second Autocorrelation

rar = 0 4 (T 8D+ Ve + v VP 4 (100007 )y

TABLE IV

Sample period and 11 Yo 3 R?
specification (s.e.) (s.e) (s.e)
A T/3/1962-9/30/1987
Volume -0.028 0.004
(0.060)
Volatility 0.086 0.004
(0.276)
Wolume and -(.233 0.550 0.071 0.008
volatitity (0.079) | (0.146) | (0.276)
B: 7/3/1962-12/31 /1974
Yolume -[).188 0.011
(0.115)
Volatility -0.102 0.009
(0.338)
Volume and -0.390 1.149 -0.039 0.021
volatility (0118 (0:345) (0.326)
1 1/2/1975-9/30/1987
Yolume 0.074 .00
(0.069)
Volatility 0.613 0.003
(0.391)
Volummne and -0.015 0.138 0.500 0.004
volatility (0.109) | (0.175) | (0.400)
D: 7/3/1962-12/30/1988
Volume -0.178 0.016
{0.089)
Volatility 0.007 G.011
{0.105)
Volume and -0.024 -0.241 0.072 0.019
volatility (0.087) (0.119) (0.102)




TABLE V
Volume, Volatility, and the Pirst Autocorrelation:
Alternative Volume Measures

P = @+ (S0 8D+ Vi + e MAV + (Ve + MAV))r

Lai=1}

Sample pericd and 71 Y2 Y3 R?
specification (s.e.) (s.e.) (se.)

A:T/3/1962-9/30/1987

Detrended volume -0.328 0.065
(0.060)
Total volumne -0.156 0.064
(0.028)
Detrended and -0.313 -0.090 0.066

(0.061) | (0.037)

trend volu

B: 7/3/1962-12/31/1974

Detrended volume -0.445 0.095
(0.114)
Total volume -0.227 0.087
(0.081)
Detrended and -0.417 0.292 0.007
trend volume (0.108) (0.141)

Gt 1/2/1975-9/30/ 1987

Detrended volume -0.214 0.048
(0.073)
Total velume -0.132 0.047
(0.040)
Detrended and -0.218 -0.090 0.047
trend volume (0.073) £0.046)

D: 7/3/1982-12/30/ 1988

Detrended volume -0.169 0.062
(0.080)
Total volume -0.001 0.063
(0.050)
Detrended and -0.134 -0.065 0.064

trend volume (0.066) (0.059)




TABLE VI

The First Autocorrelation of Stock Returns:
Alternative Sample Periods

(0.019)

1) rpo= a4 B
(2) 1 = o+ (Tiay BDON
Sample period R*(1) R
(s.e]
E: 1/2/1926-6/29/1962 0.039 0.002 0.005
(0.623)
¥ 1/2/1926-12/30/1939 0.015 0.000 0.004
(0.029)
G:1/2/1940-12/31/1949 0.112 0.012 0.018
(0.034)
H: 1/3/1950-6/29/1962 0.130 0.017 0.037
{0.036)
I: 1/2/1926-9/30/1987 0.073 0.005 0.008




TABLE VII

Volume, Volatility, and the First Autocorrelation:
Alternative Sample Periods

rier = o+ (7L FiDi+ Ve + 12 Vi + 1a(100007 )

i=t
Sample period and 71 o s i’
specification (5.€.) (s.e.} (s.e)
E: 1/2/1926-6/29/1962
Volume -0.053 0.006
(0.045)
Volatility -0.002 0.005
(0.041)
Volume and -0.114 0.064 6.009 0.007
volatility (0.039) (0.051) (0.043)
B 1/2/1926-12/56/1934
Volume 0.004
Volatility 0.027 0.004
(6.044)
Volume and -0.13%1 0.079 0.042 0.607
volatility (0.047) (0.058) (0.046)
G: 1/2/1940-12/31/1949
Volume -0.097 0.021
(0,061}
Volatility -0.173 0.021
(0.114)
Yolume and -0.104 0.046 0.022
volatility (0.082) (0.064)
H: 1/3/1950-6,29/1962
Volume -0.174 0.042
{0.099)
Volatility 0.044
Volume and -0.152 0.216 0.046
volatility (0.094 (0.175)
I 1/2/1926-9/30/1987
Volume -0.085 0.011
(0.043)
Volatility -0.028 UL
(0.040)
Volume and -0.119 3.050 -0.014 G011
volatility (0.039) | (0.049) | (0.041)




TADBLE VIII

The First Autocorrelation of Stock Returns:

The Dow Jones Industrial Average

(1 Ty = o+ By

(@) ot = o+ (Dl D

Sample period g R*(1) R*(2)
(s.e.)

A:7/3/1962-6/30/1987 0.141 0.020 0.027
(0.016)

B:7/3/1962-12/31/1974 0.210 0.044 0.046
(0.026)

C: 1/2/1975-9/30/1987 0.087 0.008 0.023
(0.019)

D:7/3/1962-12/30/1988 0.106 0.011 0.034

(0.045)




TABLE IX

Volume, Volatility, and the First Autocorrelation:
The Dow Jones Industrial Average

Tyl = o+
Sample period and 71 e r5 R
specification (s.e.) (s.e.) (s.e.}
A T/3/1962-9/30/1937
Yolume -0.257 5.032
(0051
Volatility -0.142 0.027
(6.263)
Volume and 3.278 0.080 6.033
volatility (0.147) (0.268)
B: 7/3/1962-12/31/1974
Yolume -0.359
(0.116)
Yolatility -0.128 0.046
(0.304)
Volume and -0.450 0.498 0.023
volatility (0.112) (0.276) (0.308)
Volume -0.157 0.
(0.073}
Volatility 0.026
Volume and -0.177 0.138 0.027
volatility (0.102)
D:7/3/1962-12/30/1988
Yolume -0.127 0.037
(0.094)
Volatility 0.037 §5.034
{0.134)
Volume and -0.251 0.103 0.081 0.03%
volatility (0.159) (0.142) (0.132)
I




TABLE X

Volume and the First Autocorrelation:
Individual Stock Returns

Equal-weighted index regression:
q

5 -
rewenr = apw + (0o BewiDi +vEw Vijrew,

Pooled regression:

Tji4l = Gp +(21 I/PD+7P/\T‘]H j=1...32
Individual stock regressions:
Tit+1 = GO (z_lﬁ];D +7)V1) j=1...32
7= (1/32121 1 75 iy = 1/32) 231117
Sample period vEw Tp ¥ 7
(se) | (se) | (#<0) | (F<169)
A1 7/3/1962-9/30/1987 -0.311 -0.093 -0.092 -1.368
{0.064) (0.028) (31) (12)
B: 7/3/1962-12/31/1974 -0.469 -0.125 -0.122 -1.104
(0.127) (0.049) (30) (113
C: 1/2/1975-9/30/1987 -0.160 -0.062 -0.058 -0.719
(0.074) (0.034) (25) {6)
D: 7/3/1962-12/30/1988 -0.173 -0.121 -0.108 -1.087
(0.116) (0.083) (31 (5}




TABLE XI

Simulations of Volume and the First Autocorrelation

rer = a4 (G Vi
Specification 5 1 R?
(4 9
Arag =0
V(L) 0.007
Volurme 0.011
B:ay = 0.25
AR{E) 0.001
Volurme -25.1 0.005
(3.45)
Coay =5
AR(L) -(.005 0.000
(0,261)
¥ (.024 -14.07 0.001
(6.840) (1.26)
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Figure II: Detrended Log Turnover, 1960-88





