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pattern of cross-country growth rates. Recent authors, most notably Mankiw. Romer and

Weil [1990], have argued that differences in national growth rates are compatible with the

view that each country has access to a common, neoclassical aggregate production function.

Such models imply that, conditional on population growth and savings rates, disparate

economies are converging over time to the same level of per capita output We argue that

cross-country growth is better explained by a model of local versus global convergence.

Countries converge locally in the sense that economies with similar initial conditions tend to

converge to one another. However, we find little evidence of convergence across economies

with substantially different initial conditions as measured by per capita output or literacy

rates. Further, the impact of capital formation on aggregate output increases with the level

of economic development. These results are consistent with models of multiple equilibria in

long run behavior. Our results suggest that the Solow growth model should be supplemented

with a theory of aggregate production function differences in order to fully explain

international growth patterns.
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Introduction

Starting with Baumol [1986], a number of authors have explored the behavior of

output growth across different aggregate economies. These authors have generally been

interested in understanding whether economies exhibit convergence —defined as a
tendency for per capita output to equalize over time. This question has important
implications for the utility of various theoretical growth models. In particular, the

neoclassical growth model developed by Solow predicts that different economies will

converge in the sense that per capita output differences due to initial conditions will

asymptotically disappear as economies are assumed to have access to identical concavc

production technologies. The new growth theory pioneered by Romer [1986), Lucas

[1988], and Grossman and Helpman [1991], on the other hand, shows how various types

of production nonconvexities can interact with market imperfections to produce multiple

long run output equilibria for a given microeconomic specification, which means that per

capita output differences can be persistent.

Much of the empirical work on convergence has been concerned with determining

whether poor economies grow faster than wealthier ones, which is equivalent to

identifying a negative cross-section correlation between a country's initial per capita

output and subsequent growth rate for a fixed period afterwards. Formally, if (Y/L)T

equals the per capita output of country i at T, convergence across a set of N countries is

said to occur over a fixed epoch r if the coefficient /3 in the cross-section regression

ln(Y/L);,r÷ ln( Y/L)1,r = (+ 131n( Y/L)I,T+ JIX +c, I = 1...N (1)

is negative. Here, X1 denotes a set of control variables with associated coefficients II,

usually meant to control for microeconornic heterogeneity. A negative correlation is

generally necessary for income differences to narrow, although as shown in Bernard and

Durlauf [1991], the condition is far from sufficient.
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Overall, the evidence on convergence is somewhat mixed, with results depending

on both the sample of countries studied as well as the choice of control variables. One

robust result is that in the absence of any control variables, a negative 3 canbe found for

OECD economies, as demonstrated by Baumol 119861 among others, whereas the value of

fi is typically zero or even slightly positive when cross-section regressions are run for a

large country data set such as the one developed by Summers and Heston [1988], as

shown by many authors. Second, it is clear that there exist many plausible choices of X1

control variables which can extend the convergence results to a wide cross-section of

economies. For example, Barro [19911 shows how controlling for education, investment

rates and political stability, among other variables, can allow a negative $ to emerge for

the countries in the Summers-Heston data set.

One of the most careful and provocative of the pro-convergence studies is due to

Mankiw, Romer and Well [1990] who study a cross-section regression where the control

variables are not ad hoc additions to the equation but rather are directly suggested by the

law of motion for per capita output produced by a human capital-augmented version of

the Solow model. These variables control for the rates of savings of human and physical

capital and the rates of population growth, technical change and depreciation- These

authors not only find that there is strong evidence of convergence for a broad country

sample, but also conclude that nearly 50% of the cross-country variation in growth can be

attributed to the Solow model.

One difficulty with the body of cross-section studies is that they often do not

make clear the nature of the null and alternative models associated with a particular

statistical test. For example, does a negative j3 in a regression restricted to a group of

advanced industrialized economies such as the OECD represent evidence supportive of the

Solow model as opposed to the Romer-Lucas class of models? The answer is no. Many

new growth models, such as Azariadis and Drazen [1990], imply the existence of several

locally stable equilibria in long run per capita output. In their framework, the OECD

could represent a group of economies which are converging to a (relatively) high
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production equilibrium. Such multiple equilibrium models predict that one will observe

convergence once one has isolated economies which are associated with the same

equilibrium. In this sense, restrictions of the cross-country sample under consideration

can lead to spurious inferences with respect to competing growth theories.

Further, as argued in Bernard and Durlauf (1991), it is not clear that the

estimation of (1) will fail to produce a negative /3 for samples where convergence does not

hold. To see this, suppose that there exist M different long run equilibria for economies.

In addition, suppose that the "correct" model of the evolution of these economies is

— ln(Y/L) i,T = (,+ 131n( Y/L)T + ll + c, i = 1,.. .,N (2)

where ( is determined by the country's long run equilibrium. In this case, the law of

motion for each economy is the same except for the constant term. A version of the

capital complementarities model described in Romer [1986] can be shown to obey an

equation of this type. The use of ( rather than of ( in the regression will, of course, bias

the coefficients. However, this misspecified model will reject convergence only if /3

becomes nonnegative, which will depend in a complicated way on the covariance structure

of ( with the remaining right hand side variables. Bernard and Durlauf 119911 in fact

show that a negative j3 is compatible with a nontrivial class of multiple

equilibrium/endogenous growth models.

Similarly, one can also see how the addition of control variables to the basic

equation (1) can spuriously induce a negative /3 for data generated by a multiple

equilibrium model. Proxying for the missing (, control variables can have the effect of

permitting the regression to separate countries into subgroups. For example, suppose

that there are two equilibria for aggregate economies, which can be distinguished by

different mean levels of growth. If some control variable r is added to equation (1)

which positively correlates with the growth rates across economies (such as per capita

years of schooling), the variable can act to segregate the data into different regimes and
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again lead to a negative estimate of /3.

The purpose of this paper is to reexamine the cross-section behavior of growth

rates in the Summers-Heston data set to see in what sense the data are supportive of

convergence. We do this by distinguishing local convergence from global convergence.

By local convergence, we refer to the case where there exist groups of countries in the

ileston-Summers data set such that convergence occurs within the groups. Global

convergence holds when all economies converge to one another.

Our analysis takes the regressions studied by Mankiw, Romer and Weil (which

we shall designate as M-R-W) as a starting point and asks whether the same data are

compatible with, and indeed better (in a standard goodness-of-fit sense) modeled as

realizations from a model with multiple equilibria. We choose the M-R-W paper because

we regard it as the most compelling evidence in favor of the Solow model in the

literature. We do not dispute their conclusion that the Solow model has substantial

explanatory power for cross-country variation in growth rates. What we do is show that

extending the Solow model to allow for additional factors, in particular aggregate

production function differences, is important. In fact, by segregating countries, into

locally converging groups which allow for different aggregate production functions, we

find that the Solow model has substantially more explanatory power than has been

previously suggested.

Our empirical conclusions are twofold. First, we provide evidence that there exist

groups of countries exhibiting local rather than global convergence. Mechanically

splitting the Summers-Heston data by either initial income or initial literacy generates a

statistically significant improvement in the ability of a Solow-type model to explain

growth rates within each group. We reject the null hypothesis that the groups of

economies are converging to one another. Second, by applying both maximum likelihood

and regression tree procedures to the data in order to endogenously identify convergence

groups, we find that different countries in the data set obey very different production

functions. Our analysis finds that the share of labor in total income tends to decline with
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the level of development as measured by initial income levels or literacy rates, implying

that, other things equal, more developed countries will have higher output/labor ratios

than implied by their capital/labor ratios alone. These results verify the idea of Baumol

[1986] that there may be several "convergence dubs" in the world economy.

Methodologically, these results illustrate the sorts of specification and estimation

exercises which need to be applied in growth studies in order to identify the uniqueness

versus multiplicity of long run equilibria. Empirical work which seeks to assess those

theories necessarily must attempt to identify different data regimes in order to ensure

testing power. Our specification tests provide a way of overcoming the low power of

standard cross-section tests as documented in Bernard and Durlauf [1991 and our use of

maximum likelihood and regression tree methods illustrates a straightforward way of

identifying the different regimes.

Section 1 reviews the link between standard growth models and the cross-section

regressions we study. Section 2 describes the data we analyze. Section 3 performs some

specification tests on cross-country regressions estimated on the Summers-Ileston data.

Using initial income and literacy rates to segregate the countries, we reject the null

hypothesis that the data come from a single regime. We also check the robustness of our

results for some different formulations of the single regime model. Section 4 uses

maximum likelihood and regression tree techniques to endogenously identify groups of

locally converging economies. The analysis allows for the interaction of different control

variables in determining data regimes. Section 5 provides summary and conclusions.

Data and Technical Appendices follow.

1. Convergence and cross-section behavior

In this section, we illustrate two senses in which cross-section regressions of the
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form (1) are appropriate tests of convergence. Following the exposition of M-R-W, we

define the following variables which shall also be used in the empirical section. The

subscripts i and I index countries and time periods respectively.

A1 = level of technology at 1, assumed constant across i.

L1,1 = labor input.

= aggregate output.
= physical capital input.

= human capital input.

= population growth rate, assumed constant across t.

g = rate of technical change, assumed constant across i and t.

S = depreciation rate of physical and human capital, assumed constant across i and t.

4 = savings rate for physical capital, assumed constant across t.

s' = savings rate for human capital, assumed constant across t.

Equation (1) can be justified first as the law of motion generated by the Solow

growth model. To see this, we consider the case where the production function is Cobb-

Douglas,

= (3)

Labor and the level of technology each grow exponentially,

nt (4)

and

(5)
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The evolution of physical and human capital per labor input are similarly

determined by the interaction of the exogenously determined physical and human capital

savings rates with depreciation.

dK
di =4?Y1_6K1 (6)

dII
ot =4'Y1—6R, (7)

These laws of motion for technology and the various production inputs lead to a

law of motion for output per worker, (Y/L)1, over any interval T to T-4-r.

— In( Y/L)1 r =

gr + (1 — e
—

A1r)(e + 1 —
a

— ln(s) + 1

—1,ff 1 ln(n1 +g + 6)— ln(Y/L)jr) (8)

Here, e = 1— 1_ 71n()— ln(A0) — 9T and A1 = (1— a — y)(n1 + g + 6), the country-

specific convergence rate towards the steady state.

Equation (8) thus provides a way of explaining cross-country growth rates

through a common technology and country-specific input growth. Observe that, if we

impose the restriction A1 = for all i, as M-R-W do, the equation takes on the form of

equation (1). In this case, the coefficients comprising II are functions of the structural

parameters a and 7, which allows one to consider both unconstrained and constrained

versions of (8). However, since = (1 — a — )(n1 + p + 6), the restriction of equal

convergence rates across countries is valid only if population growth occurs at a constant
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rate in cach country. This is far from the case —in our sample the coefficient of variation

of population growth is similar to that of other variables.1 In the absence of the

restriction A = A, equations (1) and (8) are not nested. One can construct an alternative

equation which nests them both but we use equation (1) because of its relationship to the

work of others. We refer to equation (1) as "unconstrained" and equation (8) as

"constrained" for ease of reference.2

A second justification for the cross—section regression is as follows. Assume that

we wish to test whether contemporaneous output differences tend to narrow, i.e. whether

the conditional expectation of the difference in output between economies i and j over a

fixed horizon i- is smaller than the contemporaneous disparity. For information set ff,

this means that

E(ln( Y/L)1, T+r — ln( Y/L), T-1-r I aT) C ln( Y/L)I,T — ln( Y/L),T. (9)

Suppose the growth of output obeys the relation

E(1fl(Y/L')ir+r In( Y/L)1 T I = (+ 131n(Y/L)IT (10)

In this case, a negative is necessary for (9) to hold across a set of economies. Notice

that if the conditional expectation of output changes depends on more than initial

income, i.e. equation (10) is misspecified, then the cross-section regression generally

ignores information in assessing whether convergence holds.

The behavior of the cross-section regression (1) when the sample contains

'Using the data described below, the coefficient of variation of the average rate of
population growth over the period 1960-1985 is .404. Those for the average rate of GDP
per capita growth over the same period and our measures of physical and human capital
accumulation are .465, .448, and .643, respectively.

2Equation (8) does, of course, impose more restrictions than equation (1) on the
model that nests them both.
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diverging economies is, of course, extremely sensitive to the specific alternative under

question. We outline the implications of two possible specifications of the aggregate

production function which fail to generate convergence even under the Solow savings

specification.

Much of the work on alternatives to the Solow model has argued that there exists

a region of capital values over which the aggregate production function is not concave,

which will lead to different long run steady states for different initial conditions.3

Following Romer [1986], this could occur if social increasing returns to scale are present

in the economy due to effects such as learning-by-doing. To formalize this alternative in

the context of the Solow model, let the production function obey

= e(K1,t)I<tt1JZ
)1 — a —

(11)

where E() is a continuous, nondecreasing function such that

Ie ifK.cJ(e(K11)=: _t,
—

(12)

V if KCK1t

with ( c. It is straightforward to show how a suitable choice of 4(.) will induce two

locally stable equilibria. From the perspective of the cross-sectioxi regressions, data

generated by economies associated with a particular equilibrium will obey equation (8).

A regression mixing economies from the two equilibria will be misspecified in the sense

that the parameter e in (8) will be a function of a given economy's equilibrium. The

3Many multiple equilibrium models imply the existence of aggregate production
function differences which distinguish underdeveloped and developed countries. Murphy,
Shleifer and Vishny [1989] equate industrialization with the conversion of an economy to

more efficient production; Durlauf [1991] shows how industrialization can occur through
the build up of localized technological complementarities which expand aggregate
productivity.
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correctly specified cross-section law of motion takes the form

ln( Y/L)1 T+r — ln( Y/L)IT =

yr + (1 — e
—

AIr)(e. +1 —
a

— 1n(s) -4- — 1n(s)

-
ln(n1 + g + 6)— ln( Y/L);T) (13)

where e1 = 1 —
1

— ln(ql' ) — ln(A0) — gT if economy i is associated with the low

production equilibrium and = i — — 7ln(ç5 ) — ln(A0) — gT if the economy is

associated with the high production equilibrium.

A similar law of motion is generated by the model of human capital threshold

externalities explored by Azariadis and Drazen [1990]. Azariadis and Drazen argue that

there may exist human or physical capital accumulation thresholds which identify shifts

in aggregate technology. For example, some minimum level of human capital per worker

may be required to permit the use of more advanced technologies. One way to model this

idea is to posit the existence of a human capital threshold H such that

i/ilc7tB7t(AtLt)l_0_ if H1 <
Yit= . (14)I

l<1I?i,(AL1)' if H, � 7

Again, this type of nonconvex technology will generate multiple equilibria when

combined with exogenous savings rates. As before, there is no necessary implication that

a cross-section growth regression using data from this model will produce a nonnegative

jI. However, in this case, a switching regimes analysis of cross-section data will produce

different coefficients for all of the variables found in equation (8), which allows for a more

general alternative to a single law of motion.
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The cross-section regression (1) is correctly specified for subsets of countries when

the aggregate technology obeys (13) or (14). In fact, under our versions of the Homer

and Azariadis-Drazen specifications, the Solow model holds locally even though the

aggregate production technology exhibits nonconvexity over some range. Against this
class of alternatives, the testable implications of the Solow model are summarized in the

requirement that the cross-section data are generated by a common law of motion for all

countries.

2. Data

All cross-country growth rates we employ are based upon the Summers-H eston

[1988] international output estimates. With the exception of the data on literacy rates,

which are taken from the World Bank's World Development Report (various issues), all of

the data that we use are from M-R-W.4 The variables are defined as follows:

= real GDP per member of the population aged 15-64, country i at L

(II V)1 fraction of real GDP devoted to investment (including government investment),

country i, annual average for 1960-1985.

= growth rate of the working-age population, country i, annual average 1960-1985.

SCHOOL1 = fraction of the working-age population enrolled in secondary school, country

i, annual average 1960-1985.

4The primary sources are the data set constructed by Summers and Heston [1988]
and the World Bank's World Tables and World Development Report. M-R-W discuss the
construction and some of the limitations of the data. A Data Appendix at the end of the
paper lists the 98 countries in our data set aswell as some selected characteristics.
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= adult literacy rate, fraction of the population aged 15 and over that is able to

read and write, country i, in 1960.

We follow M-R-W in assuming that p = 0.02 (implying that gr = 0.5, a value
that we impose in estimation) and 5 = 0.03, figures that are approximately true for the

United States. We also follow these authors in using (1/ Y)1 to represent s and

SCHOOL1 to represent 4a.

3. Specification tests for multiple regimes

In this section we attempt to identify separate regimes in the data through the

use of specification tests which take a single regime model as the null hypothesis. We do

this by mechanically splitting the data into subgroups based upon different control

variables and examining whether model parameters are equal across groups. We consider

two estimating equations. First, we fit

ln(Y/1411985 — ln(Y/L)1 = (+ P1n(Y/L)1,1

+ ir1ln(I/Y)1 + ir21n(n+ g + 5) -4- ir3ln(SCHOOL) + c1 (15)

5For some countries the 1960 literacy rate is unavailable so the 1975 rate is used
instead. As most of these have literacy rates of 90% or greater this has little effect on our
results. In addition, for many countries, the "1960" literacy rate is actually calculated for
some (unknown) year between 1958 and 1962. It seems unlikely that literacy changes by
very much in a two year period so the magnitude of the resultant measurement error is
probably small. Also, since we use the literacy rates to classify countries rather than as a
regressor, the importance of small measurement errors is minimal. Two of the countries
studied by M-R-W, Botswana and Mauritius, are omitted due to lack of data on literacy.
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Table 1.

Specification Tests for Different Regina

Subsample. defined by Unconstrained Regreioos Constrained Regressions

2—Way Split basal on

0.009 0.218

0.011 0.112

3—Way Split based on

0.029 0.011

0.404 0.000

1—Way Split based on both

and (Y/L)j%0 0.000 0.000

This table shows the marginal significance levels for the Waid tests of null hypothesis that the parazncten of

the indicated models are constant across the indicated subsample. Splits art described in the text.



by least squares over each subgroup. We refer to this equation as the unconstrained

version of the Solow model since we use equation (8) to determine the right-hand side

variables without restricting the regression coefficients as implied by (8). We separately

estimate a constrained version of the model by imposing these restrictions.

We consider two different control variables to group countries with similar

characteristics. The first variable we employ is per capita output at the beginning of the

sample period, (Y/fl110. Most models of multiple long run equilibria predict that if
economies are concentrated around several equilibria, then their initial per capita output

levels will fall into nonoverlapping categories. Second, we examine sample splits based

upon the adult literacy rate of each country in 1960. The use of literacy as a segregating

variable makes sense if one thinks of the potential regimes in the data as stemming from

a broad notion of social and economic development.6

Table 1 reports the results for several different data splits. Each entry represents

the significance level of a Wald test of the null hypothesis that all parameters are equal

across the subsamples under analysis.7 The first panel of the Table divides countries into

two equal sized groups by segregating high and low initial income and initial literacy

countries into separate categories. Each subgroup thus consists of 48 countries. The

second panel divides countries into three equal groups of 32 according these variables.

The third panel allows interactions between the variables. In this case, we divide

countries according to whether they lie in the high or low half of the sample according to

our two controls. This segregation results in four categories: high income/high literacy

(42 countries) high income/low literacy (6 countries), low income/high literacy (6

countries) and low income/low literacy (42 countries).8

6See Rauch [1989] for corroborating evidence of literacy-based regime differences.

7Following Barro [1991] and others, we use heteroskedasticity-corrected test
statistics and standard error estimates, (see White (1980]), in order to allow for different
error variances for observations from different countries. White's [1980]
heteroskedasticity test reveals some evidence against a homoskedastic null. Assuming
homoskedasticity in the computation of the Wald statistics increases the number of
rejections of the single regime model.
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Table 2

Cross Section Regrionz

Income and Literacy-Based Sample Breaks

Dependent Variable: In()1— zn()11,

<1950 1950 S

M—R--W and LR1 < 54% and 54% 5

Observations 98 42 42

Unconstrained 1tegrions

constant 3.O4 1.40 0.450
(0.831) (1.85) (0.723)

_0.2891 o.444 _o.434t

(0.062) (0.157) (0-085)

0.5241 O.3lO 0.689
(0.087) (0.114) (0-170)

in(n + p + 6) -0.505 -0.379 -0.545
(0.288) (0.468) (0.283)

ln(SCHOOL)1 0.233' O.209 0.114
(0.060) (0.094) (0.164)

0.46 0.27 0.48

0.33 0.34 0.30

Constrained Regressions

e .2.s6t 2.29 -0.395

(1.14) (1.17) (1.24)

a 0.431 0.2751 o.sogt
(0.061) (0.097) (0.098)

7 0.2411 0.2171 0.108

(0.046) (0.061) (0.094)

0.42 0.28 0.50

0.34 0.34 0.29

denotes significance at asymptotic 5% level
This equation has been reestignated under the restriction A, = (n+g+ö)(l —a—fl), where A is the raft

of convergence toward the steady state. This restriction was not imposed by M—R—W. Their aitiinatca are
constant = 2.46 (0.48); a = 0.48 (0.07); 7 = 0.23 (0.05); R2 = 0.46; and, ç = 0.33.



As the Table indicates, we find substantial evidence that the laws of motion for

growth within each subgroup are different. For three of the four initial income splits,

equality of coefficients across the groups is rejected at the 3% level. 'When initial literacy

represents the control variable, we reject in two of the four cases at about 1%. Further,

we overwhelmingly reject the equality of regime parameters for both unconstrained and

constrained regressions based on the interactive four regime specification. This change in

the significance level of the tests indicates the importance of allowing both variables to

identify separate data regimes.

Table 2 reports the original M-R-W regression along with estimates of the

regressions associated with the high initial income/high initial literacy and low initial

income/low initial literacy splits described above. (The high initial income/low initial

literacy and low initial income/high initial literacy splits are omitted due to lack of

degrees of freedom.) Several of the subsample coefficients are substantially different from

both one another and from the M-R-W regression. For the unconstrained regressions, the

coefficient on initial income, ln( Y/L)1960, is approximately equal for the high
literacy/high income and low literacy/low income groups at -.434 and -.444 respectively;

these estimates are much larger than the -.289 estimate for the whole sample. This

difference reveals a faster convergence rate for the subsamples than suggested for the

single regime. Further, the ln(I/ Y)1 coefficient for high income/high literacy countries is

.689, which is over twice as large as the .310 estimate for the low income/low literacy

countries and over 25% higher than the .524 estimate for the whole sample. Similarly,

the implied physical capital share in output for the constrained regressions is far larger for

the high income/literacy countries at .509 than for the low literacy/income countries at

.275, and somewhat larger than the .431 share for the whole sample. Conversely, the low

income/literacy countries exhibit a much larger coefficient for the human capital

8The initial two-way income splits are based on (Y/L)119 <$1950 and
$1950 � (Y/L)11960; the three way splits are based on (Y/L)1,1960 <$1150,
$1150 (Y/L)10 $2750 and $2750 < (Y/L)11960. For initial literacy, the two-way
splits are based on LB11960 < 54% and 54% S LB1,10; the three way splits are based on
LB11960 <26%, 26% � LB11960 72% and 72% <LB1
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investment measure ln(SCHOOL)1 as well as the associated human capital output share

than high income/literacy countries, although both subsample estimates are below those

for the whole sample. These estimates suggest that the aggregate production functions

are substantially different across subsamples, which supports a multiple regime

perspective.

Robustnen and additional control variables

One explanation of these results is that the set of control variables dictated by

the Solow model is too small to account for some important differences in growth

performance so that our evidence of multiple regimes is actually due to omitted variables.

In this case, inclusion of these variables among the X1 would render the specification

correct and eliminate the statistical significance of the sample splits.

Barro (19911 uses a broader set of control variables than M-R-W in an attempt to

model a wide variety of potential influences on growth. We therefore investigate whether

our rejection of the single equilibrium model is robust to the addition of some of Barro's

variables to those dictated by the strict Solow model. We focus on the role of
government spending and education variables in Barro's work.9 The variables are:

(G''/Y)1 = ratio of government consumption to GDP, country i, annual average for

1960-1985 (or the largest available subperiod).

PRIM60 = primary-school enrollment rate, country i, 1960.

9We choose these particular variables because they represent natural extensions of
the Solow model, as (GC/Y)1 can proxy for taxes and PRIM60 and SEGtO1 can act as
additional proxies for the human capital savings rate. We have also verified that our
rejections of the single regime model are robust with respect to including other variables
employed by Barro; this work is available upon request.
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Table 3

Specification Tests: Robuatner Check

Additional rcgror: In(G1/Yj)1

SubeampI defined by Unconstrained Regrcssions Constrained Regrions

2—Way Split based on

0.1179 0.002

LEo, IgC,O
0.069 0.701

3—Way Split based on

0.051 0.101

0.707 0.493

4—Way Split based on both

Lit0 196 and (Y/L)1,0 0.000 0.000

Additional regron: ln(FR1MSO)0 and 1r45EC60)0

Subsampl defined by Unconstrained Rtgrions Constrained Regressions

2—Way Split based on

0.090 0.002

LR01 0.027 0.375

3—Way Split based on

(Y/L)019 0.106 0.008

LR19, 0.263 0.000

4—Way Split based on both

Lit0 and 0.000 0.000

This table shows the marginal significance levels for the Wald tests of null hypothesis that the parameters of

the indicated models are constant acr the indicated SUIDSCpItZ. Splits are described in the tat.



SEC6O1 = secondary-school enrollment rate, country i, 1960.10

In order to assess the impact of additional control variables, we projected

and the explanatory variables in equation (15) on various

subsets of the logarithms of these variables (and a constant) and then used the respective

residuals from these projections in place of the variables in equation (15) in calculating

the test statistics for the splits described in Table 1.

Table 3 gives the results. As the Table indicates, adding ln(G'/Y)1 as an
additional regressor has some effect on the significance of the various splits. Only one of

the four splits by income is now significant, although the three-way unconstrained

regression is only marginally insignificant. Further, the significance of the literacy splits

has been eliminated. The addition of ln(PRTM6O)1 and ln(SEC6O)1 as controls has less

effect on the hypothesis tests. All of the income splits are significant at the 11% level

and two are significant at the 1% level. Two of the four literacy splits are still significant

at 3%. On the other hand, the strong significance of the four-way interactive splits is

unaffected by any variable additions. The evidence of multiple regimes therefore seems

robust to the addition of these variables, although the government spending variable

reduces the significance of some data splits.

4. Properties of local convergence grouj

In this section, we study the behavior of unconstrained and constrained growth

regressions for different country groups. Although the exogenously imposed data splits of

the previous section permit straightforward specification testing, they do not address the

'°SECt0 differs from SCHOOL1 as it measures the ratio of secondary students to
the population between 12-17 rather than to all working age persons and because it equals
a point estimate for 1960 rather than an average over 1960-1985.
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Table 4

Cross Section Regressions

Income-Basal Sample Break.

Dependent Variablt —

()e,196o C 800 800 4850 4850 <(c) 1960

Observations 14 63 21
Unconstrained Regrrions

constant 3.46 -0.86 _7.26t
(2.27) (1.38) (1.59)

—O.79l -0.172 0.069\LJ..i960
(0.269) (0.109) (0.139)

i4 I) 0.449' 0.4751
•

(0.109) (0.120) (0.119)

In(n+ g + 6) -0.429 -0.322 l.75f
(0.678) (0.456) (0.270)

In(SCJTOOL)1 -0.028 0.330 0.340
(0.073) (0.086) (0.141)

j2 0.57 0.52 0.82

0.16 0.33 0.12

Constrained Regriorzs

9 4.IO7 -3.88 -11.0
(0.552) (2.04) (7.64)

a 0.306k 0401' 0.333t
(0.083) (0.089) (0.100)

-0.034 0.302k Ø.4551

(0.083) (0.069) (0.103)

jj2 0.64 0.47 0.71

Ut 0.19 0.36 0.18

denotes significance at asymptotic 5% level



problem of accurately identifying economies with similar laws of motion. In order to

identify economies with similar characteristics, it is necessary to allow the data to

endogenously determine the location of the different regimes. We perform two sets of

exercises to identify blocks of locally converging economies.

Single control variable eztimafts

In order to allow the data to endogenously determine which countries belong in

which group, we first employ an approach suggested by Quandt [1958]. This method

consists of exogenously choosing the number of splits and then choosing their location

according to a control variable so as to maximize the likelihood function of the data. We

choose the number of splits to be three. Let z1 be the variable used to split the sample.

For any two fixed numbers, <, the sample can be split into three subsamples

according to whether t1<, z. < i, or < z. Let N, j = 1,2,3, be the number of

observations in each of the respective subsamples. The maximized log quasi-likelihood is

given by LL,) = —EN1n(&), where = residual sum of squares divided by N

based on estimating equation (15) on subsample 5. We choose the regime split (z ,)
that maximizes L(z ,i), subject to the feasibility of least squares estimation for each

subsample.

Using initial income as the control variable, the likelihood function is maximized

for regimes identified by the splits (Y/L)119 <$800, $800 <(Y/L) 1960 � $4850, and

$4850 c (Y/L) 1960.11 Table 4 reports the unconstrained and constrained regressions for

the estimated regimes. In terms of overall fit, we find some improvement over the single

11See the Data Appendix for the classification of each country into estimated
high, intermediate, and low initial literacy and income groups. We have also considered
whether the endogenous splits are statistically significant by computing (through Monte
Carlo methods) the distribution of the sup of the Wald statistics over all possible 3—way
income and literacy splits when there is one regime and comparing the Wald statistics for
our estimated splits to these distributions. We find that the income and literacy splits
are significant at 3% and 2% respectively.
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regime specification. Whereas M-R-W found that they could explain 46% of overall

growth variation in the unconstrained model, we find that for the poorest economies, we

explain 57%, for intermediate economies 52%, and for high income economies fully 82%

of the total growth variation. Similar results hold for the constrained regressions.

In terms of the individual coefficients, clear evidence exists for regime-dependent

sensitivity of growth to the different control variables. The coefficients on ln(I/ 1') are

.314, .449, and .475 for the low, intermediate, and high income groups respectively. The

effect of the variable on growth is thus over 30% smaller for low income economies when

compared to their intermediate and high income counterparts. Further, the coefficient

estimates for ln(SGHOOL), -.028, .331, and .341, for low, intermediate, and high income

groups, imply that the human capital accumulation has virtually no marginal impact on

growth for poor economies, whereas the variable is strongly significant outside of this

group. Finally, we find some evidence of local convergence, as measured by the

coefficient on initial income In( Y/L)1 196o For the poor economies, the point estimate of

-.791 is far higher than the single regime case and statistically significant at 5%. Further,

the coefficient for the intermediate economies, -.172, is also negative, although not

statistically significant. Interestingly, for the high income economies, the point estimate

for the convergence variable is positive at .069, providing no evidence of convergence.

This failure parallels the results of DeLong [1988] who rejected convergence over a much

longer time span when studying economies with similar high initial incomes. These

estimates imply that the gap between initial and steady state incomes has a half life of

about 11 years for the poor economies, while for the intermediate economies the half life

is over 8 times as long.

The second part of Table 4 reports the results of the associated constrained

regressions. These results parallel the unconstrained results. We find that the

intermediate economies have the largest physical capital share of .401, while the high

income economies have a share of .333 (17% smaller) and the poor economies have a

share of .306 (almost 25% smaller than the intermediate economies). In terms of the
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table 5

Cross Section Rtgrcssions

Literacy-Based Sample Breaks

Dependent Variable: in (fl. — in(i).

.c 50% 50% � LR111 66% 66% C

Observations 48 12 36

Unconstrained Regressions

constant 0.396 0.148 0.364

(1.73) (0.416) (0.945)

O.27O _0.4271 0376'I ''
(0.128) (0.022) (0.086)

1.114' 0.686'
(0.114) (0.056) (0.209)

ln(n+g+S)1 -0.308 -0.113 -0.462

(0.486) (0.135) (0.414)

ivt(SGHOOL) O.2l4 0.104' 0.032

(0.090) (0.048) (0.223)

0.28 0.97 0.29

0.34 0.08 0.33

Constrained 1tegrions

6 1.15 -l2.i -1.56

(1.38) (1.54) (1.80)

a 0.294' 0.635' 0.5951

(0.094) (0.048) (0.145)

7 O.266 0.165' 0.047

(0.059) (0.044) (0.149)

0.24 0.95 0.32

0.36 0.11 0.32

denot significance at asymptotic 5% level



human capital share, we find a point estimate near zero for the poor economies. In

addition, the share for high income countries, .455, is 50% higher than the .302
intermediate economy estimate.

Estimating a three regime split based upon initial literacy, the quasi-likelihood

function is maximized when countries are split into the categories LiZ1, 1960 < 50%,

50% � LR, 1960 � 66%, and 66% < LiZ1, 1960• Table 5 presents the estimates of the
constrained and unconstrained models.

As Table 5 indicates, segregation by the literacy rate also produces much

heterogeneity across the unconstrained and constrained regressions. There is substantial

variation in the ability of these regressions to explain the growth experiences of the

countries in the different groups. The overa]l fit of the model is dramatically improved

for the intermediate literacy economies. For the low and high literacy countries, the

unconstrained and constrained regressions produce R2 estimates below .35 while for the

intermediate group the estimates equal or exceed .95.

In terms of the unconstrained regressions, high and intermediate literacy

economies exhibit far greater sensitivity to fluctuations in the physical investment ratio

ln(I/ }') than low literacy countries. The estimated coefficients for the low, intermediate,

and high income groups are .324, 1.114, and .686 respectively. All are statistically

significant at the 5% level. Conversely, human capital investment, 1n(SCHOOL), seems

to have little effect on the high literacy economies, but does significantly affect the other

groups. The estimated coefficients for the low, intermediate, and high income groups are

.214, .164, and .032 respectively, with the latter being statistically insignificant at the 5%

level. Perhaps most important, the estimated coefficients on ln( Y/L)119 reveal a

consistent pattern of local convergence within the literacy regimes. The low,

intermediate, and high literacy coefficients, -.270, -.427, and -.376, are all negative and

statistically significant. This pattern represents strong evidence, in light of the
heterogeneity of the coefficient estimates, of local rather than global convergence in the

Summers-Heston data.
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The constrained regression results in Table 5 reinforce the evidence of
heterogeneity across groups. The physical capital share coefficient for low literacy
countries, .294, is less than half the size of the .635 value for intermediate literacy

economies, and the .595 estimate for high literacy economies. The human capital share

declines as literacy increases with low to high literacy group estimates of .266, .165 and

.047. In addition, the share is statistically significant only for the low and intermediate

literacy economies. Given that our human capital variable measures secondary school

enrollment, it is plausible that, for high literacy economies, the return to secondary

education is low on the margin, while for relatively illiterate economies, large returns to

secondary education still exist. This is difficult to reconcile1 though, with the large

human capital share for high initial income economies.

Using both income levels and literacy rates to identify different regimes, we have

found substantial evidence of heterogeneity in production technologies and of local rather

than global convergence in national economies. However, the characteristics of the

regimes differ according to which variable is used to split the sample. These differences

indicate the importance of exploring interactions between the control variables. At the

same time, mechanically splitting the data to allow interactions will quickly eliminate all

degrees of freedom; for example, a three-way split by income and literacy will create 9

categories for only 96 observations. Further, since the number of regimes and nature of

the interactions are not dictated by any economic theory, it is desirable to employ a data

sorting method which allows the data to endogenously select these features.

Regression tree estimates

We now turn to regression tree methods for identifying separate data regimes.

This technique, described in Breiman et al [1984}, provides a general nonparametric way

of identifying multiple data regimes. The technique allows us to search for an unknown

number of sample splits using more than one control variable.
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Figure 1: Regression Tree
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Constructing a regression tree is quite complicated; the specific atgorithm is

described in a Technical Appendix to the paper. Heuristically, the method works in two

steps. First, all possible binary data splits based on either initial income and initial

literacy are separately computed with the restriction that within each sample split there

must be more countries than regressors. Equation (15) is estimated over the subsamples

in each split and the total sum of squared residuals over all observations is computed.

The split with the minimum sum of squared residuals is then taken as the first split of

the data. Within each subsample of countries produced by the first split, this procedure

is then repeated, i.e. all possible binary splits for either income or literacy are again

computed. A second set of splits is added to the first by again choosing those splits

which minimize the sum of squared residuals. This procedure is repeated until no more

splits can be computed.

The set of sample splits at this point is certain to severely overestimate the

number of regimes in the data since we have not accounted for the possibility of spurious

splits due to the elimination of degrees of freedom in the regressions. The second step in

the procedure "prunes" the tree by eliminating data splits which lead to (relatively) small

reductions in the error variance. By eliminating data splits according to a penalty

function which trades off error variance reduction against the number of splits, and by

employing "cross-validation" methods which will provide unbiased estimates of residual

variance, one can show that it is possible to consistently decompose the data set by

regime.12 The procedure bears some similarity to the use of information criteria to

identify distributed lag lengths. No known asymptotic theory exists to test for the

number of regimes in the data as uncovered by the regression tree. The virtue of the

procedure lies in its ability to uncover multidimensional data splits.

The result of this procedure is the regression tree shown in Figure 1. Squares in

12The method is consistent in the sense that if the data exhibit a finite number of
regimes, these regimes will be identified as the number of observations becomes large.
Further, if all the data are generated by a single process, then the regression tree will
asymptotically converge to one regime.
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Table 6
Regression Tree Sample Breaks

Country Claasification

Terminal Node Number

1 2 3 4
Burkina Paso Algeria Madagascar Austria
Burundi Angola South Africa Belgium
Ethiopia Benin long Kong Denmark
Malawi Cameroon Israel Finland
Mali Central African Rep. Japan France
Mauritania Chad Korea Federal Republic ofGermany
Niger Congo, People's Rep Malaysia Italy
Rwanda E'pt Philippines The Netherlands
Sierra Leone Ghana Singapore Norway
Tanzania Ivory Coast Sri Lanka Sweden
Togo Kenya Thailand Switierland
Uganda Liberia Greece United Kingdom
Zaire Morocco Ireland Canada
Burma Mozarnbique Portugal Trinidad and Tobago

Nigeria Spain United States of America
Senegal Cta Rica Argentina
Somalia Dominican Republic Chile
Sudan El Salvador Uruguay
Tunisia Jamaica Venezuela
Zambia Mexico Australia
Zimbabwe Nicaragua New Zealand
Bangladesh Panama
India Brazil
Jordan Columbia
Nepal Ecuador
Pakistan Paraguay
Syria Peru
Turkey
Guatemala
Haiti
II onduras
Bolivia
Indonesia
Papua New Guinea



Table 7

Croen Section Regrions

Regression Tree Sanple Breaks

Dependent Variable: —

Terminal Node Number

1 2 3 4

Observations 14 34 27 21

Unconstrained Rtgrions

constant 3.46 -0.915 0.277 7.26t
(2.27) (1.79) (1.42) (1.59)

ln(') 0.791 —0.086 _fJ•315t 0.069I
(0.269) (0.131) (0.123) (0.139)

O.314 0.129 1.1101 0475t
(0.109) (0.159) (0.165) (0.119)

in(n+g+I)1 -0.429 -0.390 0.059 _l.75t
(0.678) (0.489) (0.451) (0.270)

In(SCHOOL)1 -0.028 0.4691 -0.114 0.341'
(0.073) (0.095) (0.167) (0.141)

J2 0.57 0.52 0.57 0.82

0.16 0.28 0.28 0.12

Constrained regressions

e 4.107 0.539 -3.95 -11.0

(0.552) (1.809) (2.67) (7.64)

a 0.3061 0.186 0.758f 0.3331

(0.083) (0.123) (0.095) (0.100)

7 -0.034 0.4l6 -0.073 Ø•4551

(0.083) (0.080) (0.114) (0.103)

0.64 0.40 0.55 0.71

0.19 0.32 0.30 0.18

denot significance at asymptotic 5% level



this figure indicate the splitting criteria for the sample; circles represent terminal nodes

which contain different subsamples. The subsamples are: 1) (Y/L)119 <$800, 2)
$800 � (Y/fl6,1950 � $4850 and LR1 <46%, 3) $800 � (Y/L)10 � $4850 and

46% � LR,1960, and 4) $4850 < (Y/L)1%0. Note that the first and fourth subsamples

contain precisely the countries classified as low and high income countries in Section 3.

In effect, the regression tree has partitioned the intermediate income countries according

to whether or not LR11960 is greater or less than 46%. The fact that, given the

opportunity to split the sample by either income or literacy, the regression tree shows a

preference for income splits suggests that income dominates literacy as a variable useful

in identifying separate regimes in the data.

Table 6 details the countries in each subsample. The Table indicates that there

is substantial geographic homogeneity within each group. The low income/low literacy

group is composed almost exclusively of poor African countries. The intermediate

income/low literacy group is largely made up of relatively resource rich African economies

and subcontinental Asian countries. Far eastern Asian and Latin American countries

dominate the intermediate income/high literacy group. European economies make up

most of the high income group. Any classification procedure such as a regression tree can

lead to some individual countries being misassigned. For example, Japan is an obvious

outlier in the third group. (We certainly would not want to claim that the aggregate

production function for Japan is more similar to that of El Salvador than the United

States!) The groupings do, however, seem quite reasonable overall and are certainly

compatible with a local convergence interpretation.

Table 7 presents estimates of the unconstrained and constrained models for each

of the subsamples. Perhaps the most striking feature of these estimates is how much they

differ across subsamples. As we saw in Table 4, the estimated coefficient on
ln(Y/L)11950 is significant for the first group and insignificant for the fourth group. The

point estimates for the second and third subsamples, -0.086 and -0.316, are both negative

although only the latter is significant. The regression tree has thus identified a group of
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clearly locally convergent countries within the intermediate income countries.

Similar heterogeneity holds for other variables. The coefficient on ln(I/Y)1 is

significant in the first, third, and fourth subsamples, but the subsample estimates vary

greatly, ranging from .314 in the first subsample to 1.110 in the third subsample. The

estimated coefficient on In(SCHOOL); is insignificant for the first and third subsamples,

and is over a third larger in the second subsample (0.469) than in the fourth (0.341).

Estimation of the constrained model produces vastly different estimates of both

the physical and human capital shares across regimes. The estimated physical capital

share in the third subsample (.758) is more than twice that in the first (.306) and fourth

(.333) and is not statistically significant in the second (.186). The estimated human

capital share are near zero for the first and third subsamples and are approximately equal

for the second and fourth subsamples at .416 and .455. The fourth subsample is the only

case where both shares are significant. Our estimates are strongly consistent with the

view that different economies have access to different aggregate technologies.

The striking differences in the human capital share can be interpreted in different

ways. One possibility is that economies go through production regimes which are indexed

by different thresholds of human capital formation, in a way similar to the model of

Azariadis and Drazen [1990]. Suppose that certain forms of organization of production

within a firm or industry are constrained by the educational level of the labor force.

Once these constraints no longer bind, then marginal increases in human capital would

appear to have low marginal product, until an economy grows to the point where

production is reorganized, creating a need for more human capital. In this case, the

second and fourth nodes may represent regimes where human capital accumulation still

augments the employed technology. Again, the different estimates might also reflect the

weakness of the human capital variable, ln(SCHOOL)1. This variable only measures

secondary school enrollment. If primary, secondary and college human capital formation

have regime-specific output shares, then this variable may simply perform poorly in some

cases.
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Finally, it is interesting to note the pattern of labor shares across countrygroups:
.728 for node 1, .398 for node 2, .315 for node 3, and .212 for node 4. These figures

clearly illustrate how the labor share declines as an economy becomes more developed in

terms of literacy and production. This path for the evolution of the aggregate production

function suggests that the high productivity of advanced economies is due not only to

capital deepening, but to the way in which capital per worker is converted into output

per worker.13 The idea that high output economies more effectively utilize capital

resources relative to low output economies is a common feature of many multiple

equilibrium models, and is one way to interpret Romer's [1986] model of capital

complementarities. The distinction between the differences in the capital/labor ratio and

differences in the productivity of capital per worker is exploited by Durlauf and Johnson

[1992] to identify the sources of cross-country income disparities.

5. Summary and conclusions

A large body of empirical work has concluded that international output data

exhibit convergence when adequate account is taken of microeconomic heterogeneity.

This literature is important as it bears upon the empirical relevance of various

endogenous growth models. A major difficulty with these studies is that the natures of

the null and alternative hypotheses are not made clear. In particular, the empirical

convergence literature has assumed that a negative correlation between initial income and

subsequent growth is necessarily evidence of convergence. This paper proposes a new set

of empirical methods for studying convergence which explicitly allow for the possibility of

multiple equilibria in the data.

Taking as a starting place the work of Mankiw, Romer and Weil [1990], we have

13Recall that for the two factor Cobb-Douglas technology, output per worker
increases monotonically with the capital share.
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reexamined the Summers-ileston data set to see whether the pattern of cross-country

growth rates is compatible with a model of global convergence. We do this by explicitly

allowing for the possibility that the data exhibit local rather than global convergence.

Our approach uses information known at the start of the sample period to identify

countries with similar initial conditions. We then see whether segregating countries into

groups by initial conditions improves overall model fit. Conditioning initial income

and/or initial literacy rates, specification tests support a multiple equilibrium
interpretation. Using regression tree methods to find optimal splits in the data reveals

substantial differences between the aggregate production functions of economies with

different initial conditions. Consequently, our results demonstrate that the behavior of

national growth rates in the postwar period is quite compatible with a multiple

equilibrium perspective.

One important extension of our work is to see whether the apparent multiple

regimes in the Heston-Summers data can be explicitly identified as arising from some of

the production or demand complementarities which have been proposed as explanations

for long run divergence. The identification of these complementarities is essential in

understanding the policy implications of the endogenous growth literature.
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Technical Appendix: Regression tree analysis

This Appendix contains a brief introduction to regression tree methods. We draw

extensively from Breiman, ci ci [1984] throughout. The method is designed to uncover

general forms of nonlinearity in data; Breiman ci ci show that the regression tree method

is consistent in the sense that under suitable regularity conditions, estimates of the

regression function converge to the true data generating process. The idea behind

regression trees is that the prediction of y based on the vector X, which we call d(X),

may be improved (in the sense of reducing E(y —d(X))2) by allowing the function d(X)

to change according to the values taken by some set of control variables Z.

A tree, {T, I, r}, is a finite nonempty set of positive integers, T, and two

functions, l(.) and r(- ), from T to T U (0) such that, for each t E T, (1) either

1(1) = r(t) = 0 or 1(t) > t and r(t) > I, and (ii) if t f min{t E T) there is exactly one

S E T, called the parent of 1, such that, either, t = i(s) or t = r(s). The value of

min{t T) is also called the root of the tree. Intuitively, these properties partially order

the elements of T. In this ordering, each node I is either terminal or is followed by left

and right elements 1(t) and r(t).

Each element of T is called a node of the tree. Typically, T = {1, 2,..., r} for
some r 1. For simplicity, we will abuse notation and use T to denote the tree (7', 1, r}.

The root node has no parent, and by (ii) above, every other node has a unique parent.

Let pareni( .) denote the function from T to 7' U {0} defined so that parent(rooi(T)) = 0

and pareni(i) is the parent of I. The node t is an ancestor of the node s if t is the in—

fold composition of parent(s) for some in. If t is an ancestor of s then s is a descendent

of I. When 1(1) and r(t) 0, the nodes 1(1) and r(t) are, respectively, the left and right

descendants of I. A node is called terminal if 1(t) = r(t) = 0, i.e. it has no descendants,

otherwise it is called nonierminal. The set of terminal nodes is denoted 7' - The set of

terminal descendants of I is denoted (I). Given T C 7', define 1 and r from T to

7'* u {0} by
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11(t) if 1(2) fr(t) if r(t) T= and r'(t) = (A.l)
10

otherwise (0 otherwise

Then, T is a subtree of T if {T', (,r) is a tree. If T is a subtree of T and
root(T) = root(T), then T is a pruned subtree of T, denoted T -< T. The relation -<
is transitive and T -< T indicates T -< T and T T.

Let Z E fi C R" be the vector of control variables associated with X. The

elements of Z may or may not be distinct from the variables in X. A regression tree

partitions Q by a sequence of binary splits, one at each nonterminal node. Let w(t) be
the subset of (1 associated with node 2, so that w(rooi(T)) = fl and U ;(t) = ci. For
all nonterminal nodes, t, w(l(2)) fl .i(r(t)) = 0 and w(1(t)) U w(r(t)) = w(2). Then, for
Z w(t),

I w(l(t)) if z 7 . R' '
(A.2)w(r(t)) if z1 R

for some 1 � i n, where is the split value for z. For each 2 , the predictor of y

given Z w(t) is d(X).

There are two main steps to growing the sample regression tree from the sample
S = {(y, X1, Z1), I = 1,..., N).'4 One first grows the largest tree allowed by the sample.

Second, the tree is pruned in order to achieve an estimate of the optimal predictor dt(X)

for each t E . We restrict attention to the case where d2 is linear in its parameters and

write d(X) = I3X, where fl is a vector conformable with X if the Z associated with X

is in w(t). Let 1(1) = {1 <i < N I Z1 E w(t)} and define the within—node residual sum of

squares R(t) = E;()(YI—2(XI))2 where 2(X)= /31X and $ is the within—node OLS

estimator of fl.15 The improvement in the sum of squares from a split at 2 is given by

14The application of the regression tree technique here has

= 1n(Y/L) — In(Y/L)1 1960' X = [1, ln(Y/L)119, ln(I/Y)1, lri(n1 + g + 6),
ln(SCHOOL)1]', and, Z = [(Y/L)1,1960, LR11%0]'.
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a1 = .11(2) — R(I(t')) — R(r(t)) � 0. Beginning at the root, we grow a tree by choosing, at

each currently terminal node, 2, the partition of w(t) which maximizes a1over choices of

both and i.e. for each element of Z, we choose the split value which maximizes ts

and use that element of Z with the largest maximized a to perform the split. We
continue in this way until there are too few observations in each terminal node to allow

any further splits.

This tree is a very unparsimonious representation of the data and the final

estimate of the error variance, cr2(T) = 4 R(t) (known as the "resubstitution"

estimate), is an overly optimistic estimate of the model's accuracy as the model has been

chosen to minimize this quantity. Further, no penalty has been imposed for the degrees

of freedom lost as the tree was grown. The second step is to prune the tree. For any

node, s, define the error complexity measure, Ca(s) = R(s) + a, where a is the complexity

parameter, the cost of a terminal node. We then make a nonterminal node 2 terminal

(i.e. eliminate all of its descendants) if e0(t)
E

By letting a vary
between 0 and , one induces a sequence of trees T1 >.- ... >- T. T1 is the largest tree
that can be grown from the sample and Tq is the trivial tree containing only the root

node. These are the candidates for the optimal tree.

The optimal tree is selected from this sequence using cross—validation estimates of

the error variance of the model associated with each tree in the sequence. For a given

tree, consider the observation (y1, X1) at node 2. For each observation, a predictor f3'x1

is associated with each y, where fi') denotes the estimated coefficient vector at node

after omitting observation i. The prediction error for an observation will therefore equal
— The sample mean of (y — over all observations is the cross—

validation estimate of the error variance for the tree in question. Performing this

procedure for each tree in the sequence generates a sequence of estimated error variances,

one for each tree. The optimal tree is the one with the smallest estimated error variance.

15That is =
(E I(yx'xI) —

1 E I(lyrIY•
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Data Appendix

Number Country LR11 Growth Income Literacy
Rate Class Class

Algeria 2485 10.0 4.8 I L
2 Angola 1588 5.0' 0.8 I L
3 Rerun 1116 5.0' 2.2 1 L
4 Botswana 959 na 8.6 I
5 Burkiria Faso 529 2.0' 2.9 L L
6 Bunindi 755 14.0' 1.2 L L
7 Cameroon 889 19.0' 5.7 I L
8 Central African Republic 838 7.0' 1.5 1 L
9 Chad 908 6.0 -0.9 I L

10 Peopl&s Republic of the Congo 1009 16.0' 6.2 1 L
11 Egypt 907 26.0 6.0 1 L
12 Ethiopia 533 15.Ot' 2.8 L
15 Ghana 1009 27.0' 1.0 I L
17 Ivory Coast 1386 5.0' 5.1 1 L
18 Kenya 94.4 20.0' 4.8 1 L
20 Liberia 863 9.0' 3.3 1 L
21 Madagascar 1194 SOOt' 1.4 1

22 Malawi 455 25.Ot' 4.8 L L
23 Mali 737 2.0 2.1 L L
24 Maurilania 777 5.0 3.3 L L
25 Mauritius 1973 na 4.2 I

26 Morocco 1030 14.0 5.8 1 L
27 Mozanibique 1420 8 1.4 ] L
28 Niger 539 1.0 4.4 L L
29 Nigeria 1055 15.0' 2.8 1 L
30 Rwanda 460 16,0' 4.5 L L
31 Senegal 1392 6.0' 2.5 1 L
32 Siena Leone 511 7.0' 3.4 L L
33 Somalia 901 2.0 1.8 I L
34 South Africa 4768 57.0 3.9 1 I
35 Sudan 1254 13.0' 1.8 1 L
37 Tanzania 383 10.0 5.3 L L
38 Togo 777 10.0 3.4 L L
39 Tunisia 1623 16.0' 5.6 1 L
40 Uganda 601 35.0' 3.5 L L
41 Zaire 594 31.0 0.9 L L
42 Zambia 1410 29.0 2.1 1 L
43 Zimbabwe 1187 39.0' 5.1 I L
46 Bangladesh 846 22.0' 4.0 1 L
47 Burma 517 60.0' 4.5 L I
48 Hong Kong 3085 70.0 8.9 1 H

49 India 978 28.0' 3.6 1 L
52 Israel 4802 84.0' 5.9 1 H

53 Japan 3493 98.0' 6.8 1 H

54 Jordan 2183 320' 5.4 I L
55 Republic of Korea 1285 71.0 7.9 I H

57 Malaysia 2154 53.0 7.1 1 1

58 Nepal 833 9.0 2.6 I L
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60
61
63
64
65
67
70
71
73
74
75
76
77
79
80
83
84
85
86
87
88
89
90
92
93
94
95
96
97
98
99

100
101

102
103
104
105

106
107
108
109
110
112
113
115
116
117
119
120
121

Pakistan
Philippines
Singapore
Sri Lanka

Syrian Arab Republic
Thailand
Austria

Belgium
Denmark
Finland
France
Federal Republic of Germany
Greece
Ireland

Italy
NeLberlands

Norway
Portugal
Spain
Sweden
Switzerland

Turkey
United Kingdom
Canada
Costa Rica
Dominican Republic
LI Salvador
Guatemala
Haiti
Honduras
Jamaica
Mexico
Nicaragua
Panama
Trinidad and Tobago
United States of America

Argentina
Bolivia
Brazil
Chile
Columbia
Ecuador

Paraguay
Peru

Uruguay
Venezuela
Australia
Indonesia
New Zealand
Papua New Guinea

• 8551

6527
7215
7695
2257
4411
4913

99.0' 3.2 H H
99.0' 3.7 H H
99.0' 3.9 H H
99.Ot 3.3 H H
81.0 5.1 I H
97.0' 3.8 1 H
91.0* 3.8 I H

Number is the numbcr given the cotmiry in the Sissnmen and Hestocs 119881 diii sa.
na = not av.itable.

that the Uteracy Rate is to. 1975 rather thin 19W it this is the nest earliest availible year.
mdicasej that the Uteracy kite is (or a year differun, thei8h no moct than 2 years dissan. Irons the .pecified year.
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1077 15.0' 5.8 I L
1668 72.0 4.5 1 H
2793 75,0t' 9.2 I H
1794 75.0' 3.7 1 H
2382 30.0 6.7 I L
1308 68.0 6.7 I H
5939 99.0 3.6 H H
6789 99.Ot 3.5 H H

7938 99.0" 4.3 H H
2272 62,0 4.4 I I
3766 87.0 4.9 I H
7802 99.0" 3.1 H H

10308 99.Ot 2.5 H H
2274 38.0 5.2 1 L
7634 99.0' 2.5 H H

10286 99.0' 4,2 H H
3360 90.0' 4,7 1 H
1939 65.0 5.1 1 1

2042 49.0' 3.3 I L
2481 32.0 3.9 I L
1096 15.0 1,8 1 L
1430 45.0' 4.0 1 L
2729 82.0 2.1 1 H
4229 65.0 5.5 1 I
3195 57.Ot 4.1 1 I
2423 73.0 5.9 I H
9253 93.0' 2,7 H H

12362 98.0' 3.2 H H
4852 91.0 2,1 H H
1618 39.0 3.3 I L
1842 61.0 7.3 I I

5189 84.0 2.6 H H
2672 63.0' 5.0 1 I

2198 68.0* 5.7 1 H
1951 75.0' 5.5 1 H
3310 61.0 3.5 1 I

5119 94.0' 0.9 H H
10367 63.0' 1.9 H I

8440 100.Ot 3.8 H H
879 39.0" 5.5 I L

9523 99.0' 2,7 H H
1781 29.0 3.5 1 L
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