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1. Introduction.

Common to virtually all empirical investigations of the microstructure of securities
markets is the need for a statistical model of asset prices that can capture the salient fea-
tures of price movements from one transaction to the next. For example, because there are
several theories of why bid/ask spreads exist, a stochastic model for prices is a prerequi-
site to empirically decomposing observed spreads into components due to order-processing
costs, adverse selection, and specialist market power.! The benefits and costs of particular
aspects of a market’s microstructure, such as margin requirements, the degree of compe-
tition faced by dealers, the frequency that orders are cleared, and intra-day volatility also
depend intimately on the particular specification of price dynamics.2 Even the event study,
a tool that does not explicitly assume any particular theory of the market microstructure,
depends heavily on price dynamics.® In fact, it is difficult to imagine an economically
relevant feature of transaction prices and the market microstructure that does not hinge
on such price dynamics.

Since stock prices are perhaps the most closely watched economic variables to date,
they have been modeled by many competing specifications, beginning with the simple
random walk or Brownian motion. The majority of such specifications have been unable
to capture at least three aspects of transactions prices. First, on most U.S. stock exchanges
prices are quoted in increments of eighths of a dollar, a feature not captured by stochastic
processes with continuous state spaces. Of course, discreteness is less problematic for
coarser-sampled data, which may be well-approximated by a continuous-state process.
But discreteness is of paramount importance for intra-daily price movements, since such
finely-sampled price changes may take on only five or six distinct values.t

Second, another distinguishing feature of transaction prices is their timing, which is
irregular'and random. Therefore, such prices may be modeled by discrete-time processes
only if we are prepared to ignore the information contained in waiting times for transac-
tions.

Finally, although many have computed correlations between transaction price changes
and other economic variables, to date none of the existing models of discrete transaction

prices have been able to quantify such effects formally. Such models have focused primarily

! For example, see Glosten and Harris (1988), Hasbrouck (1988), Roll (1984), and Stoll (1989).

2See Cohen et al. (1986), Harris, Soflanos, and Shapiro (1990), Habrouck (1991a,b), Madhavan and Smidt {1991), and Stoli
and Whaley {1990).

3See, for example, Barclay and Litzenberger (1988).

4 The implicati of discret have been idered in many studies, e.g., Cho and Frees (1988), Gottlieb and Kalay
{1985), Harris (1989a,b, 1991), and Petersen (1986).
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on the unconditional distribution of price changes, whereas what is often of more economic
interest is the conditional distribution, conditioned on quantities such as volume, time
between trades, and the sequence of past price changes. For example, one of the unanswered
empirical questions in this literature is what the total costs of immediate execution are,
which many take to be a measure of market liquidity. Perhaps the largest component of
such costs is the price impact of large trades. Indeed, a floor broker seeking to unload
100,000 shares of stock will generally break up the sale into smaller blocks to minimize
the price impact of the trades. How do we measure price impact? Such a question is a
question about the conditional distribution of price changes, conditional upon a particular
sequence of volume and price changes, i.e., order flow.

In this paper, we propose a specification of transaction price changes that addresses
all three of these issues, and yet is still tractable enough to permit estimation via standard
techniques. This specification is known as ordered probst, a technique used most frequently
in cross-sectional studies of dependent variables that take on only a finite number of values
possessing a natural ordering.® Heuristically, ordered probit analysis is a generalization
of the linear regression model to cases where the dependent variable is discrete. As such,
among the existing models of stock price discreteness,® ordered probit is perhaps the only
specification that can easily capture the impact of “explanatory” variables on price changes
while also accounting for price discreteness and irregular trade times.

Underlying the analysis is a “virtual” regression model with an unobserved continuous
dependent variable Z* whose conditional mean is a linear function of observed “explana-
tory” variables. Although Z* is unobserved, it is related to an observable discrete random
variable Z, whose realizations are determined by where Z* lies in its domain or state
space. By partitioning the state space into a finite number of distinct regions, Z may be
viewed as an indicator function for Z* over these regions. For example, a discrete random
variable Z taking on the values { —% , 0, % } may be modeled as an indicator variable
that takes on the value —% whenever Z* < oy, the value 0 whenever a; < Z* < ng, and
the value % whenever Z* > ag. Ordered probit analysis consists of estimating ay, az and
the coefficients of the unobserved regression model for Z*.

Since a1, ag and Z* may depend on a vector of “regressors” X, ordered probit analysis

is considerably more general than its simple structure suggests. In fact, it is well known

® For example, the dependent variable might be the level of education, a8 measured by three categories: less than high school,
high school, and college education. The dependent variable is discrete, and iz naturally ordered since college education always
follows high school. See Maddala (1983) for further detuils.

6 See, for example, Ball (1988}, Cho and Frees (1988), Gottlieb and Kalay (1985), and Harris (1991).
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that ordered probit can fit any arbitrary multinomial distribution. However, because of the
underlying linear regression framework, ordered probit can also capture the price effects of
many economic variables in a way that models of the unconditional distribution of price
changes cannot.

To motivate our methodology and focus it on specific economic issues, we consider
three questions concerning the behavior of transaction prices. First, how does the par-
ticular sequence of trades affect the conditional distribution of price changes, and how
do these effects differ across stocks? For example, does a sequence of three consecutive
buyer-initiated trades [“buys”] generate price pressure, so that the next price change is
more likely to be positive than if the sequence were three consecutive seller-initiated trades
[“sells”], and how does this pressure change from stock to stock? Second, does trade size
affect price changes as some theories suggest, and if so, what is the price impact per unit
volume of trade from one transaction to the next? Third, does price discreteness matter?
In particular, can the conditional distribution of price changes be modeled as a simple
linear regression of price changes on explanatory variables without accounting for discrete-
ness at al]? Within the context of the ordered probit framework, we shall obtain sharp
answers to each of these questions. .

In Section 2 we review the ordered probit model and describe its estimation via maxi-
mum likelihood. We describe the data in Section 3 by presenting detailed summary statis-
tics for an initial sample of 11 stocks. In Section 4 we discuss the empirical specification
of the ordered probit model and the selection of conditioning or “explanatory” variables.
The maximum likelihood estimates for our initial sample are reported in Section 5, along
with some diagnostic specification tests. In Section 6 we use these maximum likelihood
estimates in three specific applications: (1) testing for order-flow dependence; (2) measur-
ing price impact; and (3) comparing ordered probit to simple linear regression. And as a
check on the robustness of our findings, in Section 7 we present less detailed results for a

larger and randomly chosen sample of 100 stocks. We conclude in Section 8.
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2. The Ordered Probit Model.

Consider a sequence of transaction prices P(tg), P{t1), P(t2), ..., P(tn) observed at
times 29, 1, t2, ..., tn, and denote by Z1, Z3, ..., Zn the corresponding price changes,
where Zy = P(t;) — P(t;_,) is assumed to be an integer multiple of some divisor called
a “tick” [such as an eighth of a dollar]. Let Z; denote an unobservable continuous random

variable such that:

Z, = XiB+ e ,  ElglXy] =0 , ¢ inid. N(0,0) (2.1)

where “i.n.i.d.” indicates that the ¢;’s are independently but not identically distributed,
and Xy is a ¢ X 1 vector of predetermined variables that governs the conditional mean of
Z,:. Note that subscripts are used to denote “transaction” time, whereas time arguments
ty denote calendar or “clock” time, a convention we shall follow throughout the paper.
The essence of the ordered probit model is the assumption that observed price changes

Zy, are related to the continuous variable Zg in the following manner:

81 if ZI: € A
Sg if Z,: € Ay

Zy = (2.2)
Sm if Z,: € Am

where the sets A; form a partition of the state space $* of Zg, e, $* = U;';l Aj and
A;NA; =0 fori# j, and the s,’s are the discrete values that comprise the state space § of
Z. The motivation for the ordered probit specification is to uncover the mapping between
$* and § as a function of economic variables or “regressors.” In our current application
the s;’s are 0, -%, +%, —%, +%, and so on, and for simplicity we define the state-space

partition of $* to be intervals:

41 = (-0, (2.3)
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Ay = (a1, ag] (2.4)
4; = (o, o (2.5)
An = (ameq, o). (2.6)

Although the observed price change can be any number of ticks, positive or negative,
we assume that m in (2.2) is finite to keep the number of unknown parameters finite. This
poses no problems since we may always let some states in § represent a multiple [and
possibly countably infinite] number of values for the observed price change. For example,
in our empirical application we define s; to be a price change of —4 ticks or less, 59 to be
a price change of +4 ticks or more, and 89 to sg to be price changes of —3 ticks to +3
ticks respectively. This parsimony is obtained at the cost of losing price resolution — under
this specification the ordered probit model does not distinguish between price changes of
+4 and price changes greater than +4 [since the +4-tick outcome and the greater than
+4-tick outcome have been grouped into a common event], and similarly for price changes
of —4 ticks versus price changes less than —4. Of course, in principle the resolution may be
made arbitrarily finer by simply introducing more states, i.e., by increasing m.” However,
in practice the data will impose a limit on the fineness of price resolution simply because
there will not exist realizations for the extreme states when m is too large, in which case
a subset of the parameters is not identified and cannot be estimated.

Observe that the €,’s in (2.1) are assumed to be conditionally independently but not
identically distributed.? This allows for clock-time effects, as in the case of an arithmetic
Brownian motion where the variance a;‘: of price changes is linear in the time between
trades. We also allow for more general forms of conditional heteroskedasticity by letting
az depend linearly on other economic vé:iables Wy, which differs from Engle's (1982)
ARCH process only in its application to a discrete dependent variable model requiring an
additional identification assumption that we shall discuss below in Section 4.

The dependence structure of the observed process Z; is clearly induced by that of Z;
and the definitions of the Ay’s, since:

7Moreover, as long as (2.1) is correctly specified, then increasing price resolution will not affect the sstimated 8's asymptot.-
ically. Of course, finite sample properties may differ.

? Conditionzl on the X 's and other economic variables W) infiuencing the conditional varisnce o2. Unless explicitly stated
otherwise, nll the probabilities we deal with in this study are conditional probabilities, and all inferences nnd statements
concerning these probabilities are conditional, conditioned on these variables.
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P(Zy=sj|Zr1=8) = P(ZyeA;|Zz 1 €4). (2.7)

As a consequence, if the variables X} and W are temporally independent, the observed
process Z} is also temporally independent. Of course, these are fairly restrictive assump-
tions and are certainly not necessary for any of the statistical inferences that follow. We
require only that the €;’s be conditionally independent, so that all serial dependence is
captured by the X 's and the Wy 's. Consequently, the independence of the ¢;’s does not
imply that the Zl: 's are independently distributed because we have placed no restrictions
on the temporal dependence of the X;’s or W;.’s.

The conditional distribution of observed price changes Z;, conditioned on X and
Wy, is determined by the partition boundaries and the particular distribution of ¢;. For

Gaussian €;’s, the conditional distribution is:
k

P(Z; = s;| Xy, Wi) P( Xllcﬂ + e € Ay | X, Wy ) (2-8)

P(X;cﬂ+€ksallxk,wk) if i=1

= P( ai—l<Xllcﬂ+€lcSai1ch)Wk) if l<i<m (2.9)

Plam-1 < Xllcﬂ-{v—ck | X, Wi ) if it=m
X!
o2 ) if i=1

= q,( a;—X’kﬂ) ~ Q( aim1— X, ) if I<i<m  .(2.10)

Ok Tk

1—@(""‘—'},:&) if i=m

where ®(:) is the standard normal cumulative distribution function.
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To develop some intuition for the ordered probit model, observe that the probability
of any particular observed price change is determined by where the conditional mean lies
relative to the partition boundaries. Therefore, for a given conditional mean X;C,B, shifting
the boundaries will alter the probabilities of observing each state [see Figure 1]. In fact,
by shifting the boundaries appropriately, ordered probit can fit any arbitrary multinomial
distribution. This implies that the assumption of normality underlying ordered probit
plays no special role in determining the probabilities of states — a logistic distribution, for
example, could have served equally well.?

Given the partition boundaries, a higher conditional mean XL,B implies a higher prob-
ability of observing a more extreme positive state. Of course, the labelling of states is
arbitrary, but the ordered probit model makes use of the natural ordering of the states.
The regressors allow us to separate the effects of various economic factors that influence
the likelihood of one state versus another. For example, suppose that a large positive
value of X usually implies a large negative observed price change and vice versa. Then
the ordered probit coefficient §; will be negative in sign and large in magnitude [relative
to oy, of course].

By allowing the data to determine the partition boundaries , the coefficients 8 of the
conditional mean, and the conditional variance alzc, the ordered probit model captures the
empirical relation between the unobservable continuous state space $* and the observed

discrete state space S as a function of the economic variables X and Wy.

2.1. Other Models of Discreteness.

From these observations, it is apparent that the rounding/eighths-barriers models of
discreteness in Ball (1988), Cho and Frees (1988), Gottlieb and Kalay (1985), and Harris
(1991) may be re-parameterized as ordered probit models. Consider first the case of a
“true” price process that is an arithmetic Brownian motion, with trades occurring only
when this continuous-state process crosses an eighths threshold [see Cho and Frees (1988)].
Observed trades from such a process may be generated by an ordered probit model in which
the partition boundaries are fixed at multiples of eighths and the single regressor is the
time interval [or first-passage time] between crossings, appearing in both the conditional
mean and variance of Zl:.

For the rounding models of Ball (1988), Gottlieb and Kalay (1985), and Harris (1991)

®However, it is considerably more difficult to capture conditional heteroskedasticity in the ordered logit model.
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which do not make use of waiting times between trades, define the partition boundaries
as the midpoint between eighths, e.g., the observed price change is % if the virtual price
process lies in the interval [T%’ '126)’ and omit the waiting time as a regressor in both the
conditional mean and variance [see the discussion in Section 6.3 below].

The generality of the ordered probit model comes from the fact that the rounding and
eighths-barrier models of discreteness can both be incorporated by appropriate definitions
of the partition boundaries. In fact, since the boundaries may be parameterized to be time-
and state-dependent, ordered probit allows for more general kinds of rounding and eighths
barriers. In addition to fitting any arbitrary multinomial distribution, ordered probit may
also accommodate finite-state Markov chains and compound Poisson processes.

Of course, other models of discreteness are not necessarily obsolete, since in several
cases the parameters of interest may not be simple functions of the ordered probit param-
eters. For example, a tedious calculation will show that although Harris’s (1991) rounding
model may be represented as an ordered probit model, the bid/ask spread parameter ¢ is
not easily recoverable from the ordered probit parameters. In such cases, other equivalent

specifications may allow more direct estimation of the relevant parameters.

2.2. The Likelihood Function.

Let Y;; be an indicator variable which takes on the value 1 if the realization of the k-th
observation Zj is the t-th state s;, and zero otherwise. Then the log-likelihood function
L for the vector of price changes Z = [ Z; Zy .-+ Z, |, conditional on the explanatory
variables X = | X7 X3 --- Xn |, is given by:

Ok

L(z1x) = }n: {Ylkdog@(————al_xll‘ﬂ)

mz—lx:k-log[Q(——a{_XLﬁ ) —Q(c’q_l—_}{w) ] n
=2

Ok Ok

Ok

Ymk~log[1—®<i‘l—_w—)] } (2.11)
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Recall that o;‘: is a conditional variance, conditioned upon X;. This allows for conditional
heteroskedasticity in the Z}’s, as in the rounding model of Cho and Frees (1988) where the
Z}’s are increments of arithmetic Brownian motion with variance proportional to ¢ty —t;_;.

This special case may be accommodated by the specification:

XL

2
Ok

ulty (2.12)
Aty . (2.13)

Il

More generally, we may also let o2 depend on other economic variables W}, so that:
g k k

Ka
of = 4+ Wi (2.14)
=1

There are, however, some constraints that must be placed on these parameters to achieve
identification since, for example, doubling the a's, the B’s, and o leaves the likelihood

unchanged. We shall return to this issue in Section 4.

3. The Data.

The Institute for the Study of Securities Markets {ISSM] transaction database consists
of time-stamped trades [to the nearest second], trade size, and bid/ask quotes from the
New York and American Stock Exchanges and the consolidated regional exchanges from
January 4 to December 30 of 1988. Because of the sheer size of the ISSM database, most
empirical studies have concentrated on more manageable subsets of the database and we
do the same. But because there is so much data, the “pre-test” or “data-snooping” biases
associated with any non-random selection procedure used to obtain the smaller subsets
are likely to be substantial:1 searching for the largest t-statistic in 1,000 regressions will
yield a more significant (but spurious) finding than searching among only 100 regressions.
Therefore, how we choose our subsample of stocks may have important consequences for
how our results are to be interpreted, so we shall describe our procedure in some detail

here.

19 Ay a simple example of such a biss, suppose we chose our subset by selecting only thoss stocks that have & minimum
of 100,000 transactionsa during 1988. This imparts a downward biss on our mensuree of price impact, since stocks with over
100,000 trades per year are generally more liquid and, slmost by definition, have smaller price impact.
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We first began with an initial “test” sample of 5 stocks that did not engage in any
stock splits or stock dividends greater than 3:2 during 1988: Alcoa, Allied Signal, Boeing,
Dupont, and General Motors. We restrict splits because the effects of price discreteness
to be captured by our model are likely to change in important ways with dramatic shifts
in the price level. By eliminating large splits, we reduce the problem of large changes in
the price level without screening on prices directly.!! We also chose these 5 stocks because
they are relatively large and visible companies, each with a large number of trades and
therefore likely to yield accurate parameter estimates. We then performed the standard
“specification searches” on these 5 stocks, adding, deleting, and transforming regressors
to obtain a “reasonable” fit. By “reasonable” we mean primarily the convergence of the
maximum likelihood estimation procedure, but it must also include Leamer’s (1978) kind
of informal or ad hoc inferences that all empiricists engage in; the choices of specification
that might have been affected by such ad hoc inferences and, consequently, their potential
biases will be discussed in Section 4.

Once we obtained a specification that was “reasonable,” we estimated this specifica-
tion without further revision for our primary sample of 11 new stocks, chosen to yield a
representative sample with respect to industries, market value, price levels, and sample
sizes. They are: International Business Machines Corporation (IBM), Abitibi-Price In-
corporated (ABY), Quantum Chemical Corporation (CUE), Dow Chemical Corporation
(DOW), First Chicago Corporation (FNB), Foster Wheeler Corporation (FWC), Handy
and Harman Company (HNH), Navistar International Corporation (NAV), Reebok In-
ternational Limited (RBK), Sears Roebuck and Company (S), and American Telephone
and Telegraph Incorporated (T). By using the same specification with stocks in this fresh
sample, we sought to lessen the impact of any data-snooping biases generated by our
specification searches in the test sample. If, for example, our parameter estimates and
subsequent inferences changed dramatically in the new sample - in fact, they did not -
this might be a sign that our test-sample findings were driven primarily by selection biases.

As a final check on the robustness of our specification, we estimate it for a larger
sample of 100 stocks chosen randomly, and these companies are listed in Table 6. From
this sample, it was apparent that our smaller 11-stock sample did suffer from at least one
selection bias: it was comprised of relatively well-known companies. In contrast, very few

companies in Table 6 were familiar to us. Despite this bias, virtually all of our empirical

110f course, if one were interested in explaining stock splits, this procedure would obviously impart important biases in the
empirical results.
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findings were confirmed by this larger sample. To conserve space and to focus attention
on our findings, we report the complete set of summary statistics and estimation results
only for the smaller sample of 11 stocks, and present broader and less detailed findings for
the extended sample afterwards.

Of course, as long as there is cross-sectional dependence among the two samples
it is impossible to eliminate such biases completely. Moreover, samples drawn from a
different time period are not necessarily free from selection bias as some have suggested,
due to the presence of temporal dependence. Unfortunately, non-experimental inference is
always subject to selection biases of one kind or another since specification searches are an
unavoidable aspect of genuine progress in empirical research.!? Even Bayesian inference,
which is not as sensitive to the kinds of selection biases discussed in Leamer (1978}, can
be distorted in subtle ways by specification searches. Therefore, beyond our {est-sample
procedure, we can only alert readers to the possibility of such biases and allow them to

draw their own inferences.

3.1. Sample Statistics.

We take as our basic time series the intra-day price changes from trade to trade, i.e.,
all overnight price changes are discarded. We do this because we wish to capture the
behavior of the intra-day price process, and overnight price changes are different enough
to warrant a separate speciﬁcation.13 For similar reasons, the first and last transaction
prices of each day were also discarded - they differ systematically from other prices due
to institutional features [see Amihud and Mendelson (1987) for further details]. Several
other screens were imposed to eliminate “problem” trades and quotes, yielding sample
sizes ranging from 1,515 trades for ABY to 206,794 trades for IBM.14

Since we also use bid and ask prices in our analysis, some discussion of how we matched

125ee, for example, Lo and MacKinlay (1990b).

13 That the statistical properties of overnight price changes differ considerably from those of intra-day price changes has been
convincingly documented by several authors, most recently by Amihud and Mendelson (1987), Stoll and Whaley (1990}, and
Wood et al. (1985).

14 Specifically: (1) All trades flagged with the following ISSM condition codes were eliminated: A, C, D, O, R, and Z [see
the ISSM documentation for further details concerning trade condition codes]. {2) Also eliminated were tr tions di
3,276,000 shares {termed “big trades” by ISSM]. (3) Because we use three lags of price changes and three lags of 5-minute returns
on the S&P 500 index futures prices as explanatory variables, we do not use the first three price changes or price changes during
the first 15 minutes of each day [whichever is greater] as observations of the dependent variable. (4) Since S&P500 futures data
were not available on November 10, 11, and the frst 2 trading hours of May 8, trades during these times were alao omitted.

Note that for some stocks, s small number of transactions occurred at prices denominated in 1/16's, 1/32' or 1/64's of &
dollar [non-NYSE trades]. In these cases, we rounded the price randomly [up or down] to the nearest 1/8, and if necessary, also
rounded the bid/ask quotes in the same direction.
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quotes to prices is required.!® Since bid/ask quotes are reported on the ISSM tape only
when they are revised, it is natural to match each transaction price to the most recently
reported quote prior to the transaction. However, Lee and Ready {1991) and others have
shown that prices of trades which precipitate quote revisions are sometimes reported with
a lag, so that the order of quote revision and transaction price is reversed in official records
such as the ISSM tapes. To address this issue, we match transaction prices to quotes that
are set at least 5 seconds prior to the transaction; the evidence in Lee and Ready (1991)
suggests that this will account for most of the mis-sequencing.

To provide some intuition for this enormous dataset, we report a few summary statis-
tics in Table 1. To see that our sample of 11 stocks contains considerable dispersion,
observe that the low stock price ranges from $3.125 for NAV to $104.250 for IBM, whereas
the high ranges from $7.875 for NAV to $129.500 for IBM. At $219 million, HNH has the
smallest market capitalization in our sample, and IBM has the largest with a market value
of $69.8 billion.

For our empirical analysis we also require some indicator of whether a transaction was
buyer-initiated or seller-initiated. Obviously, this is a difficult task since for every trade
there is always a buyer and a seller. What we are attempting to measure is which of the
two parties is more anxious to consummate the trade, and is therefore willing to pay for it
in the form of the bid/ask spread. Perhaps the most obvious indicator is if the transaction
occurs at the ask price or at the bid price — if it is the former then the transaction is most
likely a “buy,” if it is the latter then the transaction is most likely a “sell.” Unfortunately,
a large number of transactions occur at prices strictly within the bid/ask spread, so that
such a method for signing trades will leave the majority of them indeterminate.

Following Blume, MacKinlay and Terker (1989) and many others, we classify a trans-
action as a buy if the transaction price is higher than the mean of the prevailing bid/ask
quote [the most recent quote that is set at least 5 seconds prior to the trade|, and clas-
sify it as a sell if the price is lower. Should the price equal the mean of the prevailing
bid/ask quote, we classify the trade as an “indeterminate” trade. This method classifies
far fewer trades as indeterminate than classifying according to transactions at the bid or

ask.1® From Table 1 we see that between 13 and 26 percent of each stock’s transactions

15 Quotes implying bid/ask spreads greater than 40 ticks or Aagged with the following ISSM condition codes were eliminated:
C,D,F,G,ILL,N,P, 8, V, X, and Z | ially all “BBO-ineligible” quotes]. See the ISSM documentation for further details
concerning the definitions of the particular trade and quote condition codes. Eikeboom (1991) has performed a thorough study
of the relative frequencies of these condition codes for a small aubaet of the ISSM database.

18 Unfortunately, little is known about the relative merits of thia method of classification versus others such as the “tick
teat” {which classifies a transaction ms a buy, a sell, or indeterminate if its price is greater than, lesa than, or equal to the
previous transaction’s price, respectively|, simply because it in virtually impoasible to obtain the data necessary to evaluate
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are indeterminate, and the remaining trades fall almost equally into the two remaining
categories. The two exceptions are the two smallest stocks, ABY and HNH. The former
has almost twice as many buys as sells, whereas the latter has more than twice as many
sells as buys.

The means and standard deviations of other variables to be used in our ordered probit
analysis are also given in Table 1. The precise definitions of these variables will be given
below in Section 4, but briefly, Z) is the price change between transactions k — 1 and
k, Aty is the time elapsed between these trades, ABy is the bid/ask spread prevailing at
transaction k, SP500y is the return on the S&P 500 index futures price over the five-minute
period immediately preceding transaction k, IBSj is the buy/sell indicator described above
[1 for a buy, —1 for a sell, and 0 for an indeterminate trade], and T} (V}) is a transformation
of the dollar volume of transaction k, transformed according to the Box and Cox (1964)
specification with parameter A; which is estimated for each stock ¢ by maximum likelihood
along with the other ordered probit parameters.

From Table 1 we see that for the larger stocks, trades tend to occur almost every
minute on average, with the exception of FNB which has an average At; of about five
minutes. Of course, the smaller stocks trade less frequently, with ABY trading only once
every thirty minutes on average. The median dollar volume per trade also varies consider-
ably, ranging from $3,000 for the relatively low-priced NAV to $57,400 for the higher-priced
DOW.

Finally, Figure 2 contains histograms for the price change, time-between-trade, and
dollar volume variables for the 11 stocks. The histograms of price changes are constructed
so that the most extreme cells also include observations beyond them, i.e., the level of the
histogram for the —4 tick cell reflects all price changes of —4 ticks or less, and similarly
for the +4 ticks cell. Surprisingly, these price histograms are remarkably symmetric across
all stocks. Also, virtually all the mass in each histogram is concentrated in five or seven
cells — there are few absolute price changes of 4 ticks or more, further emphasizing the
importance of discreteness in transaction prices.

For the time-between-trades and dollar volume variables, the largest cell, i.e., 1,500
seconds or $200,000, includes all trades beyond it. As expected, the histograms for these

quantities vary greatly according to market value and price level. For the larger stocks,

these alternatives. The only study we have seen is by Robinson (1988, Chapter 4.4.1, Table 12), in which he compared the tick
test rule to the bid/ask mean rule for « sample af 196 block trades initiated by two major Canadian life insurance companies, and
concluded that the bid/ask mean rule was considerably more accurate. Therefore, we adopt this method of signing tranaactions.
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the time between trades is relatively short, hence most of the mass in those histograms are
in the lower-valued cells. But the histograms of smaller, less liquid stocks like ABY and
HNH, have spikes in the largest-valued cell. Histograms for dollar volume are sometimes
bi-modal, as in the case of IBM, reflecting both round-lot trading at 100 shares [$10,000
on average for IBM’s stock price during 1988] and some very large trades, presumably by

institutional investors.

4. The Empirical Specification.

To estimate the parameters of the ordered probit model via maximum likelihood, we
must first specify: (¢) the number of states m; (17) the explanatory variables X}; and (i11)
the parametrization of the variance ”I%—‘

In choosing m, we must balance price resolution against the practical constraint that
an m too large will yield no observations in the extreme states s; and sy,. For example,
if we set m to 101 and define the states s; and s19; symmetrically to be price changes of
—50 ticks and +50 ticks respectively, we would find no Z,’s among our 11 stocks falling
into these two states. Using the histograms in Figure 2 as a guide, we set m = 9 for the
larger stocks, implying extreme states of —4 ticks or less and +4 ticks or more. For the
three smaller stocks, ABY, FWC and HNH, we set m = 5 implying extreme states of —2
ticks or less and 42 ticks or more.l?

In selecting the explanatory variables X}, we seek to capture several aspects of trans-
action price changes. First, we would like to allow for clock-time effects, since there is
currently some dispute over whether trade-to-trade prices are stable in transaction time
versus clock time. Second, we would like to account for the effects of the bid/ask spread
on price changes since many transactions are merely movements from the bid price to
the ask price or vice versa. If, for example, in a sequence of three trades the first and
third were buyer-initiated while the second was seller-initiated, the sequence of transac-
tion prices would exhibit reversals due solely to the bid/ask “bounce.” Third, we would
like to measure how the conditional distribution of price changes shifts in response to a
trade of a given volume, i.e., the price impact per unit volume of trade. And fourth, we
would like to capture the effects of “systematic” or market-wide movements in prices on

the conditional distribution of an individual stock’s price changes. To address these four

17The definition of states need not be symmetric - state #; can be —6 ticks or less, implying that state sy is +2 ticks or
more. However, the symmetry of the histogram of price changes in Figure 2 suggests a symmetric definition of the 45's.
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issues, we first construct the following variables:

Aty

ABk—l:

Vit

SP500s_;:

The time elapsed between transactions k — 1 and k, in seconds.
The bid/ask spread prevailing at time t;_;, in ticks.

Three lags [| = 1, 2, 3] of the dependent variable Z,. Recall that for
m = 9, price changes less then —4 ticks are set equal to —4 ticks [state
s1), and price changes greater than +4 ticks are set equal to +4 ticks
[state sg], and similarly for m = 5.

Three lags [l =1, 2, 3] of the dollar volume of the (k —I}-th transaction,
defined as the price of the (k—I)-th transaction [in dollars, not ticks] times
the number of shares traded [denominated in 100’s of shares], hence dollar
volume is denominated in $100’s of dollars. To reduce the influence of
outliers, if the share volume of a trade exceeds the 99.5 percentile of the
empirical distribution of share volume for that stock, we set it equal to

the 99,5 percentile.1®

Three lags [l = 1, 2, 3] of 5-minute continuously compounded returns
of the Standard and Poor’s 500 index futures price, for the contract
maturing in the closest month beyond the month in which transaction k—
1 occurred, where the return is computed with the futures price recorded
one minute before the nearest round minute prior to t;_; and the price
recorded five minutes before this. More formally, we have:

SP500,_; = log 2 k=1~ 60 4.1

1 R, ~s60) (1)
P(t;_, — 360)

SP500;, = |1 = 42

k-2 *® F(t,_, - 660) (42)
F(t;_, — 660)

SP500,_; = 1 43

k=3 8 Fltr_, - 960) (4:3)

where F(t7) is the S&P 500 index futures price at time ¢t~ [measured in

seconds] for the contract maturing the closest month beyond the month

% For example, the 99.5 percentile for IBM's share volume is 16,500 shares, hence all IBM trades exceeding 16,500 shares are
set equal to 16,500 shares. By definition, only one half of one percent of the 206,794 IBM trades [or 1,034 trades] were *censored”
in this manner. We chose not to discard these trades because omitting them could affect our estimates of the Ing structure,
which iz extremely sensitive to the sequence of trades. For the 10 remaining stocks, the 99.5 percentiles for share volume are:
ABY=128,600, CUE=21,300, DOW=23,100, FNB=46,200, FWC=31,700, HNH=20,000, NAV=50,000, RBK:=25,000, §=30,000,

and T=44,100.
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of transaction k& — {, and t~ is the nearest round minute prior to time ¢
[for example, if t is 10:35:47, then ¢t~ is 10:35:00].1°

1BS;_;: Three lags [ = 1, 2, 3} of an indicator variable that takes the value 1 if
the (k —I)-th transaction price is greater than the average of the quoted
bid and ask prices at time t;_;, the value -1 if the (k — [)~th transaction
price is less than the average of the bid and ask prices at time t;_;, and
0 otherwise, i.e.,

1 it Poy>3(PE +P )
IBS,; = 0 if Pey=4Pe,+P) . (4.4)
-1 if Pe_y<$(P,+Pt))

Whether the (k — I)-th transaction price is closer to the ask price or the
bid price is one measure of whether the transaction was buyer-initiated
[IBSg_; = 1] or seller-initiated {IBSk_; = —1]. If the transaction price is
?t the midpfint of the bid and ask prices, the indicator is indeterminate
IBS_; = 0}.

Our specification of X}'cﬂ is then given by the following expression:

XiB = PiAty + B2k + B3Zk—g + B4Z_3 + BsSP500;_; + BgSP500;_5 +
B7SP500,_.3 + BgIBSi_1 + BeIBS;_o + P10IBSi_3 +
B11{ Ta(Vi-1) -1BSk—1 } + Pr2{ Tn(Vi—2) - IBS_2 } +
Bra{ Ta(Vi—s) - IBS_3 } . (4.5)

The variable Aty is included in X}, to allow for clock-time effects on the conditional mean
of Zg. If prices are stable in “transaction” time rather than clock time, this coefficient

should be zero. Lagged price changes are included to account for serial dependencies, and

19 This rather convoluted timing for computing SP500;_; ensures that there is no temporal overlap between price changes
and the returns to the index futures price. In particular, we first construct a minute-by-minute time series for futures prices by
assigning to each round minute the nesrest futures transaction price occurring after that minute but before the next [hence if
the first futures transaction after 10:35:00 occurs at 10:35:15, the futures price nssigned to 10:35:00 is this one]. If no transaction
occurs during this minute, the price prevailing at the previous minute is assigned to the current minute. Then for the price
change Z;, we compute SP500;_; using the futures price one minute before the nearest round minute prior to ¢;_,, and the
price five minutes before this [hence if t;_; is 10:36:45, we use the futures price assigned to 10:35:00 and 10:30:00 to compute
SP500s— 1)
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lagged returns of the S&P500 index futures price are included to account for market-wide
effects on price changes.
To measure the price impact of a trade per unit volume we include the term T)(V,_;),

dollar volume transformed according to the Box and Cox (1964) specification T)(-):

Ty(z) = - '(4.6)

where A € [0,1] is also a parameter to be estimated. The Box-Cox transformation allows
dollar volume to enter into the conditional mean nonlinearly, a particularly important
innovation since common intuition suggests that price impact may exhibit economies of
scale with respect to dollar volume — although total price impact is likely to increase
with volume, the marginal price impact probably does not. The Box-Cox transformation
captures the linear specification [A = 1] and concave specifications up to and including the
logarithmic function [A = 0]. The estimated curvature of this transformation will play an
important role in the measurement of price impact.

The transformed dollar volume variable is interacted with IBS,_;, an indicator of
whether the trade was buyer-initiated [IBS; = 1], seller-initiated {IBS; = —1], or indeter-
minate [IBS, = 0]. A positive 8;; would imply that buyer-initiated trades tend to push
prices up and seller-initiated trades tend to drive prices down. Such a relation is predicted
by several information-based models of trading, e.g., Easley and O'Hara (1987). Moreover,
the magnitude of §;; is the per-unit volume impact on the conditional mean of ZI:’ which
may be readily translated into the impact on the conditional probabilities of observed price
changes. The sign and magnitudes of §;3 and f13 measure the persistence of price impact.

To complete our specification we must parametrize the conditional variance a,% = '7g+
3 '7{2W,-,c . To allow for clock-time effects we include At, and since there is some evidence
linking bid/ask spreads to the information content and volatility of price changes,?0 we also
include the lagged spread ABg_;. Finally, recall from Section 2.2 that the parameters a,
B, and ~ are unidentified without additional restrictions, hence we make the identification

assumption that '1("; = 1. Our variance parametrization is then:

o} = 1+ +At + 42AB;_, . (4.7)

40See, for example, Glosten (1987), Hasbrouck (1988, 1991a,b), and Petersen and Umlauf (1990).
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In summary, our 9-state specification requires the estimation of 24 parameters: the par-
tition boundaries ay, ..., ag, the variance parameters 7y, and -9, the coefficients of the
explanatory variables By, ..., 813, and the Box-Cox parameter A. The 5-state specification

requires the estimation of only 20 parameters.

5. The Maximum Likelihood Estimates.

We compute the maximum likelihood [ML] estimators numerically using the algorithm
proposed by Berndt, Hall, Hall and Hausman (1974), hereafter BHHH. The advantage of
BHHH over other search algorithms is its reliance on only first derivatives, an important
computational consideration for sample sizes such as ours.2! The asymptotic covariance
matrix of the parameter estimates was computed as the negative inverse of the matrix of
{numerically determined] second derivatives of the log-likelihood function with respect to
the parameters, evaluated at the maximum likelihood estimates. We used a tolerance of
0.001 for the convergence criterion suggested by BHHH: the product of the gradient and
the direction vector. To check the robustness of our numerical search procedure, we used
several different sets of starting values for each stock, and in all instances our algorithm
converged to virtually identical parameter estimates.

In Table 2a we report the ML estimates of the ordered probit model for our 11 stocks.
Entries in each of the columns labelled with ticker symbols are the parameter estimates
for that stock, and to the immediate right of each parameter estimate is the corresponding
z-statistic, which is asymptotically distributed as a standard normal variate under the
null hypothesis that the coefficient is 0, i.e., it is the parameter estimate divided by its
asymptotic standard error.

Table 2a shows that the partition boundaries are estimated with high precision for
all stocks. As expected, the z-statistics are much larger for those stocks with many more
observations. The parameters for 012c are also statistically significant, hence homoskedastic-
ity may be rejected at conventional significance levels — larger bid/ask spreads and longer
time intervals increase the conditional volatility of the disturbance.

The conditional means of the Z;’s for all stocks are only marginally affected by Atg.

21 Al] computations were performed in double precision in an ULTRIX environment on 8 DEC 5000/200 workatation with
16 Mb of memory, using our own FORTRAN implementation of the BHHH algorithm with analytical first derivatives. Az a
rough guide to the computational demands of ordered probit, note that the numerical estimation procedure for the stock with
the largest number of trades ~ IBM (206,794 trades] ~ required only 2 hours and 45 minutes of cpu time.
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Moreover, the z-statistics ate minuscule, especially in light of the large sample sizes. How-
ever, as mentioned above, At does enter into the a,% expression significantly, hence clock-
time is important for the conditional variances, but not for the conditional means of ZI:.
Note that this does not necessarily imply the same for the conditional distribution of the
Zy's, which is nonlinearly related to the conditional distribution of the ZI: ’s. For example,
the conditional mean of the Z,’s may well depend on the conditional variance of the Z;’s,
so that clock-time can still affect the conditional mean of observed price changes even
though it does not affect the conditional mean of ZI:.

More striking is the significance and sign of the lagged price change coefficients fs,
[;3, and [;4 - they are negative for all stocks, implying a tendency towards price reversals.
For example, if the past three price changes were each 1 tick, the conditional mean of ZI:
changes by f; + A3 + B4. However, if the sequence of price changes was 1/-1/1, then the
effect on the conditional mean is ﬁz - ﬁz + ﬁh a quantity closer to zero for each of the
security’s parameter estimates.??

Note that these coefficients measure reversal tendencies beyond that induced by the
presence of a constant bid/ask spread as in Roll (1984). The effect of this “bid/ask bounce”
on the conditional mean should be captured by the indicator variables IBS,_;, IBS;_,,
and IBS;_3. In the absence of all other information {such as market movements, past price
changes, etc.], these variables pick up any price effects that buys and sells might have on the
conditional mean. As expected, the estimated coefficients are generally negative, indicating
the presence of reversals due to movements from bid to ask or ask to bid prices. In Section
6.1 we shall compare their magnitudes explicitly, and conclude that the conditional mean
of price changes is path-dependent with respect to past price changes.

The lagged S&P 500 returns are also significant, but have a more persistent effect
on some securities. For example, the coefficient for the first lag of the S&P 500 is large
and significant for DOW, but the coefficients for the second and third are small and
insignificant. However, for the less actively traded stocks such as CUE, all three coefficients
are significant and are about the same order of magnitude. As a2 measure of how quickly
market-wide information is impounded into prices, these coefficients confirm the common
intuition that smaller stocks react more slowly than larger stocks, which is consistent with
the lead/lag effects uncovered by Lo and MacKinlay (1990a).

22In an earlier specification, in plnce of lagged price changes we included separate indicstor variables for eight of the nine
states of each Ingged price change. But because the coefficients of the indicator variables increased monotonically from the
—4 state to the +4 state [state O was omitted) in almost exact proportion to the tick-change, we chose the more parsimoniour
specification of including the actual lagged price change.
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5.1. Diagnostics.

A common diagnostic for the specification of an ordinary least squares regression
is to examine the properties of the residuals. If, for example, a time series regression
is well-specified, the residuals should approximate white noise and exhibit little serial
correlation. In the case of ordered probit, we cannot calculate the residuals directly since
we never observe the latent dependent variable Z; and therefore cannot compute Z X L [i .
However, we do have an estimate of the conditional distribution of Z}!, conditional on the
X’s, based on the ordered probit specification and the maximum likelihood parameter
estimates. From this, we can obtain an estimate of the conditional distribution of the
€;’s from which we can construct generalized residuals €, along the lines suggested by
Gourieroux et al. (1985):

G = Ele|Zp, Xpo Wis Oy ] (5.1)

where 5,.,,1 is the maximum likelihood estimator of the unknown parameter vector which,
in our case, contains &, %, ﬁ and X. In the case of ordered probit, if Zj is in the sth
state, i.e., Zp = S5 then the generalized residual €, may be expressed explicitly using the

moments of the truncated normal distribution as:

& = Elel|Zi=s5, Xp, Wi b ]
s dle) — ¢{e2)
% Bl 0 (er) &2
1 R
o= 5o (821 - xiB ) (5.3)
1 R
¢y = H (&J' - XLﬂ ) (5.4)
& = \/ 1+ 42 At, +32ABy_; (5.5)

where ¢(-) is the standard normal probability density function and for notational conve-
nience, we define ag = —oo and ay, = +oo. Gourieroux et al. (1985) show that these
generalized residuals may be used to test for misspecification in a variety of ways. How-

ever, some care is required in performing such tests. For example, although a natural
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statistic to calculate is the first-order autocorrelation of the é;'s, Gourieroux et al. observe
that the theoretical autocorrelation of the generalized residuals does not in general equal
the theoretical autocorrelation of the ¢;'s. Moreover, if the source of serial correlation is
an omitted lagged endogenous variable - if, for example, we included too few lags of Z, in
X - then further refinements of the usual specification tests are necessary.

Gourieroux et al. (1985) derive valid tests for serial correlation from lagged endogenous
variables using the score statistic, essentially the derivative of the likelihood function with
respect to an autocorrelation parameter, evaluated at the maximum likelihood estimates
under the null hypothesis of no serial correlation. More specifically, consider the following

model for our Zj:
Zy = v+ Xif+e  ,  Jel<l. (5.6)

In this case, the score statistic £; is the derivative of the likelihood function with respect
to p evaluated at the maximum likelihood estimates, and under the null hypothesis that

® = 0 it simplifies to the following expression:

N 2
i = (ZZ=2 Zk—lfk) 6
1 & 5 .
ko2 Zi 18
E(Z{{2Zk, X, Wi; b ] (5.8)
XiB + & . (5.9)

where 2

When ¢ = 0, fl is asymptotically distributed as a x% variate. More generally, we can test
the higher-order specification:

Z = o i+ X b+ e, ol<1 (5.10)

by using the score statistic EJ-:
n 7 2 2
i = (Zk:j-f-l Zlc—;"lc)
7 = n 72 22
: Zlc=j+1 Zi_i&
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which is also asymptotically x? under the null hypothesis ¢ = 0. For further intuition,
we can compute the sample correlation Dj of the generalized residual & with the lagged
generalized fitted values Z;_; — under the null hypothesis of no serial correlation in the
€x's, the theoretical value of this correlation is 0, hence the sample correlation will provide
one measure of the economic¢ impact of misspecification.

In Table 2b we report the first twelve autocorrelations of the generalized residuals {&}
for our sample of 11 stocks. Although they are generally small, recall that they converge
asymptotically to population values that need not equal the theoretical autocorrelations
of the disturbances {¢;}. Moreover, in the presence of lagged endogenous variables, they
are biased towards 0. In Table 2¢c, the correlations Py, 7 =1,...,12 which are not biased
towards O are reported, and they are also generally small.

Finally, Table 2d reports the score statistics éj, 7 =1,...,12. Since we have included
three lags of Z; in our specification of X}, it is no surprise that none of the score statistics
for 7 = 1, 2 and 3 are statistically significant at the 5 percent level. However, at lag 4,
the score statistics for all stocks except ABY, CUE and HNH are significant, indicating
the presence of some serial dependence not accounted for by our specification. But recall
that we have very large sample sizes so that virtually any point null hypothesis will be
rejected. With this in mind, the score statistics seem to indicate a reasonably good fit
for all but one stock: NAV. Its score statistic is significant at every lag, suggesting the
need for re-specification. Turning back to the cross-autocorrelations reported in Table 2c,
we see that NAV's residual ¢, has a —0.088 correlation with Z;_, the largest in Table
2¢ in absolute value. This suggests that adding Z;_4 as a regressor might improve the
specification.

There are of course a number of other specification tests that can check the robustness
of the ordered probit specification, and they should be performed with an eye towards
particular applications. For example, when studying the impact of information variables
on volatility, a more pressing concern would be the specification of the conditional variance
a;‘:. If some of parameters have important economic interpretations, their stability can be
checked by simple likelihood ratio tests on subsamples of the data. And if forecasting price
changes is of interest, an RZ-like measure can readily be constructed to measure how much
variability can be explained by the predictors. The ordered probit model is flexible enough
to accommodate virtually any specification test designed for simple regression models, but

has many obvious advantages over OLS as we shall see below.
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5.2. Endogeneity of At; and IBSg.

Our inferences in the preceding sections are based on the implicit assumption that the
explanatory variables X are all exogenous or predetermined with respect to the dependent
variable Z;. However, the variable At, is contemporaneous to Z; and deserves further
discussion.

Recall that Zj is the price change between trades at time t;_; and time t;. Since Aty
is simply ¢, —tx_1, it may well be that Aty and Z; are determined simultaneously, in which
case our parameter estimates are generally inconsistent. In fact, there are several plausible
arguments for the endogeneity of At;r23 One such argument turns on the tendency of floor
brokers to break up large trades into smaller ones, and time the executions carefully during
the course of the day or several days. By “working” the order, the floor broker can minimize
the price impact of his trades and obtain more favorable execution prices for his clients.
But by selecting the times between his trades based on current market conditions, which
include information also affecting price changes, the floor broker is creating endogenous
trade times.

However, any given sequence of trades in our dataset does not necessarily correspond
to consecutive transactions of any single individual [other than the specialist of course],
but is the result of many buyers and sellers interacting with the specialist. For example,
even if a floor broker were working a large order, in between his orders might be purchases
and sales from other floor brokers, market orders, and triggered limit orders. Therefore,
the Aty’s also reflect these trades, which are not necessarily information-motivated.

Another more intriguing reason that A?y may be exogenous is that floor brokers
have an economic incentive to minimize the correlation between Aty and virtually all
other exogenous and predetermined variables. To see this, suppose the floor broker timed
his trades in response to some exogenous variable also aﬂeﬁting price changes, call it
“weather.” Suppose that price changes tend to be positive in good weather and negative
in bad weather. Knowing this, the floor broker will wait until bad weather prevails before
buying, hence trade times and price changes are simultaneously determined by weather.
However, if other traders are also aware of these relations, they can garner information
about the floor broker’s intent by watching his trades and by recording the weather, and
trade against him successfully. To prevent this, the floor broker must trade to deliberately

minimize the correlation between his trade times and the weather. As such, the floor

33 See, for example, Admati and Pfleiderer (1988, 1089) and Easley and O'Hars (1990)
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broker has an economic incentive to reduce simultaneous equations bias! Moreover, this
argument applies to any other economic variable that can be used to jointly forecast trade

times and price changes. For these two reasons, we assume that Aty is exogenous.?4

6. Applications.

In applying our parameter estimates to specific issues of the market microstructure, we
must first consider how to interpret the ordered probit model from an economic perspective.
Since ordered probit may be viewed as a generalization of a linear regression model to
situations with a discrete dependent variable, interpreting its parameter estimates is much
like interpreting coefficients of a linear regression - the particular interpretation depends
critically on the underlying economic motivation for including and excluding particular
regressors. In a very few instances, theoretical paradigms might yield testable implications
in the form of linear regression equations, e.g., the CAPM’s security market line. However,
linear regression is more often used as a means of capturing and summarizing empirical
relations in the data that have not yet been derived from economic first principles.

In much the same way, ordered probit may be interpreted as a means of capturing and
summarizing relations among price changes and other economic variables such as volume.
Such relations have been derived from first principles only in the most simplistic and
stylized of contexts, under very specific and, therefore, often counterfactual assumptions
about agents’ preferences, information sets, alternative investment possibilities, sources of
uncertainty and their parametric form [usually Gaussian|, and the timing and allowable
volume and type of trades.?® Although such models do yield invaluable insights about the
economics of the market microstructure, they are too easily rejected by the data because of
the many restrictive assumptions needed to obtain easily interpretable closed-form results.

And yet the broader implications of such models can still be “tested” by checking for
simple relations among economic quantities, as we illustrate in Section 6.1. But some care
must be taken in interpreting such results, as in the case of a simple linear regression of
prices on quantities, which cannot be interpreted as an estimated demand curve without

imposing additional economic structure.

34 We have also explored some adj ts for the end ity of Aty along the lines of Hausman (1678) and Newey (1985),
and our preliminary estimates show that although exogeneity of Alg may be rejected at conventional llrmﬂcnnce ]eveh [recall
our sample sizes], the estimates do not change much once end is d for by an instr tal variabl
procedure.

25 Just a few examples of this growing literature are Amihud and Mendelson (1980) Admati and Pfleiderer (1988, 1989),
Easley and O'Hara (1987), Garman {1976), Glosten and Milgrom (1985), Ho and Stoll (1980, 1981), Kyle (1985}, Stoli (1989),
and Wang (1991).
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In particular, although the ordered probit model can shed light on how price changes
respond to specific economic variables, it cannot give us economic insights beyond whatever
structure we choose to impose a priori. For example, since we have placed no specific
theoretical structure on how prices are formed, our ordered probit estimates cannot yield
sharp implications for the impact of floor brokers “working” an order [executing a large
order in smaller bundles to obtain the best average price]. The ordered probit estimates
will reflect the combined actions and interactions of these floor brokers, the specialists,
and individual and institutional investors all trading among each other. Unless we are
estimating a fully articulated model of economic equilibrium that contains these kinds
of market participants, we cannot separate their individual impact in determining price
changes. For example, without additional structure we cannot answer the question: What
is the price impact of an order that is not “worked”?

However, if we were able to identify those large trades that did benefit from the
services of a floor broker, we could certainly compare and contrast their empirical price
dynamics with those of “un-worked” trades using the ordered probit model. And such
comparisons might provide additional guidelines and restrictions for developing new the-
ories of the market microstructure. Interpreted in this way, the ordered probit model
can be a valuable tool for uncovering empirical relations even in the absence of a highly
parametrized theory of the market microstructure. To illustrate this aspect of ordered
probit, in the following section we consider three specific applications of the parameter
estimates of Section 5: a test for order-flow dependence in price changes, a measure of

price impact, and a comparison of ordered probit to ordinary least squares.

8.1. Order-Flow Dependence.

Several recent theoretical papers in the market microstructure literature have shown
the importance of information in determining relations between prices and trade size. In
particular, Easley and O'Hara (1987) observe that because informed traders prefer to trade
larger amounts than uninformed liquidity traders, the size of a trade contains information
about who the trader is and, consequently, also contains information about the traders’
private information. As a result, prices in their model do not satisfy the Markov property
— the conditional distribution of next period’s price depends on the entire history of past
prices, i.e., on the order flow. That is, the sequence of price changes of 1/-1/1 will have

a different effect on the conditional mean than the sequence —1/1/1, even though both
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sequences yield the same total price change over the three trades.

One simple implication of such order-flow dependence is that the coefficients of the
three lags of Z,’s are not identical ~ if they are, then only the sum of the most recent three
price changes matters in determining the conditional mean, and not the order in which
those price changes occurred. Therefore, if we denote by B, the vector of coefficients
[ B2 B3 Bs J' of the lagged price changes, the null hypothesis H of order-low independence

is simply:

H: B2 = P3 = Ps-

This may be re-cast as a linear hypothesis for §p, namely A8, = 0 where:

A = ((1) ‘i _‘1’) (6.1)

Then under H, we obtain the following test statistic:
LA aVA) A8, 2 X3 (6.2

where Vp is the estimated asymptotic covariance matrix of ﬁp. The values of these test
statistics for the 11 stocks are: IBM=11,462.43, ABY=2.17, CUE=152.05, DOW=2,666.13,
FNB=661.01, FWC=446.01, HNH=18.62, NAV=1,184.48, RBK=2,708.89, §=3,854.62,
and T=3,428.92. The null hypothesis of order-flow independence may be rejected at all
the usual levels of significance for all but one stock, ABY, whose test statistic has a p-value
of 33.8 percent. But even in the case of ABY, the point estimates of the coefficients do
seem to differ considerably [ﬁa is half of ﬁg and ﬁ4 is about one-third of ﬁg], and our
failure to reject is due primarily to imprecise parameter estimates [note that ﬁa and ﬁ4 are
not statistically significant]. These findings support Easley and O’Hara’s observation that
information-based trading can lead to path-dependent price changes, so that the order
" flow [and the entire history of other variables] may affect the conditional distribution of

the next price change.
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6.2. Measuring Price Impact Per Unit Volume of Trade.

By price impact we mean the eflect of a current trade of a given size on the conditional
distribution of the subsequent price change. As such, the coefficients of the variables
T,\(Vk._j) IBS_j, 7 =1, 2, 3 measure the price impact of trades per unit of transformed
dollar volume. More precisely, recall that our definition of the volume variable is the Box-
Cox transformation of dollar volume divided by 100, hence the coefficient f11 for stock ¢ is
the contribution to the conditional mean X} that results from a trade of $100-(1 + AN
[since Ty ((1 + A;) 1/X) = 1]. Therefore, the impact of a trade of size $M at time k — 1 on
X8 is simply f11T3(M/100). Now the estimated B11’s in Table 2a are generally positive
and significant, with the most recent trade having the largest impact. But this is not the
impact we seek since XLﬂ is the conditional mean of the unobserved variable Z], not the
observed price change Z;. In particular, since XLﬂ is scaled by o} in (2.10), it is difficult
to make meaningful comparisons of the Bi1’s across stocks.

To obtain a measure of a trade’s price impact that we can compare across stocks,
we must translate the impact on XLﬂ into an impact on the conditional distribution
of the Z.'s, conditioned on the trade size and other quantities. Since we have already
established that the conditional distribution of price changes is order-flow dependent, we
must condition on a specific sequence of past price changes and trade sizes. We do this
by substituting our parameter estimates into (2.10), choosing particular values for the
explanatory variables X}, and computing the probabilities explicitly. In particular, for
each stock i we set Aty and ABg_; to their sample means for that stock and set the

remaining regressors to the following values:

Vi = —l—El)—o- - Median Dollar Volume for Stock ¢
1
Vg = 100" Median Dollar Volume for Stock ¢
SP500;_; = 0.001
SP500,_, = 0.001
SP500,.3 = 0.001
IBSp,_; =1
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IBS;_p
IBS;_3

Il
—

1t
—

Specifying values for these variables is equivalent to specifying the market conditions that
we wish to measure price impact under. These particular values correspond to a scenario
in which the most recent three trades are buys, where the sizes of the two earlier trades are
equal to the stock’s median dollar volume, and where the market has been rising during
the past 15 minutes. We then evaluate the probabilities in (2.10) for different values of
Vi—1, Zg-1s Zg—2, and Z;_3.

For brevity, we focus only on the means of these conditional distributions, which we
report in Tables 3 and 4 for the 11 stocks. The entries in Table 3 are computed under
the assumption that Zy_; = Z;_, = Z;_3 = +1, whereas those in Table 4 are computed
under the assumption that Zp_; = Z;_s = Z;_3 = 0. The first entry in the “IBM”
column in Table 3, —1.315, is the expected price change [in ticks] of the next transaction of
IBM following a $5,000 buy. The seemingly counterintuitive sign of this conditional mean
is the result of the “bid/ask bounce” — since the past three trades were assumed to be
buys, the parameter estimates reflect the empirical fact that the next transaction can be
a sell, in which case the transaction price change will often be negative since the price will
go from ask to bid. To account for this effect, we would need to include a contemporaneous
buy/sell indicator, IBSy, in X]’c and condition on this variable as well. But such a variable
is clearly endogenous to Z; and our parameter estimates would suffer from the familiar
simultaneous-equations biases.2®

However, we can “net out” the effect of the bid/ask spread by computing the change
in the conditional mean for trade sizes larger than our base case $5,000 buy. As long as the
bid/ask spread remains relatively stable, the change in the conditional mean induced by
larger trades will give us a measure of price impact that is independent of it. In particular,

the second entry in the “IBM” column of Table 3 shows that purchasing an additional

28]n fact, including the contemporaneous buy/sell indicator IBS; and contemporanwul transformed volume 75 (V;) would
yield a more natural measure of price impact, since such a ificati when tently estimated, can be used to quantify the
expected total cost of transacting a given volume. Unfortunately, there are few circumstances in which the contemporaneous
buy/sell indicator IBS; may be considered exogenous, since simple economic intuition suggests thst factors affecting price
changes must also enter the decision to buy or sell. Indeed, limit orders are explicit functions of the current price. Therefore,
if IBSg is to be included as an explanatory variable in X3, its endogeneity must be taken into account. Unfortunately, the
standard estimation techniques such as two-stage or three-stage least squares do not apply here because of our discrete dependent
variable. Moreover, techniques that allow for discrete dependent variables cannot be applied because the endogenous regressor
IBSg is also discrete. In principle, it may be possible to derive i ti s by idering a joint ordered probit model
for both varisblea, but this is beyond the scope of the current paper. For this reason, we restrict our specification to include
only lags of IBS; and V, .
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$5,000 of IBM [$10,000 total] increases the conditional mean by 0.060 ticks. However,
purchasing an additional $495,000 of IBM [$500,000 total] increases the conditional mean
by 0.371 ticks — as expected, trading a larger quantity always yields a larger price impact.

A comparison across columns in the upper panel of Table 3 shows that large trades
have higher price impact for CUE than for the other ten stocks. However, such a compari-
son ignores the fact that these stocks trade at different price levels, hence a price impact of
0.473 ticks for $500,000 of CUE may not be as large a percentage of price as a price impact
of 0.191 ticks for $500,000 of NAV. The lower panel of Table 3 reports the price impact as
percentages of the average of the high and low prices of each stock, and a trade of $500,000
does have a higher percentage price impact for NAV than for CUE - 0.434 percent versus
0.068 percent — even though its impact is considerably smaller when measured in ticks.
Interestingly, even as a percentage, price impact increases with dollar volume.

In Table 4 where price impact values have been computed under the alternative as-
sumption that Z;_y = Zy_g = Z;_3 = 0, the conditional means E[Z;] are closer to zero
for the $5,000 buy. For example, the expected price change of NAV is now —0.235 ticks,
whereas in Table 3a it was —1.670 ticks. Since we are now conditioning on a different
scenario, in which the three most recent transactions are buys that have no impact on
prices, the empirical estimates imply more probability in the right tail of the conditional
distribution of the subsequent price change.

That the conditional mean is still negative may signal the continued importance of
the bid/ask spread, nevertheless the price impact measure AE[Z;] does increase with
dollar volume. Moreover, these values are similar in magnitude to those in Table 3 - in
percentage terms the price impact is virtually the same in both tables for most of the
11 stocks. However, for NAV, RBK and T the percentage price impact measures differ
considerably between Tables 3 and 4, suggesting that price impact must be measured
security by security.

Of course, there is no reason to focus solely on the mean of the conditional distribution
of Z; since we have at our disposal an estimate of the entire distribution. Under the
scenarios of Tables 3 and 4 we have also computed the standard deviations of conditional
distributions, but since they are quite stable across the two scenarios we have omitted them
from the tables for the sake of brevity. However, to get a sense of their sensitivity to the
conditioning variables, we have plotted in Figure 3 the estimated conditional probabilities
for the 11 stocks under both scenarios. In each graph, the lightly cross-hatched bars

represent the conditional distribution for the sequence of three buys with a +1 tick price
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change at each trade, with a fixed trade size equal to the sample median volume for each.
The dark-shaded bars represent the conditional distribution for the same sequence of three
buys but with zero price change for each of the three transactions, also each for a fixed
trade size equal to the sample median. The conditional distribution is clearly shifted more
to the right under the first scenario than under the second, as the conditional means in
Tables 3 and 4 foreshadowed. However, the general shape of the distribution seems rather
well-preserved — changing the path of past price changes seems to translate the conditional
distribution without greatly altering the tail probabilities.

As a final summary of price impact for these securities, we plot “price response”
functions in Figure 4 for the 11 stocks, which gives the percentage price impact as a
function of dollar volume. The price response function reveals several features of the
market microstructure that are not as apparent from the numbers in Tables 3 and 4. For
example, market liquidity is often defined as the ability to trade any volume with little
or no price impact, hence in very liquid markets the price response function should be
constant at zero — a flat price response function implies that the percentage price impact
is not affected by the size of the trade. Therefore a visual measure of liquidity is the
curvature of the price response function; it is no surprise that IBM possesses the flattest
price response function.

More generally, the shape of the price response function measures whether there are
any economies or dis-economies of scale in trading. An upward-sloping curve implies dis-
economies of scale — larger dollar volume trades will yield higher percentage price impact.
As such, the slope may be one measure of “market depth.” For example, if the market
for a security is “deep,” this is usually taken to mean that large volumes may be traded
before much of a price impact is observed. In such cases, the price response function may
even be downward sloping. In Figure 4, all 11 stocks exhibit trading dis-economies of scale
since the price response functions are all upward-sloping but they increase at a decreasing
rate. Such dis-economies of scale suggest that it might pay to break up large trades into
sequences of smaller ones. However, recall that the values in Figure 4 are derived from
conditional distributions, conditioned on particular sequences of trades and prices. A
comparison of the price impact of, say, one $100,000 trade with two $50,000 trades can be
performed only if the conditional distributions are recomputed to account for the different
sequences implicit in the two alternatives. Since these two distinct sequences have not been
accounted for in Figure 4, the benefits of dividing large trades into smaller ones cannot

be inferred from it. Nevertheless, with the ML estimates in hand, such comparisons are

9.4 - 30— ' 10.91



trivial to calculate on a case-by-case basis.

Since price response functions are defined in terms of percentage price impact, cross-
stock comparisons of liquidity can also be made. Figure 4 shows that NAV, RBK and
FWC are considerably less liquid than the other stocks. This is partly due to the low price
ranges that the three stocks traded in during 1988 [see Table 1] — although RBK and S
have comparable price impacts when measured in ticks [see Table 3], RBK looks much
less liquid when impact is measured as a percentage of price since its share price traded
between $10.250 and $18.375 whereas S traded between $32.250 and $46.250 during 1988.
Not surprisingly, since their price ranges are among the highest in the sample, IBM, CUE

and DOW have the lowest price response functions.

6.3. Does Discreteness Matter?

Despite the elegance and generality with which the ordered probit framework accounts
for price discreteness, irregular trading intervals, and the influence of explanatory variables,
the complexity of the estimation procedure raises the question of whether these features
can be satisfactorily addressed by a simpler model. Since ordered probit may be viewed
as a generalization of the linear regression model to discrete dependent variables, it is not
surprising that the latter may share many of the advantages of the former, price discreteness
aside. However, linear regression is considerably easier to implement. Therefore, what is
gained by ordered probit? For example, suppose we ignore the fact that price changes 7,

are discrete, estimate the following simple regression model via ordinary least squares:
Zy = XiB + & (6.3)

and then compute the conditional distribution of Zj by rounding to the nearest eighth
thus:

]

o -
) = Pr(‘%—ESX,'CB+ek < %+E)' (6.4)

With suitable restrictions on the ¢;’s, the regression model (6.3) is known as the “linear

probability” model. The problems associated with applying ordinary least squares to (6.3)
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are well-known [see for example Judge et al. (1985, Ch. 18.2.1)], and numerous extensions
have been developed to account for such problems. However, implementing such extensions
is at least as involved as maximum likelihood estimation of the ordered probit model and
therefore the comparison is of less immediate interest. In spite of these problems, we may
still ask whether the OLS estimates of {6.3) and (6.4) yield an adequate “approximation” to
a more formal model of price discreteness. Specifically, how different are the probabilities
in (6.4) from those of the ordered probit model? If the differences are small, then the
linear regression model (6.3) may be an adequate substitute to ordered probit.

Under the assumption of i.i.d. Gaussian €;’s, we evaluate the conditional probabilities
in (6.4) using the OLS parameter estimates and the same values for the X's as in Section
6.2, and graph them and the corresponding ordered probit probabilities in Figure 5. These
graphs show that the two models can yield very different conditional probabilities. All of
the OLS conditional distributions are unimodal and have little weight in the tails, in sharp
contrast to the much more varied conditional distributions generated by ordered probit.
For example, the OLS conditional probabilities show no evidence of the non-monotonicity
that is readily apparent from the ordered probit probabilities of CUE, NAV and, to a
lesser extent, RBK. In particular, for NAV and RBK a price change of ~3 ticks is clearly
less probable than either —2 or ~4 ticks, and for CUE, a price change of —1 tick is less
probable than of —2 ticks.

Nevertheless for some of the 11 stocks, such as DOW, FNB and FWC, the OLS
and ordered probit probabilities are rather close. However, it is dangerous to conclude
from these matches that OLS is generally acceptable, since these conditional distributions
depend sensitively on the values of the conditioning variables. For example, we have
plotted these probabilities conditioned on much higher values for the conditional variance
”l%v and in these cases there are strong differences between the OLS and ordered probit
distributions for all 11 stocks.

That OLS and ordered probit can differ is not surprising given the extra degrees
of freedom that the ordered probit model has to fit the conditional distribution of price

27

changes.”’ Because the ordered probit partition boundaries {o;} are determined by the

data, the tail probabilities of the conditional distribution of price changes may be large

37In fact, several colleagues have pointed out to us that the comparison of OLS and ordered probit is not a fair one because
of these extra degrees of freedom {for example, we could have allowed the OLS residual variance to be heteroskedustic]. But
this misses the point of our comparison, which was not meant to be fair. Qur goal was to see whether s aimpler technique could
provide the same information that a more complex technique like ordered probit does. It should come a3 no surprise that OLS
can come cloge to fitting nonlinear phenomena if it is suitably extanded [in fact, ordered probit is one such extension]. But
such an extended OLS analysis is generally as complicated to perform as ordered probit, making the comparison less relevant
for our purposes.
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or small relative to the probabilities of more central observations, unlike the probabilities
implied by (6.3) which are dictated by the {Gaussian] distribution function of ¢x. Moreover,
it is unlikely that using another distribution function will provide as much flexibility as
ordered probit, for the simple reason that (6.3) constrains the state probabilities to be
linear in the Xj's [hence the term “linear probability model”}, whereas ordered probit
allows for nonlinear effects by letting the data determine the partition boundaries {a;}.
A more direct test of the difference between ordered probit and the simple “rounded”
linear regression model is to consider the special case of ordered probit in which all the
partition boundaries {o;} are equally spaced and fall on sixteenths. That is, let the
observed discrete price change Z; be related to the unobserved continuous random variable

Z; in the following manner:

—% or less if Z,:E(—oo,—§+1%)
z = i it 20 € (§f—f.b+%) §=-3,....3. (65)
4 or more if Z; € [§-15, )

This follows the spirit of Ball (1988), in which there exists a “virtual” or “rue” price
change Z; linked to the observed price change Z; by rounding Z} to the nearest multiple
of eighths of a dollar. A testable implication of (6.5) is that the partition boundaries {4}

are equally-spaced, i.e.,
ag—Qqp = @3—@p = '+ = Qpmoi— Qpm-2 (6.6)

where m is the number of states in our ordered probit model. We can re-write (6.6) as a

linear hypothesis for the (m — 1) x I-vector of a’s in the following way:

H: Ax = 0 (6.7)
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It

(6.8)

Since the asymptotic distribution of the maximum likelihood estimator & is given by:

VT(a-a) £ N(O,T) (6.9)

where T is the appropriate sub-matrix of the inverse of the information matrix correspond-
ing to the likelihood function (2.11), the “delta method” yields the asymptotic distribution
of the following statistic ¢/ under the null hypothesis H:

H: ¢ = TaA(AtA) 14a 2 x% ;. (6.10)

Table 5 reports the ¢’s for our sample of 11 stocks, and since the 1 percent critical values
of the x% and x% are 9.21 and 16.8 respectively, we can easily reject the null hypothesis H
for each of the 11 stocks. However, because our sample sizes are so large, large x2 statistics
need not signal important economic departures from the null hypothesis. Nevertheless the
point estimates of the a’s in Tables 2a,b show that they do differ in economically important
ways from the simpler rounding model (6.5). With CUE, for example, &3 — &3 is 2.652 but
&y — &g is 1.031. Such a difference captures the empirical fact that, conditioned on the
Xi's and Wp's, —1 tick changes are less frequent than —2 tick changes, even less frequent

than predicted by the simple linear probability model. Discreteness does matter.

7. An Extended Sample.

Although our sample of 11 securities contains several hundred thousand observations,

it is still only a small cross-section of the ISSM database which contains the transactions
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of over two thousand stocks. Although it would be impractical for us to estimate our
ordered probit model for each one, we do apply our specification to an extended sample of
100 securities chosen randomly, 20 from each of market-value deciles 6 through 10 {decile
10 contains companies with beginning-of-year market values in the top 10 percent of the
entire database], also with the restriction that none of these 100 engaged in stock splits or
stock dividends greater than or equal to 3:2.28 Table 6 lists the companies’ names, ticker
symbols, market values, and number of trades included in our final samples.

We did not select any securities from deciles 1 through 5 because many of those
securities are so thinly traded that the small sample sizes would not permit accurate
estimation of the ordered probit parameters. For example, even in deciles 6, 7 and 8,
containing companies ranging from $133 million to $946 million in market value, there
were still six companies for which the maximum likelihood estimation procedure did not
converge: MCI, NET, OCQ, NPR, SIX and SW. In all of these cases, the sample sizes
were relatively small, yielding ill-behaved and erratic likelihood functions.

Table 7 presents summary statistics for this sample of 100 securities broken down by
deciles. As expected, the larger stocks tend to have higher prices, lower time-between-
trades, higher bid/ask spreads [in ticks], and larger median dollar volume per trade. Note
that the statistics for Ty (V)-IBSy implicitly include estimates X of the Box-Cox parameter
which differ across stocks. Also, although the mean and standard deviation of T (V)-IBS;
for decile 6 differ dramatically from those of the other deciles, these differences are driven
solely by the outlier XTR. When this security is dropped from decile 6, the mean and
standard deviation of T)(V}) - IBS, become —0.0244 and 0.3915 respectively, much more
in line with the values of the other deciles.

In Table 8 we summarize the price impact measures across deciles, where we now
define price impact to be the increase in the conditional expected price change as dollar
volume increases from a base case of $1,000 to either the median dollar volume for each
individual stock [the first panel of Table 8] or a dollar volume of $100,000 [the second
panel]. The first two rows of both panels report decile means and standard deviations
of the absolute price impact {measured in ticks], whereas the second two rows of both
panels report decile means and standard deviations of percentage price impact {measurzd
as percentages of the mean of the high and low prices of each stock]. For each stock t, we

set Aty and ABg_; to their sample means for that stock and condition on the following

28 We also discarded [without replacement] randomly chosen stocks that were obviously mutual funds, replacing them with
new random draws.
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values for the other regressors:

Vio = 106 Median Dollar Volume for Stock ¢
Vg = ﬁ - Median Dollar Volume for Stock ¢
SP500;_; = 0.001
SP500;_, = 0.001

SP500,_3 = 0.001

Zpy = 1
Zpp = 1
Zrg = 1

IBS;.; = 1

IBS;_, = 1

IBS; 3 = 1

so that we are assuming the three most recent trades are buyer-initiated, accompanied by
price increases of 1 tick each, and the sizes of the two earlier trades are equal to the median
dollar volume of the particular stock in question.

From Table 8 we see that conditional on a dollar volume equal to the median for
the most recent trade, larger capitalization stocks tend to exhibit larger absolute price
impact, no doubt due to their higher prices and their larger median dollar volumes per
trade. However, as percentages of the average of their high and low prices, the price impact
across deciles is relatively constant as shown by the third row in the first panel of Table
8: the average price impact for a median trade in decile 6 is 0.0612 percent, compared to
0.0523 percent in decile 10. When conditioning on a dollar volume of $100,000 however, the
results are quite different: the average absolute price impact is similar across deciles, but

the average relative price impact is considerably smaller in decile 10 [0.0778 percent] than
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in decile 6 [0.2250 percent]. Not surprisingly, a fixed $100,000 trade will have a greater
percentage price impact on smaller capitalization, less liquid stocks than on larger ones.

Further insights on how price impact varies cross-sectionally can be gained from the
cross-sectional regressions in Table 9, where the four price impact measures and the Box-
Cox parameter estimates are each regressed on the following four variables: market value,
the initial price level, median dollar volume, and median time-between trades. Entries in
the first row show that the Box-Cox parameters are inversely related to all four variables,
though none of the coefficient estimates are statistically significant and the adjusted R?
is negative, a symptom of the imprecision with which the A;’s are estimated. But the two
percentage price impact regressions seem to have higher explanatory power, with adjusted
R2's of 37.6 and 22.1 percent, respectively. These two regressions have identical sign
patterns, implying that percentage price impact is larger for smaller stocks, lower priced
stocks, higher volume stocks, and stocks that trade less frequently.

In Table 10, we report Spearman rank correlations between the dependent and in-
dependent variables of Table 9, which are nonparametric measures of association and are
asymptotically normal with mean 0 and variance 1/(n — 1) under the null hypothesis of
pairwise independence [see, for example, Randles and Wolfe (1979)]. Since n = 94, the
two standard error confidence interval about O for each of the correlation coefficients is
[ —0.207 , 0.207 ]. The sign patterns are much the same in Table 10 as in Table 9, despite
the fact that the Spearman rank correlations are not partial correlation coefficients.

Of course, such cross-sectional regressions and rank correlations serve only as informal
summaries of the data since they are not formally linked to any explicit theories of how
price impact should vary across stocks. Nevertheless they are consistent with our earlier
findings from the 11 stocks, suggesting that those results are not specific to the behavior of
a few possibly peculiar stocks, but may be evidence of a more general and stable mechanism

for transaction prices.

8. Conclusion.

Using 1988 transactions data from the ISSM database, we find that the sequence of
trades does affect the conditional distribution for price changes, and the effect is greater for
larger capitalization and more actively traded securities. Trade size is also an important
factor in the conditional distribution of price changes, with larger trades creating more

price pressure, but in a nonlinear fashion. The price impact of a trade depends critically

9.4 - 37 - 10.91



on the sequence of past price changes and order flows [buy/sell/buy versus sell/buy /buy].
The ordered probit framework allows us to compare the price impact of trading over many
different market scenarios, such as trading “with” versus “against” the market, trading in
“up and down” markets, etc. Finally, we show that discreteness does matter, in the sense
that the simpler linear regression analysis of price changes cannot capture all the features
of transaction price changes evident in the ordered probit estimates, such as the clustering
of price changes on even eighths.

With these simple applications, we hope to have shown that the ordered probit model
is a flexible and powerful tool for investigating the dynamic behavior of transaction prices.
Much like the linear regression model for continuous-valued data, the ordered probit model
can capture and summarize complex relations between discrete-valued and continuous-
valued data. Indeed, even in the simple applications we considered here, we suffered from
an embarrassment of riches in that there were many other empirical implications of our
ordered probit estimates that we did not have space to report. For example, we compared
the price impact of only one or two sequences of order flows, price history, and market
return — there are many other combinations of market conditions, some that might yield
considerably different findings. By choosing other scenarios, a deeper understanding of
how transaction prices react to changing market conditions can be obtained.

Although we selected a wide range of regressors to illustrate the flexibility of ordered
probit, in practice the specific application will dictate which regressors to include. If, for
example, one is interested in testing the implications of Admati and Pfleiderer’s (1988)
model of intra-day patterns in price and volume, time-of-day indicators in the conditional
mean and variance could be added. If one is interested in measuring how liquidity and
price impact varies across markets, an exchange indicator would be appropriate. For intra-
day event studies, “event” indicators in both the conditional mean and variance are the
natural regressors, and in such cases the generalized residuals we calculated as diagnostics
can also be used to construct cumulative average [generalized] residuals.

In our simple applications, we have only hinted at the kinds of insights that ordered
probit can yield; the possibilities expand exponentially as we consider the many ways
our basic specification can be changed to accommodate the growing number of highly
parametrized and less stylized theories about the market microstructure. We expect to see

many other applications in the near future.
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Table 3

Price impact of trades as measured by the change in conditional mean of Zj, or AE[Z}],
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being +1 tick
each, for International Business Machines Corporation (IBM - 206,794 trades), Abitibi-
Price Incorporated (ABY — 1,145 trades), Quantum Chemical Corporation (CUE - 26,927
trades), Dow Chemical Company (DOW - 81,890 trades}, and First Chicago Corporation
(FNB - 17,783 trades), and Foster Wheeler Corporation (FWC ~ 18,199 trades), for the
sample period from 4 January 1988 to 30 December 1988. Percentage price impact is
computed as a percentage of the average of the high and low prices.

$ Volume IBM ABY CUE DOw FNB FWC
(Ticks)
ElZi): 5000 | -1315 -0350 | —0.629 —L117 -0.790 -0.956
AE[Z): 10000 | 0.060 0.027 0.072 0.057 0.037 0.025
AE[Zk]: 20,000 0.118 0.053 0.144 0.114 0.073 0.054
AE|Z): 50,000 0.193 0.088 0.239 0.188 0.121 0.096
AE|Z]: 100,000 | 0.248 0.113 0.310 0.242 0.157 0.133
AE[Z]: 250,000 0.319 0.147 0.403 0.313 0.203 0.189
AE|Z]: 500,000 0.371 0.173 0.473 0.366 0.238 0.236
(%. of Price)
E{Z:): 5000 | -0.141 -0235 | -0.090 | -0.164 -0.363 | -0.831
AE[Zk]: 10,000 0.006 0.018 0.010 0.008 0.017 0.022
AE[Z;): 20,000 0.013 0.036 0.021 0.017 0.034 0.047
AE[Zy): 50,000 0.021 0.059 0.034 0.027 0.056 0.084
AE[Z]: 100,000 0.027 0.076 0.045 0.036 0.072 0.116
AE[Z]: 250,000 | 0.034 0.099 0.058 0.046 0.093 0.164
AE[Z}: 500,000 | 0.040 0.116 0.068 0.054 0.109 0.205
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Table 3 (Continued)

Price impact of trades as measured by the change in conditional mean of Z;, or AE[Z],
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being +1
tick each, for Handy and Harman Company (HNH ~ 3,174 trades), Navistar International
Corporation (NAV — 96,127 trades), Reebok International Limited (RBK - 62,778 trades),
Sears Roebuck and Company (S - 94,127 trades), and American Telephone and Telegraph
Company (T - 180,726 trades), for the sample period from 4 January 1988 to 30 December
1988. Percentage price impact is computed as a percentage of the average of the high and

low prices.
$ Volume HNH NAV RBK S T

(Ticks)
E[Zk]: 5,000 -0.621 -1.670 ~1.459 -1.492 -1.604
AE[Z;,]: 10,000 0.019 0.017 0.035 0.030> 0.022
AE[Z;C]: 20,000 0.041 0.037 0.075 0.063 0.046
AE[Z;C]: 50,000 0.074 0.070 0.137 0.109 0.082
AE[Zk]: 100,000 0.103 0.100 0.192 0.146 0.113
AE[Z;C]: 250,000 0.148 0.148 0.276 0.200 0.159
AE[Z;C]: 500,000 0.188 0.191 0.350 0.243 0.197
(% of Price)
E[Zk]: 5,000 -0.474 -3.796 -1.275 -0475 -0.736
AE[Z;C]: 10,000 0.015 0.038 0.030 0.010 0.010
AE[Z;C]: 20,000 0.031 0.084 0.065 0.020 0.021
AE[Z}C]: 50,000 0.057 0.158 0.120 0.035 0.038
AE[Z;C]: 100,000 0.079 0.227 0.168 0.047 0.052
AE[Z;C]: 250,000 0.113 0.336 0.241 0.064 0.073
AE[Z;C]: 500,000 0.143 0.434 0.305 0.077 0.090
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Table 4

Price impact of trades as measured by the change in conditional mean of Zj, or AE[Z}]},
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being 0 tick
each, for International Business Machines Corporation (IBM - 206,794 trades), Abitibi-
Price Incorporated (ABY ~ 1,145 trades), Quantum Chemical Corporation (CUE - 26,927
trades), Dow Chemical Company (DOW - 81,890 trades), and First Chicago Corporation
(FNB - 17,783 trades), and Foster Wheeler Corporation (FWC - 18,199 trades), for the
sample period from 4 January 1988 to 30 December 1988. Percentage price impact is
computed as a percentage of the average of the high and low prices. '

$ Volume 1BM ABY CUE DOW FNB FWC
(Ticks)
E{Z:: 5000 | -0328 -0.210 -0.460 -0.345 -0.160 -0.214
AE[Z;): 10,000 | 0.037 0.026 0.071 0.047 0.030 0.021
AE[Z;]: 20,000 | 0.073 0.051 0.142 0.094 0.061 0.045
AE[Z;]: 50000 | 0.120 0.084 0.236 0.154 0.101 0.080
AE{Z]: 100,000 | 0.155 0.109 0.306 0.200 0.131 0.111
AE|[Z;]: 250,000 | 0.200 0.142 0.398 0.260 0.170 0.156
AE[Z;]: 500,000 | 0.234 0.167 0.468 0.305 0.201 0.195

(% of Price)

E[Zy: 5000 | -0.035 -0.141 -0.066 -0.051 -0.073 -0.186
AE[Z.]: 10,000 | 0.004 0.017 0.010 0.007 0.014 0.018
AE[Z]: 20,000 | 0.008 0.034 0.020 0.014 0.028 0.039
AE[Z;]: 50,000 | 0.013 0.057 0.034 0.023 0.046 0.070
AE[Z]: 100,000 | o0.017 0.074 0.044 0.029 0.060 0.096
AE[Z]: 250,000 | 0.021 0.096 0.057 0.038 0.078 0.136
AE[Z.]: 500,000 | 0.025 0.112 0.067 0.045 0.092 0.169
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Table 4 (Continued)

Price impact of trades as measured by the change in conditional mean of Zi, or AE|Z;],
when trade sizes are increased incrementally above the base case of a $5,000 trade, These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being 0 tick
each, for Handy and Harman Company (HNH - 3,174 trades), Navistar International
Corporation (NAV — 96,127 trades), Reebok International Limited (RBK — 62,778 trades),
Sears Roebuck and Company (S — 94,127 trades), and American Telephone and Telegraph
Company (T - 180,726 trades), for the sample period from 4 January 1988 to 30 December
1988. Percentage price impact is computed as a percentage of the average of the high and
low prices.

$ Volume HNH NAV RBK S T

(Ticks)

E[Z): 5,000 -0.230 -0.235 -0.208 -0.206 —0.294
AE[{Z]: 10,000 0.018 0.007 0.019 0.019 0.013
AE[Z}: 20,000 0.038 0.016 0.042 0.040 0.028
AE|Z): 50,000 0.070 0.031 0.077 0.070 0.050
AE[Z]: 100,000 0.098 0.044 0.110 0.094 0.069
AE|Zg): 250,000 0.140 0.066 0.161 0.129 0.098

AE[Z]: 500,000 0.177 0.087 0.207 0.159 0.123

(% of Price)

E[Z): 5,000 -0.175 -0.534 -0.182 -0.066 -0.135
AE[Z;): 10,000 0.014 0.017 0.017 0.006 0.006
AE[Z]: 20,000 0.029 0.037 0.036 0.013 0.013
AE[Z]: 50,000 0.053 0.070 0.067 0.022 0.023
AE|Zg]: 100,000 0.074 0.100 0.096 0.030 0.032
AE[Z;): 250,000 0.107 0.151 0.140 0.041 0.045
AE|Z;]: 500,000 0.135 0.197 0.181 0.051 0.056

9.4.4 10.22.91



Table 5

Tests of equally spaced partition boundaries {¢;} from the ordered probit model for Inter-
national Business Machines Corporation (IBM - 206,794 trades), Abitibi-Price Incorpo-
rated (ABY - 1,145 trades), Quantum Chemical Corporation (CUE - 26,927 trades), Dow
Chemical Company (DOW - 81,890 trades), First Chicago Corporation (FNB - 17,783
trades), Foster Wheeler Corporation (FWC - 18,199 trades), Handy and Harman Com-
pany (HNH - 3,174 trades), Navistar International Corporation (NAV — 96,127 trades),
Reebok International Limited (RBK - 62,778 trades), Sears Roebuck and Company (S —
94,127 trades), and American Telephone and Telegraph Company (T - 180,726 trades),
for the sample period from 4 January 1988 to 30 December 1988. Entries in the column
labelled “m” denote the number of states in the ordered probit specification. The 5 and 1
percent critical values of a x% random variate are 5.99 and 9.21, respectively. The 5 and 1
percent critical values of a X(z-; random variate are 12.6 and 16.8, respectively.

Sample
. a 2
Stock Size ¥~ Xp3 m

IBM 206,794 15,682.35 | 9
ABY 1,145 1194 | 5
CUE 26,927 36641 | 9
DOW 81,890 2,057.79 | 9
FNB 17,783 537.42 | 9
FWC 18,199 188.28 | 5
HNH 3,174 3059 | 5
NAV 96,127 998.13 | 9
RBK 62,778 2,13816 | 9
S 94,127 2,487.80 | 9
T 180,726 196839 | ¢
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Table 8

Names, ticker symbols, market values, and sample sizes over the sample period from 4 January 1988 to 30 December 1888 for
100 randomly selected stocks for which the ordered probit model was estimated. The selection procedurs involved ranking all

companies on the CRSP daily returns file by beginning-of-year market value and randomly choosing 20 jes in each of

deciles 6 through 10, discarding companiee which are clearly identified as equity mutual funds. Asterisks next to ticker symbolis

indicate those securities for which the i likelihood imation p a did not converge.
Ticker Company Name Market Value Sample
Symbol x$1,000 Size

Decile €
ACP AMERICAN REAL ESTATE PARTNERS L 217,181 2,304
BCL BIOCRAFT LABS INC 230,838 7,092
CuL CULLINET SOFTWARE INC 189,680 18,712
DCYy D C N Y CORP 149,073 1,567
FCH FIRST CAPITAL HLDGS CORP 159,088 8,899
GYK GIANT YELLOWKNIFE MINES LTD 137,387 1,594
ITX INTERNATIONAL TECHNOLOGY CORP 161,960 14,875
LOM LOMAS & NETTLETON MTG INVS 219,450 5471
MCI* MASSMUTUAL CORPORATE INVS INC 159,390 727
NET* NORTH EUROPEAN OIL RTY TR 134,848 708
NPK NATIONAL PRESTO INDS INC 193,489 1,222
ocQ* ONEIDA LTD 133,665 1,843
OIL TRITON ENERGY CORP 195,818 3,208
siI SMITH INTERNATIONAL INC 148,779 5,435
SKY SKYLINE CORP 145,821 5,804
SPF STANDARD PACIFIC CORPDE L P 215,360 11,530
TOL TOLL BROTHERS INC 167,463 5,619
wIC WICORINC 228,044 1,331
Wl WATKINS JOHNSON CO 192,648 1,647
XTR XTRA CORP 168,465 1,823
Decile 7

CER CILCORF INC 400,138 1,756
CKL CLARK EQUIPMENT CO 408,509 11,680
CTP CENTRAL MAINE POWER CO 353,648 5,326
DEI DIVERSIFIED ENERGIES INC DE 395,505 8,411
FDO FAMILY DOLLAR STORES INC 286,533 8,518
FRM FIRST MISSISSIPP1 CORP 306,931 8,711
FUR FIRST UNION REAL EST EQ&MG INVTS 829,041 3,213
KOG KOGER PROPERTIES INC 265,815 3,508
KWD KELLWOOD COMPANY 236,271 4,138
LOG RAYONIER TIMBERLANDS L P 302,600 2,670
MGM M G M U A COMMUNICATIONS 312,669 10,376
NPR* NEW PLAN RLTY TR 376,332 1,983
OKE ONEOK INC 234,668 12,788
SFA SCIENTIFIC ATLANTA INC 268,801 16,853
SIX* MOTEL 6 LP 396,768 2,020
SIM SMUCKER J M CO 373,881 762
SPW S P X CORP 366,163 7,304
SRR STRIDE RITE CORFP 245,213 5,767
TGR TIGER INTERNATIONAL INC 352,968 21,612
TRN TRINITY INDUSTRIES INC 467,366 18,219
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Table 8 {Continued)

Ticker Company Name Market Value Semple
Symbol x$1,000 Site
Decile 8
APS AMERICAN PRESIDENT COS LTD 617,376 21,584
CAW CAESARS WORLD INC 525,828 17,900
CBT CABOT CORP 807,905 5,277
DDS DILLARD DEPARTMENT STORES INC 758,327 7.267
ERB ERBAMONT NV 796,658 8,007
Fs1 FLIGHT SAFETY INTL INC 833,456 4,562
FVB FIRST VIRGINIA BANKS INC 496,325 2,637
GLK GREAT LAKES CHEM CORP 938,358 €,982
HD HOME DEPOT INC 921,506 16,025
HPH HARNISCHFEGER INDUSTRIES INC 469,021 7,673
KU KENTUCKY UTILITIES CO 676,907 8,116
LAC LAC MINERALS LTD NEW 921,456 4,900
NYP NEVADA POWER CO 504,785 8,159
ODR OCEAN DRILLING & EXPL CO 849,965 4,694
PA PRIMERICA CORP NEW 046,507 35,390
PST PETRIE STORES CORP 730,688 12,291
REN ROLLINS ENVIRONMENTAL SVCS INC 825,353 44,272
sw ot STONE & WEBSTER INC 499,568 847
TW T W SERVICES INC 691,852 16,863
USR UNITED STATES SHOE CORP 618,686 24,991
Decile &
ABS ALBERTSONS INC 1,895,456 14,171
BDX BECTON DICKINSON & CO 2,029,188 17,499
cCL CARNIVAL CRUISE LINES INC 1,284,152 7,111
CYR CRAY RESEARCH INC 2,180,374 26,459
FFC FUND AMERICAN COS INC 1,808,525 6,884
FG USF & G CORP 2,163,821 B6,848
GOU GULF CANADA RESOURCES LIMITED 1,866,365 2,071
GWF GREAT WESTERN FINANCIAL CORP 1,932,765 20,705
MEA MEAD CORP 2,181,043 35,796
MEG MEDIA GENERAL INC 1,002,058 6,304
MLL MACMILLAN INC 1,387,400 22,083
NSP NORTHERN STATES POWER CO MN 1,852,777 14,482
PDQ PRIME MOTOR INNS INC 1,006,803 11,470
PKN PERKIN ELMER CORP 1,088,400 17,181
RYC RAYCHEM CORP 1,597,194 16,680
SNG SOUTHERN NEW ENGLAND TELECOM 1,397,070 4,662
SPS SOUTHWESTERN PUBLIC SERVICE CO 966,688 10,640
TET TEXAS EASTERN CORP 1,146,380 29,428
WAG WALGREEN COMPANY 1,891,310 23,684
WAN WANG LABS INC 1,801,475 36,607
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Table 6 (Continued)

Ticker Company Name Market Value Sample
Symbol x$1,000 Size
Decile 10
AN AMOCO CORP 1,746,076 39,906
BN BORDEN INC 3,671,366 22,630
BNI BURLINGTON NORTHERN INC 4,844,268 33,224
BT BANKERS TRUST NY CORP 2,426,309 18,502
CAT CATERPILLAR INC DE 6,137,566 36,379
CBS C B SINC 8,700,010 18,630
CCB CAPITAL CITIES ABC INC 5,581,410 14,585
CPC C P C INTERNATIONAL INC 3,317,679 27,862
DUK DUKE POWER CO 4,341,008 17,918
GCI GANNETT INC 6,335,081 33,512
GIs GENERAL MILLS INC 4,378,513 26,786
MAS MASCO CORP 2,867,259 25,746
MHP MCGRAW HILL INC 2,438,169 36,047
NT NORTHERN TELECOM LTD 4,049,909 10,128
NYN NYNEX CORP 3,101,639 40,514
PCG PACIFIC GAS & ELEC CO 6,982,064 93,081
PFE PFIZER INC 7,608,452 68,035
RAL RALSTON PURINA CO 4,517,751 24,110
SGP SCHERING PLOUGH CORP 6,438,652 34,161
ucce UNION CAMP CORP 2,672,966 14,080
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Table 7

Summary statistics for the sample of 100 randomly chosen securities for the sample period from 4 January 1688 to 30 December
1088. Note: market values are computed at the beginning of the year.

Statistic Decile Decile Decile Decile Decile
[ 7 8 ] 10

Low Price ($)

Decile Mean 13.94 17.85 21.47 28.02 59.90

Decile Std, Dev. 9.14 9.75 12.47 12.95 62.27
High Price ($)

Decile Mean 21.11 27.25 33.61 4139 77.56

Decile Std. Dev. 11.42 12.16 14.85 21.20 76.93
Market Value x $10°

Decile Mean 0.177 0.333 0.726 1.602 5.553

Decile Std. Dev. 0.033 0.065 0.167 0.414 3.737
% Prices > Midquote

Decile Mean 40.68 4147 41.77 42.53 43.55

Decile Std. Dev. 6.36 8.37 3.98 371 8.19
% Prices = Midquote

Decile Mean 17.18 19.08 17.91 18.47 16.85

Decile Std. Dev. 3.99 3.67 4.51 8.93 2.97
% Prices < Midquote

Decile Mean 42.18 89.45 40.32 89.00 39.60

Decile Std. Dev. 4,08 4.77 4.30 3.80 2.15
Mean(Z,)

Decile Mean 0.0085 0.0038 0.0058 -0.0006 0.0015 .

Decile Std. Dev. 0.0200 0.0115 0.0103 0.0054 0.0065
Mean(At,)

Decile Mean 1,08591 873.66 629.35 430.74 22249

Decile S5td. Dev. §12.59 489.01 43179 330.26 109.14
Mean(AB;)

Decile Mean 2.1%47 2.3316 2.4926 2.6583 2.9938

Decile Std. Dev. 0.5396 0.4657 0.3989 0.6514 1.6637
Mean(S&P500; )

Decile Mean —0.0048 -0.0037 -0.0026 -0.0020 -0.0009

Decile Std. Dev. 0.0080 0.0035 0.0025 0.0019 0.0006
Mean(IBS;)

Decile Mean —0.0150 0.0202 0.0145 0.0353 0.0395

Decile Std. Dev. 0.0587 0.1064 0.0695 0.0640 0.0455

Mean(Ta (V) - IBS;)
Decile Mean 3.9822 0.1969 0.0782 0.2287 0.3017
Decile Std. Dev. 17.9222 0.6193 0.3230 0.3661 0.2504

Median Trading Volume (8)

Decile Mean 6,002 7,345 12,182 16,483 28,310

Decile Std. Dev, 2,728 3,136 4,985 10,074 13,474
Mean &

Decile Mean 0.1347 0.0710 0.0127 0.0230 0.0252

Decile Std. Dev. 0.257¢9 0.1517 0.0451 0.0679 0.1050
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Table 8

Price impact measures, defined as the increase in conditional expected price change given
by the ordered probit model as the volume of the most recent trade is increased from a
base case of $1,000 to either the median level of volume for each security or a level of
$100,000, for the sample of 100 randomly chosen securities for the sample period from 4
January 1988 to 30 December 1988. Percentage price impact measures are percentages of
the average of the high and low prices of each security.

Price Impact Decile Decile Decile Decile Decile
Measure 6 7 8 9 10

In Ticks, Vg3 = Median

Decile Mean 0.0778 0.0991 0.1342 0.1420 0.2020

Decile Std. Dev. 0.0771 0.0608 0.0358 0.0532 0.0676
In %, Vi_1 = Median

Decile Mean 0.0612 0.0600 0.0703 0.0583 0.0523

Decile Std. Dev. 0.0336 0.0286 0.0207 0.0229 0.0262

In Ticks, Vi_; = $100,000
Decile Mean 0.2240 0.2611 0.2620 0.2521 0.2849
Decile Std. Dev. 0.1564 0.1174 0.0499 0.0617 0.0804

In %, Vi_y = $100,000
Decile Mean 0.2250 | 0.1660 | 0.1442 | 0.1148 | 0.0778
Decile Std. Dev. 0.1602 | 0.0745 | 0.0570 | 0.0633 | 0.0383
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Table 9

Cross-sectional regressions for Box-Cox parameters i‘- and price impact measures {or the
sample of 100 randomly chosen securities, of which 94 are included in the regression since
the maximum likelihood estimation procedure did not converge for the omitted 6, for the
sample period from 4 January 1988 to 30 December 1988. All the coefficents have been
multiplied by a factor of 1,000. Z-statistics are given in parentheses, each of which is
asymptotically distributed as N(0,1) under the null hypothesis that the corresponding
coefficient is zero.

Dependent Constant Market Initial Median Median 7
Variable Value Price Volume Aty
ji 118.74 -2.08 -7.42 -8.39 -2.55 -0.008
(2.11) (-0.31) (-1.35) (-1.04) (-0.33)
Price Impact (Ticks) 93.82 9.86 1.76 5.25 -2.31 0.184
Vi—1 = Median (3.72) (321 |- (0.711) {1.45) {-0.66)
Price Impact (%) 36.07 -1.19 -2.31 6.66 0.67 0.376
Vi_; = Median (4.46) (-1.23) (-2.92) (5.72) {0.60)
Price Impact (Ticks) 265.34 8.07 -5.64 -3.59 3.25 0.003
V—; = $100,000 (7.03) (1.79) (-1.52) (-0.66) (0.62)
Price Impact (%) 138.52 -8.53 -9.61 8.53 1.74 0.221
V-3 = $100, 000 (4.17) (-2.15) (-2.95) (1.78) (0.38)
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Table 10

Spearman rank correlations of the Box-Cox parameters 5“- and price impact measures with
market value, initial price, median volume, and median trade times for the sample of 100
randomly chosen securities, of which 94 are used since the maximum likelihood estimation
procedure did not converge for the omitted 6, over the sample period from 4 January 1988
to 30 December 1988. Under the null hypothesis of independence, each of the correlation
coefficients are asymptotically normal with mean 0 and variance 1/(n — 1), hence the two
standard error confidence interval for these correlation coefficients is [ —0.207 , 0.207 ).

Market Initial Median Median
Value Price Volume At
by -0.260 | -0.503 -0.032 —-0.015
Price Impact (Ticks) 0.604 0.678 0.282 -0.360
Vlc—l = Median
Price Impact (%) -0.156 | -0.447 0.486 0.082
Vi_1 = Median
Price Impact (Ticks) 0.273 0.329 -0.020 —0.089
V1 = $100,000
Price Impact (%) -0.547 -0.815 0.088 0.316
Vi1 = $100,000
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Figure 1.

Illustration of ordered probit probabilities p; which are determined by the a;’s and the
distribution of Z;. In particular, p; = Prob(Z = ;) = Prob(a;_; < Z* < &), i =1,...,9
where, for notational simplicity, we define ag = ~o0 and ag = +o0.
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Figure 4.

Percentage price impact as a function of dollar volume computed from ordered probit probabilities, condi-
tional on the three most recent trades being buyer-initiated, and the three most recent price changes being +1
tick each, for IBM (206,794 trades), ABY (1,145 trades), CUE (26,927 trades), DOW (81,890 trades), FNB
(17,783 trades), FWC (18,199 trades)}, HNH (3,174 trades}, NAV (96,127 trades), RBK (62,778 trades),
S (94,127 trades}, T (180,726 trades}, for the sample period from 4 January 1988 to S0 December 1988.
Percentage price impact is measured as a percentage of the average of the high and low prices for each stock.
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