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ABSTRACT

A common approach to the management of endowment is to treat
it as if it were the only asset of the university. This approach
leads to prescriptions for optimal investment and expenditure

policies that are essentially the same across universities.

Indeed, the resulting optimal portfolio strategies are focused

almost exclusively on providing an efficient tradeoff between

risk and expected return, a generic objective that is just as

applicable to individuals and non-academic institutions as it is

to universities. In contrast, the model developed here provides

intertemporally optimal investment and expenditure rules for

endowment that take account of the university's overall

objectives and total resources. The explicit inclusion of other

university assets in addition to endowment leads to optimal

endowment portfolios that are not efficient in the sense of the

risk-return tradeoff. Moreover, two universities with similar

objectives and endowments can have very different optimal

portfolios and expenditure patterns if their non-endowment

sources of cash flow are different. The model also takes account

of the uncertainty surrounding the costs of the various

activities such as education, research, and knowledge storage

that define the purpose of the university. As a result, the

analysis reveals a perhaps somewhat latent role for endowment:

namely, hedging against unanticipated changes in those costs.
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OPTIMAL INVESTMENT STRATEGIES FOR UNIVERSITY ENDOWMENT FUNDS

Robert C. Merlon

1. Introduction

To examine the question of optimal investment strategies for university

endowment funds, one must, of course, address the issue of the objective

function by which optimality is to be measured. My impression is that

practicing money managers essentially side-step the issue by focusing on

generically efficient risk-return objective functions for investment which are

just as applicable to individuals or non-academic institutions as they are to

universities. Perhaps the most conon objective of this type is mean-variance

efficiency for the portfolio's allocations. Black (1976) provides a deeper

approach along those lines that takes account of tax and other institutional

factors including certain types of non-endowment assets held by institutions.

The Ford Foundation study of 1969 gave some early practical (if ex-post.

somewhat untimely) guidance for investment allocations.

Much of the academic literature (which is not copious) seems to focus on

appropriate spending policy for endowment, taking as given that the objective

for endowment is to provide a perpetual level flow of expected real income

(cf. Eisner (1974), Ljtvack, Malkiel, and Quandt (1974), Nichols (1974). and

Tobin (1974)). Ennjs and Williamson (1976) present a history of spending

patterns by universities and a discussion of various spending rules adopted.

They also discuss the interaction between spending and investment policies.
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Fama and Jensen (1985) discuss the role of non-profit institutions as part of

a general analysis of organizational forms and investment objective functions,

but they do not address the functions of endowment in such institutions.

In contrast, Hansmann (1990) provides a focused and comprehensive review

of the various possible roles for a university's endowment. Despite the broad

coverage of possibilities ranging from tax incentives to promoting intergener-

ational equity, he is unable to find compelling empirical evidence to support

any particular combination of objectives. Indeed, he concludes that '.. .pre-

vailing endowment spending rules seem inconsistent with most of these objec-

tives (p.39). Hansmann goes on to assert (p.39-40):

"It appears, however, that surprisingly little thought has been devoted to
the purposes for which endowments are maintained and that, as a conse-
quence, their rate of accumulation and the pattern of spending from their
income have been managed without much attention to the ultimate objectives
of the institutions that hold them.'

The course taken here to address this question is in the middle range: It

does not attempt to specify in detail the objective function for the universi-

ty, but it does derive optimal investment and expenditure policy for endowment

in a context which takes account of overall university objectives and the

availability of other sources of revenue besides endowment. In that respect.

it follows along lines similar to the discussion in Black (1976,26-8). In

addition, our model takes explicit account of the uncertainties surrounding

the costs of university activities. As a result, the analysis reveals another

(perhaps somewhat latent) purpose for endowment: namely, hedging against

unanticipated changes in those costs. Formal trading rules for implementing

this hedging function are derived. However, the paper neither assesses which
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costs, as an empirical matter, are more important to hedge nor does it examine

the feasibility of hedging those costs using available traded securities. The

interested reader should see Erinkman (1981,1990), Brovender (1974), Nordhaus

(1989), and Snyder (1988) where the various costs of universities are de-

scribed and modelled, both historically and prospectively.

Grinold, Hopkins, and Massy (1978) develop a budget-planning model which

also integrates endowment returns with other revenue and expense flows of the

university. However, their model differs significantly from the one presented

here, perhaps because their focus is on developing policy guidelines for

expenditures instead of optimal intertemporal management of endowment.

The mathematical model for optimal expenditures and investment is deve-

loped in Sections 2 and 3. It is based on a standard intertemporal consump-

tion and portfolio-selection model. Hence, the formal structure of the

optimal demand functions is already widely studied in the literature. It is

the application of this model to the management of university endowment which

is new. For analytical simplicity and clarity, the model is formulated in

continuous time. However, it is evident from the work of Constantinides

(1989), Long (1974), and Merton (1977) that a discrete-time version of the

model would produce similar results. The reader who prefers to be exposed to

the basic insights provided by the model before going through the detailed

mathematical analysis should begin with the summary and conclusions discussion

in Section 4.
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2. The Model

The functions or purposes of the university are assumed to be a collection

of activities or outputs such as education, training, research, and storage of

knowledge. We further assume that the intensities of those activities can be

quantified and there exists a preference ordering for ranking alternative

intertemporal programs. In particular, the criterion function for this

ranking can be written as:

max E0 {
I

TJ(Q1 Q,t)dt } , (1)
0

where Qj(t) denotes the quantity of activity j per unit time undertaken at

time t. j — 1,... ,m; the preference function U is assumed to be strictly

concave in (Q1 Q_); and E denotes the expectation operator,

conditional on knowing all relevant information as of time t. This prefer-

ence ordering satisfies the classic von Neumann-Morgenstern axioms of choice,

exhibits positive risk aversion, and includes "survival (of the institution)

as a possible objective. The infinite time horizon structure in (1) implies

only that there need not be a definite date when the university will liqui-

date. As shown in Herton (1990a, 149-51, 609-11), U can reflect the

mortality characteristics of an uncertain liquidation date.

The intertemporally additive and independent preference structure in (1)

can be generalized to include non-additivity, habit-formation and other path-

dependent effects on preferences, along the lines of Bergman (1985),

Constantinides (1990), Detemple and Zapatero (1989), Duffie and Epstein

(1989), Hindy and Huang (1989), Sundaresan (1989), and Svensson (1989).
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However, as shown in Merton (1990a, 207-9). those more-realistic preference

functions do not materially affect the optimal portfolio demand functions.

Moreover, just as Grossman and Laroque (1990) show for transactions costs in

consumption, so it can be shown here that imposing adjustment costs for

changing the levels of university activities does not alter the structure of

the portfolio demand functions. Hence, because the focus of the paper is on

optimal investment (rather than optimal expenditure) strategies, we assume no

adjustment costs for activities and retain the additive independent preference

specification to provide analytical simplicity.

Let S(t) denote the (net) cost to the university of providing one

unit of activity j at time t, j — 1 m. For example, if j — 1 denotes

the activity of having full-tuition-paying undergraduates, then S1 would be

the unit cost of providing the education minus the tuition received. If

j — 2 denotes the activity of having undergraduates who receive financial

aid, the unit cost S2 would equal S1 plus the financial aid given. In

general, all costs and receipts such as tuition that are directly linked to

the quantities of specific activities undertaken are put into the activity

costs or prices, (SJ). As will be described, fixed costs and sources of

positive cash flows to the university that do not depend directly on the

activity quantities are handled separately. As in Merton (1990a, 202, 699),

we assume that the dynamics for these costs are described by the stochastic

differential equations: for S (S1,...,S,,),

dS — f(S,t)S1dt + g(S,t)Sdq5, j — 1 m (2)
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where f1 is the instantaneous expected rate of growth in S. g3 is the

instantaneous standard deviation of the growth rate, and dq is a Wiener

process with the instantaneous correlation coefficient between dq and dq

given by u, i,j 1 m. f1 and g1 are such that dS1 � 0 for

Si — 0 which ensures that S,(t) � 0. Especially since (S) has components

that depend on tuition, financial aid and other variables over which the

university has some control, one would expect that the dynamic path for those

costs would be at least partially endogenous and controllable by the univer-

sity, even though competition among universities would limit the degree of

controllability. However, as specified, (2) is an exogenous process, not con-

trolled by the university. Alternatively, it can be viewed as the "reduced-

form" process for S after optimization over non-portfolio choice variables.

The university is assumed to have N non-endowment sources of cash

flows which we denote by Y(t)dt for the kth source at time t. Examples

of such sources are gifts, bequests, university business income, and public

and private-sector grants. It can also be used to capture transfer-pricing

for the use of buildings and other university-specific assets where Yk is

the rental rate and this rental fee appears as an offsetting charge in the

{SJ} for the appropriate university activities. The dynamics for these cash

flows are modeled by: for Y (Y1

dYk P.k(Y,S,tYikdt + 8k(Y,S,t)'fkk (3)

where and 8k depend at most on the current levels of the cash flows and

the unit costs of university activities and dck is a Wiener process,
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k — 1 N. Equation (3) can also be used to take account of fixed costs or

liabilities of the university such as faculty tenure cOnznitments, by letting

Y < 0 to reflect a cash outflow. However, the focus here is on assets only

and therefore, we assume that and 8, are such that dYk � 0 for k - 0

which implies that Yk(t) � 0 for all t.

By inspection of (2) and (3), the dynamics for {Y.S) are jointly

Markov. A more realistic model would have lk and 8k depend on both

current and historical values of Q Q. For example, if a university has

undertaken large amounts of research activities in the past, it may attract

more grants and gifts in the future. The university may also affect the

future expected cash flows from non-endowment sources by investing now in

building up those sources. Thus, the dynamic process for Y should be in

part controllable by the university. However, again for analytical simplici-

ty, the Y process is taken as exogenous, because that abstraction does not

significantly alter the optimal portfolio demand functions.

If for k — 1,... ,N, Vk(t) denotes the capitalized value at time t
of the stream of future cash flows, Yk(r) for � t. and if K(t) denotes

the value of the endowment at time t, then the net worth or wealth of the

university, W(t) is given by

W(t) — K(t) + Z!' Vk(t) (4)

A model for determining the Vk(t) from the posited cash flow dynamics in (3)

is developed in Section 3.

The endowment of the university is assumed to be invested in traded
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assets. There are n risky assets and a riskiess asset. If P3(t) denotes

the price of the jth risky asset at time t then the return dynamics for

the risky assets are given by, for j — 1

dP aP3dt + uPdZ (5)

where a3 is the instantaneous expected return on asset j; a3 is the

instantaneous standard deviation of the return; and dZ is a Wiener process.

The instantaneous correlation coefficients {Pij.n.Ctj) are defined by. for

j — 1 n,

dZdZ3 — p3dt , i — 1 n

dqdZJ — flkjdt , k — 1 m (5a)

de1d2 — (13dt , 1 — 1 N

For computational simplicity and to better isolate the special characteristics

of endowment management from general portfolio management, we simplify the

return dynamics specification and assume that {a3.crj.pj3) are constants over

time, i,j 1 n. As shown in Merton (l990a, Chs. 4, 5, and 6), this

assumption of a constant investment opportunity set implies that

{P(t + r)/P3(t)}, j 1 n, for > 0 are jointly lognormally distri-

buted, The rjskless asset earns the interest rate r which is also constant

over time. Optimal portfolio selection for general return dynamics would

follow along the lines of Merton (1990a, Chs. 5, 15, 16; l990b, Sec. 7).

To analyze the optimal intertemporal expenditure and portfolio-selection

problem for the university, we begin with a further simplified version of the
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model in which the university's entire net worth is endowment [i.e., 'fk(t) —

Vk(t) 0, k 1 N and W(t) — K(t)]. The budget-equation dynamics for

W(t) is then given by,

dW (( wj(t)(cj — r) + r)W - " QkSk]dt + 1I' w(t)WrdZ (6)

where w(t) — the fraction of the university's wealth allocated to risky

asset j at time t, j — 1 the fraction allocated to the riskiess

asset is thus 1 - ' w. Trustees, donors, and the government are assumed

not to impose explicit limitations on investment policy for the endowment,

other than general considerations of prudence. In particular, borrowing and

short-selling are permitted and so the choice for {Wj) is unrestricted. We

further posit that spending out of endowment is not restricted, either with

respect to overall expenditure or with respect to the specific activities on

which it is spent. However, we do impose the feasibility restrictions that

total expenditure at time , 1L QkSk,must be nonnegative and zero wealth is

an absorbing state (i.e., W(t) — 0 implies W(t + i) 0 for > 0).

At each time t, the university chooses a quantity of activities

{Q1 Q) and a portfolio allocation of its wealth so as to maximize

lifetime utility of the university as specified in (1). Just as for the case

of multiple consumption goods analyzed in Breeden (1979), Fischer (1975), and

Merton (1990a, 205), so the solution for the optimal program here can be

decomposed into two parts. First, at each t, solve for the utility-maximiz-

ing quantities of individual activities, {Q1 Q,,j, subject to an overall

expenditure constraint, C(t) — 2" Qk(t)Sk(t). Second, solve for the optimal
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level of overall expenditures at time t and the optimal portfolio allocation

of endowment.

The first part is essentially the static activity-choice problem under

uncertainty

max U[Qt Qm,t) (7)

subject to C(t) — Z' QkSk(t). The first-order conditions for the optimal

activity bundle (Q1 Q) are given by: for Sk(t) Sk.

Uk[Qi Qrn•t)ISk = Qrnt]ISj k,j — 1 m (8)

with C(t) = Qk*S where subscripts on U denote partial derivatives

(i.e., Uk aulaQk). It follows from (8) that the optimal quantities can be

written as — Qk[C(t),S(t),t], k — 1 m.

Define the indirect utility function U by U(C(t).S(t),t]

U[Q1 Qrn•t]
By substituting U for U, we can rewrite (1) as:

max
E0{

I U(C(t),S(t),t]dtl (9)

where the "max' in (9) is over the intertemporal expenditure path (C(t)) and

portfolio allocations {w(t)}. Thus, the original optimization problem is

transformed into a single-expenditure choice problem with "state-dependent'

utility (where the "states" are the relative costs or prices of the various
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activities). Once the optimal total expenditure rules, (C*(t)), are deter-

mined, the optimal expenditures on individual activities are determined by (8)

with C*(t) — I
The solution of (9) follows by applying stochastic dynamic programming

as in Merton (1990a, Chs. 4, 5. and 6). Define the Bellman or derived-utility

function J by

J[W.S.tJ .naxE(1'U(C('r),S(i),'rdi}

conditional on U(t) V and S(t) — S. From Merton (1990a, 181, 202; 1990b,

555), 3 will satisfy:

o — max (u(C,S,t) + AC + 3 + ( w4(tx.- r) + r)W - ci
(Cv

t J 3

+ m J.f.S. + 3 w.w.a. .W2 (10)1 3. i. i. 2 WW1 1 3. 3 1)

+ 3 w.Wg.S.o.q + 3. .g.S.g.S.u.1 1 iW 3 j ij 2 1 1 3.3 i. 1. j j ij

subject to J(O.S,t) — 1 U(O,...,O.i]di. where subscripts on 3 denote

partial derivatives with respect to V. t, and S, i — 1 m and

• ptjuiaj. the instantaneous covariance between the return on security i

and j. A is a Kuhn-Tucker multiplier reflecting the non-negativity con-

straint on C and at the optimum, it will satisfy AC — 0. The first-order

conditions derived from (10) are:

0 Uc[C*,S,t) + 1 — Jw(W,S,t) (ha)

and
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0 — - r) + wjWa + Z' i — 1. (llb)

where C* C*(W.S,t) and w — wj*(W.S.t) are the optimal expenditure and

portfolio rules expressed as functions of the state variables and subscripts

on U denote partial derivatives.

From (ha), the optimal expenditure rule is given by:

Uc(C*,S,t] — Jw(w.S.t) for C > 0
(12)

— max{O.Jw(W,S,t) — Uc(O,S,tJ}

From (hlb), the optimal portfolio allocation can be written as:

wW — A b + Hkhkj , i — 1 n (13)

where b • Z1' - r) ; hkL 8 a3gkSkkjv; Vjj is the ij-element of
the inverse of the instantaneous variance-covariance matrix of returns

A • -J/J (the reciprocal of absolute risk aversion of the derived-utility

function); and Hk 8 -J,/J, k - 1 m. A and 11k depend on the indi-

vidual university's intertemporal preferences for expenditures and its current

net worth. However, b and h are determined entirely by the dynamic

structures for the asset price returns and the unit costs of the various

activities undertaken by universities. Hence, those parameters are the same

for all universities, independent of their preferences or endowment size.

To provide some economic intuition about the optimal allocation of

endowment in (13), consider as a frame of reference the 'standards intertemp-

oral portfolio selection problem with state-independent utility. U — U(C(t).
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tJ. As shown in Merton (l990a, 131-6), given the posited return dynamics in

(5), all such investors will hold instantaneously mean-variance efficient

portfolios as their optimal portfolios. For au/ask • Uk • 0, '1k
• 0, k —

l....,m. Hence, in this case, (13) becomes wL*W — Abt, and wW/wW — bL/bj.

the same for all investors. This is the well-known result that the relative

holdings of risky assets are the same for all mean-variance efficient portfo-

lios. However, the state-dependent preferences for universities induced by

the uncertainty surrounding the relative costs of undertaking different

desired activities causes the more complex demand structure in (13).

To better understand this differential demand, wW - Ab — IJ" Hkh, it

is useful to examine the special case where, for each cost Sk, there exists

an asset whose instantaneous return is perfectly correlated with changes in

Sk. By renumbering securities if necessary, choose the convention that

— 1 in (5a), k — l,...,m (in < n). As shown in Merton (1990a, 203-4).

it follows that in this case. h — gSIa, for k — 1 m and hkj — 0

for k • j. Hence, we can rewrite (13) as:

wW — Ab + HgSIi i — 1 in

(14)
Ab i —m+ 1 n

By the strict concavity of U with respect to C, J is strictly concave in

U. Hence. J < 0 and H — -J/J is positively proportional to J.

Thus, relative to a 'norinaP investor with state-independent preferences

(i.e., H • 0, i — 1 m), but the same current level of absolute risk

aversion (i.e., -J/Jw), the university will optimally hold more of asset i
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if J > 0 and less if J < 0, 1 — 1,... ,m.

If J > 0. then, at least locally, the university's marginal utility

(or 'need") for wealth or endowment becomes larger if the cost of undertaking

activity i increases and it becomes smaller if this cost decreases. Because

the return on asset i is perfectly positively correlated with the cost of

activity i, a greater-than-expected increase in S1 will coincide with a

greater-than-expected return on asset i. By holding more of asset i than a

normal" investor, the university thus assures itself of a relatively larger

endowment in the event that S increases and the need for wealth becomes

more important. The university, of course, pays for this by accepting a rela-

tively smaller endowment in the event that S decreases and wealth is less

important. The behavioral description for J < 0 is just the reverse, be-

cause the need for endowment decreases if the cost of activity 1 increases.

To perhaps help in developing further insights, we use (12) to interpret

the differential demand component in (14) in terms of the indirect utility and

optimal expenditure functions. By differentiating (12), we have that for

C*(W,S,t) > 0

jww - Ucc *StI
ÔC

*

kW
—

Ucc(C .S,t] — + Uck(C.S.t)

* (15)
A—

_Uc(C*,S,t)/(Ucc[C*,S,t) )

Hk -t I ]+ Uck(c,S,t]/(T•1cc(c.S,tJ
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for k — l,m. Because < 0 and aC*/aW > 0 for C > 0, we see that

the sign of H is determined by the impact of a change in the cost of

activity k on two items: the optimal level of total current expenditure and

the marginal utility of expenditure. So, for example, if an increase in Sk

would cause both a decrease in optimal expenditure (8CC/aSk < 0) and an

increase in the marginal utility of expenditure (U > 0), then from (15),

> 0 and the university will optimally hold more of asset k than the

corresponding investor with a mean-variance efficient portfolio.

Following (16) causes the university's optimal portfolio to be mean-

variance inefficient and therefore, the return on the endowment will have

greater volatility than other feasible portfolios with the same expected

return. However, the value of the endowment or net worth of the university is

not the "end" objective. Instead, it is the "means" by which the ends of a

preferred expenditure policy can be implemented. Viewed in terms of the

volatility of the time path of expenditure (or more precisely, the marginal

utility of expenditure), the optimal strategy given in (14) is mean-variance

efficient [cf. Breeden (1979) and Merton (l990a, 487-8)). That is, because

aCfaW > 0, the additional increment in wealth that, by portfolio construc-

tion, occurs precisely when S increases will tend to offset the negative

impact on C caused by that increase. There is thus a dampening of the

unanticipated fluctuations in expenditure over time. In sum, we see that in

addition to investing in assets to achieve an efficient risk-return tradeoff

in wealth, universities should optimally use their endowment to hedge against

unanticipated and unfavorable changes in the costs of the various activities



Op(imai Iwc..Uncn1 Stratcgic 17

in wealth, universities should optimally use their endowment to hedge against

unanticipated and unfavorable changes in the costs of the various activities

that enter into their direct utility functions.

In closing this section, we note that the interpretation of the demand

functions in the general case of (13) follows along the same lines as for the

special case of perfect correlation leading to (14). As shown for the general

case in Merton (1990a, 501-2; 1990b, 558-9), the differential demands for

assets reflect attempts to create portfolios with the maximal feasible

correlations between their returns and unanticipated changes in the Sk. k —

1 m. These maximally-correlated portfolios perform the same hedging

function as assets 1 m in the limiting case of perfect correlation

analyzed in (14). Furthermore, if other state variables besides the various

activities' costs (e.g.. changes in the investment opportunity set) enter a

university's derived utility function, then a similar structure of differen-

tial asset demands to hedge against the unanticipated changes in these

variables will also obtain.
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3. OptImal Endowment Management wfth Other Sources of Income

In the previous section, we identified hedging of the costs of universi-

ty activities as a reason for optimally deviating from "efficient" portfolio

allocations when endowment is the only means for financing those activities.

In this section, we extend the analysis to allow other sources of cash flow to

support the activities. To simplify the analysis, we make two additional

assumptions: first, we posit that and & in (3) are constants, which

implies that Yk(t)/Yk(O) is log-normally distributed, k — 1 N. Second,

we assume that for each k, there exists a traded security whose return is

instantaneously perfectly correlated with the unanticipated change in k.

k — 1... .,N. By renumbering if necessary, we use the convention that traded

security k is instantaneously perfectly correlated with Hence, it

follows that ( — 1 in (5a) and,

dek — dZk , k 1 N . (16)

These two assumptions permit us to derive a closed-form solution for the

capitalized values of the cash flows, {V(t)}, using contingent-claims

analysis. As will be shown, those valuation functions are independent of the

university's preferences or wealth level.

From (3), (5), and (16) with and 8k constant, we have that the

cash flows can be written as a function of the traded asset prices as follows,

for k —

Yk(t)
—

Yk(O)exp _kt] ( Pk(t)/Pk(O)) (17)
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where ti (a - a 2/2) - - 82/2) and — 8k/uk. That (17) obtains

can be checked by applying Ito's Lemma. We now derive the capitalized value

for 'tk following Merton (1990a, 415-9; 1990b, 562-3).

Let F I P, ti be the solution to the partial differential equation,

for 0 � t � T

0 — 1/2 a2 k2 F11 + rPkFI' - rF + F2 + (18)

subject to the boundary conditions

Fk(0,t] — 0 (19a)

Fk/(Pk)k bounded as k (19b)

Fk(Pk,T) 0 (l9c)

where subscripts on Fk in (16) denote partial derivatives with respect to

its arguments k and t ; Y is given by (17); and Tk is the last date

at which the university receives the cash flows from source k • k 1 N.

It is a mathematical result that a solution exists to (18) — (19) and that it

is unique. Moreover, for ; � 0, Fk � 0 for all P and t

Consider a dynamic portfolio strategy in which F1k(P(t),t]P(t) is

allocated to traded asset k at time t and V(t) - Flk(Pk(t),t]Pk(t) is

allocated to the riskless asset, where V(t) is the value of the portfolio at
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time t. Furthermore, let the portfolio distribute cash (by selling securi-

ties if necessary) according to the flow-rate rule

D2[P,,t) — Yk(t) (20)

as given by (17). Then the dynamics of the portfolio can be written as, for

Pk(t) — P and V(t) — V,

dV = Fjk(Pk,t)dpk + ((V — Flk(Pk,t]P]r — D2(Pk,t])dt . (21)

Since Fk satisfies (18). it is a twice continuously differentiable function

and therefore, by Ito's Lemma, we can write the dynamics for F" as

dFk — I 1/2 u2 p2 F11 + F2] dt + F1dP (22)

But, Fk satisfies (18) and hence, 1/2 k k F11k + F2k — rFk - rPF1k -

Substituting into (22). we can rewrite (22) as

dFk — F1k dPk + I rF - rPkFlk - yj dt (23)

From (21) and (23), we have that

dV_dFk — I rV - rPkFlk - D2 - rFk + rPkFIk + Yj dt

— nV - Fdt (24)
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because D2 Y. By inspection, (24) is an ordinary differential equation

with solution

V(t) - Fk[Pk(t),t) — (V(O) — F(Pk(O),O))exp[rtj (25)

Thus, if the initial investment in the portfolio is chosen so that

V(O) — F(P(O),O), then for all t and P(t), we have that

V(t) Fk[Pk(t),t) (26)

To ensure that the proposed portfolio strategy is feasible, we must show that

its value is always nonnegative for every possible sample path for the price

k and all t , 0 � t T. Because Fk is the solution to (18) and Y1 � 0,

F' � 0 for all k and t. It follows from (26) that V(t) � 0 for all P1,

and t. We have therefore constructed a feasible dynamic portfolio strategy in

traded asset k and the riskless asset that produces the stream of cash flows

Yk(t)dt for 0 � t S Tk and has zero residual value (V(Tk) — 0) at T.

Because the derived strategy exactly replicates the stream of cash flows

generated by source k , it is economically equivalent to owning the cash

flows Y(t) for t s Tk. It follows that the capitalized value of these

cash flows satisfies

Vk(t) —F'[Pk(t),t] (27)
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for k — 1,... ,N. Note that by inspection of (18)-(l9), Fk, and hence Vk(t),

does not depend on either the university's preferences or its net worth. The

valuation for source k is thus the same for all universities.

Armed with (27), we now turn to the optimal policy for managing endow-

ment when the university has N non-endowment sources of cash flows. To

derive the optimal policy, note first that even if those non-endowment sources

cannot actually be sold by the university for legal, ethical, moral hazard, or

asyosnetric information reasons, the university can achieve the economic

equivalent of a sale by following the mirror-image" or reverse of the

replicating strategy. That is, by (short-selling or) taking a _Fkj(Pk(t),t]Pk

position in asset k and borrowing I Fk - FIPk] of the riskless asset at

each t, the portfolio will generate a positive amount of cash, F(Pk,t],

available for investment in other assets at time t. The entire liability

generated by shorting this portfolio is exactly the negative cash flows,

(-Ydt), for t � T, because Vk(Tk) — Fk(Pk, Tk] — 0. nut, since the univer-

sity receives Ykdt for t T from source k. this short-portfolio liabili-

ty is entirely offset. Hence, to undertake this strategy beginning at time t

is the economic equivalent of selling cash flow source k for a price of

'4(t) — Fk[P(t),t).
As discussed more generally in Merton [l990a, Sec. 14.5, especially

465-73, the optimal portfolio strategy will be as if all N non-endowment

assets were sold and the proceeds, together with endowment, invested in the n

risky traded assets and the riskless asset. This result obtains because it is

feasible to sell (in the economic sense) the non-endowment assets and because
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all the economic benefits from those assets can be replicated by dynamic

trading strategies in the traded assets. Hence, there is neither an economic

advantage nor a disadvantage to retaining the non-endowment assets. It

follows that the optimal demand for the traded risky assets is given by (13)

and the demand for the riskless asset is given by ( l_twj*)W(t). where from

(4) and (27),

W(t) = K(t) + E Fk[P(t),t) . (28)

Because, however, the university has not actually sold the non-endowment

assets, the optimal demands given by (13) and (28) include both implicit and

explicit holdings of the traded assets. That is, the university's ownership

of non-endowment cash flow source k at time t is equivalent to having an

additional net worth of Fk[Pk(t).t) (as reflected in (28)) and to having

F[Pk(t),t]Pk(t) invested in traded asset k and F Fk[P(t),t]
- Flk(Pk(t),t]Pk(t)) invested in the riskless asset. Thus, ownership of source

k causes implicit investments in traded asset k and the riskiess asset.

Optimal explicit investment in each traded asset is the position actually

observed in the endowment portfolio and it is equal to the optimal demand

given by (13) and (28) minus the implicit investment in that asset resulting

from ownership of non-endowment assets. Let Dj*(t) denote the optimal

explicit investment in traded asset i by the university at time t. It

follows from (13) that
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D*(t) Ab + E1mHh1 — F1[P(t),t)P(t). 1, N
= Ab + EI" Hkhkj , i — N + 1 (29)

where W(t) used in the evaluation of A and H is given by (28). If we

number the riskless asset by 'n+1, then explicit investment in the riskiess

asset can be written as

D,i*(t) Il - fl*(t)jw(t) - LA F(P(t),t] - F1(P(t),t)P(t)l
— K(t) — E1nD*(t) . (30)

By inspection of (29), it is apparent that in addition to the hedging of

activity costs, the existence of non-endowment sources of cash flow will cause

further differences between the observed holdings of assets in the optimal

endowment portfolio and the mean-variance-efficient portfolio of a "standard

investor. Similarly, from (30), the observed mix between risky assets and the

riskiess asset will differ from the true economic mix.

To explore further the effects of those non-endowment sources of cash

flows, we solve the optimal expenditure and portfolio-selection problem for a

specific utility function, U. However, in preparation for that analysis. we

first derive explicit formulas for the capitalized values of those sources

when Yk(t) is given by (17). As already noted, there exists a unique

solution to (18) and (19). Hence, it is sufficient to simply find a solution.

As can be verified by direct substitution into (18), the value of cash flow

source k is given by. for k—l N,
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k
F (Pk(t).t] — Y(O)exp(_dt](l —

exp(_Ok(Tk
- t)J)[Pk(t)/Pk(O)) '8k (31)

where 13k. are as defined in (17) and

r + - r) - . (31a)

It follows from (31) that, for Ic — 1,.. .,N,

Flk(Pk(t),t)Pk(t)_pkFk(Pk(t),t] (32)

which implies that the capitalized value of source Ic has a constant elastic-

ity with respect to the price of traded asset k. Equation (32) also implies

that the replicating portfolio strategy is a constant-proportion or rebalanc-

ing strategy which allocates fraction of the portfolio to traded asset Ic

and fraction (1 - 3) to the riskiess asset. In the case when positive

fractions are allocated to both assets (i.e., (1 - 3) > 0 and 13k > 0),

then Fk is a strictly concave function of Pk. If '3k > 1, then Fk is a

strictly convex function of k and the replicating portfolio holds traded

asset k leveraged by borrowing. In the watershed case of 13k — 1, Fk is a

linear function of k and the replicating portfolio holds traded asset k

only.

Using (17) and (27). we can rewrite (31) to express the capitalized

value of source k in terms of the current cash flow it generates: namely,
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V(t) — yk(t)(l—exp(—Ok(Tk — t)])/O, k — 1.N (33)

From (17). (31a). and (32), it is a straightforward application of Ito's Lemma

to show that the total expected rate of return for holding source k from t

to t + dt is given by

Et[Yk(t)dt + dVLJ/Vk(t) — (I.k +

— [r + k( - r)]dt . (34)

Thus, if the rights to the cash flows k between t and T were sold in

the market place, the expected rate of return that would be required by

investors to bear the risk of these flows is r + I3k(X, - r). Therefore, °k

equals the required expected rate of return ('the capitalization rate') minus

the expected rate of growth of the cash flows, p. By inspection of (33),

Vk(t) can be expressed by the classic present-value formula for assets with

exponentially growing cash flows. For 8 > 0, the perpetual (Tk ) value

is Yk(t)/Ok and the limiting 'Earnings-to-Price' ratio, y(t)/V(t), is 8k' a

constant. Applying the closed-form solution for F', we can by substitution

from (27) and (32) into (29) and (30) rewrite the optimal demand functions as

Dj*(t) — Ab1 + E1m Hkh — I3jVj(t). i — 1 N

— Ab + E Hkhkj , i — N+l n (35a)

and

D+i*(t) — Il - Z1"w(t)lW(t) — EN (l-13)V1(t)

— K(t) - AE1 b — E' E11' Hkhk) + EN 13V(t) . (35b)
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Having derived explicit formulas for the values of non-endowment assets,

we turn now to the solution of the optimal portfolio and expenditure problem

in the special case where the university's objective function is given by

U[Q1 — exp[-pt1I1'r,log Q. (36)

with p > 0 and 0, j — 1 m. Without loss of generality, we assume

that £9' — 1. From (8), the optimal Q1 satisfy

Qja(t) — [r1c(tflIs(t) , j — l,...,m . (37)

From (36) and (37), the indirect utility function can be written as

U(C,S,t) — exp[—pt]{log C — 111'1[log S — log(F3)]) (38)

It follows from (l].a) that the optimal expenditure rule is

C(t) — exp(-pt)(l/J[W,S,t)) . (39)

It is straightforward to verify by substitution into (10). (lla), and (lib)

that

J[W,S,t) — exp(-pt]log W + I(S,t] (40)

for some function I[S,t]. By the verification theorem of dynamic program-

ming, satisfaction of (10), (lla), and (lib) is sufficient to ensure that J

in (40) is the optimum.

It follows from (40) that — 0 and hence that Hk 0 in (13) and

(35), k — 1,... ,m. Therefore, for the log utility specified in (36), there
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are no differential hedging demands for assets to protect against unanticipat-

ed changes in the costs of university activities. The optimal allocation of

the university's total net worth is thus instantaneously mean-variance

efficient. Noting that A — -J/Jw, W, we have that (35) can be written in

this special case as

D(t) — bW — I3jV(t) , i — l,...,N
—bW , i—N+l,...,n (41a)

and

D*(t) — (1 — I1'b)W — I(l — )V(t) . (1db)

By inspection of (41), in the absence of non-endowment assets, the

fraction of endowment allocated to risky asset i in the university's optimal

portfolio is b, i — 1,... ,n and the fraction allocated to the riskiess
asset is (1 - I1bj), independent of the level of endowment. If

• D(t)/K(t) is the optimal fraction of endowment invested in asset i,

then from (41), the difference in fractional allocations caused by the non-

endowment assets is
*(t) — b — R[b - , i — 1 N

Rb ,
— N + 1 ,..,n (42a)

and

Xn+i (t) — (1 — — —R(I'b.. — Z,A] (42b)

where • Vk(t)/Il5Vj(t) is the fraction of the capitalized value of the
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university's total non-endowment assets contributed by cash flow source k at

time t, k — 1 N and R a IV(t)/K(t) is the ratio of the values of

the university's non-endowment assets to its endowment assets at time t.

The differences in (42) are the result of two effects: (i) the 'wealth'

effect caused by the difference between the net worth and the endowment of the

university and (ii) the "substitution' effect caused by the substitution of

non-endowment asset holdings for traded asset holdings. Suppose, for con-

creteness, that the expected returns, variances, and covariances are such that

a positive amount of each traded risky asset is held in mean-variance-effi-

cient portfolios. Then, b > 0, i — 1,.. .,n. It follows that the impact of

the wealth effect in (42), (Rb}, is unambiguous: it causes a larger fraction

of the optimal endowment portfolio to be allocated to each risky asset and

therefore, a smaller percentage allocation to the riskless asset. Because

> 0 and ). > 0, i — 1 N. we have that the impact of the substitution

effect in (42), (Rj)j}, is also unambiguous: for those traded assets

1 N for which the non-endowment assets are substitutes, the fractional

allocation is smaller; for the traded assets N + 1 n, the fractional

allocation is unchanged; and the allocation to the riskless asset thus

increases.

Because the wealth and substitution effects are in opposite directions

for b, > 0, whether the optimal endowment portfolio allocates an incremen-

tally larger or smaller fraction to traded asset k depends on whether b, >

or b < . 3kX is the fraction of the total increment to net

worth (from non-endowment assets) that is implicitly invested in asset k as
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the result of owning cash flow source k. If that fraction exceeds the

optimal one for total wealth. bk. then the optimal endowment portfolio will

hold less than the mean-variance-efficient allocation. Indeed, if ).,,
> (1 +

R)b/(R3k), then X*(t) < 0 and the university would optimally short-sell

traded asset k in its portfolio. This is more likely to occur when R is

large (i.e., non-endowment assets are a large part of university net worth)

and Xk is large (i.e., cash flow source k is a large part of the value of

non-endowment assets).

The implications of (42) for optimal endowment are intuitive. If. for

example, a significant amount of gift-giving to a particular university

depends on the performance of the general stock market, then in effect that

university has a "shadow" investment in that market. Hence, all else the

same, it should hold a smaller portion of its endowment in stocks than another

university with smaller amounts of such market-sensitive gift-giving. The

targeting can be more specific: If a school specializes in science and

engineering and if an important part of gifts comes from entrepreneur alums.

then the endowment should underweight (or even eliminate) investment in

venture capital and hi-tech companies. Indeed, if a single donor is expected

to give a large block of a particular stock, then the optimal explicit holding

of that stock in the endowment may be negative (although such short-sales

might offend some donors). Much the same story applies to concentrations in

other assets, including real estate. The same analysis also follows where

grants from firms or the government are likely to be strongly correlated with

the financial performance of stocks in the related industries.



Opomai Invimcn1 5u-4tcS1 31

It is perhaps a bit of a paradox that the university should under-invest

the endowment in those sectors of assets for which it has special expertise

(e.g., science and technology). But, the seeming paradox is resolved once the

principle of diversification is invoked. However, the underweighting in those

assets for diversification reasons can be offset by sufficiently strong

demands to hedge against costs. For example, suppose that a specialized

institute of biology believes that the cost of keeping the faculty will rise

by considerably more than tuition in the event that there is a strong demand

for such scientists outside academe. Then it may be optimal to invest a

portion of its endowment in bio-tech stocks to hedge this cost even though

those stocks' returns are highly correlated with alum gifts and industry

grants.

The analysis leading to (29) and (30) requires that there exist traded

securities which are instantaneously perfectly correlated with the changes in

Y1. ... ,YN. If this assumption is relaxed, then the capitalized values of

those non-endowment cash flow sources will no longer be independent of the

university's preferences and endowment. However, the impact on endowment

investments will be qualitatively similar. This more general case of non-

replicable assets can be analyzed along the lines of Svensson (1988).

We can use our model to examine the impact of non-endowment cash flow

sources on optimal expenditure policy. From (39) and (40), we have that the

optimal expenditure rule is the constant-proportion-of-net-worth policy

C0(t) — pW(t) . (43)
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However, current expenditure endowment will not follow a constant

proportion strategy. Optimal expenditure from endowment at time t is

(C*(t) - Yk(t)]dt, which can be either positive or negative (implying net

saving from non-endowment cash flow sources). If s*(t) denotes the optimal

expenditure rate as a fraction of endowment( [C*(t) - Yk(t)]/K(t)), then

from (4) and (43)

s(t) — p + R(t)(p — y(t)J (44)

where R(t) is as defined in (42) and y(t) E (' Yk(t))/(Ij V(t)) is the

current yield on the capitalized value of the non-endowment sources of cash

flow. In the special case of (33) where the cash flows are all perpetuities

(i.e., Tk and 0k > 0, k — 1 N), Vk(t) Y(t)/Ok, and the current

yield on source k is constant and equal to ek. In that case, y(t) —

).kOk. the value-weighted current yield. From (31a), O will tend to be

smaller for assets with higher expected growth rates of cash flow, {ik). If

on average, the current yield on non-endowment assets is less than p. then

the current spending rate out of endowment will exceed p. If the current

yield is high so that y(t) > p. then s*(t) < p. Indeed, if y(t) > p(l +

R)/R, then s*(t) < 0 and optimal total expenditure is less than current cash

flow generated by non-endowment sources. Because both R(t) and ).(t)

change over time, we have from (44) that the optimal current expenditure rate

from endowment is not a constant, even when expected returns on assets, the

interest rate, and the expected rate of growth of non-endowment cash flows are

constants.
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We can also analyze the dynamics of the mix of the university's net

worth between endowment and non-endowment assets. If cx a r + b(cx - r)

denotes the instantaneous expected rate of return on the growth-optimum, mean-

variance-efficient portfolio, then as shown in Merton (l990a, 169-71), the

resulting distribution for that portfolio is log-normal with instantaneous

expected return cz(> r) and instantaneous variance rate equal to (cx - r).
It follows from (6), (41), and (43) that the dynamics for the university's net

worth are such that W(t)/W(O) is log-normally distributed with

E0[W(t)J W(O)exp((cx — p)t
E0(log(W(t)JW(O)J) — ((cx + r)/2 - p]t
Var(log(W(t)/W(O)]) — (a - r)t . (45)

If Xk(t) a Vk(t)/W(t) denotes the fraction of net worth represented by non-

endowment cash flow source k, then because Vk and U are each log-normally

distributed, X(t) is log-normally distributed and from (33) and (45),

Eo(Xk(t)] — Xk(O)expl(p — O)t]
E(lOg(X(t)/X(O))) — (P.k + p — (cx + r + ô2)/2Jt

Var(log(X(t)/X(O)]) — (6k2 + cx + r - 2(p. + Ok)]t (46)

for k — 1 N.

From (46), the fraction of total net worth represented by all sources of

non-endowment cash flow, X(t) a Xk(t) — R(t)/[1 + R(tfl, is expected to

grow or decline depending on whether p > or p < 0.Ln where

• min[6j, k — 1,... ,N. In effect, a university with either a high rate
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of time preference or at least one (perpetual) high-growth non-endowment asset

(i.e.. with p > 0Ljfl) is expected to 'eat' its endowment. Indeed, it may

even go to a 'negative' endowment by borrowing against the future cash flows

of its non-endowment assets. Whether this expected growth in X(t) is the

result of declining expected net worth or rising asset values can be deter-

mined from (45). Because a > r, if p < r, then both the arithmetic and

geometric expected rates of growth for net worth are positive. For p <

it follows that E0(X(t)] — 0 as t - . Hence, in the long run of this

case, endowment is expected to become the dominant component of the univer-

sity's net worth. Of course, these 'razor's edge' results on growth or

decline reflect the perpetual, constant-growth assumptions embedded in non-

endowment cash flow behavior. However, this special case does capture the

essential elements affecting optimal portfolio allocation and expenditure

policies. (cf. Tobin (l974).
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4. Summary and Concluslon8

As indicated at the outset, a common approach to the management of

endowment is to treat it as if it were the only asset of the university. A

consequence of this approach is that optimal portfolio strategies are focused

exclusively on providing an efficient tradeoff between risk and expected

return. The most common practice is to measure portfolio risk by the variance

or standard deviation of its return. Because the returns on all mean-variance

efficient portfolios are perfectly correlated, a further consequence of

exclusive focus on efficiency is that the optimal endowment portfolios of

different universities should have quite similar risky components, at least as

measured by the correlations of their returns.

But, as we all know, universities have other assets, both tangible and

intangible, many of which are important sources of cash flow. As noted in

Section 2, examples of such sources include gifts, bequests, university

business income, and public and private-sector grants. The analysis in the

preceding sections shows that taking account of those assets can cause the

composition of the optimal endowment portfolio to deviate significantly from

mean-variance efficiency. It follows that two universities with similar

objectives and endowments of the same size can nevertheless have very differ-

ent optimal endowment portfolios if their non-endowment sources of cash flow

are different. The effect on the composition of the optimal endowment

portfolios induced by differences in the size of non-endowment assets can be

decomposed into two parts: the wealth effect and the substitution effect.

To illustrate the wealth effect, consider two universities with identi-
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cal preference functions and the same size endowments, but one has non-

endowment assets and the other does not. If, as is perhaps reasonable to

suppose, the preference function conmon to each, exhibits decreasing absolute

risk aversion, then the university with the non-endowment assets (and hence

larger net worth) will prefer to have a larger total investment in risky

assets. Such behavior is consistent with the belief that wealthier universi-

ties can afford to take larger risks with their investments. Thus, if the

average risk of the non-endowment assets is the same as the risk of the

endowment-only university's portfolio, then the university with those assets

will optimally invest more of its endowment in risky assets.

The substitution effect on the endowment portfolio is caused by the

substitution of non-endowment asset holdings for endowment asset holdings. To

illustrate, consider the two universities of the previous paragraph, but now

increase the size of the endowment of the endowment-only university so that

net worth or wealth is the same for both. The optimal deployment of total net

worth is identical for each university. However, those assets held as non-

endowment assets will not appear in the endowment portfolio. Thus, if the

composition of the two endowment portfolios are compared, they will differ in

both scale and fractional allocations among the various assets.

To illustrate the substitution effect more concretely, we draw on some

examples analyzed in Section 3. Consider a university that on a regular basis

receives donations from alums. Clearly, the cash flows from future contribu-

tions are an asset of the university, albeit an intangible one. Suppose that

the actual amount of gift-giving is known to be quite sensitive to the
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performance of the general stock market. That is. when the market does well,

gifts are high and when it does poorly, gifts are low. Through this gift-

giving process, the university thus has a 'shadow' investment in the stock

market. Hence, all else the same, it should hold a smaller portion of its

endowment in stocks than another university with smaller amounts of such

market-sensitive gift-giving.

As discussed in the previous section, the same principle applies to more

specific asset classes. If an important part of gifts to a school that

specializes in science and engineering comes from entrepreneur alums, then the

school de facto has a large investment in venture capital and hi-tech compa-

nies and it should therefore invest less of its endowment funds in those

areas. That the school should optimally invest less of its endowment in the

science and technology areas where its faculty and students have special

expertise may seem a bit paradoxical. But, the paradox is resolved by the

principle of diversification once the endowment is recognized as representing

only a part of the assets of the university. The same analysis and conclusion

applies if we were to change the example by substituting either government and

corporate grants for donations and gift-giving as the sources of cash flows or

alum wealth concentrations in other assets such as real estate for concentra-

tions in shares of stock. As also shown in the preceding section, the nature

and size of a university's non-endowment assets should significantly influence

optimal policy for expenditure of endowment. Hence, neglecting those other

assets will bias the optimal expenditure policy.

In addition to taking account of non-endowment assets, our analysis
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differs from the norm because it takes account of the uncertainty surrounding

the costs of the various activities such as education, research, and knowledge

storage that define the purpose of the university. As discussed in Section 2.

the breakdown of activities can be considerably more refined. For instance,

one activity could be the education of a full-tuition-paying undergraduate and

a second could be the education of an undergraduate who receives financial

aid. The unit (net) cost of the former is the unit cost of providing the

education less the tuition received and the unit cost of the latter is this

cost plus the financial aid given. As shown in Section 2, an important

function of endowment investments is to hedge against unanticipated changes in

the costs of university activities.

As an example, consider the decision as to how much (if any) of the

university's endowment to invest in local residential real estate. From a

standard mean-variance-efficiency analysis, it is unlikely that any material

portion of the endowment should be invested in this asset class. However,

consider the cost structure faced by the university for providing teaching and

research. Perhaps the single largest component is faculty salaries. Univer-

sities of the same type and quality compete for faculty from the same pools.

To be competitive, they must offer a similar standard of living. Probably the

largest part of the differences among universities in the cost of providing

this same standard of living is local housing costs. By investing in local

residential housing, the university hedges itself against this future cost

uncertainty by acquiring an asset whose value is higher than expected when the

differential cost of faculty salaries is higher than expected. This same
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asset may also provide a hedge against unanticipated higher costs of off-

campus housing for students which would in turn require more financial aid if

the university is to compete for the best students. Note: This prescription

of targeted investment in very specific real estate assets to hedge against an

unanticipated rise in a particular university's costs of faculty salaries and

student aid should not be confused with the often-stated (but empirically

questionable) assertion that investments in real estate generally are a good

hedge against inflation. See Bodie (1976;1982) for empirical analysis of the

optimal assets for hedging against general inflation.

Similar arguments could be used to justify targeted investment of

endowment in various commodities such as oil as hedges against unanticipated

changes in energy costs. Uncertainty about those costs is especially signifi-

cant for universities located in extreme climates and for universities with

major laboratories and medical facilities that consume large quantities of

energy.

As discussed at the end of Section 2, the hedging role for endowment

derived here is formally valid as long as there are traded securities with

returns that have non-zero correlations with unanticipated changes in the

activity costs. However, the practical significance for this role turns on

the magnitude of the correlations. As illustrated in Bodie's (1976;1982) work

on hedging against inflation, it is often difficult to construct portfolios

(using only standard types of traded securities) that are highly correlated

with changes in the prices of specific goods and services. Nevertheless, the

enormous strides in financial engineering over the last decade have greatly
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expanded the opportunities for Custom financial contracting at reasonable

costs. As we move into the twenty-first century, it will become increacingly

more common for the financial services industry to offer to its customers

private contracts or securities that allow efficient hedging when the return

properties of publicly-traded securities are inadequate. That is, implementa-

tion of the strategies prescribed in Sections 2 and 3 will become increasingly

more practical for universities and other endowment institutions. See Merton

(1990a, Ch. 14;l990c. 264-9) for a prospective view on financial innovation

and the development of custom financial contracting.

There are of course a variety of issues involving endowment management

that have not been addressed but could be within the context of our model.

One such issue is the decision whether to invest endowment in specific-purpose

real assets such as dormitories and laboratories instead of financial (or

general-purpose physical) assets. The returns on those real assets are likely

to be strongly correlated with the costs of particular university activities

and thereby the assets form a good hedge against unexpected rises in those

costs. However, because the real asset investments are specialized and

largely irreversible, shifting the asset mix toward such investments reduces

flexibility for the university. That is, with financial assets, the universi-

ty has more options as to what it can do in the future. In another paper, I

plan to analyze this choice problem more formally by using contingent-claims

analysis to value the tradeoff between greater flexibility in selecting future

activities and lower costs in producing a given set of activities.

Another issue not explicitly examined is the impact of long-term, fixed
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liabilities such as faculty tenure contracts on the management of endowment.

As noted early in Section 2, our model using contingent claims analysis (CCA)

can handle this extension. See McDonald (1974) and Merton (1985) for CCA-type

models for valuing tenure and other wage guarantee contracts.

The formal analysis here assumes that endowment is fungible for other

assets and that neither spending nor investment policy are restricted. Such

restrictions on endowment could be incorporated using the same Kuhn-Tucker

type analysis used in Section 2 to take account of the constraint that total

expenditure at each point in time is nonnegative. The magnitudes of the Kuhn-

Tucker multipliers at the optimum would provide a quantitative assessment of

the cost of each such restriction. However, including those restrictions is

not likely to materially change the basic insights about hedging and diversi-

fication derived in the unrestricted case. The model can also be integrated

into a broader one for overall university financial planning. Such integra-

tion would permit the evaluation of other non-endowment financial policies

such as whether the university should sell forward contracts for tuition.

In summary, we have explored two classes of reasons why optimal endow-

ment investment policy and expenditure policy can vary significantly among

universities. The analysis suggests that trustees and others who judge the

prudence and performance of policies by comparisons across institutions should

take account of differences in both the mix of activities of the institutions

and the capitalized values of their non-endowment sources of cash flows.
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