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1 INTRODUCTION 

An important part of the debate on the response of prices to monetary shocks has 

centered on the dynamic discrepancy between economies with and without price rigidities, 
on the magnitude and persistence of these discrepancies, and on whether the monetary 

authority should attempt to exploit rigidities or not. 

These issues have been typically addressed in a framework in which individual prices 

(or wages) adjust according to some fixed time-schedule, resulting in a sluggish aggregate 

price leveL Caplin and Spulber [19871 (henceforth CS) show that such an assumption 
is not as innocuous as may seem — when the fixed time-schedule approach is abandoned 

in favor of having individual prices adjnst according to a rule limiting the size of the 

departure from a target real price (a state dependent rule), results on monetary policy 

effectiveness may change dramatically. They provide an example where individual prices are 

controlled infrequently according to simple state dependent rules, but where the aggregate 

price level is fully flexible respect to certain types of monetary shocks (both anticipated 
and unanticipated). 

CS's economy, while dynamic, starts off and remalns at its steady state; the assumptions 
they make ensure that —except for a location parameter determined by the current level 

of the money stock— the distribution of prices is self-replicating. Many new issues arise 

when the shape of this distribution is allowed to change over time. For example, does the 

economy have any natural forces pushing it towards the CS limit? What is the path of 
output while outside the steady state? Is there a unique equilibrium path? Which is the 

role played by strategic interactions in shaping the dynamic path of output? Is there a role 

for monetary policy? 

This paper provides a framework within which some of these questions can be answered. 

We consider the simple microeconomic state dependent rule used by CS; the fixed (S, s) 
rule, which can be justified by the presence of fixed costs of adjusting prices ("menu costs"). 
This pricing rule is optimal in certain sections of the paper; in others it corresponds to an 

approximation of the first best rule. Under the maintained assumption of fixed (S,s) pricing 

rules, we describe the endogenous evolution of the distribution of prices, and the way this 

affects both output fluctuations and the response of output to monetary shocks. 

The basic macroeconomic framework —which corresponds to an extension of Blanchard 

and Kiyotaki [1987] to a dynamic setting— is presented in Section 2, Section 3 extends the 



CS neutrality result to the case where firms differ in the shocks they are subject to, the 

adjustment costs they perceive, and the demand elasticities they face. 

In Section 4 we show that whether uniqueness can he guaranteed or not depends not 

only on the degree of strategic complementarity, as is the case when only symmetric equi- 
libria are considered (e.g. Cooper and John [1988]), but also on the degree of dispersion of 

firms' price deviations; the more dispersed these are, the stronger the degree of strategic 

complementarities necessary to yield multiplicity. 

Section 5 characterizes the path of output when the economy is outside its steady 

state. We show that, in the presence of positive core inflation, strategic complementarities 

introduce realistic asymmetries into the business cycle generated by the model; the stronger 
these complementarities, the longer and smoother expansions are relative to contractions. 

Section 6 shows that monetary policy that uses information on the level of output and 

firms' prices has effects on output outside the steady state. Yet monetary policy remains 

neutral on averoge; the average effect of monetary policy when no information about the 

location of the distribution of firms' price deviations is available is equal to zero. Section 7 

presents concluding remarks; it is followed by several appendices. 

2 MACROECONOMIC FRAMEWORK 

lefankiw [1985] shows the potential first order effects of monetary policy when small (sec- 
ond order) non-convex costs of adjusting prices are present and competition is imperfect.1 
Recent static general equilibrium models have furthered our understanding of the macroe- 

conomic role of such costs (e.g. Blanchard and Kiyotaki [1987], Rotemberg [1987]). These 

models have several elements in common: (a) an aggregate output equation relating output 

to real balances (aggregate demand) at a given instant in time, Y(t) = G (M(t)/Q(t)), with 

Y, M and Q denoting aggregate output, money stock and aggregate price level, respectively, 

and G' > 0; (b) a frictionless pricing equation for each firm q7(t) = H (Q(t), M(t)/Q(t)), 
with q? denoting the i-th firm's optimal (private) frictionless price, and H1 > 0, H2 > 0; 

(c) a menu cost of changing prices so that the actual price charged by firm i, qj, may differ 

from its optimal frictionless price within some range; (d) a symmetric aggregate price index; 

(e) the assumption that prices are at their frictionless optimal level before the monetary 

shock; (f) the assumption that equilibria are symmetric and (g) the assumption that cost 

'Akerlof and Yellee (l9s5 give a similar insight in terms of near rationality. 
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and demand structures are the same across firms. 

If prices can be changed costlessly, then q() = = Q(t), and money is neutral. 

Au increase in the money stock is offset one for one by an equivalent increase in the price 
level. However, in the presence of menu costs there is a range in which actual prices do not 

increase with the money stock, although frictionless prices do. As a result, the aggregate 

price level does not match the increase in the money stock. This raises real balances and, 

through aggregate demand, output. 

Caplin and Spulber [1987] extend the previous model to a dynamic setting. They use 

results on optimal dynamic pricing rules in the presence of fixed costs of price adjustments 

(Barro [1972], Sheshinski and Weiss [1977] and [1983]) to give more structure to assump- 

tion (c). Under certain conditions on the process describing the path of money, including 

monotonicity, the presence of menu costs leads firms to follow one sided, fixed, (S, s) pric- 

ing rules. The price charged by a firm remains fixed until enough inflation (possibly not 

realized) accumulates so that its price is a given fraction s below its frictionless optimal 

value. Once this trigger level is reached, firms reset their price to a fraction S above their 

frictionless optimal price. Formally, denoting log qj and log q' by p, and p7, respectively, the 

above pricing nile implies that p(t)—p7(t) belongs to (s,S] for all i and t. A continuum of 

firms is considered: i E [0, 1], and the difference between the logs of the i-tb firm's actual 

and frictionless optimal price is denoted by z,(t), which therefore belongs to (s, 5]. In order 
to remove constants that are irrelevant in our analysis, we assume that .s = —S. 

CS also dispose of assumption (e). The reason for doing this is that in a menu cost 

economy where monetary shocks occur more than once firms are not at the point where 

z,(t) = 0 before every shock. Violation of condition (e) is important since the effects of 

monetary policy become ambiguous. For example, if all firms are bunched close to their 

trigger point s, a (positive) monetary shock is likely to lower real balances and output 

instead of raising them. 

If the money stock increases continuously, the logarithm of a firm's nominal price in- 

creases by a quantity equal to the width of the corresponding (5, s) band every time a firm 

adjusts its price; this amount is denoted by A. Substituting the expression for q7 shown in 

(b) in the definition of z(t), yields z(i) as a periodic function —with period A— of: (i) 
the initial conditions faced by the i-th firm, z(0), (ii) the logarithm of the aggregate price 

3 



level, P(i), and (iii) the logarithm of the aggregate money stock, m(t): 

(1) z0) = S — F (z(O), P0), m(t) — p0)) (mod A), 

where x (mod A) denotes the remainder of dividing x by A. 

Suppose initially F(z(U),P(t),m(t) — P(t)) (mod A) = 0. That is, the i-th firm just 

changed its price and therefore is at the target level S. If now m(i) rises, ceteris paribus, 
real balances rise. This puts upward pressure on the firm's frictionless optimal price and 

lowers z1(fl. This continues happening as the money stock rises bringing F(., ., .) closer 

to A, thus z(t) closer to the trigger level a. Once z;(t) reaches a, the price is immediately 
reset to 5, starting a new cycle. 

The effects of changes in P(t), also ceteris paribus, are less clear since substitution and 

real balances effects play opposing roles on the determination of the frictionless optimal 

price. An increase in P(L) raises p(t) through the substitution effect but lowers it through 
the real balances effect. This tradeoff is a well known source of multiple equilibria (e.g. 

Ball and Romer [1987]) and affects the dynamic response of output to monetary shocks in 

important ways; these issues are discussed in Sections 4 and 5. 

CS showed that money is neutral when the above assumptions are combined with an 

initial distribution of (the logarithm of) prices that is uniform on (a, 5]. Here we drop the 

symmetry assumptions made in CS and the models mentioned above. This allows us to 

address interesting non-steady state issues and study the generality of CS's steady state 

neutrality result. This is done in four ways: (a) ther can be an arbitrary distribution of 

firms' initial positions within their pricing cycle; (b) there are firm-specific cost and demand 

shocks (idiosyncratic shocks), (c) the cost of changing prices may differ across firms, and (d) 
there may be differences in demand elasticities across firms. Extension (b) corresponds to 

modifying the optimal pricing equation so that q(t) = H(Q(t),M(t)/Q(t),Wi(t)), where 

WQ) represents shocks affecting only firm i (and wQ) its logarithm), with (just for con- 

vention) H3> 0. Equation (1) then becomes: 

(2) z1Q) = S — F (z(0), P(t), m(t) — P(i), w1(t)) (mod A1), 

with s and S denoting firm specific trigger and target points and A1 their difference (i.e. 

A1 = S — 
3d). Thus positive idiosyncratic shocks lower z1(t) (whenever the trigger level 

s is not reached) by raiaing the i-tb firm's optimal frictionless price. An extension of 
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Blanchard and Kiyotaki's [1987j (henceforth BK) model, presented in the appendix, yields 
the following functional form for z,(t): 

(3) z1(t) = S — (S + m() + w(i) + k j z(t)du — p(O)) (mod j). 
If m(i) and w(t) are interpreted as deviations from their values at time t = 0, and z(t) 
z(t) — z(0), then equation (3) is equivalent to: 

(4) z(t) = s — 

(s + m(t) + w(i) + kj 1z,(i)du — 

zi(0)) (mod Ai). 

The term kfzdu in (3) reflects the fact that firms look at the aggregate price level (i.e. 
real balances and substitution effects do not necessarily cancel) when setting their prices. 
Consider the case where k is positive and the money stock is fixed. If firms' prices are 

(on average) above their frictionless optimum, the i-th firm has more pressure (on average) 
to raise its price. Conversely, if on average other firms' prices are below their frictionless 

optimal price then the i-th firm has less pressure to change its price. This corresponds to 

the concept of strategic cornp1ementariy. If k is negative, there is strategic substitutability 
between firms. 

The model underlying equation (3) can be extended to incorporate heterogeneity in the 

relation between firms' (or sectors') behavior and the business cycle. We introduce this 

realistic feature by letting the income elasticities of the demands faced by firms differ.2 

This leads to an expression analogous to (3) with k + 1 — /3 in the place of k, where I3 is 

the income elasticity of the demand faced by firm i and f /3 di = 1. Firms with large values 

of /3, have more incentives to raise their prices when output is above average than firms 

with small values of /3,. 

Defining the (logarithm of the) price level by P(t) = f p,(t) di, using the definition of 

z,(t) and the fact that in this model y(t) logY(t) = m(t) — P(t), it follows that output 
is a linear function of the average deviation of prices from their frictionless optima: 

(5) y(t) = —(1 + k)j z,(t) di. 

Output falls (rises) when the average price deviation (from the frictionless optima) rises 

(falls). Any effect of money on output comes through its effect on this average. 

2Allowing for heterogeneity in price elasticities is a tivia1 extension of the case we consider. 
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3 PRINCIPLE OF UNIFORMITY AND NEUTRALITY 

In this section we show that the principle underlying Caplin and Spulber's neutrality result 

remains valid in the presence of various sources of heterogeneity among firms. Underlying 

this result is the fact that once the distribution of firms within their pricing cycle is uniform, 

it remains uniform as long as the sources affecting firms' prices are independent from their 

price deviations. 

In order to make the above statements precise, we begin by defining the cross-section 

distribution of firms' price deviations at time t, Fg(z). Other cross-section distributions are 

defined analogously. The quantity Fg(z) is equal to the fraction of firms with price deviations 

less than or equal to z.3 It describes the distribution of firms' percentage deviations that 

actually attains at time t, and is totally unrelated to the observer's state of knowledge. We 

refer to it as the "distribution of price deviations," for short. 

Next we derive the steady state distribution in the simplest case, where firms have 

the same (S, a) bands and demand elasticity parameters, and no strategic interactions are 

present. Let zt and Wg denote random variables whose (joint) distribution function coincides 

with the (joint) cross-section distributions of the zt(t)'s and w(t)'s, respectively. Thus, for 

example, z0 denotes the initial distribution of price deviations. Equation (4) then leads to: 

(6) = S—(S+m(t)+wg —ro) (mod A). 

If no idiosyncratic shocks are present (wi 0 for all I) and o is uniformly distributed 

on the interval (a, 8], then the distribution of price deviations, zj, is also uniform. The 

level of trs(t) determines the relative position of firms within their cycle and the number of 

times they have changed their prices, but it does not affect the shape of the distribution 

of price deviations. CS showed that real balances and hence output cannot be affected by 

monetary policy in this framework. A continuous increase of the money stock by Am leads 

a fraction Am/A of firms to increase their prices by A. Thus the product of the fraction 

of firms changing their prices and the size of these changes —the change in the aggregate 

price index— is Am, leaving real balances (hence activity) unchanged. 

Idiosyncratic shocks have no impact on the relation between money and output once the 

economy is at its steady state. Monetary neutrality follows from the fact that if the initial 

3This distributioá function is rigorously defined when the number of firms is finite. Considering a 
continuum of firms should be interpreted as a notationally convenient way of dealing with a large but finite 
number of firms. 

6 



distribution of price deviations is uniform on (s, 5], then the distribution of prices at time , 
zt, is also uniform on (s, S]. This holds regardless of the distribution generating idiosyncratic 

shocks, as long as its increments are independent from current prices. Intuitively, if prices 
start off at their steady state and there is nothing systematic in the way idiosyncratic 

shocks occur, then all these shocks effectively do is change the relative order of firms within 

the (5,3) interval, without affecting the Ire ction of firms with price deviations within any 

particular interval. 

Next we allow the width of the (5, s) bands to differ across firms. Now some firms 

have high costs of adjusting their price and therefore allow their price deviation to vary 

considerably while others have small adjustment costs and change their prices more often. 

The steady state distribution of price deviations (the z1(t)'s) is no longer uniform. The 

variable that is uniformly distributed is the fraction every firm has covered of its own pricing 

cycle at a given instant in time. Formally, let c,(i) (S. — z.(t))/), denote the fraction of 
its current cycle covered by the i-th firm at time i, and c denote the corresponding cross- 

section distribution. This variable takes values between zero and one. From equation (6) 
it follows that 

(7) Cg = ( + m(t)+ 
tI)) (mod 1). 

where A denotes a random variable with the same cross-section distribution as the As's. If 

the initial position of firms within their cycle (c.(O) = (S — z,(O))/A.) is uniform, then it 
remains uniform under rather weak conditions. All that is needed is that the (joint) cross- 

section distribution of bandwidths and increments of idiosyncratic shocks be independent 
from firms' current positions within their pricing cycle, i.e. that (dim, A) be independent 
from Ct. The proof is similar to the one we sketched above. Neutrality of money is derived 

by noting that equations (5) and (7) imply that 

(8) y(t) = (1 + k) (j A(t)di — 

s) 
with S = f Sdi. The integral (expectation) on the right hand side of (8) is calculated by 
first conditioning on the value of A,, then applying the result for the case of equal (5,3) 
rules4 and finally adding up over all possible values of A,. This shows that in the steady 

state y(i) = f ),di — S = 0. Thus y(t) is unaffected by money changes. Firms increase 

4The assumption that c in independent from (dw,,A) 5 used at t1u8 step. 

7 



their prices by amounts proportional to their bandwidths, yet this is offset by the fact that 

the proportion of firms changing their prices within each group (defined as firms with the 

same A's) is inversely proportional to the width 1.f firms' inaction bands. 

Adding strategic interactions and heterogeneity in elasticities does not affect the steady 

state nature of the uniform distribution of Ct, since these only play a role outside the steady 

state, when output fluctuates (see equation (3) and Section 5). The main result of this 

section is summarized in the following proposition. 

PRoPosITIoN 1 (Principle of Uniformity): Assume the cross-section distribution of 

firms' initial positions within their (pricing) cycle, c0, is (a) uniform on [0,1) and (b) in- 

dependent of the (joint) cross-section distributions of idiosyncrutic shocks (that take place 

at time t > 0) and bandwidths. Then (a) the cross-section distribution of firms' positions 

within their cycle at time t, also is uniform on [0, 1) and (b) monetary policy (that in- 

creases continuously and mono tonically, and does not affect firms' pricing rules) is neutnil. 

PRooF Any solution to the simultaneous set of equations defined by (3) at time t defines 

a cross-section distribution of firms positions within their pricing cycle of the form (see 

Section 4): 

(9) Ct = ( + m(t) + wt +(k + 1 — 

fi)r) (mod 1), 

where fi denotes a random variable with the same distribution as the cross-section distri- 

bution of the /3's, and r is a constant (that depends on fi, t, k, A and m(t)) equal to zero 

in steady state. 

Equation (9) shows that the cross-section distribution of firms within their pricing 

cycle at time t is the sum, mod 1, of a distribution uniform on [0, 1) and a distribution 

independent from the latter. That the resulting distribution again is uniform on [0,1) 

under these assumptions follows from standard Fourier analysis and is shown in Lemma B 1 

in Appendix B. The conditioning argument given in the text can then be used to show that 

output remains constant over time. I 

Thus, CS's steady state result can be extended to the case where idiosyncratic shocks, 

different (S, s) rules and different demand elasticities are present. The aggregate behavior 

of the corresponding economy —including monetary neutrality— is indistinguishable from 

that of an economy with equal (5, s) bands and demand elasticities across firms, and without 

idiosyncratic shocks. Yet at the microeconomic level there is an additional element of 
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realism in the model presented above. The relative position of two firms within their cycle 
may change over time due to idiosyncratic shocks or aggregate shocks (Or both). The latter 

only occurs if the firms' (S, s) bands have different widths since it is only in this case that 
aggregate shocks displace firms by different fractions of their cycles. Also the empirical 
distribution of prices need not be uniform since Pt = Zj + p, and the distribution of p 
is likely to be dominated by the distribution of idiosyncratic shocks. Furthermore, if the 
(S, 3) bands are different across firms, Zt is not uniform.5 

4 EXISTENCE, UNIQUENESS AND MULTIPLE EQUILIBRIA 

When income and substitution effects cancel (k = 0), equation (3) defines the (unique) 
equilibrium of the (S, s) economy. This section highlights some of the issues involved in 

determining existence and uniqueness of an equilibrium when this is not the case. Firms' 
deviations from their frictionless prices, the z()'s, then appear on both sides of (3) and it is 
not obvious that this system of equations has a solution. We first show that an equilibrium 
exists under very weak assumptions (Section 4.1). This is followed by the derivation of 
conditions that ensure uniqueness (Section 4.2). These conditions require that either the 
degree of strategic complementarity across firms be small or that the economy be close to 
its steady state. The section concludes with some speculations on what happens when the 
possibility of more than one equilibrium arises. The results we obtain should be viewed as a 
first step towards understanding equilibria in dynamic menu costs economies with strategic 
interactions, since the fixed (5, s) rules assumption is (more) likely to be suboptimal in this 
case. 

In order to highlight the interrelation between the degree of strategic coinpiementarity 
and the existence and uniqueness of equilibria, we assume bandwidths and demand elas- 

ticities are the same across firms. This section's results can be extended to the general 
macroeconomic framework considered in Section 2, as was done in a working paper version 

This does not include the stochastic bands case considered in Benabou (1989]. However the principles 
underlying the proofs in this paper are likely to extend to his setting. 
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of this paper (Caballero and Engel [1989b]). 

4.1 Existence and uniqueness 

Consider again the economy described in Section 2 and summarized by the equation 

(10) z(t) = S — (S + rn(t) + w1(t) + kf z5du — p1(Ofl(mod A). 

A collection {p(t); i E [0, 1J} is said to define a general equilibrium at time t, if the cor- 

responding z1(t)'s —which are uniquely determined since the frictionless economy always 

has a unique equilibrium (see Appendix A)— solve the system of simultaneous equations 

defined by (10). Thus determinig whether an equilibrium exists at time t is equivalent to 

determining whether there exists a collection {z(t); i [0, 1J} that solves (10). 

If {z(t); I [0, 1j} defines a solution of (10), then there exists a real number r(t) (equal 

to f z(t) di) such that 

(11) z(t) = S — (S + ns(t) + u(t) + kr(t) — p(0))(mod A). 

Hence any two solutions of (10) differ only in the value of r(t) in (11). Thus if we compare 

the cross-section densities of firms' positions within their price cycle associated with two 

different equilibria, any one of them is a mod-i rotation of the other.e 

Comparing equations (10) and (11) shows that proving existence of a solution at time t 
is equivalent to finding a number r —that typically depends on the instant of time t being 

considered— such that 

(12) r = j z5(t)du, 

where the r1(t)'s are given by (11), as a function of r. Let Y denote a random variable 

with a distribution equal to the cross-section distribution of the (S + m(t) + w(t) — p(0))'s. 
From (11) it follows that solving (12) is equivalent to solving the following (fixed point) 

equation: 

(13) 5— r = E(Z + kr)(modA). 

The left and right band sides of (13) are denoted by L(r) and Gt(r), respectively. The 

function G(r) is. periodic (with period A/[k[). We denote its maximum and minimum 

6The random variable Y is a mod-I rotation of X if Y (X + a)(rnod I) for some constant a. 
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values by G5 and G,,.j,, respectively. Equation (13) then shows that we may restrict our 

attention to values of r in jS — Gm,S — Both functions take values between in 

and M on this set. We therefore have that the existence of an equilibrium is equivalent to 

having a curve restricted to a square (with side of length Gmac — G) intersect the second 

diagonals of that square. A sufficient condition for existence of an equilibrium is therefore 

that Gi(r) be continuous (in r). This is the case, for example, if the initial distribution 

of prices and the distribution of idiosyncratic shocks are independent and any one of them 

has a density.7 This provides a simple characterization of any equilibrium of an economy 
described by a system of equations like (10). 

A calculation from first principles shows that under the symmetric equilibria assumption 

(which implies that Y is concentrated at one point and therefore does not have a density) 
the functions L(r) and G(r) do not necessarily cross. There often does not exist a solution 

for (10) when this is the case. At the opposite extreme, when the economy is at its steady 
state and Yj(mod.\) is therefore uniform, the constant r solving the fixed point equation is 
unique and equal to zero, since output does not fluctuate (G,, = = 0). This suggests 
that uniqueness depends on how near the cross-section distribution of firms' positions within 

their cycle is from the steady state. 

Having established that an equilibrium exists (at time t) if Gj(r) is continuous, addi- 

tional conditions ensuring uniqueness are now considered. If two values of r solve (13), then 

necessarily the slope of Gi(r) (as a function of r) has to be equal the slope of the diagonal at 
some intermediate point (this is just a statement of the Mean Value Theorem). Hence G(r) 
is equal to —1 for some r. As G1(r) is periodic, its derivative is equal to zero at some point. 
Therefore there exists a unique equilibrium when G'(r) is continuous and G'r(r) > —1 for 
all r. This is equivalent to having k(1 — h1(1 — kr)) > —1 for all r in [Gm,Gm.,], where 

hg(z) denotes the density of Y1.8 Since the range of admissible values for k is (—1,+m),9 
it follows that there exists a unique solution whenever there is strategic substitutability 

(or no strategic interaction at all). The possibility of more than one equilibrium arises 
p 

only when there exists strategic complementarity between firms' pricing decisions. The 

TThe proof follows from the fact that if the distribution of Y has a density (with respect to Lebesgue mea- 
sure) then the continuous mapping theorem (see Billingsley [1986, p.344]) implies that G,(r) is continuous. 
The conditions mentioned above ensure that V has a density. 

5G(r) follows from Lemma 84 in Appendix B. 
9The extension of Blanchard and Kiyotaki's model presented in the appendix requires short run decreasing 

returns to scale in otder to have a bounded equilibrium. This restriction determines that k > —l (see the 
appendix). 
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condition ensuring uniqueness derived above holds when sup, h(z) — i < 1/k, which 

(as shown in the appendix) is equivalent to dR(zt, U) < 1/k, where dR(zt, U) denotes the 

largest relative error made in approximating the distribution of price deviations by its 

steady state distribution.'0" The larger the degree of strategic complementarity, the closer 

the distribution of price deviations must be to its steady state to ensure uniqueness. 

The results on existence and uniqueness of equilibria are summarized in the following 

proposition. 

PRoPosITIoN 2 (Existence, Uniqueness and Continuity of Equilibria) 
Let Z denote a random variable with the same distribution as the cross-section distri- 

bution of the (w(t) — p(O)) 's. 

Existence: Assume that Z has a density (with respect to Lebesgue measure). Then the set 

of simultaneous equations defined by (10) has a solution (at time t). Further, all solutions 

are such that the cross-section distribution of firms' positions within their pricing cycle is 

of the form: 
/ m(t) + tDj + kr(i)\ 

(14) c = 
I\co 

+ ) (mod 1), 

for some real number r(t). 

Uniqueness: Assume H(a) = E(Zc + a)(mod ) is continuously differentiable.12 Let c 
denote a random variable that has the same distribution as the cross-section distribution 

of firms' positions within their price-cycle associated with a particular equilibrium at time 

t. Then a sufficient condition for uniqueness is that either k 0 or dR(cj, U) < 1/k, 
where d(ct, U) denotes the largest relative error made when approximating the probability 

of events under c1 by the probability assigned to that event by the steady state distribution. 

Further, (the unique value of) output at time t is the only solution of the following fixed 

point problem: 

(15) y(t) = { ( + m(t) + tOt —(1— )(y(t) — 

(O))) (mod 1)— s}, 

'°This coincides with the social increasing returns condition highlighted in conventional multiple equilibria 
models (see Hammour [1989]). 

"Note that, since the cross-section densities corresponding to different equilibria are rotations of one 
another, d5(z,,U) is constant across solutions, hence checking that d5(z,,U) > 1/k for one solution is 
enough to ensure uniqueness. 

"This is the case, br example, if the density of Y in (13) is continuously differentiable and its first and 
s&ond derivatives are integrable (see Caballero and Engel [1989a]). 
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where=1/(1+k). 
Continuity: If the conditions ensuring existence hold for 0 � t � T,'3 there exists (at 
least) a set {r(t) : 0 � t T} defining a sequence of equilibria (see (14)) such that the 

distribution of price deviations and output are continuous over this time period. Further, if 
m(t) is differentiable and the conditions ensuring uniqueness also hold, then the (unique) 

output path is also differentiable. 

PROOF: Noting the equivalence between equations (3) and (4), all the statements on 

existence and uniqueness follow from the previous discussion. The continuity results follow 

from (15) and the fact that the assumptions made above ensure that G(r) is differentiable 

(see Caballero and Engel 11989aD. • 

The conditions ensuring uniqueness imply that the right hand side of equation (15), as 
a function of y, defines a continuously differentiable contraction mapping. This has two 

interesting implications. First, since it is a contraction, standard fixed point calculations 

can be used to calculate in an efficient way the value of output at a given instant of time — 

this is applied in the following section. Second, since it is continuously differentiable, the 

unique value of r(t) defining a solution at time t (see (14)) —and therefore the distribution 
of firm's price deviations— evolves smoothly over time. The dynamic behavior of the 

economy therefore is consistent with the fixed pricing rules assumption, in the sense that 
firms adjust their prices smoothly. Since the path of money (and therefore the distribution 

of price deviations) have no jumps, these cannot be a positive fraction of firms adjusting 
their price in an infinitesimal time period. 

4.2 Multiple Equilibria 

This section shows that more than one equilibrium may attain when k > 0 and the 

economy is sufficiently far away from the steady state. The argument given in Section 4.1 

shows that in this case the number of solutions of equation (10) is equal to the number 

of times the periodic function G(r), with period X/k, crosses the diagonal bisecting the 

square determined by S — and S — on the x-axis, and and on the 

y-axis; where and G,. denote largest and smallest values G(r) can take. It follows 

'3Recall that m(1)ia assumed to be continuous throughout this paper. 
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Figure 1: Example with more than one equilibrium 

L(r): (—) Gt(r): (- - -) 

that the number of equilibria at time t, lie, satisfies: 

(16) Nj� 

Figure 1 shows L(r) and G(r) (for t = 0) in a particular example, where there are no 

idiosyncratic shocks and the cross-section distribution of firms within their price cycle is 

uniform on [, ], A = 0.2, k = 6, and m(0) = 0. For this example = 0.15 and 

= 0.05, and the number of equilibria is 5. 

It is shown in Appendix B that G,, — is equal to Adj(c, U), where d,(cg, U) 
denotes a measure of the distance from the equilibrium distribution of firms' positions 
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within their price cycle to the steady state.14 Equation (16) then leads to: 

(17) N � 2kdi(ct,U) — 1. 

In Section 6 we show that di(ct, U) can also be interpreted as a measure of the effec- 

tiveness of monetary policy. The close relation between the distance from the steady state 
and the effectiveness of monetary policy is one of the themes explored in that section. 

Usually the number of solutions of (10) is not significantly larger than the lower bound 

provided by (17). Equation (17) shows that, other things equal, the number of solutions 
for (10) grows at a rate approximately linear in (a) the degree of strategic complementarity, 

k; (b) the degree of monetary effectiveness and —equivalently to (b)— (c) the distance of 
the distribution of price deviations from its steady state. 

The fact that equation (10) may have more than one solution does not necessarily im- 

ply that dynamic multiple equilibria are possible. The solutions of (10) give all possible 
distributions of price deviations an economy may have when the previous path of this distri- 
bution is disregarded. Yet the presence of menu-costs rules out jumps from one equilibrium 
to another. The economy's path prior to the time instant t may uniquely determine the 

equilibrium it attains at time i. Multiple equilibria that persist over time must take into 

account this dynamic consistency condition. This implies that a continuum of equilibria 
must exist at some instant in time. A general statement on this topic is an open research 

question. 

5 OUTPUT FLUCTUATIONS AND STRATEGIC COMPLEMENTARITY 

In this section we study the economy's aggregate out-of-steady-state behavior. We 
concentrate on the asymmetries introduced by strategic complementarity, and the desyn- 

chronizing features of idiosyncratic shocks. Even though many of the results extend to 
the more general setting described in Section 2,15 for expository reasons we assume band- 

widths and demand elasticities are equal across firms. We first consider the effect of strategic 

complementarity in isolation and assume there are no idiosyncratic shocks (Section 5.1). 

'4More precisely, d,(ce, U) is equal to the largest absolute error made when approximating the probability that z, belongs to any given interval (mod 1) by the probability the steady state distribution assigns to that 
event. - 

'5See Caballero and Engel [lQs9bl. 
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Idiosyncratic shocks are incorporated in Section 5.2. 

5.1 Strategic Complementarity and Fluct nations 

We begin with a simple but illustrative example that motivates the issues we formalize later. 

The economy is initially at the steady state described by Proposition 1, when an increase 

io the rate of core money growth doubles firms' bandwidths.'6 Bands are symmetric before 

and after the structural change. The cross-section distribution of firms within their pricing 

cycle, which was uniform on [0, 1) before the change, is uniform on [, ) after hands 

widen.17 Both before and after the change in core money growth, the money stock increases 

monotonically and continuously. 

We first consider the case where there are no strategic interactions: firms' frictionless 

optimal prices increase one-for-one with increases in the money stock because substitution 

and income effects cancel. Firms' pricing decisions do not depend on the price level per 

se, but only on the money stock. Since there is a gap between the distribution of firms' 

positions within their pricing cycle and their trigger level, there is a period of time during 

which no firm reaches its trigger point and nominal prices remain unchanged. This period 
lasts until the (log of the) money stock grows by A/4. Real balances, and therefore output, 

increase at the same rate as the muney stock during this period. By the time the first 

firm reaches its trigger level —this firm was about to increase its price when the structural 

change took place— firms begin changing their prices at a rate that is twice the steady 

state rate, and therefore output decreases at the same speed at which the money stock 

is growing. By the time the last firm completes its pricing cycle, the situation reverts 

again and output increases at the rate at which the money stock grows. In the absence of 

idiosyncratic shocks this cyclic behavior continues forever. The "curve" corresponding to 

k = 0 in Figure 2 shows how output fluctuates when the rate of money growth is constant. 

If money grows at a stochastic rate, output increases at the same rate that the money 

stock until m(t) � .A/4. Output then decreases —at the same rate that the money stock 

is growing— until m(t) = SA/4, and so on. The frequency with which firms adjust prices 

"This sxtreme example has the nice property: 1(O) — lc(O) = 0 (see below), which allows us to isolate 
more clearly the effects arising from strategic complementarities from those arising from the shape of the 
cross sectional distribution. 

'TThis ignores the effect of the expected rate of inflation on the dsmand for real balances. Once this effect 
is incorporated, the cross-section distribution of the c;'s continues being uniform on an interval of length 
1/2 (as long as this effect is not larger than .1)4), hut this interval is not centered around 1/2. Except for 
a shift in the time ails, the analysis that follows remains valid. 
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—equal to m'(t)/A in the deterministic case— is not constant anymore, but on average it 

is equal to ThJA, where t denotes the (new) average rate of money growth. 

Next we consider the case with strategic interactions, to ensure a unique equilibrium 

we assume k < 1. Firms' frictionless prices grow at a rate equal to a convex combination of 

the rates at which money and the price level are growing. A firm's frictionless price is less 

sensitive to increases in the money stock for larger values of the strategic complementarity 

parameter k. By the same token, the speed with which a firm moves in its pricing cycle 

becomes more sensitive to the changes in price level as k becomes larger. Following the 

widening of bands, there is a period during which no firm adjusts its price, just as in the case 

with k = 0. Since the price level remains constant, during this period, firms' frictionless 

prices grow slower than in the case without interactions. Yet the corresponding increase in 

real balances is amplified —by the presence of strategic interactions— into an increase in 

output that exactly offsets this effect, and output grows at the same speed as in the case 
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k = 0 for a longer period of time. By the time firms begin to adjust their prices, output 

falls sharply. The price level begins to increase (at a speed twice as large as the growth rate 

of money) and therefore firm's frictionless prices increase faster than they would if firms 

only considered changes in the money stock. Since the cross-section distribution of price 

deviations moves faster during the downturn, this period is shorter than it would be with 

k = 0. When all firms have completed their first pricing cycle, output begins to increase 

and tbe cycle starts again. 

Figure 2 shows output fluctuations when money grows at a constant rate, for various 

degrees of strategic complementarity.55 Two regularities emerge from this figure and the 

preceding discussion. First, output increases (decreases) when the rate at which firms are 

changing their prices is smaller (larger) than the corresponding steady state rate. Second, 

other things equal, output grows for a longer period of time —and declines for a shorter 

period of time— the larger the degree of strategic complementarity. These insights hold 

—in the absence of idiosyncratic shocks— for any distribution of firms within their cycle. 

Later in this section we show that: 

(18) y'(t) = 

where f(1j denotes the cross-section density of firms' positions within their pricing cycle 

at time t and = 1/(1 + Ic). Since the denominator is positive (this is required to ensure 

uniqueness), the numerator determines the sign of y'(t) and the strategic complementarity 

parameter, Ic, the magnitude of this rate of change. 

The asymmetry described above implies that, other things equal, the average length of 

expansions is larger the larger the value of Ic. This is valid more generally than this example 

may suggest. Given an initial cross-section distribution of firms within their pricing cycle, 

c0, and a degree of strategic complementarity Ic, let IE(k) denote the fraction of time output 

is growing and lc(k) 1 — IE(k). The difference between IE(k) and lc(k) measures the 

degree of asymmetry in the lengths of expansions and contractions. Assume there are no s 

idiosyncratic shocks and the money stock grows at a constant rate — the expression that 

follows holds (approximately) in expectation when the stochastic process generating the 

'8Bandwidths are equal to 0.2 and m(t) = 0.01t in this figure. 
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money stock grows at a rate that is independent from the current level of output. Then: 

(19) IE(k) — 1(k) = IE(O) — lc(O) + kdv(ct,U), 

where dv(c, U) denotes a measure of distance —known as the variation distance— between 

ct and the steady state uniform distribution U.'9 This result is proved in Lemma BIG in 

Appendix B. It shows that the asymmetry in fluctuations grows (linearly) both with the 

economy's distance from the steady state and the degree of strategic complementarity.2° 

When the economy is expanding, most firms are at the beginning of their pricing cycle 

and, other things equal, the larger the degree of strategic complementarity, the larger the 

incentive firms have not to adjust their prices. Hence expansions are reinforced by the 

presence of complementarities among firms, and their duration grows with k. Similarly, 
contractions are associated with periods where firms change their prices at a rate faster 

than average. When prices are strategic complements, the larger the number of firms that 

change their price, the larger the incentives other firms have to do the same. It follows that 

contractions are shorter the larger the degree of strategic complementarity. 
The magnitude of the effects described above is proportional to the difference between 

the rate at which firms are adjusting their prices and the corresponding steady state rate, 
and this is proportional to the distance of the distribution of price deviations from the 

steady state. This explains why the asymmetry between the lengths of expansions and 

contractions increases with the distance from the steady state. 

5.2 Idiosyncratic Shocks and Fluctuations 

When the economy is forced away from the steady state described in Proposition 1, idiosyn- 
cratic shocks (whose increments do not depend on firms' current prices) bring the distribu- 

tion of price deviations doser to its steady state and therefore dampen output fluctuations. 

The discussion of this mechanism is given in Caballero and Engel [1991); and extended 

here to incorporate the presence of strategic interactions. If shocks are nonstationa.ry, and 

no structural change takes place, the cross-section distribution of firms' positions within 

'5Tlie variation distance between c, and U is equal to supA Pr{c, E A) — Pr{U A}I, where the 
supremum is taken over all Borel sets A. Note that, since there are no idiosyncratic shocks, dv(c,, U) 
remains constant over time. 

This qualitative nature of this result may be expected to extend to the case whece adjustment rules are 
two-sided, as long as core-iiiflation is positive. 
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their pricing cycle converges to the uniform distribution.2' As time passes, the economy 

resembles more and more the steady state description given in Proposition 1. 

Let us consider again the example where an increase in core money growth leads to a 

doubling of firms' bandwidths. We assume idiosyncratic shocks are normally distributed 

with zero mean and variance growing linearly with time.22 Figure 3 shows how output 

fluctuates on its way to the steady-state in the presence of idiosyncratic shocks for three 

different values of the variance, where time is measured in years.23 It is apparent form 

this figure that fluctuations dampen out faster the larger the (instantaneous) variance of 

firm specific shocks. Since shocks are non stationary, their desynchronizing effect increases 

2'Given the form of the distribotion of price deviations derived io Section 4, the corresponding proofs 
follow directly from Caballero and Engel [1991]. 

"Strictly speaking, we should use a truncated normal (in auy interval of length dt) with truncation point 
at —dm(i). This is bf second order importance when rn'(i) >> a2. This approximation is also used iu 
Proposition 3 below. 

"These figures assume k = 0.40, A = 0.20 and m(i) = 0.lt. 
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without hound, hence output converges to its steady state level and the distribution of 
firms within their cycle approaches the steady state distribution. The larger tlse variance 

of idiosyncratic shocks, the faster the economy approaches its steady state distribution. 

Figure 4 shows the path of output for three different degrees of strategic complemen- 

tarity — and the same variance of idiosyncratic shocks. Figure 4 can be interpreted as the 

figure that results from adding idiosyncratic shocks (with instantaneous standard deviation 

equal to 0.05) to every one of the output paths considered in Figure 2. It is apparent that 
the asymmetry between the lengtbs of expansions and contractions persists in the presence 
of idiosyncratic shocks — during the time period where the economy is sufficiently far away 
from its steady state. This is consistent with equation (19). In the following proposition 
we extend equation (18) to the case where idiosyncratic shocks are also present. 

I 
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Figure 4: Output fluctuations, idiosyncratic shocks and strategic complernentarity 

PROPOSITION 3 Suppose the cross-section distribution of idiosyncru tic shocks —the w1(t) '5 

its equation (3)— is normal with zero mean and variance 2a2t, with = 1/(1 + k), and 
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let fg(c) denote the density of c1.24 

Then: 

(20) ti'(t) = (1 — ft(1))m'(t) — x2fI(1_) 

where f'(c) denotes the derivative (with respect to c) of fg(c), and x2 = 

Paoor: See Lemma B9 in Appendix B. I 

Equation (20) corresponds to (18) with an additionsi term in the numerator. This 

additional term takes into account the fact that now firms are moving within their pricing 

cycle not only because of increases in the money stock, but also because of firm specific 

shocks. As the economy approaches its steady state, both (1 — ft(1)) and f'(1) are 

tending to their steady state values (zero). Since the monotonicity assumption implies that 

the aggregate drift must be larger than the standard deviation of instantaneous shocks, the 

first term in the numerator of (20) dominates over the second term, and the discussion from 

Section 5.1 extends to the case with idiosyncratic shocks. 

Summing up, when an (S, s) economy with idiosyncratic shocks is forced away from 

the steady state described in Proposition 1, output oscillates on its way back to the steady 

state. Expansions are flatter and contractions are more pronounced (but shorter lived), the 

larger the degree of complementarity between firms' pricing decisions and the further away 

the economy is from its steady state. 

6 AVERAGE NEUTRALITY 

The previous section showed that monetary policy is generally not neutral when the 

economy is outside its steady state. Yet knowledge of the level of output (i.e. of —(1 + 

k)f zdi) over some period of time (so as to know its derivative) is necessary to take 

advantage of non-neutrality. In this section it is shown that money is neutral on averoge 

when there is no information on the location of the distribution of price deviations. This 

serves as a threshold since any amount of information breaks the average neutrality result.25 

We also show that the potential magnitude of the effect of monetary policy grows with the 

distance of the economy from its steady state. This ties in the various notions of distance 

241t follows from the mode! derived in Appendix A that w, = mv,, where the v, correspond to a linear 

combination of the (logs of the) actual shocks; see Section 2 and Appendix A. The assumption made shore 
is therefore equivalent to V having variance a21. 

"This paper does not deal with agents' responses to systematic exploitation of information. See Caballero 
and Engel [1989al for a preliminary discussion of monetary policy in the context of (S a) economies. 
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that appeared in the preceding sections. For simplicity we assume that bandwidths and 
demand elasticities are the same across firms,se and that the cross-section distribution of 
idiosyncratic shocks is normal (with a variance that increases with time). 

The elasticity of output with respect to (continuous) money changes is introduced in 
order to make precise the concept of money neutrality. It also is useful when defining 
various measures of the potential magnitude of monetary policy effects. Its value at time t 
is equal to: 

— M dY M — dy(rn(t),t) Y din 

where y(rn, t) denotes output as a function of the current money stock, in, and the distribu- 
tion of idiosyncratic shocks accumulated until time t. This index is shortsighted because it 
only reflects the effect of money on the current level of activity.27 It also assumes that the 
increase in the money stock does not affect the average growth rate of money, hence firms' 

inaction range. It measures the effect of output of a infinitesimal, continuous increase in 
the money stock. 

From equation (5) it follows that I is equal to minus (1 + k) times the derivative of 

fz1di with respect to the (logarithm of the) money stock at that instant in time. Hence, 
if on average prices have been changed recently, an increase in the money stock ralses real 

balances and total output (i.e. lowers fJ z1di): I > 0. Conversely, an increase in the money 
stock is likely to reduce output if on average prices have not been changed for a long time: 

Ii <0. 

Defining neutrality at time t as having I equal to zero is too general a definition. An 

infinitesimal increase in the money stock has no effect on activity every time output reaches 
a locally extreme (maximum or minimum) value and therefore I is equal to zero at these 

instants in time.as Yet the index of (instantaneous, myopic) monetary effectiveness, I, is 

different from zero an instant of time later. One measure for the distance of the economy 
from its steady state at time t is the largest value I could take over all possible realizations 
of the (continuous and increasing) output path in(s); a � t. Let therefore: 

Mi(t) = 
supm(.)>m(g,a>tIi(rn(s),s). 

"The case with different bandwidths was considered is a previous version of this paper. 
2tGenerating a boom today comes at the cost of a recession, usually milder than the boom, in the future. 

Intertempoeal tradeoffs issues like this one are addressed in Caballero and Engel [1955a]. "When the path of output is continuous. 
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It is shown in Lemma Bil in Appendix B that Ms(L) is equal to (1 + k) times the largest 

relative error made when approximating the cross-section distribution of firms within their 

pricing cycle, Ct, by its steady state distribution. The condition ensuring uniqueness derived 

in Section 4 may now he interpreted in the following way. Once the (instantaneous) effect 

of monetary policy, as measured by M5(t), is smaller than (1 + k)/k, there exists a unique 

equilibrium. 

Next we study to what extent an uninformed pollcy maker can take advantage of the 

non-neutrality of money when the economy is away from its steady state. Assume that 

the order in which firms change their prices is known, yet the exact position of any firm 

within its pricing cycle is not known. This is equivalent to knowing the distribution of firms 

positions within their (S, s) bands, except for a location parameter, b, that may take values 

between 0 and A. The effectiveness of monetary policy depends on the actual value of . 
Denote the corresponding money-elasticity of output by '(). Then (see Lemma B12 in 

Appendix B) 
pA 

(21) j I(i,b)ds,b = 0. 
0 

This means that if the policy maker assigns equal probability to all possible locations of the 

distribution of firms' positions within their (5, .s) band, then monetary policy is neutral on 

average. The magnitude of (infinitesimal) monetary shocks may be expected to be larger 

the further away from the steady state the economy is. A measure of the average magnitude 

of monetary shocks (at time t), when the policy maker has no knowledge about the location 

of the distribution of price deviations, is given by: 

pA 

M2(t) = j IIs('P)Idib. 0 

It is shown in Lemma B13 in Appendix B that M2(i) is equal to (2A/) times dv(ct, U), 

where dv(c, U) denotes the largest error made when approximating probabilities of events 

under Zg by the corresponding probability under the steady state distribution. This is the 

notion of distance —known as the variation distance— related to the asymmetry between 

the lengths of expansions and contractions in Section 5.1. This asymmetry therefore grows 

with the size of the potential effects of (infinitesimal) money shocks. 

An alternative measure of monetary policy effectiveness at time I is the difference be- 

tween the largest and smallest values output can take —from time I onwards— over all 

possible continuous, increasing paths of rn(t). This leads to the following index of mone- 
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tary policy effectiveness: 

M3(t) = 
5UPm()>m(t) y(m(s), a) — 'r,)�m(t) y(m(a),s). 

The index M3(t) is equal to (1 + k) times the largest error made when approximating the 

probability of intervals (mod 1) under cm by the corresponding probability under the steady 
state distribution (see Lemma B7 in Appendix B). The corresponding concept of distance 

between random variables is known as "discrepancy" — it is proportional to the (lower 

bound) for the number of equilibria derived in Section 4. 

Average neutrality holds independently of how far from the steady state the economy 

might be. Increasing money without worrying about the current output level has no average 
effect on output. The difference with full neutrality is that Mi(L), M2(t) and M3(t) —and 

typically I— are different from zero when the economy is not at its steady state. Increases 
in the money stock raise output during recessions but lower it during booms in such a 
way that these effects cancel each other. It may appear that this contradicts the result 
we derived in the preceding section, according to which booms are longer —and recessions 

shorter— the larger the degree of strategic interactions. Yet, as shown in Proposition 
3, the speed with which output grows during expansions is decreasing in the degree of 

strategic complementarity. Similarly, the larger the value of k, the faster output falls during 
contractions. These effects exactly cancel ofT the asymmetry between the lengths of booms 
and recessions so that monetary policy is neutral on average. An absolutely uninformed 

monetary authority cannot exploit (on average) situations where Mj(t), M2(t) or M3(t) are 

greater than zero. 

7 CoNcLusioN 

This paper begins by generalizing Caplin and Spulber's [1987] steady state-money neu- 

trality result, by allowing for strategic interactions and various sources of heterogeneity 
across firms. We then proceed to study non-steady state dynamics, first showing that 
whether a unique equilibrium can be guaranteed or not depends not only on the degree of 

strategic complementarity but also on how close the distribution of firms' positions in their 

price cycle is from the steady state. Next, we argue that strategic complementarities intro- 

duce realistic asymmetries into the business cycle; the stronger these complementarities are, 
the longer and smoother are expansions relative to contractions. Finally we demonstrate 
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that the conditional correlation between money and output is typically non-zero outside 

the steady state, however the unconditional correlation remains zero. In other words, the 

steady state neutrality result no longer holds for every time t but it holds on average. 

Throughout the paper we assume that the band-policy remains invariant to the exper- 

iments we perform, and concentrate on distributional issues. For the most part, allowing 

for different bandwidths for different parameters values is unlikely to change the qualitative 

features of the results. This is not necessarily true, however, when we study the out-of- 

steady-state behavior of an economy with strategic complementarities, since in this case 

the first best policy is likely to involve endogenous changes in firms' bands (i.e. fluctuating 

bands). In this sense, our results should be viewed as a first step towards understanding 

the complexities of stochastic dynamic menu cost economies with heterogeneous agents that 

are strategically related. 

29AS long a the value functions satisfy standard regularity conditions. 
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APPENDIX A 

This appendix briefly presents the basic model underlying the macroeconomic frame- 
work used in the paper.3° To shorten the formulae, the derivation from first principles of 
the demand side of the model is omitted. 

There is a continuum of sectors indexed by the subscript i E [0,1], and within every 
sector a continuum of firms indexed by the subscript j E [0,1]. Each sector faces at each 

time i the following isoelastic demand function: 

(22) y.d(j) = (•I) Y(t)c(t), 

with Y(i) the quantity of the (composite) good i demanded by consumers, q(t) the price 
of the (composite) good i, Q(t) the aggregate price index, Y(i) aggregate expenditure, q(t) 
the idiosyncratic shock to the demand for goods of sector i, and 0 the price elasticity of the 

demand for good i. 

Aggregate expenditure (equal to aggregate production in this model) is proportional to 

real balances: 

(23) Y(t) = 

with M denoting some measure of money holdings. Sectoral demands, as a function of rela- 
tive prices, real balances, and idiosyncratic (sectoral) shocks, are obtained by replacing (23) 
in (22): 

(24) yd(t) = _6 (M(t)) q(t). 

Firm j in sector i faces a demand, (t), that depends on its relative price (within the 

sector), q5(t)/q(i), and on the total demand for the sector's composite good: 

(25) }'(t) = (t))) 
" 

where ij > 1 is the price elasticity of the demand faced by firm j in sector i. In this context 

30This is a modified version of Blanchard and Kiyotaki's [1987] (henceforth BK) model. One difference 
with BK and other similar models, is that consumers are assumed to solve a two stage—CES—budgeting 
problem within each period. They first decide how much to spend in each sector. Then they decide 
how to allocate these expenditures within each sector. Firms do not collude, and hence do not exploit 
the monopolistic structure of the first stage. This modification expands the parameter space (demand 
elasticities) for which the results can be applied (an alternative way to achieve this is by changing the 
elasticity of output with respect to zeal balances). 
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the frictionless price of a firm with costs of producing '(t) equal to cY7(L)e(i), where c 

is a constant, cx a parameter greater than one that reflects increasing marginal costs and 

e(t) a cost shock that affects all firms in sector i equally, is: 

(26) = 
[A (Y 

where A = () ' . All firms in sector i are affected by the same shocks, have the same 

technology, and face identical demands. Therefore their equilibrium prices must be the 

same. Furthermore, if qt(t) = qjj(1) for all (j,j') E (0,11, then this must be the value 

of the sectoral price index, q(i). Replacing this equilibrium result in (27) eliminates the 

subindex j from now on: 

(27) = 

Equation (24) provides an expression for Y(t). Substituting this in (27) yields: 

(28) 
t) — A (M(t\ v. Q(t) 

with (cx— 1)/(1+O(a— 1)) > 0 and V(i) c(t)e(t)h/(0_1). Without loss of generality 

it is assumed that M(0) = Q(0) and A = 1. 

Working with the logarithms of the variables makes the algebra clearer. Therefore 

the following notation is introduced: v(t) log Vj(t), m(i) logM(t), p(t) log q(t), 

p(t) log q(t), P(t) logQ(t), r(i) p1(t) — P(i) and r p(t) — P(t), where p,' 

denotes the (frictionless) optimal price. A simple Cobb-Douglas aggregate price index (i.e. 

fixed weights) is adopted: P(t) f0' p(t) di.31 

When a "menu cost" is introduced, firms follow some sort of (S, s) rule. The case of 

fixed (S, a) bands, which is an approximation to the optimal pricing rule, is considered 

here. They can be proved to be first best only in very special cases in the context of our 

model. However, finding the true rule is technically very difficult and we have not yet found 

a solution (we suspect that firms haven't either). Nonetheless, very interesting results can 

be derived without questioning the optimality of the proposed (S, a) rule too much. 

An important role is played by the difference of the (log of the) actual price charged by 

sector i and the (log of the corresponding) frictionless optimal price. The variable z(t) is 

31This index should be interpreted as an approximation of the more appropriate CES-indea. 
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defined as —. p(t), z,(t) E (s, S] 

Simple algebra yields: 

(29) p(t) = (m(t) — P(t)) + qv(t) + P(t) + z(t). 

Integrating with respect to i on both sides of (29), imposing that (since shocks are idiosyn- 
cratic) f0' v(t)di = 0, and using the definition of the aggregate price index, yields: 

(30) P(t) = m(t) + j ;(t) di, 

where f0' z(t) di denotes the average percentage departure of the actual price of each sector 
with respect to its optimal price at time t. From this it follows that: 

(31) p(t) = m(t) + v(t) + (!__) J ;(t) di. 
0 

and 

—z(t) + S = S — 
(p1(i) — p;(0)) + (p(t) — p(O)). 

Let A = S — s denote the width of the range of percentage deviations of actual prices from 
their frictionless optimum. Taking (mod A) on both sides, and using the fact that —z)+S 
belongs to [0, A) and p(t) — p(0) is a multiple of A, yields: 

(32) z() = S — (S + pZ(t) — p(O)) (mod A). 

It is easy to see that z(t) E (s, 5] since due to the properties of the modulus operator, the 
second term on the right hand side of (32) belongs to [0, A). 

Finally, substituting (31) into (32) and denoting k = (1 — 4')/ yields the fundamental 

equation of this paper: 

(33) z1(t) = S — 
(s + m() + v(i) + kf z,(t)du — 

p(0)) (mod A). 

If we interpret m(t) and v1(i) as deviations from their values at time t = 0, and let hz(t) 
z(t) — z(0), equation (33) is equivalent to 

(34) z() S — 

(s 
+ m(i) + v1(t) + kj t.z,(t)du — 

z(0)) (mod A). 

29 



Equations (3) and (4) are then obtained by setting w1(t) = qv(t). 

Substituting Y(t)' for Y(t) in (22), and tracing the steps of the derivation leading 

to (33) and (34), yields analogous expressions for z(t), with k + 1 — /3 in the place of k. 

APPENDIX B 

LEMMA Bl Let U denote a random variable uniform on [0,1], X any random variable 

independent from U, and Y (X + U)(mod 1). Then Y is uniform on [0,1]. 

Ptoor: Since Y takes values in [0, 1], it suffices to show that its Fourier coefficients are 

equal to those of a distribution uniform on [0, 1]. Thus it has to be shown that all non 

trivial Fourier coefficients of Z are equal to zero. A calculation from first principles shows 

that, given any random variable X, the Fourier coefficients of X and X(mod 1) are the 

same. Hence the Fourier coefficients of Y are equal to the product of those of X and U. 

Since U is uniform on [0, 11, its non trivial Fourier coefficients are equal to zero. It follows 

that all non trivial Fourier coefficients of Y are also equal to zero, completing the proof. I 

LEMMA B2 Let X be a random variable whose density f(x) has bounded variation. Then 

X(mod 1) also has a density, fj(x), and 

(35) fj(x) = f(x+ k). 
k 

Now assume that the characteristic function of X, 1(z), satisfies J(2irk)[ < +00. 

Then: 

(36) fi(u) = 1 + 2 [j(27rk)e_i2t1 
k>1 

where [z] denotes the real part of the complex number z. 

PitooF: Equation (35) is is a well known result in probability theory, for a proof under 

the assumptions made above see Proposition 3.1 in Engel [1991]. 

Next we derive (36). Since the Fourier coefficients of X and X(mod 1) are the same, 

it follows that the Fourier coefficients of X(mod 1) are summable and X(mod 1) has a 

continuous density, fj(x), with bounded variation. Applying Poisson's Summation Formula 

(see Butzer and Nessel, 1971, p.202, for the version being used here) leads to the expression 

for fi(u). I 
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LEMMA B3 Let X denote a random variable whose characteristic function 1(z) sat2sfics 

ik>1 IJ(2rk)l <+oo. Let G(a) = EftX + a)(mod 1)]. Then: 

(37) G(a) = — Ik>1 [/(2rk)], 
(38) G'(a) = —2 [J(2irk)J, 

k>1 

where l[zJ and [z] denote the imaginary and real parts of the complex number z, respec- 

tively, and x(mod 1) the difference between x and the largest integer less than or equal than 

x. 

PRooF: Substituting this expression for fs(x) derived in (36) in E [X(mod 1)] = f xfs(x) dx, 

interchanging the order of integration and summation, and integrating the resulting terms, 

leads to the expression for G(a). Differentiating under the summation sign,32 leads to the 

expression for G'(a). I 

LEMMA B4 Assume X satisfies the assumptions in Lemma B3, let fs(x) denote the density 

of X(mod 1), and define G(a) as in Lemma 133, for 0 � a � 1. Then: 

G'(a)= 1—fj(1—a). 

PRooF: Follows directly from (38) and (36). I 

LEMMA B5 Let P(A) denote a probability measure on [0, 1] that has density f(x) with 

respect to Lebesgue measure, and let Q(A) denote Lebesgue measure on the unit interval. 

Define: 

(39) dR(P,Q) = supA •A) 
where the supremum is taken over all sets A in [0, 1] with positive Lebesgue measure.33 

Then: 

(40) dR(P,Q) = sup 1(x) — i. 
PRooF: Since limd,oP([x,x + dxl)/dx = 1(x), except for x belonging to a set of 

Lebesgue measure zero (see Billingsley [1986, p.439]), letting A = [x,x + dx] on the right 

hand side of (39) shows that dR(P,Q) � supf(x) — ii. 

32Addjtjonal smoothness assumptions are required at this step, see Caballero and Engel [J989a1. 
33Strictly speaking all the suprema mentioned in this lemma should be essential suprema. 
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The remaining inequality needed to establish (40) follows from: 

— fA(f(x)—1)dz 
Q(A) 

— 
Q(A) 

< — 
Q(A) 

< fAPzIf() lids - 
Q(A) 

= sup[f(x)—l[. 

LEMMA B6 Let X denote a random variable taking values in [0, 1] that satisfies the as- 

sumptions of Lemma B, denote its density by fj(x), and define G(a) as in Lemma BS. 

Let 

di(X, U) = sup Pr{X 6 A) — m(A)j 
A 

denote the notion of distance —from X to a distribution U uniform on [0, 1]— known as 

discrepancy, where the supremum is taken over all sets A in [0,11 that are either of the 

form [a, b] or [0, a] U [b, 1], 0 � a < b < 1, and m(A) denotes Lebesgue measure. 

Then: 

(41) dj(X,U) = supG(a) — infG(a). 

Paoor: For 0 � a < b 1 in [0,1] we have: 

G(b) — G(a) = jb G'(u)du 

Using Lemma B2 and a change of variables: 

= (d—c) — 
jfi(v)dv 

(42) = m([c,dJ) — Pr{X E [c,d]}, 

(43) = Pr{X E [0,c] U [d, 1]) 
— m([0,c] U [d, 1]), 

where d = 1 — a and c = 1 — b. Equation (41) now follows from (42) and (43). I 

LEMMA B7 With the notation of Section 6: 

= SUPm(j)�m(i) y(m(s),s) — 
1"m(s)>m() y(m(s),s). 

PaooF: Let X and Y be independent random variables and denote Gx(a) = E[(X + 

32 



a)(mod 1)1 and Cx+y(a) = E[(X + Y + a)(mod 1)]. Lemma B6 and the fact that idiosyn- 
cratic shocks are normal (with a variance that increases over time) imply that all that needs 
to be proved is that 

(44) sup,Gx+y(a) � Sup4 Gx(a) 

and 

inf,, Gx+y(a) � mi,, Gx(a). 

Since both proofs are very similar, we only prove (44). 

Conditioning on Y = y and using the independence assumption yields: 

Gx+y(b) = 
JGx(y+b)dF() � J{sup Gx(a))dF(y) 

= sup Gx(a). 

Equation (44) now follows from the fact that the latter inequality holds for all b. I 
LEMMA B8 Given a random variable X, define: 

(45) h(a,b) = E[(X + Zt + a)(mod 1)1, 

where Z denotes a random variabk independent from X, normal, with zero mean and 
variance b. Let f(y) denote the density of Y (X + Zo)(mod 1) arid f'(y) its derivative. 
Then: 

b) = (f'(1 — a) — 1). 

Paoor: Lemma B3 implies that: 

(46) h(a,b) = — ! 
e_21r2k2 [Ix(27rk)e2] I,>1 

where Jx(t) denotes the characteristic function of X. Straightforward calculations based 

upon (46) show that 
Oh 102h 

(47) (a,b) = 

Substituting the expression that is obtained from Lemma B4 for Oh/Oa in (47) completes 
the proof. I 
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LEMMA 139 (Paoor or PRoPosITIoN 3) 

Paoor: Equation (15) in the main text is equivalent to: 

(48) y(i) = H (rn(S) 

— (1 — 4p(t) — y(O)) 

z25) 

where H(a,b) is defined as in Lemma B8, with CO jfl place of X, and x2 = 

Implicitly differentiating both sides of (48) with respect to i, using Lemmas B4 and B8 to 

evaluate OHfOa and OH/ôb, and rearranging terms leads to (20) in the main text. I 

LEMMA BlO (PRooF OF EqUATION (19)) 

PROOF: From the definition of 1E(k) it follows that: 

a 
(49) IE(k) I{m: -- <0}dm, 

with I{A} denoting the indicator function of set A. An argument similar to that given in 

the Proof of Proposition 3 shows that: 

(50) 
— (1 — f(1j) 

Orn 
— 

1—(1—)ft(1j 

Since the denominator in (50) is positive, equation (49) is equivalent to: 

(51) IE(k) = j"i{m: 10 ( —(1— Xi,(m) — 

Y(O))) <1} dm, 

with fo(c) denoting the density of CO. Introducing the change of variable v = m—(1—)y(m) 

in (51) and using (50) to evaluate dm in terms of dv leads to: 

IE(k) = j"i{v: fo() <1}{1+k(1_fo())}dv 
= !E(0) + k j I{fo(u) < 1}(1 — fo(u))du. 

The proof now follows from two elementary properties of the variation distance. First, 

dV(CO, U) = f 1{fo(u) < l}(1 — fo(u))du. Second, since cg is obtained by rotating c0, 

dv(c, U) = dv(co, U). The identity above then implies that 

IE(k) = lE(0) + kdv(c, U). 
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LEMMA Bli With the notation introduced in Section 6 we have 

M1(t) = (1 + k)dR(c,U). 

PROOF: See Section 4 in Caballero and Engel [1991}. I 

LEMMA B12 With the notation of Section 6: 

(52) j I(i,1')di,b = 0. 
0 

PROOF: Let G(a) = E[(X + a)(modl)J, with X = CO + (wt/A). Equations (14), (4) 
and (3) imply that y(m,t) = —(1 + k)(G(1) — with I equal to a constant (that depends 

on t). It follows that I(tJ') = G'(I + ). Equation (52) now follows from this identity and 

the (trivial) fact that G'(a) is periodic, with period equal to one. • 

LEMMA B13 With the notation of Section 6: 

2A 
(53) j IIt(i,b)I db = —dv(cg, U). 

0 

PROOF: Using the same change of variables as in the proof of Lemma BlO leads to: 

), p1 

J I(L') d,b = 
—J 

1 — f(v)Idv, 0 

where fj(v) denotes the density of Cj. Equation (53) now follows from an elementary 

property of the variation distance. I 
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