
NBER WORKING PAPERS SERIES

INVENTION AND BOUNDED LEARNING BY DOING

Aiwyn Young

Working Paper No. 3712

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 1991

I am grateful for the helpful comments of Roland Benabou, Olivier
Blanchard, Lael Brainard, ,Julio Rotemberg, and the participants at
the NBER's Fall 1990 Growth Conference. Naturally, all remaining
errors are my own. This paper is part of NBER's research program
in Growth. Any opinions expressed are those of the author and not
those of the National Bureau of Economic Research.



NBER Working Paper #3712
May 1991

INVENTION AND BOUNDED LEARNING BY DOING

ABSTRACT
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invention and learning by doing. Learning depends upon invention

in that learning by doing is viewed as the serendipitous

exploration of the finite productive potential of invented

technologies. At the same time, the profitability of costly

invention is dependent upon learning in that costs of production

depend upon the society's aggregate historical learning

experience. The resulting model is a true hybrid. With small

markets, the profitability of invention is low, and hence the

rate of invention becomes the constraining factor in growth.

With large markets, invention is very profitable and tends to

pull ahead of the society's learning experience. The consequent

growing gap between the technological frontier and the society's

industrial maturity squeezes returns, leading to an equilibrium

in which the rate of invention (and growth) is paced by the

society's rate of learning.
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I INTRODUCTION

Models of endogenous technical change fall into two broad, and yet surprisingly disjoint,

categories. On the one hand, there are models of "invention" (e.g. Grossman and l-Ielpman 1989,

Romer 1990, Segerstrom et al. 1990), which view technical change as a costly and deliberative

process. On the other hand, there are models of "learning by doing" (e.g. Arrow 1962, Lucas

1988), which view technical change as the serendipitous outcome of goods production. Models

of invention generally focus on factors which influence the incentive to consciously innovate,

such as the institutional framework and market size,1 whereas models of learning focus on fac-

tors which influence the incentives to produce different types of goods, such as the pattern of

comparative advantage.2 This paper attempts to integrate these two literatures, developing a

model in which sustained technical progress involves an interaction between conscious decisions

(invention) and serendipitous outcomes (learning). This provides some preliminary insights into

the conditions under which either the incentives to innovate or the pattern of demand and pro-

duction are the binding constraints on growth.

Almost all learning by doing growth models assume that the potential productivity gains

from learning by doing are essentially unbounded.3 Careful reflection suggests, however, that

'See, for examples. Grossman and l-lelpman (1990), Rivera-Batiz and Romer (1989) and
Segcrstrom et al (1990).

2See Bardhan 1970, Lucas 1988, and Young 1991.

3The usual formulation involves a finite number of goods, with productivity in each indus-
try either a linear (e.g. Lucas 1988) or a log-linear (e.g. Arrow 1962, Bardhan 1970, Krugman
1987) function of cumulative production or investment experience, both of which imply that
experience alone can lead to unbounded productivity improvements. Young (1991) introduces a
bound on learning in each good, allowing for unbounded growth by taking as given the existence
of an infinite continuum of potentially producible goods. Bounds on learning have frequently
been introduced in partial equilibrium analyses, as in Fudenberg and Tirole (1983), Spence
(1981) and Stokey (1986).



the potential for learning in the production of any particular good, using any particular process, is

in fact finite and bounded. When a new technical process is first invented, rapid learning occurs

as, by virtue of experience, the productive potential of that process is explored. After some time,

however, the inherent (physical) limit on the productivity of a technology will be approached and

learning will slow, and perhaps ultimately stop. In the absence of the introduction of new techni-

cal processes, it is unlikely that learning by doing can be sustained. This would explain why,

despite considerable economic activity, learning by doing did not lead to sustained economic

growth prior to the modern era.4

The dependence of sustained learning on a continued supply of new inventions does not

necessarily detract from the importance of modelling the learning process itself. To begin with,

empirical evidence suggests that the actualization of the productive potential of new technologies

(learning) may actually lead to productivity increases several orders of magnitude greater than

those associated with the original innovations themselves.5 Furthermore, the dynamics induced

Most of the empirical work on learning by doing (e.g. Wright 1936, Hirsch 1956, Alchian
1963, and Liebernian 1984) has focused on the log-linear model, where, typically, the cost of
production of the ntis unit is equal to a constant times cumulative output up to the nth unit raised
to a negative power (the progress elasticity), i.e. C=AE. This formulation clearly allows for
unbounded learning. Many of the early empirical studies of learning (e.g. Carr 1946, Asher
1956, Conway and Schultz 1959 and Baloff 1966) argued that learning was fundamentally
bounded. Although there has been no attempt to formally test whether learning is bounded or
unbounded, it is interesting to note that Levhari and Sheshinski (1973) did find that a formulation
in which the elasticity of output with respect to experience was a decreasing function of the level
of experience provided as good a fit as the usual log-linear model.

5Thtis, Enos (1958) found that whereas during the initial introduction of new petroleum
refining processes cost reductions of 1.5% per annum were achieved, subsequent improvements
of these same processes led to cost reductions of 4.5% per annum. Similarly, Mak and Walton
(1972) found that although the initial introduction of the steamboat, between 1815 and 1820, to
western inland rivers led to a signficant decline in freight costs, subsequent improvements in the
stcaiiiboat, principally incremental changes in hull design, led to much greater declines in ship-
ping costs between 1820 and 1860. For example, on the Louisville-New Orleans route upstream
rates per 100 lbs. fell from $5.00 in 1815 to $2.00 in 1820 to $0.25 in 1860 ($3.12 to $2.00 to
$0.28 in constant 1820 dollars).



by learning, even if subsidiary to the process of invention, might, in particular problems, be of

interest. Most importantly, from the point of view of the theorist, is the fact that learning by

doing might have important feedbacks into the inventive process; perhaps by influencing both

the costs of invention and post-invention costs of production. In this paper I focus, in the main,

on the latter mechanism.

Clearly, a product's own production experience, combined with any benefits (i.e. technical

spillovers) it receives from learning by doing in other industries, will influence the time path of

that product's production Costs after it's invention. Furthermore, if one believes that there are

significant technical spillovers across industries,6 then it follows that aggregate social learning

should also influence a product's initial costs of production at the moment of invention. How

costly it is to produce a new product is at least partly dependent upon how much experience a

society has in producing similar products. By influencing both the initial and subsequent costs of

production of new inventions, learning by doing determines the profitability, and hence the rate,

of invention. Thus, just as sustained learning is dependent upon invention, so sustained inven-

tion might be dependent upon learning. The model of this paper attempts to capture this

dynamic interaction.

To outline the model, I begin by positing a society which at any point in time knows how

to produce a fixed set of goods. Each of these goods experiences bounded learning by doing.

The knowledge so generated is non-appropriable by firms and spills over across sectors, with, for

example, the knowledge acquired by a firm in industry A finding applications in industries B and

C. Entrepreneurs invent new goods, receiving an infinitely lived patent as compensation for their

'Rosenberg (1982) documents numerous historical examples of technical spillovers across
sectors, while Jaffe (1986) finds econometric evidence of R&D spillovers across technically sim-
ilar industries.
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efforts, and there is free entry into the process of invention. Thus, despite the perfect spillovers

of (learnt) knowledge across sectors, final goods production takes place under conditions of

monopolistic competition.

To close the model. I introduce a specification for preferences in which no good is essen-

tial, but in which, for any given distribution of prices, demand is unitary income elastic. The fact

that no good is essential allows the model to incorporate a rich narrative structure, capturing both

the qualitative and the quantitative dimensions of growth. Over time, the society will produce a

changing basket of goods, with new goods replacing old obsolete goods and with the quantities

consumed, of the new substitutes, rising. For their part, the unitary income elasticities make the

analysis of intertemporal consumption smoothing quite tractable. In sum, the model of this paper

encompasses invention, bounded learning by doing with spillovers across goods, old goods

obsolescence, and non-trivial intertemporal decision-making.

As we shalt see, the model behaves like a true hybrid. With small markets, the profitability

of invention is low, and hence the rate of invention becomes the constraining factor in growth,

with the parameter governing the rate of learning having no effect. With large markets, inven-

tion is very profitable and and tends to pull ahead of the society's learning experience. Since

profits depend upon production costs which in turn depend upon social learning, this growing

gap between the technological frontier and the society's industrial maturity squeezes returns,

leading to an equilibrium with the rate of invention (and growth) paced by the society's rate of

learning. There exist equilibria in which the process of invention becomes largely irrelevant, in

the sense that a subsidy to invention would have no effect on the economy's steady state growth

rate.

Section 11 presents the basic structure of the model. Section III discusses some of the Criti-

cal assumptions. Sections IV nd V develop the instantaneous and intertemporal aspects of the
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general equilibiium. Section VI analyzes the steady state and section VII concludes.
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H A MODEL OF INVENTION ANDLEARNING

Imagine that all of the goods that have ever been or ever will be invented can be arranged,

in order of increasing technical sophistication, along the real line. At any point in time, however,

a society will only know how to produce a subset of this real line, goods in [O,N(t)], where N(t)

naturally denotes the most sophisticated good the society is currently able to produce.7 Labour is

the sole factor of production, and the function a(s,t) describes the amount of labour necessary to

produce one unit of goods at time t.8 This economy experiences bounded learning by doing with

spillovers across goods. Thus, the unit labour requirements function is given by:

(1) a(s,f)=ie' V S [O,T(t)} a(s,t) =e_Te_T() V s E [T(t),N(r)]

with T(t) evolving according to the learning by doing equation:

N(,)
(2) T(t)= WL(s,t)ds

T(r)

where v denotes the rate at which each worker learns.

Equations (1) and (2) are a specific functional form of a more general learning by doing

technology outlined in Young (1991). Learning is bounded in that the amount of labour required

to produce good s, a(s,t), cannot fall below e'. Since all goods enter symmetrically into utility

(see below), the fact that this lower bound is downward sloping reflects the notion that the ulti-

mate productivity of labour (in units of utility) is increasing in the technical sophistication of the

7Throughout this paper, the notation with respect with time denotes an implicit, rather than
explicit, dependence that emerges from the general equilibrium behavior of the various economic
actors. Superscripted dots will denote time derivatives.

a(s,t) is defined only on the domain [O,N(t)].
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production processes involved.9 There are spillovers in learning across goods, with technical

improvements originating in any particular industry s having applications in other industries.

This is encompassed in the formulation for t(t), which essentially implies that these spillovers

are symmetric across all sectors.'° Once an industry has reached its lower bound, e', there is

nothing left to learn in that industry, and thus further experience in the production of that good

cannot contribute to productivity increases in the rest of the economy. Hence, the economy-wide

learning by doing equation (2) only includes the labour devoted to the production of goods in

which learning has yet to be exhausted.'t Given the symmetrical nature of learning by doing

spillovers, learning is exhausted sequentially in goods and T(t). the most recent good to reach the

lower bound we', constitutes a state variable which summarizes the society's cumulative learn-

ing experience.12

New goods are invented through the creative efforts of entrepreneurs/firms, who acquire an

9One could, equivalently, scale units so that the lower bound on unit labour requirements
is increasing in s, but with higher numbered goods providing greater utility per unit. A practical
example might be the replacement of the phonograph by the compact disc player. Although
compact disc players are more expensive than phonographs, they provide greater utility per unit
cost, and hence are replacing the older system.

'°
Equation (2) also implies that the contribution of an industry's own output to improve-

ments in its productivity is of zero measure relative to the effect of learning spillovers from other
sectors. Complicating the model to allow for own industry effects that are of positive measure
relative to economy-wide spillovers would not, I believe, significantly change the results high-
lighted in this paper.

"Thus, as in the typical learning by doing model, there is a constant rate of learning, jt,
but only until such time as the industry has exhausted its potential stock of knowledge.

'2As can be seen from (2), many different historical production paths could lead to the
same T(t).
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infinitely lived patent on each good they invent. The rate of invention is linear in the aggregate

amount of labour devoted to reseaich:

(3) N(t)=LRIaR

and there is free entry into the inventive process. Firms finance their R&D efforts by selling

shares, which are traded in a capital market. After a good is invented, the firm owning the patent

will engage in monopolistic competition with all other patent holders, distributing any profits to

its shareholders.'3

In this economy there are L representative consumers, each of whom inelastically supplies

one unit of labour at all times t and seeks to maximize the present discounted value of the loga-

rithm of a time separable utility functional:

(4) Max r=j e'Thog(U{C(.,v)})dv

subject to the intertemporal budget constraint:

(5) E(v) dv =A (1) + Je' w(v) dv

where R(t) denotes the cumulative interest factor up to time t and w(t) and A(t) denote the nomi-

nal wage and individual assets at time t. E(t), instantaneous consumer expenditure, equals:

N(s)

(6) E(t)=j' p(s,t)C(s,t)ds

' Equation (3) does not allow for any feedback from the process of learning into the actual
costs of invention. This could easily be modified, say by making N(z) = 1(N(t) — T(t))LRIaR, with
l'(.) <0, /(0) = 1. This formulation would posit that the costs of further innovation are lower the
more fully a society has explored its existing technical capabilities. As it adds additional com-
plexity, without changing the results in any meaningful way, I do not incorporate this notion into
the model.
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with p(.,t) and C(.,t) describing goods prices and individual consumption along [0,N(t)]. The

utility functional, U(C(.,t)), is given by:"

(7) U{C(., t)} = C(t) ds

where:

N(s)

(8) IC(t) =5 C(s,t)ds

and where g(.) is strictly concave and continuously differentiable, with:

(9) g(0)=0, g'(O)<c's

For the purposes of this paper, it is necessary to pick a particular functional form for g(.), and to

that end I choose the quadratic:"

(10)

Clearly, the presence of II C(t) in g(.) ensures that, for any given p(.,t) function, consumer

'4Preferences are actually defined over all current and future goods along the real line,
[0,oo). Since at any point in time t, consumption of any good x>N(t), which has yet to be
invented, is trivially zero, for ease of exposition I restrict the upper bound on the integral to N(t).

"None of the results of this paper are dependent upon the choice of the quadratic func-
tional form, which simply eases the analysis. Since g(.) embodies the consumer's desire for vari-
ety, the quadratic implies that the consumer could derive disutility from concentrating
consumption on a small set of goods. Examples readily come to mind. Imagine that all of one's
nutritional needs are satisfied and that only the varieties of food one will consume remain to be
chosen. Clearly, if one were forced to eat only one kind of food for each and every meal, one
would soon derive considerable disutility from the actual act of consuming that food.
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demand for each good s is unit income elastic.'6 At the same time, the concavity of g(.),

combined with the restriction on g'(O), indicates a strong, but not unbounded, preference for

variety. Changes in p(.,t) will lead to changes in the Set of goods consumed, with, over time,

new and more advanced goods replacing older more primitive goods. Thus, these preferences

retain a rich structure, whilst remaining tractable enough to handle non-trivial intertemporal opti-

'6One can see that if one multiplies the consumption of each good s by a constant X, the
marginal utilities (g') do not change. The notion of these type of preferences is borrowed from
Wan (1975), who, however, does not seem to have considered the fact that the consumer must
take into account the effect of C(s,t) on CN in picking an optimal consumption basket (see
appendix 1 further below).

17 examples of similar types ofpreferences without unitary income elasticities, see
Stokey (1988 and 1990)and Young (1991). Despite the non-unitary income elasticities, Stokey
(1990) handily solves the consumer's intertemporal maximization problem in the steady state.
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III DISCUSSION OF THE MODEL

Readers familiar with models of endogenous growth based upon innovation, e.g. Romer

1990and Grossman and Helpman 1990, are probably aware that the usual formulation for the

rate of invention is of the form: N(t) = N(t)LR/aR. This implies powerful spillovers in know!-

edge, with the absolute productivity of inventors rising in the society's degree of development.

Although this assumption may or may not be empirically valid, it is important to recognize the

technical role it plays in those models. Without old goods obsolescence, the potential profitabil-

ity of new inventions is inversely related to the existing number of competitive products. To sus-

tain steady state innovation, it is necessary to have the cost of innovation inversely related to the

existing number of products as well. With old goods obsolescence, as will occur in the model of

this paper, the existing number of obsolete products, such as oil lamps and rickshaws, is not rele-

vant to determining the profitability of the next invention. Thus, I can specify a somewhat

weaker form of spillovers. Although patents protect innovators from immitative production, they

do not prevent other entrepreneurs from examining new products and learning their technical

qualities. Using this information, entrepreneurs are able to invent the next generation of

improved products (N(:) + c), which have, ultimately, greater productive potential, as given by

the lower bound on unit labour requirements,

From the above, it should be apparent that the distinction between learning and invention is

not that the former involves technical spillovers, whilst the latter does not. In the model of this

paper, both activities create positive externalities which are not captured by those responsible for

generating the new knowledge. 11e crucial distinction is that learning generates knowledge as a

this respect, the model is quite similar to the quality ladders models of Grossman and
Helpman (1989) and Segerstrom, Anant and Dinopoulos (1990) in which each new generation of
products involves a constant percentage improvement in quality over the previous generation,
with the cost of invention unaffected by the existing number of inventions.

11



costless by-pmduct of other activities, whereas invention involves costly investigation.

Although the Technologies generated by learning by doing might be appropriable and could give

rise to conscious attempts to move down learning curves," this is not a necessary condition for

technical change to occur in a learning model. Whether or not the benefits are appropriable, ser-

endipitous learning by doing will give rise to sustained technical progress. In contrast, given that

it is costly, at least some of the benefits of invention must be directly appropriable by the

inventor for technical progress to occur. Table I below summarizes these distinctions.

"As in Spence 1981.

12



TABLE 1: DISTINCTIONS

Learning by Doing Invention

Costly: No Yes

Spillovers: Yes Yes

Appropriable: No, but could be. Yes, and must be.

In this paper I assume that the benefits of learning are non-appropriable, whereas inventive

activity is compensated with the award of infinitely lived patents. From these assumptions

follow the principal results of the model. When markets are small, the effective compensation

given to inventors is too small and the economy stagnates, as invention becomes the constraining

factor in growth. A small subsidy to invention would improve social welfare. When markets are

large, the infinitely lived patent provides an excessively large reward to inventive activity.

Invention races ahead of the society's current rate of learning, and growth becomes constrained,

and paced, by the rate of learning. In this case, a tax on invention, releasing resources for

production, would actually improve social welfare. In a model in which two activities are

necessary for growth, but only one is compensated, there can easily be excessive activity in the

compensated sector, even though that sector generates positive externalities.

13



IV INSTANTANEOUS EQUILIBRIUM

Ibegin with the analysis of the instantaneous equilibrium at each time t. Let w(t), the

nominal wage, be the numeraire. Thus, the flow of each consumer's labour income equals 1 and

all prices and values are denominated in units of labour. To simplify the notation, in what fol-

lows I shall frequently suppress the notation denoting the implicit dependence of the variables on

time.

Given the time separability of the consumer's utility function, the consumer's optimal con-

sumption and expenditure programme can be broken down into a two stage analysis: first maxi-

mizing instantaneous utility subject to instantaneous expenditure, and then, with U(C(.,t))

defined as a function of E(t) and p(.,t), maximizing total intertemporal utility subject to the

intertemporal budget constraint. With respect to the maximization of the instantaneous utility

functional, U(C(.)}, the solution to this problem is best understood by characterizing C(s)/I' C

as a consumption density f(s). which integrates to 1. The consumers problem is to allocate this

consumption density across goods and then adjust the consumption sealing factor ( C) based

upon the desired level of instantaneous expenditure, i.e.:

N(,)
(11) Max U{CC,t)} =J C(t)IIg(f(s))ds

subject to:

(12) 1=jf(s)ds

(13) E=j p(s)f(s)flC ds

Since all goods enter symmetrically into her utility, the consumer will naturally choose to

consume the cheapest goods. If the consumer consumes any good z, she will consume all goods

14



s cheaper than z. Given that the consumer has a bounded desire for variety, it follows20 that there

exists some limit good Z such that the consumer consumes all goods which are cheaper than Z,

and consumes no goods which are more expensive than Z. The density of consumption allocated

to each good s (cheaper than Z) should, intuitively, depend in some fashion on the difference

between the price of good Z and the price of good s. As it so happens, with quadratic utility this

dependence is linear, with the optimal f(s) being given by:2'

(14) f(s)=?4p(Z)—p(s)]

where X is the marginal utility derived from an additional unit of expenditure, E, at the consumer

optimum. Good Z is determined by the requirement that the integral of the consumption density,

f(s), equal 1(12). The consumer's budget constraint (13) then determines the consumption

scaling factor, CII.

Since the output of each individual firm (of measure zero on the real line) makes no

significant contribution to economy-wide learning, the current behavior of any particular firm

does not influence its future profitability, and hence all firms find it optimal to maximize current

profits:

(15) Max it(s) =C(s)L [p(s)—a(s)] = II C Lf(s) [p(s)—a(s)]
P(,)

From which it follows that the equilibrium price of each good s is given by?

20Given sufficient variability in goods prices. If all goods shared the same equilibrium
price, the consumer would obviously choose to consume them all.

2 Appendix 1 explores the technical aspects of the consumer's optimization problem.

22 the individual firm is of insignificant measure on the real line,

axfap(s)=fl C lap(s)= ap(Z)lap(s) = 0.
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p(Z)+a(s)
(16) p(s)= 2

I

The instantaneous equilibrium is illustrated in figure 1(a). Consumer's consume a range of

goods t = T —Z and 1 =N — T on either side ofT. Given the unitary income elasticities, c is

invariant with respect to T and E and is determined by 1 alone.n An increase in fl leads to

substitution away from goods below T (drJdl <0), with the total variety (t+1) of goods

consumed increasing. Not surprisingly, the consumption scaling factor Cl is linear in E/e_T.

Finally, firms charge a price equal to the average of their marginal cost of production and the

price of the limit consumption good, good Z.

In drawing figure 1(a), I have assumed that T is sufficiently large so that good 0 is no

longer consumed. I have also assumed that 1 is not too large, in the following sense: If 1 is

larger than some critical value 11, then, as illustrated in figure 1(b), consumption is symmetric

around T and the most recently invented goods, in [T +1 N], are not consumed. Although the

blueprints to produce these goods exist, their Costs of production have not yet fallen to a level

where they can be profitably marketed. This is a case where basic research has outstripped

economy-wide learning, producing inventions which are not immediately profitable.

As can be seen from figure 1, the position of a firm relative to the society's current level of

learning ('F) affects that firm's markup. Finns which are either near obsolescence (near Z) or on

the cutting edge of the society's technology (near N) have lower markups than firms which have

just attained maturity (i.e. are near 'I). This result is due to the fact that the society's cost

structure, normalized to units of symmetric utility, is v shaped. If, instead, utility adjusted costs

23See appendix 1. In Young (1991), where demand is not unit elastic, the variety of goods
consumed increases with expenditure or technical progress.
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of production were monotonically decreasing, then markups would be monotonically increas-

ing in the technical sophistication of the industry. An allowance for a finite patent length as well

as durability in consumption would both tend to introduce some monotonicity in markups in

favour of recent inventions.

Given the pattern of consumer expenditure determined by (14) and (16), it is possible to

compute the (consumer) price of a unit of instantaneous utility, U((C(.,t))):

(17) P0 =en[(c+r1)e+2_e_ef]/2

Whereas the actual (labour) cost ofproducing this unit of utility is:

(18) MCU

Thus, overall, in this monopolistically competitive setting there is a markup (relative to costs)

of:26

(19)
PU I —e/2—e2'V2

— 2+e2_4e+2enet_e

It is easily verified that this markup is decreasing in 11,27 not only because, as discussed above,

firms on the technological edge have lower markups, but also because an increase in 1 implies

an equalization of the structure of prices facing consumers, thereby increasing the elasticity of

Forexamp1e, 1eta(s,t)=e' Vs E [O,T] E [T,N], where
—1 <y<O.

Once again, see appendix 1 for computational details.

If 11 11. substitute ' fortand 11 in equations (l7)-(19).

27For 11 <r. For 11 � ri', it is invariant with respect to 11.
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demand, and driving down the markups of all firms in the economy. This result would hold

even if the markup were monotonically increasing in s. The vei' fact that firms to the right of T

are above their lower bound on unit costs, whilst firms to the left of T are on their lower bound,

implies that an increase in i will tend to equalize the cost and price structure of the economy,

providing consumers with more symmetric alternatives, and thereby increasing the elasticity of

demand.

Finally, labour market equilibrium requires that the demand for labour in manufacturing

(Lv) and research (La) equal the total supply:

(2O) LM+LA=L

Not surprisingly, the amount of labour in final goods production depends upon consumer expen-

diture and the economy-wide markup over costs:

(EL EL
(21)

with the distribution of that labour between learning and non-learning industries determined by

11:

(22) LD=LMh(fl) L,=L[l—h(rI)]

where:

2 "—2e'— +1
(23) h(rl)=

ee e �1/2 h'(rl)>O2+e —4e +2e e —e

This is due to the fact that no good is essential in consumption.

h (11) = h (2f) = I /2 when i � ii'. since, in that case, demand is distributed symmetrically
across learning and non-learning industries (examine figure 1(b)).

18



V INTERTEMPORAL EQUILIBRIUM

Having derived the equilibrium price of a unit of utility, we can consider the consumer's

dynamic optimization problem as one of picking an expenditure pian, E(t), so as to maximize:

(24) P= 5 e'{log[E(v)] —log[P0(v)]} dv

subject to the intertemporal budget constraint (5) earlier above. This leads to the familiar opti-

mality condition for the time path of expenditure E(t):

I
I =R(t)—p(25)

E(t)

Turning to the behavior of firms, let V(s,t) equal the asset market value of holding the

patent to good s at time t:

(26) V(s,t)= je')*"7t(s,v) dv

where ic(s,t) denotes the profits of firm sat time t. Differentiating (26) with respect to time

yields an expression for the interest rate:

(27) Vs

which simply states that, in this deterministic environment, asset market equilibrium requires that

the return to holding the patent to any good s (profits plus patent value appreciation) must equal

19



the risk free rate of return. Free entry into the inventive process will ensure that the present

discounted value of the profits of firm N(t) will be less than or equal to the cost of invention:30

(28) a � V(N(t),t) = 5 e'>7t(N(t),v)dv (= if11(t) >0)

Assuming that !'(t) > 0 and thus (28) holds with equality, we can differentiate to derive an

expression for i (t) as a function of easily determinable values:3t'32

t(N(:),t) _!l(t)[J e'x1(N(t),v) dv]
(29) R(z)=

a,5

ic(N(ii, I) — t1(t)V1(N (t), t)
a0

Figure 2 helps explain equilibrium condition (29). At any point in time, the value of each

firm depends upon its position along the real line. Finns sZ(t) have a value of zero, since, as

demand has moved to the right, they will never again earn any profits.33 Free entry into the

inventive process ensures that V(N(t),t)=a0. Thus, we know there exists a differentiable curve

30Consider, by devoting labour 'k to invention for an infinitesimally small period of time
dt, a firm can, at cost !5dt, acquire patents to goods in (N(t),N(t)+/Rdt/a,5], which, again for infini-
tesimally small dt, have value V(N(t),t)l0dtJa0. With free entry, profits in the process of inven-
tion are driven to zero, and hence, a0=V(N(t),t).

If fi = 0, then L5=0 and the equilibrium interest rate can be detennined by differentiating
(21) with respect to time and applying (25).

32The subscripted 1 denotes the derivative with respect to the first argument of the func-
tion.

33lncreases in either T or N move Z to the right. Hence, once a firm s has become Z(t),
there will never again be any demand for its product.

Examine (26), (15), (16) and (14).
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FIGURE 2: MARKET VALUE OF FIRM S
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describing V(s,t) linking ihe coordinates (Z(t),O) and (N(t),a,), as drawn in the figure. This curve

need not be monotonic, nor is it stationary through time. Comparing (27) and (29), we see that

we need to show that V2(N(:), I) = —!'Q)V1(N(t), t). At time t, the value of firm N(t), V(N(t),t),

equals aR. However, at that same time t, firm N(t) is, as a result of invention, being pushed to the

left in figure 2 (since some other firm is becoming N(t+dt)). The rate of change of the value of

fnm N(t), V2(N(t),t), depends upon the derivative of the V(s,t) function at the point N(t),

V1(N(t),t), times the rate at which firm N(t) is being pushed to the left, tl(t). Hence,

V2(N(t),:) =—)'1(t)V1(N(t),:), which explains (29).

To summarize, consumers, maximizing current utility subject to current expenditure,

choose a distribution of expenditure across goods which depends only on 11(t)=N(t)-T(t), as

illustrated in figure 1, with the density of expenditure given by (14). Maximizing intertemporal

utility, consumers find it optimal to set the growth rate of expenditure equal to the interest rate

minus their rate of time discount (25). Existing firms, competing monopolistically, find it opti-

mal to set their current price as the average of the price of the limit consumption good, Z(t), and

their costs of production (16). Free entry into invention, combined with asset market

equilibrium, determines the interest rate as a function of the profits of the most advanced firm

(N(t)) and the rate of change of the value of that firm (29). The current level of consumer

expenditure, as well as the economy's current structure (as given by 11(t)), determines the amount

of labour allocated to industries in which learning continues and industries in which learning has

been exhausted (21-22). Labour market clearing requires that this labour, plus the labour allo-

cated to research, equal the total labour force (20). Given these relations, the intertemporal

equilibrium then consists of dynamic paths for T(t), Tl(t) and E(t) which satisfy equations (2), (3)

and (5).
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VI STEADY STATE BEHAVIOR

In the steady state, E and i must be constant. This implies that the real rate of interest (k)

equals the rate of time discount (p), and that the rate of invention (iS') equals the rate of learning

(h. Using the labour market clearing condition (20) and the free entry condition (28) this deter-

mines E and r as functions of the parameters L, , aR and p. With a constant steady state level

of expenditure, E, and a steadily declining price of a unit of U{ C(.)),

P0 = + ri)e + 2— e — e]/2, the proportional rate of growth of U is equal to the equilib-

rium rate of learning (and invention), 1' =N, which! shall call g.35

Before turning to a general analysis of the steady state, it is useful to examine two extreme

types of equilibria. This model, as in the invention models of Romer (1990) and Grossman and

Helpman (1989), allows for a stagnant steady state, with zero growth. In that case,

= = iS' = 0, and all of the firms in (Z,T} earn an infinitely lived stream of Constant profits.

This will constitute an equilibrium if and only if the present discounted value of the profits of

finn T are less than or equal to the cost of invention, which leads to the following condition:

(30) a5�L/p

In this model, L represents the effective size of the market over which firms can recoup the costs

of invention. Condition (30) states that if this market is small enough, or the cost of invention

(a5) or the steady state rate of interest (p) are large enough, the economy will stagnate.37 Inter-

ttSince instantaneous utility is actually the log of U, for p >0 total intertemporal utility
will always be bounded, regardless of how large g is.

361f they were greater than the cost of invention, then economic actors would find it profit-
able to invent products infinitesimally to the right of T.

ttOne can interpret (30) as saying that the annuity value of the cost of invention (paR) must
be greater titan or equal to the instantaneous profits of firm T (which just so happen to equal L).
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estingly, the rate of labour learning. ti,, has no effect on the existence of this equilibrium; for

there must be at least some minimal level of invention for learning to occur and have an impact

on growth. This contrasts with the typical learning by doing model, in which there is always

some growth (even at small scales of production) and in which the rate of growth is always

strictly increasing in the rate of learning. Thus, for small market sizes this model behaves

exactly like an endogenous growth model based solely upon invention (with no modelling of

learning).

For L, p, and aR such that (30) does not hold, the steady state growth rate is positive, with

i >0. An increase in LIaR raises the relative profitability of invention, leading to an endogenous

increase in TI, which lowers markups, squeezes profitability and reestablishes equilibrium. For

large enough L or small enough a, the steady state equilibrium fl exceeds II' (recall figure Ib).

In this case, potential profits are so large (relative to the cost of invention) that firms find it opti-

mal to invent products before these are even marketable, holding the patents until aggregate pro-

duction experience brings their costs of production down to acceptablelevels. The rate of

growth is then given by:

(31) g= 2 +

Although both the cost of invention and the learning parameter influence the rate of growth, it is

apparent that, in this equilibrium, the growth rate is independent of the overall process of inven-

tion. For example, a subsidy to invention (lowering the effective cost to inventors) would only

increase i, without influencing the steady state growth rate in any way. Thus, for large values

of the scale parameter, L, this model behaves like a simple learning by doing model with a con-

In fact, during the transition dynamics, in which TI increases, it would actually lower the
growth rate by drawing labour out of the learning sector.
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stant learning parameter leading to unbounded growth, in which one can, for all intents and

purposes, ignore the process of invention.

These two extreme equilibria, inventive stagnation and learning constrained growth, illus-

trate the mechanisms at work in this model. Although there are two activities necessary for sus-

tained growth, learning and invention, only the latter is compensated (by the award of the

infinitely lived patent). For small markets the reward given to entrepreneurs is too small to

induce them to undertake inventive activities. It is easily shown that for L =PoR a small subsidy

to invention, leading to positive inventive activity, would lead to an improvement in social wel-

fare. For large markets, the reward given to inventors is too large, leading to the production of

inventions which are (temporarily) of no social benefit. Given a positive rate of time discount,

the society would like to see resources temporarily withdrawn from invention and allocated to

the uncompensated growth activity (learning). Thus, a tax on inventive activities would improve

social welfare. Perhaps the most obvious lesson of this model is that when two activities are

jointly necessary for growth, but only one is compensated, then, despite the fact that the compen-

sated activity generates positive externalities which are not captured by private actors, it is still

possible that, from a social point of view, too many resources are devoted to that activity.

Outside of these two types of equilibria, the steady state growth rate is positive, with

if> r >0. The detemiination of the equilibrium growth rate can be analyzed with some simple

graphical tools. One can think of this economy as having two sectors, a final (consumption)

goods sector and an invention (growth) goods Sector. Using the equation:

(PPF) L+ga5=L

39Equal to wI(2 + va5).

24



one can draw a production possibilities frontier illustrating the potential tradeoffs between the

size of the final goods sector (as measured by LM) and the rate of invention, g (figure 3a).

Clearly, a rise in L shifts the curve out, whilst an increase in aR rotates it clockwise.

In the steady state the rate of learning must equal the rate of invention. This "balanced

growth" relation can be written as:

(BG) h(rl)LM=g

which, for given T, can be drawn as a ray emanating from the origin. As i increases, a greater

proportion of any manufacturing labour force is allocated to learning industries (h'>O), and thus

the curve rotates clockwise, reaching the limiting locus WLM/2 g for T � r. An increase in y

rotates the BG curve clockwise.

Finally, free entry into invention defines a factor market equilibrium relation, which states

that the return on devoting a unit of labour to invention, i.e. V(N(t),t)/aR, must be less than or

equal to the real return to labour in manufacturing. i.e. 1:

(FME) 1 � V(N(t),t)/aR

It is easily shown that V(N(t),t) depends upon the steady state size of the final goods market, as

measured by LM, and lifetime profits per unit of market size, which depend upon TI, p and g:

(32) V(N(,),t) =LT(fl,p,g)

- A rise in LM, for given 1, p and g, will raise the value of finn N(t). The partial effect of an

increase in the steady state rate of invention and learning, g, is more ambiguous. With a more

rapid rate of learning, firms find that the society's production basket is moving to the right more

rapidly, thus the firm transits more quickly from being firm N(t) at time t, to being firm T(t') at

time t', to being firm Z(C) at time C. As a finn goes from being N(t) to T(t') its profitability rises

40For details, see appendix 2.
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FIGURE 3: GRAPHICAL DETERMINATION OF THE STEADY STATE
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(see figure earlier), but its profitability falls as it transits from T(t') to Z(t'). In addition,

although a more rapid rate of aggregate learning puts a firm in a more desirable state (T(t')) at an

earlier date, the more rapid rate of transit also ensures that the firm will spend less time in each

such state and ultimately move on to less desirable states. Whether the net effect is positive or

negative depends upon the distance between N and T (TI), as well as the discount rate p.4' Thus,

in (g,L) space the factor market equilibrium relation may slope upwards or downwards.42 An

increase in either TI. p or a will, for any given market size and rate of growth, lower the relative

profitability of invention, shifting the entire FME curve up.

The steady state size of the final goods market LM, rate of learning and invention g, and

level of i aredetermined by the joint intersection of these three curves.43" For example, con-

sider an expansion in the resource base, L (figure 3b). At the original growth rate g, invention is

now more profitable, leading to a surge in inventive activity which outpaces the rate of learning,

increasing TI. As TI rises, the balanced growth equation rotates down (more of any given man-

ufacturing labour force is allocated to learning industries) and the factor market equilibrium rela-

For example, for a discount rate of zero, the net effect is always negative, since there is
no benefit to arriving at a more favourable state earlier in time, but the higher rate of transit
ensures that the time spent in each state is shorter. Similarly, as TI goes to zero, the net effect
becomes negative, since, along (Z,T], the firm finds itself moving more rapidly into less profit-
able states. For large p and large TI however, it can be shown that the net effect is unambigously
positive.

42Although the FME curve is always flatter than the BG curve, it may, when negatively
sloped, be either more or less steep than the PPF.

additional appendix, available upon request from the author, proves the existence of a
unique solution, as well as showing that the FME curve is flatter than the BG curve and that the
FME curve may be steeper than the PPF.

"I have focused my analysis on LM. rather than E, since the steady state value of the latter
depends upon the overall markup and is therefore harder to interpret. Using (21), LM and TI
jointly determine the steady state value of E.
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tion shifts upwards (lower return to invention requiring an increase in market size), establishing a

new equilbrium with, relative to the original steady state, increased levels of L,f, g and TI.

Alternatively, an increase in p will shift the FME curve up (figure 3c). As invention becomes

less profitable, the rate of learning will begin to outstrip the rate of invention, leading to a drop in

11. Consequently, the FME curve will shift back down, and the BG curve rotate up, reestablish-

ing a steady state equilibrium with a larger manufacturing labour force (L,,.) and lower levels of

fl and g.

Using similar graphical analyses, it is possible to derive the following results:45

(33) g/L >0 ag/&z, <0 agii>0 ag/ap <0

LMfL>0 aLM/aaRo46 aLMfaf<o aLM/aP>o

an,aL>0 JTlIJa5<0 iao47 aiap<o

45The graphical analysis becomes somewhat more complicated when the downward slop-
ing FME curve is steeper than the PPF. In that case, an increase in TI moves both the FME and
BG curves to the right. It can be shown, however, that the FME curve always moves further
along the PPF than the BG curve. Thus, for example, in the case of an increase in p analyzed in
figure 3c, if the FME curve were steeper than the PPF, then the initial upward shift in the FME
curve would put its intersection with the PPF to the right of that of the BC curve. A fall inn'
however, would move the FME curve to the left (along the PPF) faster than it would the BG
curve, reestablishing a three way intersection at a lower level of TI.

46The ambiguous effect of a5 on LM follows from the fact that whereas when TI is near zero
an increase in a increases LM (by shutting down all invention), when 11 > an increase in a5
lowers LM (by drawing labour Out of manufacturing into invention).

47A rise in ii increases the effective labour force, releasing labour from manufacturing for
use in research. Whereas the contraction in LM lowers firm profitability, implying the need to
lower i, thepartial effect of an increase in g is ambiguous. If the FME curve is steeper than the
PPF (implying that the partial effect of g is strongly positive), the net effect of increasing g and
lowering LM is to raise firm profitability, necessitating a rise in . Hence the ambiguous effect of
an increase in N' on 11.
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The results are not surprising: economies endowed with more effective units of the factor

used intensively in the growth process grow faster. Consequently, increases in L or reductions in

a increase the steady State growth rate. Similarly, an increase in v raises the rate of learning,

increasing the effective resource base available for use in balanced growth.

Finally, it is interesting to note that this model has implications for the relationship

between growth rates and the share of rents in national income. Presumably, most economies

face the same underlying technical opportunities, i.e. have similar aR's and w's, but vary in their

resource base, L. An increase in L leads to a steady state rise in , lowering the economy wide

markup. Consequently, economies which grow faster will tend to have lower markups and, thus,

a lower share of rents in national income. It is a common belief that in slow growth economies

a larger proportion of income is derived from rents, with the usual explanation focusing on the

perceived detrimental effects of rent seeking on growth. The model of this paper suggests that

the direction of causality might in fact be the reverse. In economies with low growth rates,

holders of privilege reap large rents because there are few emerging competitors. If the economy

were growing faster, then, even though each new entrant also acquired privilege, the intensified

competition could lower the overall proportion of rents in national income. If one wants to argue

that rent seeking reduces growth rates, the argument should perhaps rest, not on the detrimental

Total profit income (TPI) equals total sales times profits per sale:

TPI= (Pa, — MG11) = ELm
(Ti) —1

Pu m()
Using the PPF and BG relations, as well as (21), one can eliminate E and solve for TPI in the
steady state:

I m(i)—l
TP1

L1 1 +WaRh(Ti)
The share of rents in national income equals TPI/(L+TPI), which is clearly homogeneous of
degree zero in L. As m'(Ti) <0 and h'(Ti) >0, it follows that an increase in Ti brought about by an
increase in L will lower the share of rents in national income.
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effects of rent seeking per se, but rather on the attempts by existing rentiers to bar other

claimants to government decreed privilege. Thus, rent seeking by economic actors in a fairly

open political system, such as that of the United States, need not have detrimental effects on

growth, and might, in fact, encourage growth by allowing innovators to reap rewards greater than

those that could be achieved under a free market system.49

49The positive welfare effects of granting innovators temporary monopolies are cleanly
illustrated in Krugman (1988).
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VII CONCLUSION

Ifone truly believed most simple unbounded learning by doing models, one would be at a

loss to explain the prolonged periods of stagnation experienced by all economies prior to the

modern era. Instead, history seems to suggest that in any given environment there really is only

a finite amount of knowledge that can be acquired serendipitously, without conscious effort or

cost. Thus, a realistic model of growth must address the incentives for the conscious and costly

invention of new goods and production processes. At the same time, learning by doing appears

to be a genuine empirical phenomenon which not only leads to enormous improvements of exis-

ting technologies but also, one would imagine, must influence the incentives for further inven-

tion. Thus, there seems to be a dynamic interaction between learning and invention which is

worth exploring both theoretically and empirically.

To this end, this paper has presented a formal model of the interaction between invention

and learning. Learning depends upon invention in that learning is viewed as the serendipitous

exploration of the finite productive potential of invented technologies. At the same time, the

profitability of costly invention is dependent upon learning in that costs of production depend

upon the society's aggregate historical learning experience. The resulting model is a true hybrid.

With small markets, the profitability of invention is low, and hence the rate of invention becomes

the constraining factor in growth, with the learning parameter having little or no effect. With

large markets, invention is extremely profitable and the constraining influence becomes the rate

of learning, which in turn depends upon the pattern of consumer demand.

These results are suggestive of the types of issues the different types of endogenous growth

models might most appropriately address. For the analysis of the early stages of the industrial

revolution, models of invention, with their emphasis on minimum market size and the incentives

for costly invention, would seem to be most appropriate. In the case of the analysis of the inter-
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action of modem trading economies, although it is undoubtably true that the generation and

international transmission of inventions is of substantial import, given the far less constraining

influence of market size it would also seem that the insights into the detrimental effects of static
I,

comparative advantage provided by rather simple unbounded learning by doing models might

not be without merit.
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VIII A1'PENIMX 1: CONSUMER'S OPTIMIZATION PROBLEM

This appendix presents some of the mathematical details of the consumer's optimization

problem and the instantaneous equilibrium. Combining (1 1)-(13), one can form the Lagrangian:

N(,) N(s) N(')
(1.1) L=f jCIIg(f(s))ds + ).[E_f lCp(s)f(s)ds] + [lcl —f lCf(s)ds]

The conditions necessary and sufficient for f(.), , ), and I Cl to maximize this Lagrangian are:SO

(1.2) g'(f(s))�t-+-Xp(s) (=iff(s)>O)

(1.3) i=f f(s)ds
N(s)

(1.4) E=f lCp(s)f(s)ds

N(,)

(1.5) AErj IjCIjg(f(s))ds

Since asp(s) — p (Z) from below, f(s) —* 0, it follows, from (1.2), that = I — ).p (Z).

Substituting back into (1.2) yields equation (14) in the text, which holds for all goods s such that

p(s)�p(Z).

Substituting (14) and (16) from the text into (1.3)-(1.5), and integrating:

(1.3)' 1 = (?c_T/2)[(r+1)eI+2_e_e1t]

(1.4)' E = (fl C X2e_2nI4) [e2'(t+l) + I — e2'/2 —e2'V2]

50Concavity of g(.) ensures concavity of the integrand in f(s). Thus the inequality con-
strained Euler equation (1.2) is both necessaty and sufficient for a path f(s) to maximize (1.1).
Taking the optimal f(s) as given, since the Lagrangian is negative semidefinite in C, and ,
the first onler conditions (1 .3)-(1 .5) are necessary and sufficient for an optimum; where (1) I
treat the problem as one of unconstrained optimization, since (1.4) will ensure that I Cl is non-
negative; and (2) the envelope theorem ensures that the partial of f(s) with respect to Cl, and
X does not appear in these first order conditions.
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(1.5)' XE = ICI [1 —XeTe'f2]+XE/2

where c = T— Z andTI = N — T. These equations allow for solutions for X, I CJ and t as func-

tions of the state variables E, Tl, and e_T. t is determined as an implicit function of alone by:

(1.6) t,TI)=2l(t+TIe+2—e'—e'I[(t+TI)e+2—2e'—e"J—e'(.t+1l)_1 +e'12+e"I2=O

It is easily seen that for <ri', if a =0, 4 determines a unique t> if> i, with

drJdTI <0. For TI � TI'. t simply equals ' and (1.6) no longer applies.5' I C and X are given

by:52

(17) ICU — 2E[(c+i)e+2—e—e']

(1.8) X= {(e_T/2)[(t+1)e+2_e_ef]}_t

Examining (1.1), it is readily apparent that X' is the price of a unit of utility at the con-

sumer optimum, which is the origin of equation (17) in the text. Define Cu, as the I Cl neces-

sary to enjoy one unit of utility at the consumer optimum. This is easily determined using

U{C(.)} = XE = 1 and (1.5)'. Then, the total labour used in producing a unit of U equals

C ,Jo'fs)a (s) ds, which, after some substitution using (14), (16), (1.6) and (1.8), yields (18) in

the text.

' That is, in equations (1 .3)'-(l.5)' one substitutes if fort and TI.

52 TI � if, substitute if fort and fl
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IX APPENDIX 2: V(N(t),t') =LT(T,p,g)

This appendix derives the explicit formula for V(N(t),t). Using (14)-(16) we know that the

flow of profits of any firm s such that a(s)�a(Z) equals:

(2.1)

Substituting for I Cl and ), using (1.7) and (1.8), yields:

(2.2) E(s) = EL[e_en12 if N �s � T
e(t+)+l—e/2—eI2

¶ T—2
= EL[e—e

e2'(c+)+ 1 —e/2—e/2

For a firm s invented at time 0 (i.e. s=N(0)), s — T = i —gt until such time as t = ill:, after

which T —s = — t, until such time as I = i/g + tlg;after which the firm earns zero profits.

The steady state value of firm N(t) equals the present discounted value of its future profits:

(2.3) V(N(t), I) = V(N(0), 0) = je t(N(0), I) dt

Or:

( 'Vs 'Vs+g

E9f (e—e')2edi + f (et_eh1)2edr
(2.4) V(N(z),z)=

° n's

e2'(t+rl)+ I —e'/2 —eI2

Since LM = EL/g(r), it follows that V(N(t),,) =LMT(Tl,p,g), where:

'vs 'Vs+'g 2

25 T
(ee'1')2e1' d: + (e—e"") e' d:}

( . ,p,g)—
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In the preceeding I have assumed that If , > then:

1e ' (e" —e ') e' dt + I (e —e' 'I)2e9 dt} 4
I .1

(2.5) T(r,p,g)=
2-4e" +2e'

e"' represents the discount term for the time the firm must wait until it begins to
earn profits.

35



X BIBLIOGRAPHY

Aichian, Armen. "Reliability of Progress Curves in Airframe Production." Econometrica 31,
No.4 (October 1963): 679-693.

Arrow, Kenneth J. "The Economic Implications of Learning by Doing.' Review of Economic
Studies 29(1962): 155-173.

Asher, Harold. "Cost-Quantity Relationships in the Airframe Industry." Rand Corporation,
R-291, July 1,1956.

Baloff, Nicholas. "Startups in Machine-Intensive Production Systems." Journal Qf Industrial
Engineering 14, No. 1 (January 1966): 25-32.

Bardhan, Pranab K. Economic Growth. Development .ad Foreign New York: Wiley-
lnterscience, 1970.

Carr, Gardner W. "Peacetime Cost Estimating Requires New Learning Curves." Aviation 45,
No. 4 (April 1946): 76-77.

Conway, R.W. and Schultz, Andrew Jr. "The Manufacturing Progress Function." Journal f
Industrial Engineerine 10, No. 1 (Jan-Feb. 1959): 39-54.

Enos, John L. "A Measure of the Rate of Technological Progress in the Petroleum Refining
Industry." Journal f Industrial Economics 6, No. 3 (June 1958): 180-197.

Fudenberg, Drew and Tirole, Jean. "Learning-by-Doing and Market Performance." Bell Journal
of Economics. Vol. 14, No. 2, Autumn 1983: 522-530.

Grossman, Gene M. and Helpman. Elhanan. "Comparative Advantage and Long-Run Growth."
American Economic Review 80, No. 4 (September 1990): 796-8 15.

_________ and _________. "Quality Ladders in the Theory of Growth." Manuscript. Princeton
N.J,: Princeton University, August 1989.

Hirsch, Werner Z. "Firm Progress Ratios." Economelrica 24, No.2 (April 1956): 136-143.

Jaffe, Adam B. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Pat-
ents, Profits and Market Value." American Economic Review 76, No. 5 (December 1986):
984-1001.

Krugman, Paul. "Endogenous Innovation, International Trade, and Growth." Manuscript. Cam-
bridge: Massachusetts Institute of Technology, 1988.

Krugman, Paul, "The Narrow Moving Band, thc Dutch Disease, and the Competitive Conse-
quences of Mrs. Thatcher: Notes on Trade in the Presence of Dynamic Scale Economies."
Journal of Development Economies 27(1987): 41-55.

36



Levhari, David and Sheshinski, Eytan. Experience and Productivity in the Israel Diamond
Industry." Econometrica 41, No. 2 (March 1973): 239-253.

Lieberman, Marvin B. "The Learning Curve and Pricing in the Chemical Processing Industries."
RiisJ Journal f Economics 15, No. 2 (Summer 1984): 213-228.

I
Lucas, Robert E., Jr. "On the Mechanics of Economic Development." Journal f Monetary

Economics 22 (July 1988).

Mak, James and Walton, Gary M. "Steamboats and the Great Productivity Surge in River Trans-
portation." Journal f Economic History 32, No. 3 (September 1972): 619-640.

Rivera-Batiz, Luis A. and Romer, Paul A. "International Change with Endogenous Technical
Change." Working Paper. University of Chicago and University of Califomia at Berkeley.
October 1989.

Romer, Paul M. "Endogenous Technological Change." Journal f Political Economy 98, No. 5,
Pt. 2 (October 1990): S71-S102.

Rosenberg, Nathan. Inside the Black Box: Technolov and Economics. Cambridge: Cam-
bridge University Press, 1982.

Segerstrom, Paul S.: Anant, T.C.A.; and Dinopoulos, Elias. "A Schumpeterian Model of the
Product Life Cycle.' American Economic Review. Vol. 80, No. 5, December 1990:
1077-1091.

Spence, Michael A. "The Learning Curve and Competition." Bell Journal of Economics. Vol.
12, No. 1, Spring 1981: 49-70.

Stokey, Nancy L. "The Dynamics of Industrywide Learning." In Heller, Walter P. et al eds.
Equilibrium Analysis: Essays in honor of Kenneth J. Arrow. Cambridge: Cambridge
University Press, 1986.

______ _______ "Human Capital, Product Quality, and Growth." Manuscript: Evanston:
Northwestern University, 1990.

'Learning by Doing and the Introduction of New Goods." Journal f Political
Economy 1988, Vol. 96, no.4: 701-717.

Wan, Henry Y. Jr. "Trade, Development and Inventions - The Evolutionary Path." Manuscript.
Ithaca, N.Y.: Cornell Univ., July 1975.

Wright, T.P. "Factors Affecting the Cost of Airplanes." Journal fii Aeronautical Sciences 3,
No.4 (February 1936): 122-128.

Young, Alwyn. "Learning by Doing and the Dynamic Effects of International Trade." Ouarterly
Journal of Economics, forthcoming May 1991.

37


