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interaction between economies of scale in production and market

size effects. This paper develops a simple spatial framework to

develop illustrative models of the determinants of urban
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multiple equilibria, and the dependence of the range of potential
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This paper offers three variations on a simple theme in

location theory. The theme is a well-known one, but the specific

framework within which the ideas are presented is somewhat new, and

the variations may be of some interest.

The basic theme is that urban agglomerations arise at least in

part out of the interaction between economies of scale in

production and market size effects. Producers subject to scale

economies have an incentive to concentrate their production at a

limited number of sites; in order to economize on transportation

costs, they prefer production sites that are close to large

markets. But markets are large precisely where large numbers of

producers have chosen to site their facilities. From this

circularity, two general propositions follow. First, production

tends to clump together in agglomerations considerably larger than

the scale of any individual producer. Second, there are typically

multiple equilibria: the location of urban centers is not uniquely

determined by tastes, technology, and resources.

In two recent papers (Krugman l99la, l99lb) I have considered

location models along these lines. In those models, however, space

was generally treated as consisting of two or three discrete

regions, with transportation costs between regions but no transport

costs within regions. In this paper space is instead treated as

continuous (albeit one—dimensional) , putting the models more

squarely in the grand tradition of location theory.

All of the models share a common framework, in which the

population can be divided into two parts: an immobile population of

farmers, spread evenly along a line, and a mobile manufacturing
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labor force, which typically ends up concentrated at one or a few

points along the line.

The first model demonstrates how the interaction of cost-

minimizing decisions by individual firms leads to the emergence of

urban concentrations. It also shows that the location of a city is

indeterminate within some range, with the width of that range a

function of the model's underlying parameters.

The second model examines the factors affecting the number and

size of cities. It shows how the maximum size of cities is limited

by economies of scale, transportation costs, population density,

and the share of the population employed in manufacturing.

Finally, the third model illustrates the possibility of

multiple equilibria in the degree of urbanization itself.

It should be emphasized that the approach presented here is

intended as a complement to other approaches to the issue of

urbanization, not as a substitute. In particular, there is a rich
literature in urban economics, both theoretical and empirical, that

draws on the general concept of external economies and diseconomies

to explain the emergence of an urban system; this short paper is

not intended as competition for such rich and detailed analyses as

those of Henderson (1988), for example. The point here is instead

to show how much insight can be gained from strikingly simple

models.
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1. The basic framework

In order to tell the kind of location stories presented in

this paper, it is necessary to have a model with four key elements.

First, there must be transportation costs —— otherwise location is

irrelevant. Second, there must be increasing returns in the

production of at least some goods —— otherwise there is no

incentive for concentration. Third, the location of demand must

depend on the location of production, to generate the essential

circularity. Finally, there must be at least some factors of

production, such as land, that are not mobile —— otherwise the

model will have the trivial outcome that everything always

concentrates in one place.

In this paper I capture these elements via a somewhat ad hoc

framework that sacrifices both realism and rigor in the interests

of simplicity. Instead of explicitly modeling the role of land, I

simply assume that there is an agricultural labor force that is

exogenously distributed across space. Increasing returns at the

level of firms must lead to imperfect competition, but this

framework is vague about the specifics. I simply assume that firms

choose locations to minimize the sum of production and

transportation costs. Finally, demand at a given location is

treated as simply proportional to employment at that location --

more rigorous treatment of both income and substitution effects is

possible (see Krugirian l99lb) , but it greatly complicates the story.
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We suppose, then, the following: there are two kinds of goods,

agricultural and manufactures. Agricultural employment and

production is spread uniformly along a line, of unit length. There

are many symmetric manufactured goods. Each one is subject to a

fixed cost of production F per production site, and a coat t per

unit of output shipped one unit of distance. We let x represent the

demand of the economy as e whole for a typical manufactured good,

end treat it as fixed (i.e., we ignore income and substitution

effects) . We assume that manufacturing employment in any location

is proportional to manufacturing production (which leaves blurry

the question of the nature of fixed costs) . We assuma that demand

for manufactured goods at any location is proportional to

employment, manufacturing plus agricultural, at that location

(fudging income and substitution again), with a share a of demand

coming from manufacturing workers, 1—a from agricultural. Finally,

we suppose that the location of production of manufactures is

chosen so as to minimize the sum of production and transportation

coats.

The problems with this framework are obvious. Aside from the

lack of realism, the framework does not quite hang together as a

piece of microeconomica —— while it basically makes sense,

microfoundations and adding—up constraints are not quite respected.

The point, of course, is that there is a compensating payoff in

simplicity and insight. The framework should thus be seen in a

"macroeconomic" spirit -— like the IS-LW model, or the Lucas supply

function, it is inspired by microeconomic arguments without being

4
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securely grounded in them, to help us get insight that would be

denied us if we insisted on complete rigor.

2. Model I: Urban location

We consider an economy in which the agricultural population

is distributed along a line, normalized to be of unit length. We

assume that economies of scale are sufficiently strong that each

manufacturing producer wants to have only one production site (we

will examine the conditions under which this happens in the next

two sections) . Let z, O<z<l, represent the location of a

manufacturing producer along the line, with z=O at the "west' end

and z=l at the "east" end.

As we will see in a moment, the equilibrium spatial

distribution of manufacturing production will be very simple: all

of it will be concentrated at a single point, which we may call a

city. Let z be the location of this city; each firm will sell rx

units of output to the residents of the city, and (l-ir)x units to

the agricultural population.

What each firm does is to choose a location that minimizes

transportation cost, which in turn consists of two parts. The cost

of shipping goods to the agricultural sector depends only on the

firm's location z. A fraction z of the farmers lie to the 'left' of

a firm that locates at z; they purchase (1-r)xz from the firm;

their average distance from the firm is z/2. Similarly, a fraction

(l—z) of farmers lie to the "right", at an average distance (1—
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z)/2, buying (l—ir)x(1—z). The total cost of shipping to farms is

therefore

TA
- txjz2÷(l_z)2] (1)

This cost is shown in Figure 1; it is minimized for z = 0.5.

The cost of shipping goods to the city depends both on z and

on the location of the city:

T— ztxIz—zJ (2)

This is a V—shaped line that touches zero at z.

A natural guess might be that z=O.5 -- i.e., that the city is

located at the exact center. This situation is illustrated in

Figure 1, which shows TA, T, and total transport costs for a

representative firm under the working assumption that manufacturing

production is in fact concentrated at 0.5. Evidently, in this case

z=0.5 is the location that minimizes transport costs, so firms will

in fact choose to produce at that point. A city in the center of

the line is therefore an equilibrium locational structure.

But it is not the only equilibrium. There is a range of

potential equilibrium sites for the city. Figure 2 illustrates the

point. It shows TA, T, and total transport costs for a

representative firm when zc is located somewhat to the left of 0.5.

In spite of the fact that this city location does not minimize the

cost of selling to the rural market, from the point of view of any

individual firm that takes the city's location as given locating at

z still minimizes overall transportation costs. Intuitively, the

weight of the urban market in firms' decisions is sufficiently
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large that moving the city a little bit to the left or the right

from its collectively optimal location will drag' the individually

optimal locations of firms along with it. More technically, the

concentration of mass at the city site creates a discontinuity in

the derivative of transportation costs with respect to location;

this "kink' causes a clustering of firms at the same location.

Not all locations for the city are necessarily equilibria: if

the city were too far from the center of the line, firms might find

it optimal to locate somewhat closer to the center. We can

establish the range of potential city sites as follows. Consider a

hypothetical city somewhere to the left of z=O.5 (the case to the

right is symmetric). Would it pay a firm to move its plant away

from the city? Clearly a location still further to the left would

not be desirable, since the costs of servicing both the rural and

urban markets would be higher. A move toward the center, however,

would reduce the costs of shipping to rural customers. The city

site will only be an equilibrium if the rise in costs of shipping

to the city as one moves to the right is at least as large as the
fall in rural costs. That is, we must have

(3)
dz dz),

at z = z, where the second term represents the derivative as we

move to the right. Figure 3 illustrates how this sets a range of

potential city sites. The leftmost potential city location, z,,,, is

where the Slope of TA equals negative dT/dz, and there is a

corresponding z.
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Algebraically, we note that

d(Tc+TA)________ — (1—it) tx(2z—1)—,ttx (4)dz

if z < z, and that

d(Tc+TA) - (1-it) tx(2z-1) +ittx (5)dz

if z > z. Consider the case z < 0.5: such a city is an equilibrium

iff

(1—it) tx(2z—l) ÷ittx � 0 (6)

implying

2(1—it)
(7)

Employing the same reasoning for cities to the right of

center, we find that the potential range of city sites is

1—2it 1 (8)
2(1—it 2(1—it)

The width of this range is lr/(l—ir) —— i.e., the range of

indeterminacy in city location depends on the share of demand that

is generated by the city itself. Evidently a sufficiently high

share of urban demand in total demand, in this case ir>0.5, allows

any location to be an equilibrium.

This model, then, allows us to see in a very simple way why

production ends up concentrated in an urban center, arid why the

location of that urban center is to at least some degree

indeterminate. A weakness of the model, however, is that it makes

a strong assumption about scale economies, namely that they are
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strong enough that each manufacturer always wants to have only a

single production site. The payoff to this strong assumption is

obvious, but the cost is that it does not allow us to examine the

role of economic and technological parameters in determining the

number and size of cities. The remainder of the paper is concerned

with remedying this oversight.

2. Model II: The number and size of cities

Neither the number nor the size of cities is, in general,

determinate in models of the kind considered here. Indeed, the next

section will suggest that there may even be multiple equilibria in

the degree of urbanization itself. Nonetheless, the range of

possible and likely outcomes is surely a function of such

parameters as economies of scale and transportation costs. We would

like to have at least a partial model of that function.

Here I take the approach of asking the determinants of the

minimum possible number (and hence maximum possible size) of

cities. There is no particular reason to expect that this minimum

number will actually be the outcome of the dynamic evolution of a

system of cities. Nonetheless, by studying this case we get at

least some insight into what might happen.

Consider, then, the same basic setup as in the previous

section, with two modifications. First, we suppose that the unit

line along which agricultural population is spread is in fact the

circumference of a circle, so that there are no end points. Second,
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we no longer assume that there is only a single city. Instead, we

will look at potential equilibria in which there are N cities,

symmetrically located around the circle. Thus each city is a

distance 1/N from its neighbors on either side, and producers in

each city sell both to the local urban consumers and to a market

area that stretches half way to each neighbor.

Our question is now the following: how small can N be and

still be an equilibrium?

An urban system of the form described will not be an

equilibrium if producers find it in their interest to move away

from the assumed production sites. If N is too small, it will pay

firms to establish additional plants outside the existing urban

centers, in which case the system is not an equilibrium. (If N is

too large, the opposite would occur: producers would abandon some

cities in order to consolidate production. This sounds as if it

should be possible to establish an upper as well as a lower bound

on N. The upper bound case presents technical difficulties,

however, and is not pursued in this paper)

A production facility in an urban center incurs transport

costs to serve the surrounding rural market area. If x is the total

sales of a typical manufactured good, the sales of the plantin a

given city are x/N, of which lrx/N are sales to urban consumers and

(l—lr)x/N are sales to the rural market. The average distance of

rural consumers from the nearest city is l/4N. Thus the transport

costs of serving a rural market are

These transport costs can be reduced by establishing
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TA — (9)
4 N2

additional production locations. The optimal site for such a

location is halfway between existing locations, which will cut

transportation costs in half. On the other hand, in order to

establish such a production site a firm must incur a fixed cost F.

Clearly, then, the lower bound on the number of cities is set

by the requirement that the fixed coet of establishing a new plant

be at least as large as the savings in transportation cost. That

is, N must be sufficiently large so that

F � (10)
SN2

or, equivalently,

Na (11)
N SF

The inequality (11) suggests several sensible things about the

forces limiting the size of cities. A system with a few, large

cities can emerge only if F is large (strong economies of scale)

ir is large (a large urban population) , and t is small (low

transportation costs) . Geographers analyzing the rise of large

cities in late 19th century America -— notably Pred (1966) —- have

stressed precisely these factors. This approach offers a formal

justification.

We might also note some implications about the role of

population density and overall urbanisation. An increase in the

size of the overall population would mean increased total sales of
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each good, that is, higher x. We note that the minimum number of

cities would rise, but only as the square root of the rise in

population. Thus a more densely populated country would in general

support more but also bigger cities. At the same time, an increase

in the urban share of the population, other things equal, would

actually lead to fewer cities (or more precisely, would make it

possible to concentrate population in fewer cities) . The reason is

that the greater concentration of mass in the cities would reduce

the temptation for producers to move out to serve rural markets. To

illustrate the point, imagine that in some country ir were to rise

from 0.2 to 0.8, while the overall population remained constant.

Then the number of cities could fall in half, implying an eightfold

rise in the population of a typical city.

This analysis is, however, only suggestive, because we are

only describing possible equilibria. There is no guarantee that

these would be the equilibria that would emerge. There will

normally be a range of possible city systems. And with a plausible

modification of the basic framework, we may argue that the degree

of urbanization itself is subject to multiple equilibria.

3. Model III: The degree of urbanization

We return to the setup of Model I, where the unit line has two

ends instead of being a circle, and in which there will be a

maximum of one city. Now, however, we introduce the possibility

that there will be no city at all.
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To do this, we follow a route already explored in the recent

work of Murphy, Shleifer, and Vishny (1989). There are assumed to

be two technologies for producing manufactured goods: a

"traditional" technique that produces goods under constant returns

at a unit cost c1, and a 'modern technique with a marginal cost

lower than c1, but that involves a fixed cost F per production

site.

We can immediately see that there are two qualitatively

different kinds of equilibrium possible in this model. In one

equilibrium, manufactures are produced using the traditional

technology; production of manufactures is geographically dispersed,

and no transportation costs are incurred. In the other type

equilibrium, production of manufactures is concentrated in a city,

and transported to rural consumers.

Serving the market via traditional production incurs total

costs of c1x per manufactured good. Serving the market via modern

production involves production costs of F + c2x, plus

transportation costs.

But transportation costs themselves depend on the location of

population. If manufacturing is dispersed, an optimally located

modern plant will be a distance of 1/4 from its average consumer,

and will thus incur transport costs tx/4. On the other hand, if all

manufacturing were concentrated at z=O.5, an urban plant located at

the same point could serve a fraction ir of consumers at zero

transport cost, and incur transport costs of only (l—r)tx/4.

Traditional manufacturing, then, is an equilibrium as long as
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it is not cheaper to concentrate production of an individual

manufactured good, i.e.,

F÷c2x+— > C1x (12)

Modern manufacturing is an equilibrium as long as it is not

cheaper to disperse production, i.e.,

F+c2x+------tx < cx (13)

These criteria are not mutually exclusive. There will be

multiple equilibria in the degree of urbanization as long as

c1x > F+c2x+ (1—it) — (14)

This story bears an obvious resemblance to the Big Push story

of Rosenstein-Podan, as formalized by Murphy, Shielder, and Vishny.

Here, however, the key element is spatial: industrialization does

not create a larger market, but rather a more compact one, and that

is what makes it self-sustaining.

5. Conclusions

This paper has offered a minimalist approach to the formation

of urban centers in a spatial framework. The approach is neither

realistic nor rigorous, merely suggestive. It is intended as a

complement rather than a substitute for other lines of inquiry.

What it shows, however, is that some interesting stories arise out

of even very simplistic models. Once one introduces the basic
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circularity in which location of production and location of demand

are interdependent, a series of results emerge. Agglomeration ——

the formation of cities —— follows immediately, as does some

indeterminacy about urban location. The number of cities is bounded

in an economicly meaningful way by underlying parameters. And under

some conditions fundamental aspects of the economy, such as the

degree of urbanization itself, can be shown to be subject to

multiple equilibria.

There have been numerous appeals over the history of economic

thought to take the spatial dimension seriously. It is disputable

why these calls have not had more effect; but a likely reason is

the perception that spatial modelling involves a high ratio of

effort to insight. I hope that this paper helps demonstrate that

this need not be the case.
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