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occur. We allow for stochastic variability in the likelihood and

size of devaluations, and we provide explicit solutions for the

stochastic processes followed by the exchange rate and by the
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devaluation risk from target zone data.
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I. Introduction

Under reasonable assumptions, most of the available target zone models of exchange ratc

dynamics imply a deterministic, nonlinear relationship between the exchange rate's devi-

ation from its central parity on the one hand, and interest ratedifferentials and "funda-

mentals" (i.e. variables appearing in excess money demand functions, such as liquidity

and activity levels) on the other. These predictions have received only limited validation

from empirical work. Svensson (1990b) finds Swedish data to be qualitatively consistent

with his model, in which the target zone is defended by infinitesimal interventions and

devaluations of fixed size occur with constant probability intensity the fit between the-

ory and data is far from perfect, however, and a strongly serially correlated component

is left unexplained in the relationship between exchange rates and interest rate differen-

tials.1 The model of Bertola and Caballero (1990b) has different empirical implications.
which are consistent with German, French. and Italian exchange and interest rate data:

but empirical support for the predicted relationship between interest rate differentials and

exchange rate fluctuations is again only qualitative, and rather weak. Using nonparametric

methods on a variety of exchange rate, interest rate, and "fundamental" data, Meese and

Rose (1990) and Flood, Rose and Mathieson (1990) do not find any evidenceof significant

nonlinearities: the components left unexplained by nonlinear models are highly serially
correlated and, in many cases, so large as to raise serious doubts on the empirical validity

of target-zone models.

More general theoretical frameworks could, of course, provide an explanationfor the

disappointing empirical performance of the first generation of target zone models. In gen-

eral, what is necessary to reconcile theory and evidence is allowance for a source of exchange

rate and interest rate fluctuation other than traditional fundamentals. For the theoretical

noxilinearities to become apparent in empirical work, it would then be necessary to control

for the time variation of state variables other than the exchange rate. Of course,the newly

introduced state variables should ultimately be given an economically meaningful inter-

pretation. Bertola and Caballero (1990a), for example, argue that repeated interventions

should affect the likelihood and/or the size of realignments, and propose stylizedmodels

in which the level of reserves affects the position and shape of the relationshipbetween

expected depreciation and exchange rates.

In this paper, we extend the model of Svensson (1990b) to allow for stochastic fluc-

tuations in the size and/or likelihood of devaluations. We do not provide a specificmodel

Lehmussaari and Suvanto (1990) provide similar evidence from Finnish data.

1



of what the economic determinants of such fluctuations might he. Still, the probabilistic
structure we propose is flexible enough to generate realistic patterns of covariation between
observables: in our model, exchange rates and interest rate differentials are influenced by
the current rate of expected devaluation on the one hand, and by the character of the
stochastic process it follows over time on the other, suggesting potentially fruitful avenues
for further empirical and theoretical work.

Section II introduces our basic assumptions and derives the equilibrium relationship

between exchange rates, fundamentals, and the expected rate of devaluation. Section
III studies the instantaneous interest rate differential and the term structure of interest
rate differentials. Section IV discusses the results, emphasizing their implications for the
interpretation of existing evidence and for further empirical work. Section V specifies how
the expected rate of devaluation can be inferred from data on exchange rates and interest
rate differentials. Section VI concludes and outlines possible theoretical and empirical
extensions of our work.

II. The exchange rate

We denote with x(i) the logarithm of the exchange rate at time t, measured as units of
home currency per unit foreign currency (or per unit of a basket of foreign currencies). We
follow the literature in assuming that it satisfies the relationship

z(t) = f(i) + aE[dz(t)]/dt, (2.1)

where the scalar f(t denotes the fundamental determinants of the exchange rate, and a
indexes the extent to which the exchange rate level depends on its own expected rate of
change in continuous time. We also follow the literature in assuming that f(L) can be
modeled as an exogenously given stochastic process which is compatible with maintaining

the exchange rate within a prespecified range (x',z") unless a realignment occurs. For
concreteness, we refer to all realignments as devaluations, with devaluations of negative
size representing revaluations.

The models that have inspired the empirical work reviewed in the Introduction as-
sume that the probability distribution of future interventions and devaluations is fully

determined (for given parameters) by the current level off. Thus, the z(i) and E{dx}/dt
sample paths are uniquely determined by the sample path of {f(t)}, and equation (2.1)
implies a deterministic (nonlinear) relationship between the position of z(t) relative to
the limits of its current fluctuation band and its expected rate of change.2 The empirical

2 The shape of the relationship, of course, depends on the specific structure of the model
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evidence reviewed above, however, suggests that expected depreciation rates should also
be allowed to fluctuate indcpendenily of the exchange rate's position in the band. We
proceed to do so in the context of the Svensson (1990b) model of a target zone subject to

realignments.

We assume {f(i)} to follow a process with stochastic differential

df(t) = JLf dt + o dW1(i) + dL(i) — dU(t) + dc(t). (2.2)

Here, pj and cj are scalar constants; {W1(i)} is a standard Wiener process; and {L(t)},
{U(i)} are nondecreasing, continuous processes which increase only when the exchange
rate is (respectively) at the lower or upper boundary of its current fluctuation band. The
infinitesimal increments of these two regulator processes are those necessary to maintain
the exchange rate within the boundaries of its current fluctuation band. The process
{c(t)} is the (log of) central parity, which is a jump process; it jumps at realignments and
is constant between realignments.

It will be convenient to write

z(t) = (t) + c(i), f(i) J(i) + c(i), (2.3)

where (i) x(t) — c(i) denotes the exchange rate's log-deviation from central parity,
and J(i) 1(t) — c() denotes the fundamental's deviation from central parity. When
a devaluation occurs, the upper and lower boundaries of the exchange rate fluctuation
band are redefined and both the central parity, the exchange rate and the fundamental
undergo a discrete change. We denote with z() the size of the exchange rate jump if a
devaluation occurs at time 1. In what follows, it will often be convenient to assume that
z(i) = c(t+) — c(t_), i.e. that the exchange rate's position within the band is unchanged
by a realignment; in general, however, this need not be the case.

considered. If devaluations never occur, or if their likelihood and size is independent of the

exchange rate's position in the target zone (like in Svensson (1990b)), then the expected
rate of depreciation must be lower the closer is the exchange rate to its current upper
bound: quite intuitively, a more depreciated exchange rate is less likely to depreciate
further than to appreciate. If realignments only occur when the exchange rate is at one
of the target zone's boundaries, conversely, the expected rate of depreciation can be an
increasing function of the exchange rate's distance from its current lower bound (see Miller
and Weller (1989) and Bertola and Caballero (1990b)).
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We let a devaluation resulting in an exchange rate jump of random size z(t) occur
with probability zi(t)di in a time interval of infinitesimal length di, while no devaluation
occurs with probability 1 — v(t)dt. Because risk neutrality and instantaneous equilibrium
are assumed in equation (2.1), only the expected size of the exchange rate jump associated
to a realignment in the next in3tant has a bearing on exchange rate determination; the
higher moments of the size of devaluations, and expectations of devaluation over longer
horizons, are irrelevant.3 We therefore define an expected rate of devaluation process {g(t)}

g(t) (t)E[z(t)] di) =

where (i) E[z(i)].
If either or both of 1(1) and ii(t) fluctuate stochastically over time, so does g(t). We

assume {g(t)} to follow a Brownian motion process, allowing a possibly nonzero correlation
between its increments and those driving the fundamentals process:

dg(t) = di + a9 dW9(t), dW9(i)dW1(i) = pdi, jp 1. (2.4)

The vector process {f(t),g(i)} is Markov in levels: ruling out bubbles, both the exchange
rate and the expected rate of depreciation can then be written, for given parameters and
given target zone boundaries, as functions of the two state variables I and g.

The presence of multiple state variables would typically make it very difficult or even
impossible to solve a nonlinear forward-looking model.4 Fortunately, however, equation
(2.1) and the presence of "target zone" limits to exchange rate fluctuations impose strong

For clarity of interpretation, we express our solution in terms of limits to exchange
rate fluctuation and in terms of exchange rate jumps at devaluation times. As long as
exchange rate bubbles are ruled out, so that (2.1) can be integrated forward to yield
x(i) = f°°e_(T_)/0E[f(r)}dT/a, the model implies limits to fundamental fluctuations,
and jumps as well as continuous changes in (the probability distribution of) fundamental,.
While this relationship can remain implicit in this section, it will be necessary to be more
specific when considering finite-maturity interest rate differentials in Section III.

Using the multivariate form of Ito's differentiation rule, x(f,g) could be written in
terms of the parameters appearing in the stochastic differentials (2.2) and (2.4) and of
the partial derivatives of the z(f,g) function. The resulting partial differential equation
for z(f,g) would then need to be solved jointly with appropriate boundary conditions
at the margins of the exchange rate fluctuation band; namely, the first-order derivatives
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restrictions on the joint probability distribution of exchange rates and expected depreci-
ation rates and, consequently, on the shape of the x(.,.) function. In the model we are
considering, the expected depreciation rate is the sum of two components: the expected
depreciation rate within the band, denoted E[d1]/dt, and the expected rate of devaluation,
g. Thus, we can write

E[dx] E[d1]= 4-a. (25di di

Substitution of (2.5) into (2.1), together with (2.3), allows us to write

E1[dll - E[di] -
z(f,g)=f+og+c di =f+ag+a di +c=z(f,g)+c,

where I hence depend only on f and g. It is not difficult to see that all 1,9 pairs such
that / + ag is constant must be consistent with the same exchange rate level within the
band. We then define the new state variable

h(t) f(i) + cg(t)

and note that, under our assumptions, {h(i)} is a Brownian motion process with differential

dh(i) = 1zdi + adW(t), where
(2 .6)

t1 + aj and + a2cr + 2cpc1a9.

Thus, exchange rate determination is reduced to a single state variable problem, the
solution 1(h) of the equation

1(h) = h + (2.7)

with boundary conditions

1(h') = — c, 1(hL) = — c, 1f(hL) = 1'(h') = 0, (2.8)

where W, h'4 are defined as the points in the state space where the exchange rate reaches
its current lower and (respectively) upper boundaries.

should equal zero at the margins of the fluctuation band, where —since the regulators
are applied with probability one— the expected rate of depreciation must be the same
regardless of whether or not the regulators are operating. This approach would encounter
nontrivial technical difficulties, however, because few uniqueness and representation results
are available for multivariate boundary problems of this type.
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The solution is fully analogous to that appropriate for a credible target zone (see
Krugman (1990) and Froot and Obstfeld (1989)):

(h) = h + cji + Aie?k + A2e)'2 (2.9)

where ) and )2 are the roots of the characteristic equation cxc-2A2 + cip.A — 1 = 0:

A1±Ii__, 2__\/+.
The constants A1, A2 are chosen, as a function of the currently enforced exchange rate
boundaries, to satisfy the boundary conditions:

hU + + AjeAi + A2eA2 = — c, 1 + A1 A1 eAth + A2A2eA2 = U

+ + A1e' + A2e2h' — c. 1 + A1A1cAt' + A2A2eA2h' =

Figure 2.1 portrays the familiar S-shaped relationship between h and . The param-
eters are — c —1.5 percent, x'1 — c = 1.5 per cent (as in the Swedish exchange rate
band); if time is measured in years, c = 1 year, j.i = 2 per cent per year, and = 5 per
cent per We shall use these parameters throughout the paper.

The solution can equivalently be written in terms of the two driving processes f and
gas

i(J,g) = (f+ g) = g + a( + ) + A1eA1 9) + AeA2(f+cg) (2.10)

and it is easily interpreted. Its linear part corresponds to the free-floating, bubble-free ex-
change rate solution that would be appropriate if fundamentals foHowed a mixed Brownian-

jump process, with the product of the probability intensity and expected size of jumps
following, in turn, the Brownian process of equation (2.4). In such an environment, the
expected rate of depreciation would always be equal to g+j.1+ci9, the last term reflecting
the fact that every change in the likelihood and/or size of jumps is immediately reflected
in the level of via the no-arbitrage condition (2.1) if c 0, and that the expected rate
of devaluation is expecied to increase or decrease at rate p. The exponential terms, in
turn, reflect the stabilizing expectations due to knowledge that the infinitesimal regulators
will be activated when and if the h process fluctuates to either boundary of its current
fluctuation zone. As usual, the constant A1 associated to the positive A1 root is negative,

The dimensionality of and follows from noting that E[dx/dt] in (2.1) has the
dimension of time and o.2 has the dimension of 1/time.
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to satisfy smooth pasting: thus, a (say) upward movement of h, which may be due toany
one of many combination of J and g movements, makes it more (less) likely that the upper
(lower) regulator will be activated in the neai future, and forward-looking agents recognize
that such regulation induces a downward bias in the expected discounted integral of future

fundamentals. Figure 2.2 shows the relation between the exchange rate and f, for giveng:
the curve on the right corresponds to g = 0, f = h, while the curve on the left corresponds
to a positive g; the horizontal distance between the two curves is cxg.

Figure 2.3 displays a three-dimensional plot of the relationship between ,J, and g.
The function (f,g) is defined on the set {f,9jh' � J+ cxg h"}, namely the region
between the fiat southwest section and the fiat northeast section of the surface in the
Figure. The points in J, g space that yield the same exchange rate lie on parallel lines with
slope dj/dg = —a. We note that, in addition to the S-shapes in the / direction for fixed
g, the surface's sections describe S-shapes in the g direction for fixed .f.

Several features of the solution deserve to be mentioned. Krugman (1990) notes that

stabilizing expectations of intervention yield an (f) function that is everywhere flatter
than the 45° line that would apply in a free float, thus allowing the fundamental band
to be wider than the exchange rate band (the "honeymoon effect"). In terms of this
interpretation, the range of allowable fundamental values is shifted by the possibility of
devaluations: the larger is g, the smaller is the upper bound on / (consider Figure 2.2 again,
where different devaluation risks cause the S shape to shift sideways for given exchange
rate bands). More interestingly, the shape of the S and the width of the fluctuation band
are affected, for given (Zl,U), by the parameters of the stochastic process followed by
{g(i)}. If 09 > 0 and p � 0, for example. then o > and the relationship between
exchange rates and fundamentals is flatter, for given g, than it would be if g were constant
as in Svensson (1990b). If g could be taken as given, this would imply that fundamentals
can deviate by larger amounts before "intervention" is called for. Since fluctuations in I
occur concurrently with fluctuations in g, however, intervention in general has to occur
more often and by larger amounts, to offset shifting expectations of devaluation as well as
fluctuations in J (which, following Krugman (1990) and Froot and Obstfeld (1989), may be
taken to represent random fluctuations in the velocity of circulation of money, in activity
levels, and so on).

III. The interest rate differentials

In this section we shall derive the implications of stochastic devaluation risk for the instan-
taneous interest rate differentials and for the term structure of interest rate differentials
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(the differential yield curve). In particular, we shall study the determinant of the correla-
tion between interest rate differentials and exchange rates, with a view to uncovering ways
in which devaluation risks and their behavior over time might be inferred from data on
interest rate differentials and exchange rates (see Section IV below).

Let 5(i;r) denote the interest rate differential at time t between default-free discount
bonds that mature at time i + i- and are denominated, respectively, in home and foreign
currency (or a basket of foreign currencies). Uncovered interest rate parity should hold
if agents are risk neutral or (approximately) if the risk premium is small.6 For a finite
maturity T > 0 we then use the approximation

= E[x(t +r)] — x(t)
: (3.1)

the interest rate differential equals the expected depreciation to maturity, divided by the

maturity.

Instantaneous interest rate differentials

If we let the maturity approach zero, we get the instantaneous interest rate differential,

t(i;0) = E[dz1/d, (3.2)

which equals the expected instantaneous rate of depreciation. Using (2.1) and (2.10), we
see that the instantaneous interest rate differential can be written as a function of h and

9,
5(h,g;0) = 5(h;0) +g, for h' � h < li", (3.3a)

where
(h;0) = E[di} = i+ (AieA5 + A2eA2h)/cx = ((h) — h)/x (3.3b)

is the expected (instantaneous) depreciation within the exchange rate band, the last equal-
ity following from (2.9). This term is the interest rate differential for a zero expected rate
of devaluation, and is extensively examined in Svensson (1989). It depends only on the
state variable h, with '(h) < 0; since the relation between h and the exchange rate is
monotonic, the expected rate of depreciation within the band is also a decreasing function
of the exchange rate: quite intuitively, the larger the value of the exchange rate in the
band, the larger is the probability of an intervention in the near future to (e.g.) reduce

Svensson (1990a) shows that the risk premium is likely to be small for narrow target
zones and moderate devaluation risks.
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money supply and appreciate the exchange rate, and the smaller is the expected rate of
depreciation.

In (3.3a), the expected (instantaneous) rate of devaluation is added to the expected
rate of depreciation within the band. As shown if Figure 3.1, this simply shifts the instan-
taneous interest rate differential up by g when it is plotted as a function of the exchange
rate (or of the state variable h).7 We understand from Figure 3.1 that as both funda-
mentals and the expected rate of depreciation fluctuate overtime, almost any pattern of
exchange rates and instantaneous interest rate differential observations can result. In this
section we focus on the correlation between the instantaneous interest rate differential and

the exchange rate, postponing further discussion of possible patterns to Section IV below.

If the relative variability of the expected rate of devaluation g is low, most of the
variability of the state variable h (and hence of the exchange rate) is due to variations in
the fundamental f: then the curve S(,g;O) in Figure 3.1 does not shift much, observations
of exchange rates and interest rate differentials all lie along it, and the instantaneous
correlation between exchange rates and interest rate differentials is negative. If instead
the relative variability of the expected rate of devaluation is high, so that most of the
variability of the state variable h (and hence of the exchange rate) is due to variations in
g, then the curve 5(i,g; 0) in Figure 3.1 will shift around a lot. Consider an increase in
g: this will increase the exchange rate, and would move the observation down and to the
right if the curve S(,g;0) did not shift. But the curve shifts up with the increase in g,
and this moves the observation up. Clearly, the correlation between exchange rates and
interest rate differentials will be less negative, and perhaps positive.

These graphical arguments can be formalized computing the instantaneous covariance
between the exchange rate and the instantaneous interest rate differential, denoted 0z6:

= ((o + a2o + 2cpocY9)O(h) + poja + ao) '(h). (3.4)

If o = 0, this reduces to Cz6 = a i'(h) S'(h) < 0. Conversely, if o = 0 we have
= a(cx'(h) + 1) i'(h) o = aa ('(h))2 > 0.

These results may explain some apparent inconsistencies in the empirical literature
on target zones Svensson (1990b) finds a negative correlation between exchange rates and
interest rate differentials for the Swedish target zone, Lehmussaari and Suvanto (1990) also

' If we plot the instantaneous interest rate differential as a function of the fundamental
a larger g shifts the relationship to the left as well as upwards, since the band for f is

shifted to the left when g increases.

9



find a negative correlation for the Finnish target zone. In contrast, Bertola and Caballero
(1990b) find a positive correlation between exchange rates and interest rate differentia.ls
for France and Italy in ERM, the exchange rate mechanism within EMS. Flood, Rose and
Mathieson (1990) document both negative arid positive correlations in different subpcriods
for different countries in ERM. One possible explanation of these conflicting results is that
the relative variability of the expected rate of devaluation has been low in Sweden and
Finland for the periods examined, whereas the relative variability of the expected rate of
devaluation has varied between countries and subperiods in ERM.8

In Svensson (1989) a direct negative relation is derived between the instantaneous
standard deviations of the instantaneous interest rate differential and the exchange rate,

O_ + ciO —

With stochastic devaluation risk, the corresponding relation can be written

= — — 2(p + )(a — +

We see that while the direct negative relation holds if o =0, the relation between o and
o need not be negative in general. The derivative do6/do can be expressed as

— —
— (p + c)c9

do ao
where o denotes the instantaneous standard deviation of (h;0) (and fulfills o = (q —

aa,)/a). Clearly dcr6/dc 0 as (p + c)o. This might explain why Flood, Rose and
Mathieson (1990) do not find the direct negative relation in the data.

Finite-maturity interest rate differentials

Since only the expected instantaneous rate of devaluation matters for the instantaneous
interest rate differential, it has so far been unnecessary to specify exactly what happens
upon devaluation. Turning to finite-maturity interest rate differentials, we need to be more
specific about what happens to the expected rate of devaluation in the future.

In the Bertola and Caballero (1990b) model, devaluations are assumed to occur only
when the exchange rate is at the margin of its current fluctuation band, as is realistic for
the French Franc/Deutsche Mark exchange rate. Thus, the expected rate of devaluation
does vary over time: it is larger when the exchange rate approaches the upper limit of
the band, and this yields an upward-sloping (albeit deterministic) relationship between
interest rate differentials and exchange rates.
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What is assumed iii this respect also ha.s implications for the behavior over time of
instantaneous interest rate differentials. If we maintain the assumption that the expected
rate of devaluation is a Brownian motion constant parameters across devaluations, the
instantaneous interest rate differentials are nonstationary. Flood, Rose and Mathieson
(1990) do find some evidence of nonstationarity; but the feature is somewhat unappealing
on theoretical grounds. Further, a positive drift of the expected rate of devaluation, which
may be realistic over a limited period, implies an even less appealing ever growing expected
rate of devaluation. It might be argued that the occurrence of a devaluation makes the
target zone no more credible; but if the devaluation gives the authorities a chance to restock
reserves, or restores competitiveness at least temporarily, the need for further devaluations
may be less urgent, at least for a while.

In order to allow a fairly rich set of theoretical possibilities and to facilitate com-
parison with the empirical literature, we shall then examine three different combinations
of assumptions with different implications for the stochastic properties of instantaneous
interest rate differentials over extended periods of time on the one hand, and for the shape
of the interest rate differential yield curves on the other:

As3umpiion 1: The expected rate of devaluation always follows the Brownian process (2.4),
with no changes across devaluations.

Asiumption 2: The expected rate of devaluation follows the Brownian process (2.4) be-
tween devaluations, but it is reset to a value drawn from a distribution with mean when
a devaluation occurs. The drift is also reset and drawn from a distribution with mean
zero. In addition, the mean size of a devaluation i is constant; hence the probability

intensity z.'(t) = g(i)/ is stochastic.

Assumpiion 3: Same as Assumption 2, except that the probability intensity 11 is a constant,
i; hence the mean size of a devaluation (t) = g(t)/D is stochastic and, when a devaluation
occurs, is reset and drawn from a distribution with mean =g/i.

Throughout the discussion of finite-maturity interest rate differentials we shall also
assume that z(i) = c(i) — c(t_), i.e. that immediately after a devaluation the exchange
rate is in the same position within the band as immediately before the devaluation, as in
the Svensson (1990b) model. Like the details of Assumptions 1.3, this is irrelevant to the
determination of exchange rates and instantaneous interest rate differentials:9 it is very
convenient, however, in that it makes it possible to separate the expected depreciation up

In the numerical simulations reported in Section IV, which only concern instantaneous
interest rate differentials, we in fact adopt the perhaps more realistic assumption that
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to maturity into the expected depreciation within the band absentany devaluation on the
one hand, and expected shifts in the band due to devaluations on the other. Namely, the
finite-maturity interest rate differentials can be written

(h,g;r) = 8(h;r) + D(g;r). (3.5)

Denoting with (h;r) the cxpcctcd exchange rate at maturity time I + T,conditional upon
the state variable being h at time I and conditional upon no devaluation occurring up to
maturity, the first term on the right-hand side of (3.5) is

(h; r) e(h; r)_ (h) r > 0, (3.6a)

the interest rate differential resulting solely from exchange rate movements inside the band
absent any devaluation. It depends only on h and not separately on g. The expected future
exchange rate within the band (h; r) and the corresponding interest rate differential (h; r)
are computed and extensively examined in Svensson (1990b), to which paper we refer for
details. Since the exchange rate is monotonic in h, we can write ftr): in Figure 3.2
we plot this function in , S space for different values of r, and in Figure 3.3 we plot it
in r, S space for different values of For each maturity, the interest rate differential
is decreasing in the exchange rate, although less so for larger maturities. When maturity
approaches infinity the interest rate differential approaches zero and becomes fiat in Figure
3.2. For infinite maturity this is easily seen from (3.6a), since the numerator is bounded and
divided by an unbounded denominator. For a finite maturity we have the complication
that the expected future exchange rate (h;r) depends on the maturity; however, the
effect of dividing by the maturity can be shown to dominate and to make the interest rate
differential less responsive to the exchange rate the longer the maturity.

The second term in (3.5),

D(g;r)= ELIg(i)dtIg(0) =g] r >0, (3.6b)

is the expected cumulative devaluation up to maturity, divided by maturity. We shall
refer to it as the expected devaluation per unit maturity. Of course, D(g;0) = g, in
accordance with the discussion of instantaneous interest rate differentials above. For r > 0,

the exchange rate is set at the strong (weak) edge in the band after each devaluation
(revaluation).

10 The parameters are those mentioned in Section II. The function is not symmetric
around z = 0 since j is not zero.
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the expected devaluation per unit maturity (as a function of the current expected rate of
devaluation g and of the maturity r) depends on the drift of the stochastic process followed
by the expected rate of devaluation, as well as on what is assumed to occur to that process
at devaluation times. We proceed to compute the term (3.6b) for finite maturities under
the different assumptions.

Assumption 1: No rescUing

If the expected rate of devaluation is unaffected by a devaluation, integration of the nu-
merator in (3.6b) is easy:

E [jtg(t)di I g(O) =
]

= f( + p9t) dt = gr + 9r2, (3.7)

and, letting D(g; r) denote D(g; T) under Assumption i, we have that the expected deval-
uation per unit maturity fulfills

Di(g; r) = g + r/2 (3.8)

under Assumption 1. While the term 8(h; r) in (3.5) is less responsive to h and for longer
maturities, the term Dj(g; r) in (3.5) is equally responsible to g for all maturities. Thus, for
longer maturities the effect of g on the interest rate differential dominates. If g and are
positively correlated (which is the case unless f and g are strongly negatively correlated),
it follows that for longer maturities we should see a positive correlation between exchange
rates and interest rate differentials. If the expected rate of devaluation is expected to
increase over time (p > 0), then the differential yield curve will to be upward sloping for
sufficiently large maturities, since (h; r) approaches zero for long maturities. Over time,
the differential yield curve will be nonstationary: a positive drift in g under Assumption
1 would awkwardly imply that the differential yield curve is on average shifted up at a
constant rate with the passage of time.

Resetting of the expected rate of devaluation and of its drift

Under assumptions 2 and 3, the expected rate of devaluation tends to revert towards
and interest rate differentials are stationary. Further, the expected rate of devaluation is
expected to remain constant at after the next devaluation, since the drift jz9 is reset after
each devaluation to a value drawn from a distribution with mean zero: this makes it fairly
easy to compute the second term in (3.5). Let T > 0 be the time of the first devaluation
after time 0. The expected rate of devaluation at time t can then be written

E[g(t) g(0) = g] = (g + 1i9i) Prob{T> t g(0) = g} + Proh{T t g(0) = g}. (3.9)
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We thus need to compute the probability that the first devaluation occurs after a given
time t, under Assumptions 2 and 3 in turn.

A33umpion 2: Con3tant mean devaluaizon nze

Under Assumption 2 the expected size of the devaluation i is constant. Thus, the prob-

ability intensity zi(t) = g(t)/ is a Brownian motion with drift ji/z, and we show in the
Appendix that in this case

Prob{T > i g(0) = g} = (3.10)

Using (3.10) in (3.9) and integrating (3.6b) we obtain, after some algebra:

(i — e_('' r2/2)/) + a
D2(g;r)= T

,with (3.11)

(r — (i. —
e—9'11)) if9 = 0,

=
( - (Erf((r+ )) _Erf(I)))) ifg 0,

where Erf(z) denotes the so called error function, Erf(z) = (2//)f e'dt.

Asiumption 3: Constant probability nienszty

Here, the probability intensity v is a constant i7, while the mean size of the devaluation

1(2) = g(t)/i is a Brownian motion. Then,

Prob{T > t g(0) = g = ID) = (3.12)

Using this in (3.9) and (3.6b), we obtain

D3(g;r) = (( +) (1 — e) — + (yr — (1
— e)) ), (3.13)

where we recall that ! = g/i.
For zero drift in g, we see that Assumption 2 and 3 give identical differential yield

curves. Figure 3.4 shows the functions D1(g;r), i 1,2,3, plotted against T for g = 3

percent per year, = 1 percent per year squared, = 2 percent per year, I = 10

percent (under Assumption 2), D = 20 percent per year and = /fi = 10 percent (under
Assumption 3). We note that both D2(g;r) and D2(g;r) approach as maturity goes to
infinity, and that convergence is much faster under Assumption 2. Given a positive drift.
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Assumption 3 results in a differential yield curve above that resulting from Assumption
2 when the random zi(0) g(0)/i under Assumption 2 coincides with the constant i =
g(0)/(0) under Assumption 3. And, for positive g, Assumption 2 or 3 imply that the
term D(g;r) may have a hump shape if is sufficiently positive.

The differential yield curve is then given by the vertical addition of the relevant curve

in Figure 3.3, resulting from expected depreciation per unit maturity within the band, to
the curve for each assumption in Figure 3.4, resulting from the expected depreciation per
unit maturity caused by devaluation. The resulting relationship can clearly have a variety
of shapes, depending upon the interaction between its two components.

With regard to the correlation between interest rate differentials and the exchange
rate, we have seen that the sensitivity of the interest rate differentials to the exchange rate
for given levels of g decreases with increased maturity. The sensitivity of the interest rate
differential to g for given levels of the exchange rate is high for short maturities, may even
increase in the maturity if z9 is positive, but under Assumption 2 or 3 eventually decreases
and flattens out for long maturities. If the exchange rate is positively correlated with g,
it is possible that the correlation between interest rate differentials and exchange rates is
negative or small positive for short maturities, positive for intermediate maturities, and
close to zero for long maturities.

IV. Empirical implications

In light of the evidence collected by Flood, Rose and Mathieson (1990) and by the other
contributions reviewed in the Introduction, empirically successful models of exchange rate
determination should allow for (at least) two less than perfectly correlated sources of time
variation in exchange rates and interest rate differentials. Of course, a second state variable
could be introduced in target zone models in a variety of ways: but we can argue that
stochastic devaluation risk is empirically and theoretically preferable to most alternatives.

A time-varying risk premium (as in Froot and Obstfeld (1989)) would introduce a
variable wedge between interest rate differentials and depreciation rates, and would be
the most straightforward way to introduce noise in the relationship between interest rate
differentials and exchange rates predicted by simple target zone models: absent any de-
valuations, the solution would formally be the same as the one we have derived here. It is
unlikely, however, that stochastic risk would provide a complete explanation of the avail-
able evidence. At a theoretical level, risk preinia are likely to be small and any fluctuations
in them should not matter much (Svensson (1990a). Empirically, devaluations do indeed
occur, and interest rate differentials appear to be correlated with evidence of perceived
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devaluation risks, such as discussions of imminent realignments in news media.

Less straightforwardly, a second state variable could be introduced allowing the pa-
rameters of the f process to vary over time. If such variability were less than perfectly
related to the exchange rate's position in the band, it would indeed affect the expected
depreciation rate for given level of f, and could explain the disappointing empirical fit
of simpler target-zone models. However, the theoretical basis for this extension would be
hard to specify and, empirically, there would be some presumption that looking at shorter
sample the theoretical nonlinear relationship should be more apparent, but this is not the
case in Flood, Rose and Mathieson (1990).

This leaves stochastic fluctuations in expected devaluation rates as a realistic and
tractable source of noise in the empirical relationship between interest rate differentials
and exchange rate deviations from central parities. In what follows, we show that our
model indeed appears capable of rationalizing existing evidence on exchange rates and
interest rate differentials, and we suggest ways in which our model might be empirically

implemented.

Simulation experiments

In Figures 4.1-4.3 we report simulated exchange rates and instantaneous interest rates
differentials, computed weekly for a period of nine years." All simulations use the common
parameter values c = 1 year, ci = 5 percent per yearh/2, = 1 percent per year, p = 1

percent per year squared (which results in = i1 + ci9 = 2 percent per year), and p = 0.

The exchange rate band is l.5 percent, and the (log) exchange rate starts out in the
interior of the first band (corresponding to h starting out at zero). AU simulations use
the same seeds to generate sequences of normal increments and of uniformly distributed
random variables (which trigger devaluations), and differ only in the relative importance
of the two sources of exchange rate fluctuation, Jand g.

The simulations are done under a variant of Assumption 2. The devaluation size is
nonstochastic and fixed at = 10 percent, and the probability intensity v =g/ is stochas-

tic. The expected rate of devaluation starts out at g = 1 percent per year, corresponding
to a probability intensity of i = 10 percent per year, and is reset to the same value when
a devaluation occurs. In contrast to Assumption 2, the drift is not reset but remains

The simulations use the simple formulae valid for instantaneous interest rate differen-
tials. Although a week should be treated as a discrete time interval, the model's predictions
are almost exactly the same for an infinitesimal time increment as for t 1/52.
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at 1 percent per year squared, which is realistic for a structurally weak currency. Also in
contrast to what is assumed during the discussion of finite maturity interest rate differen-
tials, the exchange rate is set at the strong edge of the new band after a devaluation and
at the weak edge of the new band after a revaluation; since the jump in the exchange rate

is exactly , this means that the jump in the central parity will usually not be exactly i.

Figures 4.la-c show simulations for the case when the relative variability of the ex-
pected rate of devaluation is low: c = 1 percent per year3/2 versus oj = 4.9 percent
per yearh/2.12 Figure 4.la shows a plot of the exchange rate during the first nine years,
during which three devaluations occur. The probability intensity of devaluations is almost
constant, and devaluations can and do occur when the exchange rate is away from the
weak edge of its band. Each of the dots in Figure 4.lb (which should be compared to
Figure 3.1) corresponds to a simulated observation of exchange rate deviations from cen-

tral parity, , and interest rate differentials. The solid curve is the expected depreciation
within the band, (; 0), and the expected rate of devaluation for each observation is the
vertical distance between the observation and the solid curve. As predicted by the model,
interest rate differentials and exchange rates are negatively correlated in the simulated
sample. Figure 4.lc shows a plot of the exchange rate and f, and should be compared
to Figure 2.2. The solid curve shows the function (h) with h equal to f (which occurs
for g equal to zero). The observations can be understood as being generated by points on
curves shifted left by ag. Since g is fairly stable, there is a positive correlation between
the exchange rate and f.

Figures 4.2a-c show simulations for the case when the relative variability of the ex-
pected rate of devaluation is about equal to that off: = 3.5 percent per year312 versus

= 3.6 percent per yearh/2. In Figure 4.2a, four devaluations occur during the first nine
years; since the probability intensity g of devaluations is now variable, and the exchange
rate tends to be weak for large g (which is associated to large Ii), devaluations tend to
occur when the exchange rate is close to the weak edge of its band. In Figure 4,2b, there
is hardly any correlation between exchange rates and interest rate differentials, and the
relationship between the exchange rate and /is quite weak (though still positive) in Figure
4.2c.

Figures 4.3a-c show simulations for the case when the relative variability of the cx-

12 This results in = + a2cr = 5 percent per year'12. Since the dimension of g

is 1/time, the dimension of c is actually 1/(time)/2. The relative variability between g
and / is measured by ao9/1, and we use o/af since a = 1 year in the simulations.
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pected rate of devaluation is high: i = 4.9 percent per year312 versus cYJ = 1 percent
per year'2. In Figure 4.3a, four devaluations occur during the first nine years, and the
exchange rate is close to the weak edge of its band when devaluations occur. In Figure
4.3b, the correlation between exchange rates and interest rate differentials is positive, and
in Figure 4.3c there is hardly any relationship between the exchange rate and f.

V. Inferring devaluation risk from target zone data

In our model, exchange rates and interest rate differentials are endogenous and jointly
determined by fluctuations in (exogenous) fundamentals and devaluation risks. The pa-
rameters of the model could be estimated in a variety of ways:'3 here, we shall only sketch
how the behavior over time of devaluation risk could be inferred from data on interest
and exchange rate, leaving it to future research to provide a more rigorous treatment of
econometric problems and to carry out actual empirical work.

If uncovered interest parity holds, the expected rate of depreciation E[dz]/dt can be

measured by (observable) short-term interest rate differentials: by equation (3.3), then,

E{dx]/dt = i(i) — j*(j) = Ej[dJ/dt + g(t). (5.1)

where i and i denote the interest yield for instantaneously-maturing bonds denominated
in (respectively) home and foreign currencies. Thus,

g(t) = i(t) — i(t) — Ef[di]/di,

and the relative importance of fluctuations in devaluation risk and their stochastic prop-
erties can be evaluated examining the difference between interest rate differentials and
an estimate of E[d}/di, the expected rate of depreciation within the band, at the same
point in time. It appears possible to obtain such an estimate from a series of exchange rate
observations: in our model, the process of exchange rate deviations from central parities
has the stochastic differential

d(i) = (i)dt + a(t)dW(i) (5.2)

where the drift c(t) and the standard deviation cr(i), while stochastic, arc uniquely de-
termined by the state variable h(t) and (hence) by the exchange rate within the band at
every point in time. Integrating (5.2) over finite time intervals of length it (corresponding

13 Sec Pessach and Razin (1990), Smith and Spencer (1990) and Flood, Rose and Math-
ieson (1990).
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to the frequency at which exchange rate observations are available), it may be possible
to obtain an estimable equation: still, the dependence of 6(t) on (t) is highly nonlinear
and has no closed form; over finite time intervals, the expected depreciation rate has the
infinite-series representation derived by Svensson (1990b). Thus, exact estimation of ex-
pected depreciation within the band is exceedingly complex, and nonparametric methods
may need to be used.

Svensson (1990b), however, shows that the expected rate of depreciation over a finite
time interval equal to a month or longer may be a fairly linear function of I for reasonable

parameter values (see Figure 3.2 above). Thus, it may be an acceptable approximation to
write

= /3 + j311(t) + (t) (5.3)
f+Awhere the error term €(i) = f a()dW(.)/t is uncorrelated with z(t) (by rational

expectations), heteroskedastic, and serially independent for non-overlapping time inter-
vals. Standard econometric methods (see e.g. Rodrick (1987)) could then be used to
obtain consistent estimates of i3o and /3, from a series of exchange rate deviations from
central parities.'4 Further, similar equations would be appropriate for a wide variety of
intervention rules arid underlying fundamental disturbances. In many models, the drift of

1(t) would still depend only on 1(t), and equation (5.3) (or nonlinear modifications of it)
could still be used to estimate the expected within-band depreciation rate. In models with
more state variables (e.g. reserves), similar methods would be applicable if data on the
other determinants of exchange rate dynamics are available.

The expected rates of devaluation could then be computed by subtracting expected
depreciation with the band from the corresponding interest rate differentials, and it would
be interesting to relate the series thus obtained to competitiveness, reserves, political
credibility, and other potential determinants of devaluations.

VI. Conclusions

This paper shows that the incorporation of stochastic devaluation risk in target zone models

results in a rather rich data-generation structure, which may explain the poor empirical fit' The exchange rate's position in the band may well change at a devaluation (then.
the expected devaluation size reflected in interest rate differentials is the sum of the jump
in the central parity and of the jump of the exchange rate within the band). Thus, the
observations at which a devaluation occurs include an I jump as well as an x jump, and
should be excluded from the sample used to estimate the drift of continuou, within-band

exchange rate fluctuations.
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of models without stochastic devaluation risk and provide an interesting interpretation for
the variability those models leave unexplained. It remains to see, alter careful empirical
work, whether the model with stochastic devaluation risk will actually better fit the data.

We would immediately like to add that we do not, of course, believe that the model we

have developed here is all there is needed to explain the data. For instance, in the model
we have developed, the unconditional distribution of exchange rates within the band is still
U-shaped, which does not fit the data. But we do believe that separate stochastic deval-
uation risk is an essential ingredient in real world target zone exchange rate regimes, and
that it is important to take these devaluation risks into account in the modeling of target
zones. We therefore believe that it would be useful to incorporate stochastic devaluation
risk in the existing and future target zone models which try to improve their empirical
performance by considering implicit bands within the official bands (Klein (1990)), in-
tramarginal intervention, increased devaluation risk at the edges of the band (Miller and
Weller (1989) and Bertola and Caballero (1990b)), reserves (Bertola and Caballero (1990a)

and Dumas and Delgado (1990)), sticky prices (Miller and Weller (1989)), jumps in fun-
damentals (Perraudin (1990)), etc. A particularly challenging task is that of developing
theoretical models where devaluations and devaluation risk are the endogenous outcome of

political and economic interactions. Empirical work aimed at extracting expected rates of
devaluation from exchange rates and from interest rate differentials for different maturities
should provide useful input for such theoretical models.
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Appendix: Derivation of (3.10)

Let P(t) =Prob{T> tfg(O) = Ezi(O) = g = v} = Prob{T [O,tlIv(O) = ii). Then
note that

P(t + dt) = P(t) + P'(t)di + o(dt)
= Prob{T [O,i +dijlzi}

=Prob{T[O,i]lv}Prob{T(j,j+dg1Jv}
= P(i){1 — E[zi(i) j zi(O) = zi]dt + o(di)}

For dt — 0, this yields

P'(i) = —P(i)E[zi(i) I ii(0) =

Noting that E[ii(s) I zi(0) = zi} = (g + s)/, integrating, and using P(0) = 1, we obtain

P(t) = e f E(i(a) I = e22/2)1.
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