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ABSTRACT

In most of the literature on auctions the valuations of agents are
exogenously specified. This assumption may be inappropriate in a muber of
cases where valuations are better derived endogenously. Endogencus
valuations are appropriate when there are many units being aucticned and
their value is determined in a secondary market which is imperfectly
campetitive. The model is thus appropriate for studying the sale of quota
licenses and scarce resources used in production when product markets are
imperfectly campetitive.

A series of examples are developed to show how these models work.
Particular models are developed which cast light on a mmber of issues in
applied micro—econamics. These issues include the evolution of market
structure, in particular, the "snowball effect", the effect on market
structure of selling quota licenses, and the relationship between increasing
returns to scale and the monopolization of markets. The models also provide

ancther resolution of the "transponder puzzle'.
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1. INTRODUCTION

There exists a large and well developed literature on auctions and
auction design.’ The focus of most of this literature is on the implications
of uncertainty in the valuation of the object or objects auctioned. For the
most part, the literature exogenously specifies the distributions of the
valuations of the bidders for the object or objects sold. However, in general
when multiple objects are being auctioned off to multiple buyers and value is
derived from a secondary market which is imperfectly competitive, these
valuations gannot be specified exogenously.

The value of a scarce resource used in production is derived from the
value of the product it helps produce. The value of this product is in turn
determined by the operation of its market. If this market is imperfectly
competitive, the value of the scarce resource depends on its gllocation across
the firms in the final product market. Hence, it is impossible to specify an
exogenous distribution of valuations: valuations must be endogenously
determined by the operation of the secondary market, in this case, that of the
final product produced. Similarly, the value of an object of art is
determined by the resale market for the object. If this market is imperfectly
competitive,(as seems likely given the uniqueness of each object of art, the
value of such art by a bidder must depend on the allocation of other related
objects of art.

If the secondary market is perfectly competitive, then it is quite
appropriate to define the valuations of agents exogenously. With perfect
competition, the price in the secondary market is taken as given. The
valuation of an agent is then the marginal value product of the resource,

which may be constant or not. Thus, valuations, even if they are exogenous,



need not be constant and independent of the number of units purchased as is
often assumed in the auction of multiple objects.? But when the secondary
market is imperfectly competitive, exogenous valuations become untenable.

This aspect of the auction of multiple objects seems to have been neglected by
the literature. It seems odd that a literature devoted to studying the
strategic behavior of agents in auctions in effect assumes away such behavior
in the operation of the secondary markets in which value is determined.?

It is to this general area of auctions that this paper is directed.
There are a large number of questions that need to be answered here. It would
be impossible to address all of them in one paper. These include the standard
questions in the literature on auctions, such as the comparison of various
auction schemes and optimal auction design, all of which need to be re-
examined when valuations are endogenous. In addition, models of auctions with
endogenous valuations are closely related to a number of interesting questions
in applied microeconomics. The latter, rather than the former, is the main
thrust of this paper.

Section 2 relates this paper to existing work on auctions. In order to
focus on endogenous valuations, I abstract from any uncertainty in the
valuations themselves. I also focus on sequential auctions. A sequential
auction is a nmatural way to capture a situation where there are a number of
units which are to be sold, where each is owned by a different seller when
sellers arrive sequentially at random. In this way, the model can be applied
to study the evolution of market structure when the object being sold is
thought of as capacity, or a scarce resource that is used in production.

Consider first the simplest case where one object is sold to onme of two

agents. Clearly, in the absence of any uncertainty the object goes to the



agent with the higher marginal valuation who pays a price essentially equal to
the other agent's marginal valuation. When the marginal valuations of the
agents are constant, with one agent’s marginal valuation being greater than
the other agent’s, then it is clear that the same result holds in the
sequential auction with many units being sold. Thus making the usual
assumptions about valuations leads to completely uninteresting results in the
absence of uncertainty in those valuations.

However, what if marginal valuations are not constant? This is of
course what would occur with imperfectly competitive secondary markets,

Define by fn(x) the value of having x units when all n units have been
sold, i.e., the other agent has n-x units. For simplicity, temporal aspects
of when the capacity is acquired are suppressed by assuming that payoffs
depend only on the final allocation. This corresponds to assuming that
capacity acquisition occurs in a brief period relative to the life of the
industry. This function arises from the operation of the secondary market,
and its form depends on the particular application in question.

Section 3 provides an introduction to the general area. A number of
examples are provided that illustrate both how the model works and suggest
areas for future work. I then look at a particular sequential auction model
which sheds some light on the evolution of market structure and is related to
recent work in applied micro economics. This model, analyzed in Section 4, is
of a two player symmetric sequential auction game. I look at what conditions
on the valuations ensure monopolization by one agent in the case where the two
agents are ex-ante identical? I find that in this symmetric case convexity of
the fn(x) function is sufficient to ensure that monopolization occurs. In

addition I show that in this model the price paid in the equilibrium always



falls. In fact, the price for all but the first unit is a constant. I also
show that convavity of fn(x) ensures that monopolization is not an
equilibrium.

This model is of considerable economic interest as it captures the
essence of a number of problems in industrial economics and is related to some
recent work on the endogenous determination of market structure. Ghemawat
(1990) argues that if total capacity is limited and in a certain range, then
even with two ex-ante identical agents capacity will go to only one of them in
a model of price competition and homogeneous products. However, he does not
consider a sequential auction and I show that his conditions are not
sufficient to give his result when the sequential nature of capacity
acquisition is taken into account.

Another application comes from international trade. It is often
proposed that quota licenses be auctioned, with concern expressed, however,
about monopolization of the market for licenses’ occurring. As the valuation of
these licenses arises from the operation of a secondary market--that for the
product--a model of endogenous valuations is the correct ome to use. Another
interpretation of capacity is as a license to sell in the market. This
permits this model to be thought of as the correct one for modeling the
auction of quota licenses directly to producers.*

The model also relates to the question of how the intensity of
competition in the post-acquisition game is related to behavior in the
acquisition game. When does ex-ante competition eliminate profits? When does
it not? When does ex-post competition encourage concentration in the
acquisition game?

It is also related to the question of whether increasing returns to



scale (IRS) creates monopoly. The model suggests that this link is less than
tight as IRS need not generate convexity of the fn(~) function..

In addition, this model provides a simple framework which allows for a
declining equilibrium price in a sequential auction and so sheds light on the
"transponder puzzle" (which refers to the fact that in.a sequential auction of
transponders their price fell) and to the observations in Ashenfelter (1989)
on falling prices in wine auctions. This, it is argued, cannot reflect
equilibrium behavior as agents could do better by waiting.® With endogenous
valuations, however, a falling price in a sequential auction is no puzzle. An
open question of some interest concerns a characterization of when prices must

rise in equilibrium and when they must fall.



2. RELATION TO THE LITERATURE

The work on auction theory is clearly one of the showpieces of economic
theory.® Much of the focus of the literature is on single object auctions
and on uncertainty in the valuation of the object auctioned.

I focus on work on multiple object auctions here. There are a number of
strands in the literature. Ome strand looks at ways of extending the single
object auction results to multiple object auctions. Harris and Raviv (1981)
derive the form of optimal multiple-unit auctions. Buyers are assumed to be
risk neutral and their preferences are parametrized by a scalar V. The
distribution of V, F(V), is known to the seller and all buyers, The seller
has a fixed number of units and is also risk neutral. Harris and Raviv (1981)
consider the case where each buyer demands one unit and the distribution of V
is uniform. They prove a revenue equivalence theorem and characterize the
optimal auction. Maskin and Riley (1981) extend Harris and Raviv (198l) in
two directions. First, they look at optimal auctions when F(V) is not
uniform and show that, in contrast to Harris and Raviv, it may be necessary to
prohibit not just bids below a minimum, but also over other predetermined
intervals. Second, they analyze the case with each agent having a dowmnward
sloping demand curve and characterize the optimal selling strategy.

Maskin’and Riley (1987) further builds on their earlier work to show
that the Harris and Raviv (1981) result on revenue equivalence with multiple
objects, where each buyer demands one unit and F(V) is uniform, also holds
for all F(V). In addition, they characterize the optimal auction scheme both
when F(V) satisfies some regularity properties and when it does not. When
each agent has a downward sloping demand curve, they show that standard P

auctions are not optimal and characterize the optimal auction.



Other work on multiple object auctions includes that of Engelbrecht-
Wiggans and Weber (1979) who consider the effect of non-linear valuation
functions and point out that in such cases it is inappropriate to analyze the
bidding on one of a number of simultaneously auctioned objects as if its sale
were independent of the sale of the remaining objects. They then illustrate
this by looking at a particular example of a multi-object auction.

Another set of papers looks at multiple object auctions when bidders
have constraints on their budgets. These include Engelbrecht-Wiggans (1987),
Palfrey (1980), and most recently, Pitchik and Schotter (1989) and Pitchik
(1989). Lastly, Swinkels (1990) looks at a model where the total availability
of objects is not known and focuses on conditions under which equilibria are
efficient and shows that efficient equilibria are revenue equivalent.

The work closest to mine is that of Bernheim and Whinston (1986). They
consider a model of complete information among the bidder and many objects in
a "menu" auction. As they specify the valuation of all agents across the
allocations of n objects, their model can capture endogenous valuations.
Their model is more general in that the objects are pot assumed to be
identical. They consider a simultaneous move game when buyers bid over all
the allocations. They show that these auctions always implement efficient
actions. Although the Nash equilibria of first price menu auctions need not
be efficient, their refinement to "truthful"” equilibria yield efficient
outcomes. They do not consider sequential auctions, and for a number of
problems, this is the more natural assumption.

Wilson (1979) on share auctions is related to both Bernheim and Whinston
(1986) and to this work. However, in Wilson’s share auction mechanism bidders

submit demand schedules as a function of the price per share and the



auctioneer picks a price to clear the market. This is not a menu auction as
bids are not over allocations. Wilson (1979) is interested in whether a share
auction does better or worse than a unit auction. Analogous to this, I am
interested, among other things, in whether a sequential auction does better
than a unit auction.

The focus of the existing literature has not been on endogenous
valuations in auctions. The one exception is the work of Bernheim and
Whinston (1986). However, their formulation is not the natural one for many

multiple unit auctions and lends itself to different economic applications.



3. SOME ILLUSTRATIVE EXAMPLES

With endogenous valuations it is not clear that one should expect the
standard results of auction theory to obtain. However, it is also not clear
as yet what results are likely to hold in general and Qhat to conjecture.
There are a large number of variations of the model possible: symmetric
versus asymmetric, single unit versus multiple unit, two person versus n
person, simultaneous versus sequential and so on. The most fruitful approach
seems to be to look at econmomically interesting problems where this approach
might shed some light and analyze them in turn, thereby building up the
understanding of the model in general. This is the approach taken in this
paper. Once valuations are perceived as endogenous, it is hoped that other
applications and results will abound.

In this section I present a few examples that illustrate the kinds of
results such models give and suggest conjectures to be explored in the future.
Let fn-k(x) be the payoff to the agent having x when n-k out of n
units are allocated, where x =< n-k. Let Afn_k(x) - fn-k(x+1) - fn-k(x)‘
the agent’s marginal valuation of obtaining an additional unit at this stage.
Once fn(-) is defined the game can be solved. If agents are symmetric, no
superscript to fn(-) is given as the superscript indexes the agent. Note
that when there are any number of objects and only two buyers, endogenous
valuations can be specified independent of the allocation, as if they were
exogenous. This can be done by assuming that all objects are sold so that the
valuation function for each agent is interpreted as being the valuation of x
when the other agent has the remainder of the goods. However, even with two
buyers and many objects the literature has in general assumed that marginal

valuations are constant or decreasing, while they could in reality



be increasing. With many buyers and many objects the standard assumption has
been that each buyer buys only ome unit, and has a constant valuation for it,
or that each agent has a downward sloping demand curve.

In general, each unit goes to the agent with the higher marginal
valuation at a price given by the second highest marginal valuation. However,
what complicates matters is that, except for the last unit, the marginal
valuation of a unit is defined by the difference in the subgame perfect
equilibrium payoffs in the subgames both when the agent gets the unit and when
he does not! One implication of this is that even if ome agent has a higher
marginal valuation for every unit at the last stage of the game, it does mot
mean that he will obtain all the units. The following is an asymmetric
example where n =~ 2 and one agent’s marginal valuation at the last stage

always exceeds the other’s. Yet, monopolization does mot occur.

(n=2)
f;(O) -0, fg(l) - 10, f2(2) - 20, Afg(O) - 10, Afg(l) - 10
B B B B
£2(0) = 0, £3(1) = 9, £5(2) = 10, Af3(0) = 9, fh(1) = 1

The extensive form of the game is given below. Arrows demote the allocation
in each subgame and prices are given in brackets next to the paths.
FIGURE 1 HERE
Although A always gets the last unit because his marginal valuation

exceeds B's, the first unit goes to B! This is because:
£l =11, £ -9, s -2

B B

oty

B
fl(l) - 9, fl -0,

10



so that B's marginal valuation of the f£irst unit exceeds A’s! Note also
that the total revenue raised is only 3. If both units were sold together,
A would obtain them and revenues would be 10! Even if one agent’s marginal
valuation at the last stage lies everywhere above that of the other, he need
not obtain all the units! Clearly, enough of an asymmetry in valuations would
ensure monopolization. If, for example, in Example 1, fg(l) =20 and f2(2)
= 30 both units would go to A. It would be of interest to specify the
extent of asymmetry needed to ensure monopolization.

Example 2 looks at the two unit sequential auctions with two symmetrie
agents. With one unit it is clear that the agent with the highest valuation
of the object obtains it at a price equal to the second highest agent's

valuation. If agents are identical, then the entire surplus is paid.

Exanmple 2

With two units, fn(o) is either linear, concave or convex. If it is
linear, the agent with the highest marginal valuation gets both units and if
agents are symmetric, then any allocation is an equilibrium and all the
surplus is paid. If fn(-) is concave, and there are two symmetric agents,
as depicted in Figure 2A, then the second unit goes to the agent who did not
get the first unit so that in equilibrium both agents get one unit. Note that
even though firms are symmetric, ex-ante profits are positive! Also that
revenue is less than that under a unit auction.

FIGURE 2A HERE

If fn(-) is convex, and there are two symmetric agents, then one agent gets
both units though the total price paid equals his total surplus and equals
that under a unit auction.” This is depicted in Figure 2B.

11



FIGURE 2B HERE
Thus, one might conjecture that with two symmetric agents, convexity of
fn(-) ensures monopolization and concavity ensures that an equal allocation is
always an equilibrium. While the former is true, the latter is not! All that
is true with concavity is that monopolization cannot be an equilibrium as the
last unit goes to the agent who has less units. This does not imply that the

allocation is equal when n exceeds 2. A counter-example is the following:

(n=4)

£,(0) =0, £.(1) =5, £(2) = 9.9, £(3) - 14, £_(4) = 15.

There are two equilibria as depicted in Figure 3. Both consist of the first
three units going to one agent and the last to the other. The price for the
first unit is 6.4, the second and third is 1.8, and the last is 1.

Note that prices fall in equilibrium and that a unit auction would raise
more revenue in this example. The latter seems to be true in the two person
symmetric case when fn(-) is concave, whatever be n. However, with more
than two agents this is not true. CGConsider the example with concave but non-

endogenous valuations below."

(n=2)

Let fn(-) -0, fn(n/Z) = £(n/2), and fn(n) = f(n).

Let f(n) be concave. The extensive form and solution are depicted in Figure
4.

FIGURE 4 HERE
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b With more than two players and two units, the second unit goes to one of the
agents who did not get the first unit, at a price of f£f(n/2). The value of

. the first unit therefore also equals £f(n/2) to all agents and so this is its
price. Total revenue is thus 2f(n/2) which exceeds f(n), that under a

! unit auction.

With concavity of fn(-), having more agents than units ensures that
there is always more than one agent with a marginal valuation of fn(n) -
fn(n-l) and it is this which makes a sequential auction dominate a unit
auction, since with concavity n(fn(n) - fn(n-l)) exceeds fn(n) - fn(O).
This suggests that the optimal sequential auction when fn(-) is concave will
have the number of units set less than the number of agents. Some simple

results exist on sequential versus unit auctions for some special cases.

(n=2)

Let x units be sold in stage 1 and n-x in stage 2. The extensive

form is given in Figure 5.
FIGURE 5 HERE
| There are two symmetric agents, and fn(-) denotes the terminal payoffs. In

this example, more revenue is raised in a unit auction of n objects than in -
any sequential two-stage auction with x units sold in the first stage and
n-x units sold in the second.

Proof: The price of the second block of units is denoted by P

"
P, - Mln[fn(n) - fn(x), fn(n-x) - fn(O)]
= Min[a,B]
1 if a>f, then P, =~p§ and the last block goes to the agent with the first

block. In this case:

13



£,(x) = £.(@) - [£ (n-x) - £ (0)]
fx(O) - fn(O).

Thus

d
1

1 fx(x) - fx(O) - fn(n) - fn(n-x)
P, +P, = fn(n) - fn(n-x) + fn(n-x) - fn(O)
- fn(n) - fn(O)’
which is exactly what would be obtained by a unit auctiom.
If B> a, then the last bloc goes to the agent who did not get the
first block. Also, P2 =-a so th;t

fx(x) - fn(x) and fx(O) - fn(n-x) - By

g
1

1 fx(x) - fx(O)

f.(m) - £ (n-x),

Ls-]
+
Hd
]

1 P an(n) - (fn(x) + fn(n-x)).
However, as f§ > a

fn(n-x) + fn(x) > fn(O) + fn(n).
Hence:

P, + P, < 2fn(n) - [fn(O) + fn(n)}

- fn(n) - fn(O).

so a unit auction weakly dominates a sequential auctiom.

This is not true when agents are asymmetric. In this case it is also
possible for a sequential auction to give more revenue than a unit auction

even with two agents as in Example 6.

14



(n=2)
There are two agents, A and B. Their valuation functions are glven by:
B B B
f‘;‘(Z) - 20, f';(l) - 19, f‘;(O) - 10, £,(2) =30, £ (1) =10, £3(0) = 0.

The extensive form and solution is depicted in Figure 6.
FIGURE 6 HERE

In equilibrium, Agent B obtains both units and pays 9 for each. The
total revenue of 18 exceeds that of 10 which is what would be obtained if
both the units were sold together.

This series of examples illustrate how such models work. The sale of
one unit alters the marginal valuations of both agents so that the intuition
valid for unit auctions or for linear valuations need not hold. The next
section deals with a multiple object auction with two symmetric agents and

non-linear valuations.

15



4, A MODEL OF DUQPOLY

There are two agents bidding for n identical goods which are auctioned
sequentially. These "goods™ can be thought of as capacity, in which case the
model applies to the evolution of an industry with only two producers.
Alternatively, they can be thought of as licenses to import when there are two
foreign producers, in which case the model defines the effect of auctioning
quota licenses directly to the producers. Finally, as there are only two
agents, the model also applies to exogenous but non-linear valuations.

The agents are assumed to be ex-ante identical. The valuations of the
agents are endogenously determined by the operation of a secondary market, as
yet unspecified. For every allocation of the n wunits, there is an outcome
in the secondary market which determines the payoffs to the agents for the
allocation. This valuation function is denoted by fn(x), x = 0,...n, which
gives the payoffs to the agent obtaining x units when all n wunits have
been allocated. Hence, the other agent gets fn(n-x). These valuation
functions are all that is needed to determine the allocation of the n
objects in the sequential auction.

Let fn-k(x) be the value of having x wunits when n-k have been
allocated, and k remain. Then fn-k(x) is obtained by folding the game
backwards. It is easy to see that fn-l(x) is defined by fn(x). The
marginal valuation for the agent with x 1is Afn(x) - fn(x+l) - fn(x). The
marginal valuation of the other agent is Afn(n-l-x) - fn(n-x) - fn(n-l-x).
1f Afn(x) > Afn(n-l-x), the unit goes to the agent with x who pays the

other agent’s marginal valuation. Therefore:

16



g

fn_l(x) - fn(x+1) - Afn(n-l-x) if Afn(x) > Afn(n-l-x)

- fn(x) ) if Afn(x) < Afn(n-l-x)
However, note that:
Af_(x)=2 AE_(n-1-x) <=> £_(x+l) - Af_(n-1-x)2 £_(x)
n x < n n-l-x n x+1) n n x < ™n x

Hence:

fn(x+1) - Afn(n-l-x)

£ (X) = max
n-1 {fn(x) .

In general, fn_k_l(x); x=0,...n-k-1, denotes the value of having x when
n-k-1 of the n units have been allocated. It can be defined recursively

as’

fn_k(x+1) - Afn_k(n-k-l-x)

£ q(x) = max {
n-k-1 fn_k(x)

In this section I show that if fn(x) is convex in x, then the
equilibrium allocation consists of gne agent obtaining all the units in the

sequential auction specified. It is easy to see that when fn(x) is convex:

fn_l(x) - fn(x+1) - Afn(n-l-x) if x 2 n;l ,
= f (%) if x < p-1 .
n 2

17



This is becausge Afn(n-l-x) >

>
<Afn(x) as n-l-xzx or x

ARV

n-1 .

2

The last unit goes to the agent with none of the units already allocated, as
convexity implies that he has the higher marginal valuation of the remaining

unit. However, it remains to be shown that this is true when k umits

remain to be allocated, i.e. that:

£ (%) = £

n_k+l(x+l) - Afn_k+l(n-k-x) if x = n;k s

- fn-k+l(x) if x < n;k .

I do not prove this directly as convexity is not preserved in the
induction step. Rather, I show that fn-k(x) can be written directly in terms
of fn(-). This is done in Lemma 1. I first specify the relationship between
fn_k(x) and fn(x) on the assumption that at any stage the agent with
strictly more of the units sold to date gets all the remaining units, and so
pays the marginal valuation of the other agent conditionzl on this assumption.

This gives the statement of Lemma 1. This guess is then verified, which

constitutes a proof.

Lemma 1:
For all k,
£ (x+k) - kAf (n-(x+k)) if x > n-k ,
n n P
b (x) =
n-k £ (x) if x < n-k .
n
2
Proof: See Appendix. .
Theorem 1:

18



In the symmetric two-agent sequential auction of n wunits.
(a) One agent obtains all the units in the auction when fn(x) is convex.
(b) Moreover, the price of the ith unit, Pi' is given by:

Pn - Pn-l - ...Pz - Afn(O) and

Py = [£.(n) - £.(0)] - (n-1) &£ (0)
(e) The total revenue from the sequential auction equals that under the

auction where all units are sold together and equals fn(n) - fn(O)

(d) In each subgame, with n-k units sold, if =x > pn-k, the agent with x
2

gets all remaining units. If =x = p-k, the unit could go to either agent.
2

The agent with less than p-k gets none of the remaining units.
2

Proof:
(a) This follows from using Lemma 1 to verify that when n-k units have all
been allocated to one agent his marginal valuation exceeds that of the other

agent:

Af 1(n-k) - Afn_k+l(0) - (k-l)[Afn(l) - Afn(O)]

n-k+
+ [Afn(n-l) - Afn(O)] >0

so that (a) follows.
(b) From (a) it follows that Pi - Afn(O) for i > 1, as the winner pays

the loser’s marginal valuation. Also,

Pi - fl(l) - fl(O)

- fn(n) - (n-1) Afn(O) - fn(O)

19



n
(c) ZPi - fn(n) - fn(O) which equals the price for the entire n units
1=1

if sold together.’®
(d) Follows from Lemma 1. L]

The natural question to ask at this point is whether concavity of the
fn(x) function in this model ensures that equal allocation of the n objects
is an equilibrium of this sequential auction. Example 3 above disproves this
conjecture. All that can be shown is that monopolization of the objects can
never be an equilibrium in this game as concavity ensures that the last unit
must go to the agent with the fewer units.

Interpreting the n units available as capacity says that if fn(-) is
convex the larger firm will obtain all additional units of capacity and that
even if firms are ex-ante identical, ex-post one of them will obtain all
additional units of capacity. This is termed the "snowball effect” by
Ghemawat (1989). He argues that this effect will occur in a model of duopoly
with price competition, a homogeneous product, and capacity constraints. The
essence of his argument is that for certain levels of total capacity, n, the
sum of duopoly profits is maximized at the most asymmetric allocation of
capacity. In other words, that fn(x) + fn(n-x) is maximized at x = (0O,N)
and that this sum is decreasing for x < n/2 and increasing for x > n/2.
This implies that f’n(x) - f’n(n-x) is negative for x < n/2 and positive
for x > n/2 and equals zero at x = n/2. Hence, the marginal valuation of
the agent with x > n/2 exceeds that of the other agent. From this he argues
that any additional capacity will go to the agent with initially more
capacity, and that this in turn implies that starting from zero, one of the

firms will acquire all the units. However, he does not model this as a
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sequential auction and his result is not true when this is done. The
following is a counter-example.
Example 7
(n=4)
fn(O) -0, fn(l) -4, fn(2) =5, fn(3) = 10, fn(b) - 15.

Note £(0) + £(4) = 15 > f(1) + £(3) = 14 > £(2) + £(2) = 10 so that
Ghemawat’s conditions are met. However, in the sequential auction depicted in
Figure 7 there are two equilibria, which are mirror images of each other. The
first, second, and fourth unit go to one agent, and the third to the other.

Their prices are P, =5, P

1 =-2,P

- 2, and P, = 1, so that prices fall

2 3 4

along the equilibrium path. While convexity, which ensures monopolization,
implies that fn(x) + fn(n-x) is maximized at the boundary his conditions do
not imply convexity, and his assumptions are not sufficient to ensure
monopolization as this example shows.

FIGURE 7 HERE

Note also that if fn(-) is convex, ex-ante profits are zero, though
ex-post profits are positive! If fn(-) is not convex, competition to
acquire capacity need not lead to zero profits ex-ante as is evident from
Example 7.

Interpreting the n units as licenses sold to producers suggests that
even with only two foreign firms, monopolization of the market when quota
licenses are auctioned off is not guaranteed. It is ensured only if ex-post
competition leads to convexity of fn(-).

Another theme that runs through much of economics is that increasing
returns to scale causes monopolization. Convexity of the fn(x) function in

symmetric environments is, in a way, the analogue of this. However, this has
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little to do with increasing returns in production. The cost effects of “
obtaining additional units have to feed through the operation of the secondary

market. Increasing returns in production do not generate comvexity of fn(x)!

Exagple §

Consider the symmetric Cournot duopoly model with increasing returns to
scale. There are n units of a scarce resource being auctioned. Let the
production function with k units of the scarce resource be #(k)L, with
8'(e) > 0. The amount of labor, L, needed to make one unit of output is _
l_ . The constant marginal cost of production is _w . Let w=1 for

8(k) 6 (k)

convenience. Marginal cost <¢(k) are thus 1 .
8(k)

The Cournot equilibrium profits for every allocation of k, n-k are
given by:

£ (k) = 1lla - 2¢(k) + e(n-kK)}*
o b[ 3 ]

£ (n-k) = 1[a_- 2e(n-k) + c(k)]*
" b[ 3 ]

when inverse demand for the homogenous good being produced is:
P=-a-8bq.

It is easy to verify that c¢’(+) < 0 1is not sufficient to ensure convexity of
fn(-). If c¢(*) 1is linear, i.e. ¢(+) = a - Pk, or quadratic in k, 1i.e.,
C(k) =a - Bk - vk*, it is ensured,

Another application, as mentioned earlier, is a possible solution to the

"transponder puzzle". With endogenous valuations, declining prices are mno
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puzzle! The model can also help understand how competition ex-post (given the
allocation of capacity as the scarce resource) affects competition to acquire
the resource ex-ante and ex-ante profits. This model shows.that with
convexity of fn(-), ex-ante profits are competed away. An open question is
how the number of firms, competition among them, and demand conditions affect
ex-ante profits and the allocation of scarce inputs in question. This model
suggests that the results are likely to be less clear-cut than suggested by

the analysis of the one-stage model commonly used.
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5. CONCLUSION

The notion that valuations may be endogenous is a very basic one. It
helps understand, among other things, the evolution of market structure. The
models presented here shed light on a number of issues in applied micro-
economics. This notion might also help understand other issues, such as the
value of debt in the secondary market. Ozler and Huizinga (1990) show that
the value of debt in the secondary market for debt depends on its
distribution. This is precisely what one would expect if valuations are
endogenous! It might also help in better understanding the relationship
between market power and R&D, another central issue in the literature, and
help develop models of takeover activity and mergers. Caves (1990), for
example, argues that greater international economic integration could trigger
a wave of corporate mergers, which again evokes a model of endogenous
valuations. The appropriate model for analyzing each of these problems will,
of course, be different so that a lot of room for work, both on the

theoretical and applied side, remains to be done.
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APPENDIX

Lemma 1
For all k,
£f_(x+k) - kaf_(n-(x+k)) if x > n-k ,
n . n 2
f (x) =
n-k £ (%) if x < n-k .
n 2
Proof:

We have already shown that this holds for k - 1. The proof proceeds by
induction., Assume it is true for k, 1i.e., when k units remain to be sold.
Then we show that it is true for k+l1, i.e., when k+l units remain to be

sold. By definition:

fn_k(x+1) - Afn_k(n-k-l-x)

£ (x) = max (1)
n-(k+1) {
fhx®

We will show that the induction step holds for all values of x, i.e.,

fn-(k+1)(x) - fn(x+k+l) - (k+l)Afn(n-x-k-l) if x > n-zls-L s
= £ (%) if x < p-k-1 .
n
2
We do this by considering all the five possible cases.
Case A. x > n-k: Here, x and =x+1 strictly exceed p-k so

2 2
fn_k(x) - fn(x+k) -k Afn(n-x-k) and
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fn_k(x+1) - fn(x+1+k) - kAfn(n—x-l-k)
Also, as n-k-x and n-k-x-1 are strictly less than p-k,

fn_k(n-k-x) - fn(n-k-x) and

fn_k(n—k-x-l) - fn(n-k-x-l).
Substituting these into (1) gives:

fn(x+1+k) - (k+1)Afn(n-k-1-x)

£ (x) = max
- (k1) {fn(x+k) - KAf_(n-k-x)

The first term exceeds the second as their difference equals:

Afn(x+k) - (k+1) Afn(n-k-l-x) + kAfn(n-k-x)

= [BE_(x+k) - Af (n-(k4x))] + (k+1)[A_(n-k-x) - &F (n-k-x-1)] > 0

Since fn(-) is convex and x > p-k, x+k > ptk > np and n-(x+k) < @, the
2 2 2 2

first term in brackets is positive. The second is also positive by convexity.
Hence:

£ (ka1 (®) = £ (HIHk) - (k+1)BE (n-k-1-n)

so the induction step holds when x > p-k .
2

Case B. x <mn-k - 1: In this case, as x+l1 < n-k, and x < g-k, so that
2 2 2

fn—k(X+1) - fn(x+1), and

fn-k(x) - fn(x)
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Also, as x+1 < n-k, n-k-x-1 > p-k and n-k-x > n-k so:
2 2 2
fn_k(n-k-l-x) - fn(n-x-l) - kAfn(x+1), and

fn_k(n-k-x) - fn(n-x) - kAfn(x)
Hence:

fn(x+1) - Afn(n-x-l) + k[Afn(x) - Afn(x+1)] ,

£ (x) = max
n-(k+1) {fn(x) .

Their difference equals:

[Afn(x) - Afn(n-x-l)] - k[Afn(x+1) - Afn(x)] < 0,

Since x < n-x-1, convexity implies the first term in brackets is negative,
The second term in brackets is positive by convexity. Therefore, the
induction step holds and :

(x)-fn(x) if x<np-k-1.

fn-(x+1) 2

Case C. n-k - 1 <x <p-k: Since x is an integer, this is either an empty
2 2

set (when n-k 1is even) or equals p-k-1 (when n-k is odd). In this
2
event:

£ = £ (a-k-1-x) = fn_k(n;l;_-l) - fn(n;lzs;l)

fn_k(x+1) - fn_k(n-k-x) - fn-k(n_§+l) - fn(n+§+l) - kAfnLn;E-l)

so
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£ . (x) = max
n-(k+1) {fn_k(x)

- fn(x) when
so the induction step holds.
Case D. x = p-k. Here,

£ (®) = £ (nkex) = £ (%)

fn_k(n-k-x- 1)

% = n-k-1
2

fn_k(x+1) - fn(x+1+k) - kAfn(n-k-x-l)

fn_k(n-k-x-l) o fn(n-k- 1-x)

Thus:

£ . ;(x) = max
n-k-1 {fn(x)

Their difference equals:

[fn(x+1+k) - fn(x)] - (k+1) Afn(x-l) >0

as the average slope between x and

(x+1+k)

fn(x+1+k) - kAfn(x-l) - Afn(x-l) ,

exceeds that between x-1

X . As mn-x-k-1=x -1 for x = p-k , the induction step holds and:

2

fn-k-l(x) - fn(x+1+k) - (k+1) Afn(n-x-k-l) if x = pn-k .
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Lase E. x = n;k - 1. In this event,
L = £(x),
£ (D) = £ (x41)
£ (nk-x) = fn_k(n;g +1)
= £ (n-k-x+k) - KAf (n-k-ntkex)
= £ (n-x) - kaf (x) ,

fn_k(n-k—x-l)

£ o)

fn(n-k-x-l)

£ (x+1)

£ ) = max

fn(x+1) - [fn(n-x) - kAfn(x)] + fn(n—x-k-l) .
n-k-l(x

fn(x) .
Their difference equals:
(k+1)Afn(x) - [fn(n-x) - fn(n-x-(k+1))]

- (k+L){AE (x) - _1__ [f (n-x) - £ (n-x-(k+1)]} < O
n n n
(k+l)

as (n-x-(k+l)) = x+1, and n-x = (x+1+k+l) the average slope between x+1

and (Xx+1+k+1l) exceeds that between x and x+1.
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So,

fn-k-l(x) - fn(x) when x = n;k - 1.

This completes the proof.
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FOOTNOTES

* I am grateful to Vijay Krishna for valuable comments, to Richard Gilbert
for references, to Phillip Swagel for research assistance, to the National
Science Foundation for research support under Grant No. SE8822204, and to the
Institute for Intermational Economics in Stockholm where work on this paper
began.

1. See Milgrom (1985) for ar excellent survey.

2. At best, agents are assumed to have a downward sloping demand curve.
However, little attention is focused on the secondary market, and how this
curve is generated.

3. The use of the common value model is motivated by such issues. However,
it deals with them by making assumptions on the distribution of valuations,
rather than by explicitly dealing with the operation of secondary markets.

4. In previous work in this area (Krishna, 1988, 1989, 1989a), I assume
that there is a competitive market for licenses and that the allocation of
licenses is pre-determined thereby circumventing the issue of endogenous
valuations and strategic behavior in the market for licenses.

5. Other explanations for this phenomenon include that of Swinkels (1990)
vhose explanation involves uncertainty about the total number of units
available. A high early price reflects a premium paid for getting the object
for sure. Another explanation comes from assuming that bidders are budget
constrained as in Pitchik and Schotter (1989) which considers a model of
complete information and Pitchik (1989) which deals with incomplete
information. The reason for their results is that by raising the price for
early units, the budget constraint is made more binding for later units,

allowing them to be obtained at a lower price.
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6. Feenstra, et. al (1990) discuss the lessons of this literature for
auctions of quota licenses. Their paper focuses on exogenous valuation as
does the literature on auctions.

7. If the units are interpreted as capacity, then fn(-) is convex as long
as monopoly profits exceed twice duopoly profits.

8. As valuations for the three agents are not dependent on the allocation,
this is an example of non-linear valuations. With two agents, there is no
need to make the distinction between endogenous valuations and non-linear
ones.

9. Note that this means a sequential auction maximizes the revenue of the

seller and so is an optimal scheme.
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