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Sanctions are measuras rthat sne parcy (the sendar) takes to influence the
actions of another (the target). Sanctions, or the threat of sanctions, have
been used, for example, by credirors ce get a foreign sovareign to repay debt,
or by ons government to influence the human rights, ctrade, or foreign policiles
of another government. Sanctfons can harm the sender as well as the target.
The credibility of such‘sanctious is thus ac {ssue. Wa examine, in a
game-theoretlc frawework, whether sanctions that harm boch parties enablae the
sander to extract concessions. We find that they can, and that their threat
alone can suffice when they ara contingent on the target's subsequent
behavior. Even when sanctions ars not used in aquilibrium, however, how much
compliance they can extract typically depends upon the costs that they would

impose on aach party.
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I. Introductlen

Within national boundaries, laws and contracts allow parties co influence
each ather’s actions. A third party, the legal syshem, can punish chose who
break laws or breach contracts. In contrast, thea intaractions of sovereign
governments, or of parties under the Jurisdictions of different sovereign
governments, typlcally lack third parties to enforce contracts and agreements.
Hence, parties to such contracts or agreements must themselves be willing to
enforce them if thay are to have any effect. Enforcement may then require
measuras that affect the other party directly, without invelving anyone else.
Economic sanctlens, steps by a government that Inflict harm on another
country, possibly at a cest to itself, ars such measures.

Natianal govarnments havs often used sconomic sanctions to affect
policies of other countries.! The Unired States goverrment, for example, has
banned trade with Cuba and South Africa In response to policles of rheir
governments. U.§. trade law calls for trade restrictions against countries
“found to engage in practices that damage U.5. Ilndustry or infringe upen U.S.
intallectual property. Finally, collecting repaymant from debCor governments
may require that crediter counctries threaten to curtail finmancial relations ar
trade with debtor countries. In each of these circumstances, one national
government tries to affect the actions of another by threatening. or by
actually taking, messuras that are likely to harm both countries.

We examine the porancial for sanctions to elicit desired behavior from

Pacudi and Dajani (1983) and Hufbauar at al., (19835} providea detailed case
studies of saveral historical situarions in which national governments have
used economic sanctions, successfully and otherwise, to pursua foreign policy
objectives.



another parcty. Wa consider tha Interaction over time of two parties, called
the gender and tha the target.? The sender would like to affect che carget’'s
actions. It has the power to harm the targst, but at a cost to itself.?

We consider two types of actions that the sender might wish to affect.
One is che target’s ongoing choice of some action, such as the target's
debt-service payments, trade policies, polluticn, or degree of proteccion of
intellectual property. Another is the target's once—and—for—all chaice aof an
irreversible action, such as ceding territory, releasing a hostage,
extraditing an accused criminal, or relinquishing power to a mew government.

We examine whether sanctions that are costly both to the sender and o
the targac endable the sender to alter the behavior of the target.* When they
can, we also consider whether the threat alone of such sanctions is enmcugh, or
whether they must actually be used,

The answers depend critically on the dynamics of the interaction hetween
the sender and target. OCme issue is whether sanctions are contingent on what
the target then does, or are purely spiteful in the semse of impesing a cost
independent of the target's subsequent actions. Sancrtions, for example, might
be inmposad or renewed only occasionally (as by a legislaturs), buc anforced
continuously (as by an executive or judiclary). Legislation could then

inscruct the executive or judiciary to lift sanctions as soon as the ctarget

e are using the tarminology of Hufbauar et al. (1985).

3The ralationship batwean sandar and target resembles that betwssn
principal and agent in contract theory, See, for example, Ross (1972). Our
concern hars is not with the nonobservability of cha target's (agent’s)
action, which has been the focus of this litarature, but with the sender’s
(prinecipal’s} ability to enforce a contract with the target {(agenc).

*For example, the failure of the grain embargo imposed by the United
States against the Soviet Union after its invasion of Afghaniatan is commonly
attributed to the loss af export revenue it implied for U.5. farmers. See
Daucodi and Dajani (1983) or Hufbauer at al. (1983) for a discussion.
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parfornad as specified. The Jackson Amendment linking most favored nation
status to free emigration 1s an exampla {(See Daoudi and Dajani, 1983),

Ancther {ssue is whether, when setting its own policy, each party knows
the other's current policy. A repeated-game specificarion implies the
centrary. In the centext in which ecconomic sanctions ares used, however,
parties seem to set policies for a period, knowilng current policies elsewhere,
but also knowing that thase policias may changa later. Interaction of this
sort can be captured by assuming that parties altarmats In setting policies.

A3 a benchmark, wa firsc suppose that rche partiez do sec thelr policies
at the same time. The standard theory of repeatsd games then applies. As the
Folk Theorem implies, {f the parties’ relationship continues indefinitely then
many outcomes can be supportad as subgame perfact equilibria. But if stricter
equilibrium criteria are applliad, the sender has no control over the target:
One critericen yielding this result is that the equilibrium be the limit of
finice horizon equilibria, what we call a ligic equilibriug. Another is that
it be Markev perfact. This criterion specifies that each party's st;atagy
depend only on variables that directly affect the parties’ current and Futures
payoffs, and not what might affect current and furure paycffs only through the
rTesponse of the other party.S

Our paper focusas primarily on limit and on Markev perfact equilibria.
These provide & much sharpar characterization of outcomes than subgame
perfection alone, and we find them to be of intrinsic Iinterest: Many

situations may in fact imvolve only finite interaction, while Markov

“See Maskin and Tirole (1988b) and Farrell and Maskin (1987). Any
equilibrivum in which respenses are payeff relevant is oge squilibrivm in a
specification in which payoff relevance is not imposed g priorl. If one party
does not respond to payoff Lrrelevant informarion then there is no gain to the
other of responding to such informatiom.



perfection requires partias to use the subgama perfect equilibrium straregies
that are informationally most parsimonious.

In an alternmating move framework, if sanctions are noncontingent then it
remains a (limit or Markov perfect) equilibrium for the sender to have no
power over the target. This is the only limit equilibrium. There are,
however, Markov parfect equilibria in which the sander can obtain concessions,
but it must actually impase sanctions to do sa.

In contraskt, contingent sanctions can ensure the sender a degree of
control over the target’s actions in a limlit or Markov perfect equilibrium,
and the threac alone of sanctions suffices. If the sender seeks to influence
an ongoing policy of the target then, under general conditions, there is a
Markov perfect equilibrium in which the level of compliance depands upon the
costs of sanckions to both the sender and the target, and on each party's
patience. This can also be a limit equilibrium. In the only other possibla
steady-state Markev perfact equilibrium, which is not a limit equilibrium, the
only autcome is for the target to concede to the maximum, i,e., to the point
at which conceding more would be worse for it than enduring sanetions and
conceding nothing. This can happen if and only if sancrtions are not too
harmful to the target.

We alseo find that contingenc sanctions can enable the sander to exact a
once-and-for-all concesslon from the target. The sender might or might nok
actually have to use sanceions.

In summary, the costliness of sancrtions to the sandar need not render
them ineffective, and sane¢tions can be effective even Lif, in equilibrium, they

are net actually used.?

*This finding contrasts with Bulow and Rogoff's (1389, p. l68) resul:,
from a Rubinstein bargaining framework, that, if imposing sanctions on a



II. The Basie Framework

More formally, we consider the interaction of two parties, the sender and
target, each of which controls the level of a particular variable. Tha targec
chooses the level a € &, A < R, of some acrivicy that affects its own and che
sander’s utilicy in opposite directions, while the gendar choases a level
s 235, SR, of sanctions that affect both itself and che target advarsely.
‘The per peried utility of the sender is us(a.s), vhich inereases in a,
decreases in s, and is continuous in both variables, while the target’s
utility per period is uT(a,s), whith decreases in a and s, and is continuous
in both.? Hence the sender most prefers the target to choose the maximum
lavel of a while the target most prefers the minimum level. Tha per period
discount factor i= 55 for the sender and ET for tha target, whers 0 = 61 <1,
i=3,T.

Wicth ongoing actions we usually let cthe target’s choice set A be a
continuum, and set A = {0Q,1]. We trear irreversible actions as dichotomous,
however, and set A = (0,1}.

Some sanctions, such as the level of a punitive tariff, can be
continuously varied over some sat §. If so, we set 5 = [0,1]. Other
sanctions are more discrate, such as an embarge, boycett or a military attack.
Henca we also considar sanﬁcians that ars just on or off, and set 5 = (0,1},

The gender’s highest possible per peried utilicy level (bliss) is

therefore us(l.O). achieved when the sender chooses the maximum value of a

debrtor country is castly to crediters, then the "threat to seize shipments is
net credible and they will not be paid a peso in a perfect equilibrium.”

TnTncreasing” and "decreasing” are used in the strict sense throughout.
B



(one) and no sancrions are im place. Bliss for the target is uT(O,O),
atrained when a is at its minimum value (zero) and no sanctions are in placa.

We normalize bliss for each party at cone; Ll.e., wa sat:
W10 = uT0.0) - 1.

The sender’s minimum individually rational utility lewel, the highesc per
periad utilicy it can achieve given the least advantageous, for the sender,
behavior of the target (i.s., secting a - 0), is actained by setting sanctions
aC zero, yielding uS(O.O). The target’'s minimwn fndividually ratiomal utilicy
lavel, uI(O‘l}‘ oceurs when sanctions are at their maximum lavel (cne) and is
actained at a = 0. We normalize each party’s minimum individually racional

utility levels at zaero; i.a., we gect:

B0 - <T01) = 0.

The remainder of the paper proceeds as follows: 1In Sections IIL, IV, and
V che sender seeks to affect the target's ongoing performance, while in
Sectiens VI and VII it tries to make the target take an irreversible action.
In Section III the sender and target simultaneously chocse s and a each
period. In the remaining sections they alternmate in choosing. In Sections
III and IV sanctions are noncontimgent, while elsewhere they are contingent on

the target’s subsequant performance.

ITI. Exacting Ongoing Performance: Simultaneous Moves

Consider a situation in which cthe tcarget chooses some lewvel of action



each periocd, while the sender simultanecusly dacid;s what lavel of sanctions
te impese. Say that sanctions are noncontingent.

Any one-shot play of this game has, as a unique Nash equilibrium in
dominant strategies, the sender setting s = 0 and the target setting a = 0.
That i{s, the option of impesing sanctions fails to give the sendar any ability
to affect rthe rargec’'s chaice, .

This outcome remains the only Nash equilibrium cutcome if the game is
finicely repeated. However, if it is repeated an indefinite number of
periods, then the relationship baetwsan the sendar and target Is an
infinitely-repeated game, for which there are many other subgame perfect
equilibrium outcomes.

Figures la and lb depict the sec of possible per peried utilicy lawels of
the sender (on the horizontal axis) and target (on the vertical axis). Peints
on the northeast frontier of this set represent Pareto-efficient outcomes.

Figure la is drawn under cthe assumption that uT(l,O) >0, i.e., that
setting a = 1 and suffering neo penalty yilelds a per period urility above the
minimum individually ratiomal utility level (normalized at zerpc): Sanctions
inflict 50 much harm en the target that the target prefers to perform at any
feasible level and avoid sanctions racther than te suffer the penalty. Here
sanctions have pverkill capacity,

Figure 1lb is drawn under the opposite assumption: The target prefers to
suffer ganctions at their worst rather than to perform at the maximum feasible
lavel. Hers sanctions have limired capacity. In this case wa defina a as the
action level at which the target's per period utility, vith sanctions at zero,
is at the minimum individually ratiomal level, f.e., ut(a,0} = 4.

The Folk Theorem (Fudenberg and Maskin, 1986) assure; that, for 55 - ST

sufficiently close to 1, there exist subgame perfect equilibria sustaining any



faasible outcome that strictly Parato dominates the minimum individually
rational payoff pair. In the diagrams these cutcomes correspond to all
frasible points in che northeast gquadrant.

The outcome s = a = 0 (no performance and no penalization} is of course
still sustainable, but there are many other possibilities as well. For the
case illustrated in Figure la, any Pareco-efficlentc outcome is sustainable,
including the outcome s = 0 and a = 1 (bliss for the sender), but inefficienc
cutcomes in which some penalization occurs are also sustainable.

In Figure lb che target’s individual ratlonality constraint admits as
steady states only cutcomes In which the level of compliance is less than a.
In this case the cost of the penalty to the targec limics the extent of
compliance that the sender can axact in steady stace.

Note that, in the limit as ES approaches one, the cost to the sender of
impesing sanctions does not affect the set of efficient sugtainable outcomes.
The sender finds it worth incurring any finite cost for a finite number of
pariods in order toc extracC a higher level of compliance in perpetuicy.?

The case in which sanctions are contingent or actiens or sanctions f{oc

SFor discount factors 55 - ET sufficiently close to one and for N

sufficiantly large, the following “trigger” strategies provide ome way of
supporting compliance at 4n action level a* as a subgama perfect outcome:
Consider first the following rule R for thes sender: Set s = 1 if rhe target
has set a < a* in any of the previous N periods. The strategy For the sender
is te set § = 1 if 2 € a* in any of the previocus N periods and if the sender
has always adhered to R previously, and to set s = 0 ocherwise. The strategy
for the target 1s to set a = a* Iif the sender has always adhered to R
praviously and a = 0 otherwise. For the overkill case (illustrated in

Figure la) a* can lie anywhere in [0,1]. For the casas in which sanccions have

limited capacity {illustrated in Figure lb), a* cannot exceed a.



-9 .

both) ars dichotomous can be handled simflarly.® 1°

I conslusion, a wide range of posasible {efficiemt and ineffizient)
outcomes can be supported as subgame parfect equilibria in a repeatad game
with costly sanctions. Howaver, the only limit or Markov perfect equilibrium
trepeats the outcome of a one-shot game, with actions and sanctions at zero.
Hence, cthe sender can extract a performanca level above zero only if the
parties expect Co Lnteract indefinitely and condition their decisions on past

decisions that no longer affect current or future payoffs. ¥

IV. Exacting Ongoing Performance: Alternating Moves with Nencoatingent

Sanctions

So far we have exanined the efficacy of sanctions in a repeated gams in
which the parties choose simultaneocusly each pariod, without having obsarved
che other’s current choice, Perhaps a more realistic¢ assumption is that Party
1 sets its choice for a period of time {(which may be very short), having
observed Party 2’s previous choice, which remains in effect for the moment.
Having obsarved 1's choice, which itself remains in effect for the momenc, 2

may subsequencly resﬁond by making a different cheoice. After 2 responds, 1

*If sancrtions are contingent, utilities at outcomes {0,0), (0,1) and (1,0)
are unaffected, as ls the afficient frontier (aleng which s = 0). Hence the
get of efficient sustainable cutcomes is unaffected.

WIf both ara dichotomous then only the four extreme peints Iin Figure la er
1b are attainable in the onm-shor game. Averages or expected utility pairs in
the convex hull of these points are attained by generating the four outcomes
with various possible frequenecies: elcher as the realization of a random
process with a given distriburion (i.e. by "correlared strategies®) or as a
periodic (but deterministic) function of time. In an average or expacted
utility sense, then, the Folk Theorem applies as above,

Uparrell and Maskin's (1987) requirement that equilibria be "weakly
renegotiation-proof” reduces the set of possible subgame perfect cutcomes ro
the shaded regions in Figures la and lb. Sea Appendix A for an explanation.
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can make andther choica, knowing how 2 rasponded to its previous chaice, and
so an. Each time it chooses, each party takes the entire sequence of future

choices into account in deciding its best current choice,

An Alterpacing Move Framework

This type of Interaction can be studlfed by assuming that the parties
choose only in altarnate perifods, with only one party choosing in each period.
The outcome in any period is determined by onme party’s current choice and the
other party’s choice the previous peried, 2

Applying this framework to our situwation means that the sendar choases a
lavel of sanctions having obsarved the targec's current performance lavel, bur
knowlng that the target can change this level befare the sender can resec the
level of sanctioms. Similarly, the rarget decides its action having observed
the current severity of sanctions, but realizing that the sender can reset the
level of sanctions before the target can respond.

With che additional requirement thact sctraregies be payaff ralevant, each
party’s strategy can be specified as a reaccion Function of its rival's
current choice. Hence, we specify the sender’s scrategy in setting the level
of sanctions s as a function RS(a) of the targer’'s current acrcion level a and
the target’s stratagy in setting a as a function Rr(s) of s, If mixed
stratagies are used then Rs(a) and RT(s) are random variables. Where there is
no ambilguity we usa Rs(a} and Rr(s) to denote the support of these variables’
distribucions,

Markov perfection implies thar the maximum discounted prasent value of

2Cyart and de Groot (1970), Maskin and Tirale (1987,1988a,1988b) Gertner
(1986), Daviea (1987) and Eaton and Engers (1989,139C) have analyzed
duopelistic competition in a similar altermating-move framswork, The
Rubinstein (1982) bargaining model also posits an alternating-move framework.
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current and futura payeffs to the sender at the time it sets the sanction
level 3 depends only on the target's current action. Given RT, this wvalue,

denocted Vs(a), can be obtained recursively by dynamic programming:

v3(a) = sup E(u’(a,s) + 60 [R7(s),s] + sgvs[nT(s)];,
s

where E i{s the expectations operator. Equivalently, for the target, the
maximum discountad present value of current and future payeffs at the time ic
sets the action level a depends only on the sender’s current sanction level.

Given Rs, this value, dencted VT(s), is gimilarly obtained:

vi(s) = sup E{u'(a,s) + STuT{a,Rs(a)] + aivT[RS(a)J}]
a
& Matkov perfecr sguilibrium is a pair of reaction funetions RS and RT

such that, given RT, for each a in 4, Rs(a} attains Vs(a) and, given RS. for

each s In §, R?(s) attains VT(s).

Henceforth, we use the unqualified term "equilibrium” to mean "Markov

perfect equilibrium” and refer to limit equilibria explicicly.

0. jcie:

It 1s still true that, when sanctions ara mencontingenc, the pair of
strategles Rs(a) = 0 for all a and RT(s) = 0 for all s is an equilibrium, with
the outcome s = a = 0 every period: 1f the sender will under no circumscances
impose sanctions in the future then the target has no reason to set a > Q0 even

‘Lf sanctions were for some reason currantly in place. Similarly, if the



target will under no cirgumstances sat a > Q0 in rhe futurs then sanctions
impose only casts and no benefirs to the sender. 7

Furthermore, while this is the anly limit equilibrium, thare can be othar
equilibria. But any outcome that these support will not be efficlent: IF the
target (at least accasionally) sets a > 0, then the sender must fat least
occasionally) set s > 0. Hence the only aquilibrium autcome in which
sanctions ara never actually imposed is one in which the target mever

performs, This resule follows from:
. 5. ,T T
Proposiction 1: TIf R7[R{0)] = 0 then R (s) = 0 for all s.

The proof of this resulc, and all our remaining omes, are in Appendix B.

A Sanctlens Cyale

There are, howevar, equlilibria in which the targer does sometimes make
cencessions and in which the sender does sometimes actually impose sanctians.
Say, for example, that sancticns and actions are dichotomeus (3 - {0,1} and

4 = {0,1}) and counsider che following reactions:

&%) - 1; ’S) -¢

RTe0y - 0; RR(L - 1.
These generate a cycle of length four perieds over which all combinaticns of
actions and sanctions o¢cur: High performance elicics the removal of

sanctions that in turn engenders low performance followed by the reimposition

of sancticons, etc.
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These reactions are an equilibrium if, for ilnscance, Eg z 1/2 and

6% > 1/2 and if prefereances are as in (1) below:

Example 1:

u’(a,8) = (Lra)(l-8/2)
(1}

ul(a,s) = (2-a)(l-8/2).

These utility functions have the property that, as a increases, the cost
of sanctions decrsasas to the sender and incrsases to the target.™® 1If a is a
transfer of income, for example, since sanctions halve the utilities of both
parties, the more the target transfers, tha more costly are sanctions to the

sender, and the less costly are they to the target.
V. Exacting Ongoing Performance: Alternaring Moves with Contingent Sanctions

So far, we have analyzed a repeated game and an alternating move game in
which sanctions are not contingent on the cargect's level of performance. Twa
results have emerged: First, in order to raise the target’'s action level
above zers in equilibrium, the sendar must {at least on cccasion) endurs the
cost of imposing sanctions. Second, no performance and no sanctions in all

periods is always an equilibrium outcome, and it 13 che only limitc equilibrium

LFsr simplicicy chese uctility functions (and their generalizations in
Example 2 below) are not normalized. Tao normalize them, subtract 1 from each.
More generally, te mermalize any utility functien subtract the minimum
individually rational utility, and then divide by the difference batweaen
utility at bliss and the minimum individually rational ucility.



outcome., Wa shall show, howaver, that thase results do nat hold when the
sender can imposa sanctions that are contingent upon the target’s performance.

Suppose that sanctions are dichotomous (§ = [0,1}) while the actien is
concinuous (A = {0,1]). In each period in which the sender moves it specifies
a threshold ©. Sanctions will be experienced in the current period if and
only if the current action level is less than t. Similarly, they will be
experienced the subsequent period if and only if the target subssquently
cheases an action level below t,

The possible decisions of the sender and target can each be classified
into two categories: When cheosing its accion level a, given the sender’s
current thrashold performance level £, the target may either acguiesce by
setzing a at or above C (thus averting sancrtions in che currenc peried), or
else balk by choosing a below b (automatically triggering sanctions).
Similarly, observing ths target's current accion level a, the sender may
either gondone this level by setting T at or below a (thus averting sanctions
in the current period} or else spurm it by gatting t above a (thus inflicting
sancrions in che current perijod). Matching by cthe sender is condoning by
setring t = a, while matching by the targer is acguiescing by satting a = &

In this framework, a payoff-relevant strategy for the sender is a
reaction function RS mapping each pessible action level to a threshaold whils a
payoff relevant strategy for tha target 1s a reaction fumcticn RI mapping each
passible threshold to an action level. Tao denote that sanctions are in effect
if and only if a is below t, lat a(t,a) = 1 if a < t and o¢(c,a) - 0 if a = &,
As before, dynamic programming gives the value functions VS and VT of aach
party 1f the reaction function of the other party is specified. Some
addicional notation will prove useful. The expacted discouncad utility of the

sender, having set a8 thrashold t the pravious period, in a period in which the
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target choosaa, is:

W) = Btu¥RY(e),a(e,R7(e))] + GSVS[RT(t)]).

Similarly. the expected discounted utility of the target, having set an action

level a the previous perilod, in a period in which thé sender chooses, {s
Wia) = Elu’ a0 (83 (a) a)] + 607 1RS (A,

The expectéd discounted value to the sender of currently choosing an

arbitrary thresheld t, given the target's action lavel a, is
2ta,6) = Flaote,a)] + 5050,

and the expacted discountad value to the target of currently cheoosing an

arbitrary actiom level a, given tha sender’s chreshold t, fis:
ZT(t,a) - uT[a,o(t.a)] + STWT(a).

Let Cs(a) dencote argmax Zs(a.t) and let CT(c) denote argmax ZT(a,:).
t a .
Then RS and RT constitute an aquilibrium if and enly Lf:

va € [0.1], R5(a) c c¥(a) and vt e [0,1], RE(t) € C (e,

If so:
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v¥(a) = max 2%(a,t) and vi(e) = max Z'(a,c),
t a

5 : . , S . : T : : .
27(a,t) is increasing in a; hence V° is. Similarly, Z (e.a) is nenincreasing
in t; thence VT is,

We say that 2 is a steady state of tha equilibrium if a = Ri(a) = RO(3)
Proposition 2 statas that if sanctions have limited capacity then there exises
an equilibrium that supperts a, the target's highest individually rational

action level, as its unique steady state.

Proposition 2: If 33 = 1 such chae ul(3,0) - ut¢0,1) then, for 5

sufficlencly eclose to one, the follaowing is an equilibrium:

Ya

|

R*(a) -

RT(ey - & FOF B & [0.a] U (d)
0 for £t & (a,a) v (a.l],

T~ -
where a satisfias u (a,0) + STuT(a.l) - 0.

These reaccion functions are depicted in Figure 1. The sender always
jets 4 as a threshold, thus spurning all action levels below a, (5S must be
large enough to ansure that condoning at levels below ; is no betrer.) Ac or
below a the rarger s indifferent batween acquisscing te 2 and spurning to
Zero, both of which dominate just meeting the threshold above ;. Between ;
and a this indifference is resolved by balking to zaro but a itself is

matched. AC thresholds above a balking ko zero is baest.

Thus the acrtion level at which the target is ar its minimal individually
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rational utility lavel, if it i{s feasible, can be sustalned as a steady stats.
We now show that under fairly general conditions there is just one ather
equilibrium that supports a steady state, We characterize this equilibrium
and show that it supperts alband of steady states lying below 3, whose width
tends to zere as either party’s discount factor tends te one.

We new impose the restrictions (i) rhar rthe cost of sancrtions to the
sender increase and (ii) that the cost of sanctions to the rarget not increase
in the target’s action level. That 1s, us(a,O) - us(a,l) everywhere increases
in a while ur(a,O) - u.T(a,l) nowhere increases in a.

Undsr these restrictions we use five lemmara to prove two theorems that
ansure the existence of, and completely charactarize, equilibrium steady—sratas
cutcomes . -

Lemma 1 says that thers is an action level g such that the sender

condones all acrion levels above 3z and spurns all these below 3:
Lemma 1l: 3a such that Ya < a, Cs(a) > a and Ya > a, Cs(a) = a.

Lamma 2 says that the sender will never spurm to a threshold that it

would spurn if the target performed at that level:
Lemma 2: I€ b & C°(a) and b > a chen C(b) = b.
Lemma 3 states that, if there is a point n ac which che rarget does not

balk (i.e. is "nice"), then the sender, when facing am action level of ac

least n, never sets a thrasheld that the target strictly prefers to u:
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Lemma 3: T£ R(n) 2 n, a=n. and t € C(a) then Vi(t) £ Vi(n).

Lemma 4 characterizes any point n at which netither balking ner spurning
occurs. Ralsing its action level abava n leaves cthe target worse off 4s of
cthe following peried (i), while lowering the threshold belaow n makes che
sender na baettar off as of the follewing period (Li1). The target will always
match at n (i1}, and it Is optimal For the sender to match at o (iv).

Finally, Vi(n) and Wi(n) have the same values that they would if n wera a

steady state (v and vi),

Lemma 4: Suppose thar Rs(n) % n and RI(n) = 1.
(1) If a > n, then W(a) < We(n).

(i1) If £ sn, them 67(c) < n. Thus R°(m) - n.
(iii) If t < n, then W (e) = ¥ (n).

(iv} n & Cs(n).

(n Vi - @iy - u®(0,0) /(16 ).

vy v = ) = wTin, 0005

Let T demota min(a,l], the largest feasible action lavel that gives the
target at least its minimal individually racional payoff. Let B = {C € [0,1]
cT(e) n (0,8) = §1, L.e., B s the set of all thresholds t at which it is
optimal for the carget to balk., If B is not ampty lec £ = inf B while if B is

empty lee & = 1,
Lemma 5: B is an interval and VI(t) is a conscant for all ¢ € B.

If B i3 nonempty we define V = VI(t) for all t € 8. We now scate:
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Theorem 1: (i) If £ < a and there is s steady state then it is ar a = .

(ii) Ifa < &

then each a € (4.£) 13 a steady stace and the following pairs

of inequalities hold wich complemencary slackness (i.e., at most one in each

pair is scricc)

a0 = (tspul(a,1) + 507 (2,0,

£35 %

Fla,n 1690 a D + 5ai0),

= 0.

]

2(a)

2(b)

3(a)

()

Theorem 2: (i)} There exists a solution to Iinequalities {2) and (3), which we

denote a* and t¥, and there exists am equilibrium whosa sec of steady states

is [a*,e*}. (ii) If, in additiom, us and uT are concave in a then a* and t*

are unique and the only possible Markev perfect steady—state outcomes are

[a*,t*] and, if sanctions have limited capacity, a.

Figura 3 depicts equilibrium reaction functions that support steady

staCes [a*, tx].

Example Z:

To illustrate the theorams, we ganeralize Example 1 to allow for

differances between the cost of sanctions to the sender and to the target and

a more general interac¢tion bertween sanctions and the action level:
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us(a,s) -a - s(FS + Gsa)

(&) v
uT(a s} = -a - s(F, - G_a) .
. T 3.
- A K T .
where a € [0,1] and s = (0,1}. Our restrictions on u” and u reguire that:
1>GS>D,1>GT20,FS>O,andFT>GT. (5}

In this example, a = Fp if Fpos 1. (If Fp > 1, we are in the overkill

case and T = 1.)
Conditions (2) and (3) take the following form (where, for convenience,

we replace £ by w = t-a, the width of the band of steady states):

G,r,a, + ms FT (complementary wicth a + y = c)

and

for w and a to obtain the solution:
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- (1-5T)(GTFS+GSFI)
uGT - Gs

&FT - Fs

3k - ——
aGT + GS
whers

a - SS(I-ST)/(I-ES)

is a measure of the sender's patienca relative to the targec's. Y If both
parties share a common discount factor § them a = §. Restrictions (3) imply

chat wx > O and, if either SS or ET converges to 1, then #*i0, so that the set

of steady states couverges to a poinc.
Steady states may lie strictly between zero and onme (Case I}, a =0
(bliss for the target) may be a steady scata (Case 1I), and a = 1 (bliss for

the sender) may be a steady state (Case III).

Case . 1f 0 < a* < a* + w* < t, then che range of steady statas [other

than a when sanctions have limitad capacity) 1ls (a*,a*+wx], where:

F_ -
a T F

A% - —
uGT + Gs

Mas tha time between cholces tends to zero, a converges Co pT/ps, the
ratio af the carget’s continuous discount rate to the sender’s. Since

51 - e'piA, where A is the interval between choices, the result follows from

L'Hopital's Rule.



which increases in }.-',r and @, and decraasas in FS. GT' and GS.“ Thus lewaring
the cast of sancrions to the sender or ingcreasing the sender’s patience
relacive to the target’'s raises the lower bound on steady-stata performance
levels. -Furthermore, as the lowest cost te the target of incurring sanccions,
FT - GT' or GT rises sc does this bound. TIn this way the szandar benefics from
being more patient chan the target, and from having sanctions that arte
relatively more painful for the target.

If the parties share a common discount factor that converges to one then

the steady states converge to:

F.-F
CI+GS

If in additicn, as in Example 1, Gs - GT = G and Fs - FT ~ G (so that the

costs of sanctions are symmerric) then the scsady states converge te 1/2.
Thus, by the continuity of the expression for a*, if the two parties hava

nearly equal costs and patience, the outcome is nearly symmetric.

Case II: Zaro can be supported as a steady state if and only If a* < 0

or, eguivalancly, aFT s FS' Thus if the target is sufficiently pacientc

relative to the sendear, a steady—state performance level of zero can emerge:

Helding &, conscant below one, as Sr approaches one, = approaches 0 so that

S
the inequality is satisfied,

If the parties have the same discount factor converging to cne then the

cendition is that FT = FS: the highest possible cost of sanctions to the

5The result for z 1s most readily seen by observing that functions of the
form (ax+b}/{cx+d) are menotonic in x {by the guotient rule), so we need only
compare the expressicns when x is zero and whenm x is infinite.
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rarget is no greatar than the lowesc possible cost of sanctions te the sender.

Cage IIT: An action leval of one can be supported as a steady state if
and only if Fp = 1, so thae 2~ 1, or Lf Fz 1 and a* + w2 1. If the
sender is sufficiently patient relative to che target and sanctions have
overkill capacity, then the sender can axact a performance level of one:
Holding ST constant below one, as Es appreaches one, a* approaches FI/GT > 1.

If the parties have the same discount factor converging to one then
a* + wr x 1 reduces to FT - GT = Fs + GS: The lowest possible cost of

sanctions to the rarget 1s no less than their highest possible cost te the

sender.

In Example 1, Gy = Gg = .5, Fp = 1, and Fg = .5, so that a=-1, and a
steady state at ona can be supported, by Proposition 2. But if FT is raised
slightly chen the highest steady state that can be supported is less than one
{in faerk, it 1s around one half if discount factors are similar). Thus
sanctions with overkill capacity can be less effective than limited sanetions.

To se¢ why, consider behavior just below any maximum sustainazble steady
stats a". If a is the unique steady state, sanctions cannet be too powerful
to dater balking at chresholds just below a. 1Io fact, the target must balk at
such thresholds 1f the sender is to spumm all action levels below a. However,
in any equilibrium that supports a steady stats less than a, sanctions are so
powerful that, below a®, acquiescing sericcly dominates balking. The carget's
compliance removes tha sender’s incentive to spurn acticn levels just below
a", and such poincs become steady states as well, Thera s chus an

equilibrium derermined by conditions (2) and (3) that supports a band of

steady-state action levels helow a.



Exawple 2 illustrazes that, if the sender can comait itsalf, even for an
arbitrarily short while, to sanccions that are contingent on the subsequent
behavior of the target, then a considerable degree of compliance can be
enforeced as parz of a Markev perfect equilibrium without sanctions actually
being suffered. If ucdlity functions are as in Example 1, for § near one, the
sender will extract performance that is at least almost half the maximum
feasible level.

We have found the general characterization of limit equilibria of an
alcernating move game with contingent sanctions to be intractable. Wich
urilicy functions as in Example 2, we have verified that an equilibrium
characterized by Theorem 2(i) can be a limit equilibrium.'® We have alsoc found

that the equilibrium of Proposition 2 {s not a limit equilibrium,

VI. Exacting a Single Action: CGContinuous Sanctions

Suppasa now that the sender wants the target to perform an irraversibla
action, bur concinue Co assume that sanctions are contingent, and thac che
sender and target altermate in their decisioens. Acctions are dichoctomous,
(I.e., A= {0,1}). Once che target complies, setting a =~ 1, interaction
ceases. As long as the target balks, secting a = 0, hawever, the sender can

lmpose sanctions.

"*More exactly, we have laboriously verified that in Case I, if tha target
is the last mover then rsaction functions have a similar form to those in the
proaf of Theerem 2{i). As the herizon lengthens, these converge pointwise co
the HMarkov perfect equilibrium reaction functions. As time moves backward the
intervals of matching contract toward the band of steady states supported by
the Markov perfect equilibrium. We conjecturs that similar results heold for
Cases II and III.
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When the targat compliss, its presant discounted utility from that poinc
on is normalized at -1 and the sender’s 1s normalized at 1. If the cargetr
balks then the next pericd the sender may imposes sanctions ac some level s,
implying a current utilicy us(s) for Ltself and uT(s) for the target, both of
which decrease in s. We normalize uSKO) - uT(O) = (., Here we allow for a
continuum of sanccloms, so that § = [0,1]

The expected discounted utiliry of the zender in any period befare the

target has complied is then:

¥ = max(u¥(s) + n(s)8g + [1-n(s)](6u"(s) + sgvsj},
5

where m(4) is cthe probabilicy of compliancs next pariod given s. The expected
discounted utilicy of the target in any period before it complies is:

WT(s) = max(-1,u7(s) + S,E{u’(s*) + 597 ()],
where s Ls the current sanctions level and s’ the {possibly random) level
chosan in the subsequent period if the targec balks In the currant period.

We define three key sanction levels. The first, s, is such chact che
target is just indifferent between complying and suffering s" forever. It is
defined by the condicion uT(sm)/(l-éT) = -1. To be minimally effective,
sanctions must be at least s,

The sacond, sb, 15 such that the rargec {s just indiffersnt between
complying and suffering sb currently and never again. It is defined by rche

To be brutally

condition uT(sb) = .1, Obvieusly, if beth exist, sb > 5™

. , b
effective, sanctions must exceed s
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The third, si, is such that the sgnder is just indifferenc between
imposing si currently if it ensures the target’'s compllance the naxt period,
and never imposing sanctlons, ensuring permanent balking. It is defined by
the condition us(si) + ES -~ 0. Sanctions above si are incredibly costlv.

Thera are two kinds of equilibria. - If si =< sb, i.e., if st is not
brutally effactiva, then it is an equilibrium for the sender never to impcse
sanctions and for the target to comply Lf and only if sanctions are brutal.
The outcome 13 permanent balking with no sanctions, TIf si < sm, i.e., if si
iz not even minimally effective, then thias Is the only equilibrium cutcome.

If, however, si > sm, i.e., Lf si is minimally effective, then anocher
equilibrium is for the target to comply if and only if sanctlons are at least
s" and for the sender Co impose sanctions at s™. If the targat moves f£irst

and sanctions are initlally noc miaimally effective then the outcome is

balking in the initial period, followed by the imposition (and suffering) of

sanctions at s° in tha naxt period, wich compliance che period after thac. If

PR sb then this is the enly squilibriwm cutcoms, If s® = st sb, ie., if
s is minimally, but not brucally effective, then both outcomes ars possibla,
411 the above are also limit equilibria except that there is uo

mulriplicicy in this last case: Only permanent balking can be the outcome of

a limit equilibrium here.
VII. Exacting a Single Acrtion: A Single Sanction
If sancrions are dichotomous, so that § = (0,1}, then ocutcomes may be

much more complicatad, and nastler for all: Sanctions may be expariencad for

more than one period, and the target may delay complying for a while, but nec




necessarily forever.V

In accord wich our earlier notation lec us(l) - -FS and uT(l) - -FT.

Balking Forever: Ineffective or Incredibly Cogfly SancCions

If sancticns are not brutally effective (l.e., FT =< 1) than ¢ne
equilibrium is for the target always to balk and for the sender mever to
impose sanctions. If sanctions are not minimally effective (i.a2., FT < 1-6T)
then it is the only equilibrium. It is alsec the only equilibrium if sanctions
are incredibly coscly (i.e., FS > 55);

However, if sanctlons are brurtally effective buk nat incredibly costly
then balking forever with no sanctions cannot be an aquilibrium outcome. The
sender can eventually gat the targec to comply, buC how ic does so depends on

whether or not sanctions can deter balking.

Painful Compliasnce: Nonde renc tions

A fourth key characteristic of sanctions is their deterrence effect. If
b F > l-5§ chen sanctions are detepvepnt: If the target is sure that balking
will lead To such sanccions the next period, forcing it to comply the period
after that, then it prefers Co comply now, aven if sanctions are not currently
in place. If sanctions are not decerrent or incredibly costly, but are
minimally effactive then, as with continucus sanctions, an equilibrium is for
the target to balk in the absence of sanctions and to comply in cheir

presenca, and for tha sender always to lmpose sanctioms. The outcome is

TMatsuyama‘’s (1990) analysis of a trade liberaliration game bectwsen a
government and a lacal firm, where the government wants the firm to become
more efficient and the firm wants protection, and Fernandez and Glazer's
(1990) analysis of strikes, are similar to che games considerad here. In
either case, waiting and randemization can occur, and outcomes can be
inefficient, even Chough infermation is perfect.



initial balking, followad by sanctiens, followed by compliance. If, also,

sanctions are brutally effective cthen cthis is the only equilibrium outcome.

Mixad Straragw Fquilibria

Howevar, if sanctions are datsrranc then the gsender will not always
impose them: If it did, then the threat of sanctions twa periocds henca would
suffice to enforce compliance the next period, sa there is no reasen to impase
sanctions currently. 1f sanctions are deterrent then the only possible
equilibria in which the target complies involve mixed strategles.

If sanctions are deterrent and not Ineredibly costly chen an equilibrium
i3 for the sender to Impose sanctiecns randomly, and for cthe carget to comply
if sanctions are in place, and to randomize between complying and balking in
their absence (1i.e., mixing at condoning). If, in addition, sanctions ara
brutally effective, this is the only equilibrium.

The outcome supportad by this equilibriumm is one in which some delay is
expected before the target complies. It may comply without sanctions, or
sanctions may be imposed in the period before compliance. 3Sanctions will net
last for more than one periad, however.

In anocther equilibrium in which the sender randomizes, the targest mixes
between balking and compliance when sanctions are in effect, and always balks
in their absence (i.e., mixing at sanctions). This can occur when sanccions

are minimally, but not brutally, effacrive and are not Lncredibly costly.

Figure 4 illuscraces the various possible outcomes as a functionm of the
cost of sanctions to the target Fr and the targec’s discount factor &,
assuming that sanctiens ara not incredibly castly. Three curves divide che

reglon of possible values into Five parts. Above the horizontal line Fo-1



sanctions are brutal while balow the diagenal line Fp = l-ET they are not even

minimally effective. Above the curve FT - l/éT - sanctions are deterrent.

51'
The dlagram Indicates the possible outcomes in each reglon.

The limit equilibria in the various cases are as follows: Below the
brutality boundary only balking forever can occur, while painful compliance
temains the aequilibriuvm cutcome above the brutalicy boundary and below che
deterrence boundary. Above these two boundaries, the finite-horizon
equilibrium is for che sender to impose sanctions every 2i periods from the
period of the sender’s last possible move, where i satisfies the conditions

2i-3- 2i-1
thet Fg + &g = 65 = Fg + &g

, and for the target to comply if sanctions
are in effect and octherwlse to balk, except Just before sanctions are
scheduled.- The outcome is balking uncil the pericd before the first scheduled
sanctions, at which time the target complies.

Taking the appropriate limit gives i limit equilibria, indaxed by the
time of the first scheduled sanctions. Thege aquilibria are not Markov
perfact, however: Ghoices depend upon elapsed cime, which is payeff

irrelevanc. They are alsc not renegotiaction proof: Whenever sanctions are

mandated both sendar and target prefar to delay chem.

VIII. Gonclusion

Wa have considerad the ability of sanctions to exact concessions in a
variety of circumstances. A conclusion is that sanctioms that ara cestly for
the sender to impose can bhe credibla. A necessary condition to ensure their
success in exacting concessiens, however, is that the harm caused by the
sanctions depend on the target’'s degree of compliance. Otherwise, zaro

compliance is always a possible outcome. Sanctions that are purely spiceful
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(in the sensa that tha harm that they do does not depend on the targec’'s
subsequent behavior) do not ensure compliance.

We have limited ourselves to the interaction of only two partiss. Wa
thus ignore the public-goods lssues raised by having mulciple senders (which
have undermined recent attempts to impose sanctions against the People’s
Republic of China). We also ignore the issues that arisa when distinct groups
within one country have diverse interesecs. U.3. farmers, for example, bore
the brunt of cthe U.5. grain embargo against the Soviet Union, while the
actions sought by the United States in Japan in reacent negotiations under
"Super 301" ware apparently welcomed by most Japanese ccnsumers:

We have alse allowad sanctions to go only one way, If both parties can
take actions with external banefits and impose punishments then many mere
possibiliries emerge. Characterizations as ctight as those in Theorem 2 are
thus unlikely.

Our analysis has focused solely on situations of symmetric information.
Even in these, compliance may be delayed, and outcomes can be inafficient in
that sanctions may actually have to be used. Informarional asymmetrias are
likely to increase the potencial for delay and inefficiency.

Finally, the diffarences between the simultaneous and alcermacing move
equilibria demenstrate the critical importance of ciming. A better
understanding of timing would smerge Erom a model with information lags as
wall as response lags: Each party learns the other’s choice only with delay,
and makes its own daciszion only with further delay. The alternating case
describes a situation with leng response lags relative to information lags,
whila the simultaneoud case 1s more descriptive of the opposite. Modern
communicatiens technology and political institutions suggest thac the firsc

situatjon betrer describes the snviromment in which governments sat policy.
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APPENDIX A: DERIVATION OF RENEGOTIATION-PROOF PAYOFFS IN THE REPEATED

SIMULTANEQUS MOVE GAME

Farrell and Maskin®s (1987) criterion thart a subgame perfect equilibrium
be renegotiation-proof requires that the equilibrium have ne subgames that
Pareto-dominate others. The justification is that, otherwise, when about to
embark on a dominated subgame all players would benafit by agreeing to switch
strategies to the Pareco-preferred one, and what’s to stop them from doing so?

To determine what restrictions this requirement imposes on a pure
strategy equilibrium, congider the beginning of the subgame of the game that

is worst from the target's perspective. Ler v, and vy denota the average per

period payoffs from that period on to the sender and target respectively.

Following Farrsll and Maskin (19B7) we decompose the pair (VS.VT) as:

1.1 c e
(VS’VT) ~- (l-&)(vs,vT) + E(vs,v

7

where Vi is 1's Eirst-period expected payoff and vz is the average per-period

payoff For the remainder of rhe subgame, which is itself another subgame.

Since Vo is the lowest payoff of any subgame to the target, w_ =< S, and

T 'T'
since v, Ls a convex combination of vE and vl vl < v, = ve, Since vo = v
T T T T~ T~ 'T TT T

the requirement that no subgame Pareto dominate any other implies that v; =
L. e

’ e 1
vg- Sinee vg is a convex combinarion of Vg and Vge Vg = Vg = vg-

However, nothing can be worse for the rarget than choosing its dominant

stratagy and finding itself again at the beginning of irs worst subgame, 1.a..

vp = (1-63u7(0,s) + sv,
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aT

v = ul(0.s).

The condizion thac v; = Vg implies thac

5
Vg S u(a,s).

These constraints on vg and Vo restrict the set of possible payeffs to
lia within the shaded regions in Figures la and 1b. (The parallel exercise
performed from the perspective of the sender imposes no rescrictions on tha
set of sustainable subgame perfect payoffs.)

The upper bound a on the steady-dtate performance level implied by the
condition that the equilibrium be renegotiation-proaf is thus datermined by

the two cenditiens:
LT = @
(AL}

w0y = uli0,5y.

Tha fallewing is a renegotiation proof equilibrium that, in the limit as

§t1l, can susrtain a:

Define tha following modes:



Regular mode; 4a=a, s=0
Punishment mode: a =1, 5 = =5

Zero mode: a=0,3=20.

The equilibrium strategies call upon the parties to: (i) adhere zo punishment
mode L1f, in any of the last N periods, the target has sec a < ; if the game
was Lln regular mn&e or a < 1 if the game was in punishment mode! (ii)-adhere
to zara mode if the sender has ever set s < ; in punishment mode; (iii)
adhere to regular mode ocherwise.

For § sufficiently clese to 1 and N sufficiently large, the equilibrium

is renegotiation-proof as long as
§,. ° g .*
u (l,s) > u(a,®)
~ T,
uT(a,O) > u (0,s8),
» —_—
which permit staady-state action levals a arbitrarily clese to a.
An increase in the cosC of sanctions co the target raises a, whiie an

increase in their cost to the sender lowers a. Using Example 2 of the zext

a= FT/(FS + GS - FT)'
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APPENDIX B: PROOFS

- s s T
Proof of Proposicion l: Assume that Rs(a) = 0 for all a = RTEO). E7{0) must
consist of a single point. (If it included points a, < a,, sinece barh alicic

. T .
zere sanccions, and since u” decreases in a, a, would be a becter response to

1

O for the target than a,, o 4, € RT(DJ.J So let 3 denote RT{0). For any

2'
a < 4, Rs(a) must exceed 0 wich positive probability. (Otherwise a would be a
better responsa to 0 than a for the targec.}

For all s,'RT(s) < 3 with probabilicy one. (For any choice a > E_by the
targat, its current utilicy is lower, and the sanctions outcome no more
favorabla than at a.)}

For ths sender, then, secting § = 0 is berter than setting s > 0 at any
action level a. (Setting s = 0 elicits the highest possible performance level
by the carget ac the least possible cost to the sender.} Hence Rs(a) = 0 for
all a,

But if the sender does not impese sanctions under any circumsctancas then
the target’'s only best response can be RT(SJ = 0 for all s. O
Proef o opositio : By continuity ; exists and, because ur is decreasing
in a, it is unique and lies between 0 and a. Thus RT is well defined.

Verifying that a pair of reaction functions Rs and RT constitute an
equilibrium requires demonstrating thar: (i) 1f the sender adharex co Rs then
RT is optimal for the rarget; and {ii) if the targer adheres to RI then RS is
optimal for the sander. With dynamic programming, optimality can be

demonstrated by verifying that: (i) if the sender adheres to Rs, and the

carget will adhere te RT in the fucure, then RT(:) is optimal for the target



.37 -

currently at any feasible threshold t; and (i11) 1f the target adheres to RI,
and che sender will adhere to RS in the future, then Rs(a) is optimal for the
sender currencly at any feasible action level a.

In principle one must consider all possible actions as alcternatives to
RT(t) and all possible thresholds as alternatives to Rs(a). Howewver K since RS
and RT are plecewise nondecreasing, sach tarm in the expression:

2%(a,5) = 2(e’ia,ot,a)] + 6ou (RT(0) o (e R (0] + sovi iR (o )

ig nondecreasing in t except, possibly, at points of discontinuity in one of

the three terms, while each term in the expression:
2h¢t,a) = E(ula.a(t.a)] + STur[a,aCRS(a),a)] + s%vr[gsca)]}

1s decreasing in a except, possibly, at points of discontinuity in one of the
three cterms. Hence it suffices to chec¢k that these points as well as 0 and 1
are not superior to the prascribed actions, Performing this aperation is

routine, and wvarifies che result. O

Proof of L : We show that if spurning is coptimal at scme peinc a cthen
below a only spurning is optimal. If it is optimal for che sender co spurn a

then 3t > a, such thar:
via) = u¥(a.1) + 55500 2 a0y + 65500 vx < a.

Conslder the sender’s response to any b < a. The above inequality and the

condition that us(a,O) - us(a,l) strictly increases in a imply thac:
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o =iy« 5@t > Fen s sgio wse o

Proof of Lemm : Suppose mot. Then 3c > b such that ¢ € Cs(b). Hence:
viay = ui(a,l) ¢+ ssws(b) > 2%¢a,0) = o¥a,l) + 5SUS(C)
and:
viby = u (e, 1) + £ W0 () = 20(h,b) = uB(5,0) sts(b).
The second inequality implies W (c) > Wo(b), which contradicts the first. O
Proof of Lemma 3: For t = n this feollows by monotonicicy. For t < n, since
Sta0) + ssws(:) - 2%ae) = viay = 28an) - ui(a,0) + ESWS(n),
Ws(c) = Wan) and so
gudrYier,0] + ssvs[nr(:)]) = W) = Vo) = WO (n,0) + SSVS(n),
which is only possible if 3b = RT(C) such that b 2 n, Thus

vTiey = 27¢e,b) = 25 (n,b) 5 ¥i(m). O
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fo a 4&4;

1y Wi = uTn,0 + 57V (m) > uT(a,0) + 5-£00 (8% ]) = WW(a), by Lemma 3

{ii) We show that if a > n then a 2 CT(t). That RT(n) = 1 chen follows

immediately. If 4 > o then, by (i}, W.(a) < Wi(n), and so

2T(c,a) = uTea,0) + 57(@) < aT(2,0) + 88 (7)) = 27(E,0).
(ii1) By (il), Wi(e) = ooen,0) # SSE(VS[RT(t)]] < oSm,0) & 5Sv5(n) < Wim),
(iv) Sinee RS(m) = n, 3t € ¢(n) M [O,n]. Buc, by (iil),

2 (a,5) = u$(n,0) + 5% (m) 2 uW(n,0) + 5H(6) = V' (m).
{v) By (ii) and {iv},
Py - 2Pam) = v in,0) + 5 (m) = (a,0) (k) + 52v5(a).
(vi) By (1ii),
vT(n) = 25(n,m) = ul(a.0) + 58 (n) = ul(n,0)(1+5) + sEv RS (my )

- uT(n.O)(l+5T) + S%Vr(n).

1A
s
v]

since E(VT[RS(n)]] - VT(n), by Lemma 3. and because Rs(n)
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Proef of Lemma 5: Tf 5 <k, then, by monotonicity, VT(tl) = VT(tz). it
tl & B, Ja < tl such that
Vr(tl) - uT(a.l) + aTwT(a) - zf(:z.a) = VT(tzj < VI(tl).

T T
Thus c, € B angd V (tz) -1 (tl)' a

Proaf of Theorem 1: (1) We first show that £ = 1 Is impossible if ¢ = a.

Suppese that (an} converges to & = 1 from below. Thus the targec never halks
ac a . By condoning 3 ferever the sender ohtains us(an,O)/(lvES)J which
cCOnverges to l/(l-ﬁs), which exceeds the value of spurning te cne,
us(an.l) + 8 /(-8 < S, v §g/(1-8.0 < 1/(1-6.). This cancradiess
a=1. Thus g <1, and so B is not empty.

Wa can thus find a sequence of thresholds tntg such chat L B and the
a; 1If not,

sender dees net spurn tn' (If a = 1, for each n choose tn -
choose T,z 4.) Sinee t_ is not spurmed, the value ta the targat of

acquiescing to tL is ar leastc uT(cn.O)/(l-ST). But since R B, che cargsc

is wiliing te balk. Hence V = VT(tq) = uT(tn,O)/(l-ET), and the limit gives
T
Vozui(a, /{140

If there is a stmady state at a, thenm, VD) - u.T(a_,D)/(l-ET). By Lemma 1,
ax= 4, so that V g VT(;s - uT(;:O)/(l-ET) = ur(é,ﬂ)/(l-ST) = ¥V by che above
inequalicy.

Hence a is the unique steady state and VT(Q) = V. By Lemma 2, balking to
a < a provokes spurning ta t = a = £. Since ¢ € B, balking yields

el
“W, which is maximized at a = 0. Hence the optimal halk is

uT(a,l)(1+5I) + 8s
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to 0, implying that V = 0, and hence uT(g,O) = 0, so that 3 = a,

{ii) Each point n in the interval (a,t) satisfies the assumptions of Lemma 4,
Thus RT(n) = n, by (ii), and since wl is inereasing on this interval, by {v),
Rs(n) - n, so that each point n is a steady state. The inequalities 2Z{a} and
2(b) follow from the requirement that, at thresholds :n?g, matching is at
least as good as balking to levels anlg (2{a)) and to zero forever (2(b))}.
The inequality 3(a) follows from the requirement that, at levels anlg,
spurning teo threshelds tntg is no better than matching.

Turning to the complementary slackness condictions, we first show that, if

Beg, V- VI(E) - uT(;.O)/(l-ET). Taking a sequence of chreshelds t_tg shows

chat V = Ui(p) = uT(g,D)/(l-ST). by momotomicity, ¥t € B, £ = £ > a, so
v = Vo) 2 2550 2 uT (2,00 (L) + 63T,
and, tzking the limit as clf, and combining the previous two inequalicies
v uT(E,D)/(l-ST) = vige) = v,

so that VI(E) - uI(E,O)/(l-ST) = ¥. Hence, at t, the target is indifferanc
between balking and matching. We now show cthat the target nmever chooses an
action level above 3.

The value of condening any a = £ is Zs{a,t) - us(a.ﬂ) + Esﬂs(t). But by
Lemma 4(v), Us(t) is inereasing on (2,f). Hence Cs(a) = £ so that choosing an
action level above I yields the target at mostC uT(c,O)(1+5T) + ETV < V. Thus
cT(s) = ¢ for all e

In particular, CT(E) % t, which implies that
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Wi -z 4 ssws(;) = us(;,O)(l+ES) + sgvs(g).

8y Lemma &{v}, for all nm g (i,;),_us(n,O)/(l-Ss) - Vs(n) < VS(E) by
monotonicity. Taking the limis a5 ntg VS(;) E uS(;,O)/(l-SS) which, combined
with che above inequality, implies that Vs(;) - Us(g) - uSCE,O)/(lnss).

We now establish the complementary slackness of 2(a) and 2(b}, showing
that if £ < £ then 2(a) is an equality. Tt is net optimal for che carger to
balk to & level above a, hecausa Wr(a) is decreasing on (a,k}, by Lemma 4(vi).
Balking to below a yields at most siv (since che sender then spurns ta a
threshold t = £, hacause Ws(c) lg increasing en (a,t), by Lemma 4{v)). If

< t than ¥ » O, so that S%V < V. Hence the optimal balk must be zo g

(a4

itself.
Since 3 < ¢, RT(é) = a and, since by Lemma 4(vi) WT is decreasing on

{a,5), RT(E) - By Lemma 3, Rs(g) z a, (bacause yT is decreasing on {a,£)),

I

and so
Ve = 2@ - uTa,0 + s < 0(a,0) (Lesy + 520 (2)

Hience V1(a) € u7(a,00/(1-6). By Lemsa 4(vi), for all n = (a,z),
uT(n,O)/(l-ET) - v'(n) = vT(a) by memotenicity. Taking che limit as nia,
VT(Q) = uT(g,O)/(l-ﬁT) which, combined with the above ineguality, implies that
vHa) = W@y = ul(@,00/(1-5,).

Since, then, at £, both matching and balking to a are optimal:

Wi, 00/(15 = 7 = 2hEa) = wTa ) + 6T = uTa, ) + @0/,
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so that 2(a}) holds with equalicty,

To establish Ehe complementary slackness of the second pair of
inequalities we show that if a > 0 then 3(a) holds with equaliry, If the
sender faces a < a, matching yields at least us(a,O)/(l-ES). By Lemma 1,
below a it is oprtimal to spurn. By Lemma 4(v) WS is increasing on {(a.t}, so
the best spurn is to § or above. Buc, since only balking occurs above £, the

best spurn is to £t itself. Such a spurn yields
wia, 1)+ 5 ¥m = uS(a, 1) + 5’ (5,00/(1e6g).

Thus 3{a) holds with equality. 0O
Progf of (i) Let

£(a) - max (£ € (0,31 u'(£,0) = (L-sul(a 1) + spula0n),
and

£5(a) = max {t € [0,5]: u'(a,0) = (l-Es)uS(a.l) + asus(:,on.
Thus, for each a, fT{a} {resapectively fs(a)) gives the t which makes 2(a)
(respectively 3(a}} just binding, or T, if no such t exiscs. Because us and
ur are continuous, so are ET and ES. Because uT and us are monoconic, fr and
fb are nendacreasing and Ya € [0.%], fs(a) > 3 and fT(a) = a,

If ET(O) = fS(O) then a%* = 0, t* = ET(O) is a solution to (2) and (3).

1E fI(O) > ES(O) then sither 3Ja € (0,T] such thar ET(a) < fs(a), so chat thers

i3 an interior solution to 2{a) and 3(a) by the intermediate wvalue theorem, or
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else ¥Ya € (0,T), £lea) = fs(a), so that a* = min {a: £(a} = £} and t* = T is

a solucion ca {(2) and (3).

Given rhese values of a* and t*, the following is an equilibrium that

supports (a%* c¥| as steaady states;

3 a a € [a¥, tx]
R7(a) =

[ a < a¥ or a = ¥

T £ tE [0,;) U [a¥,¥]
Ro(e) - B
a*  t & [a,ax) U (¥ 1],

where a satisfies:

wTea,0 + 5Iur(;,l) - [ur(a*,O)aE%uT(c*,O)J/(l-ET),

.
if such a value exists, and 2 = 0 ocherwise.

Checking that this consticuces an equilibrium is routine.
141} We rawrite {2) and (3):

W@, 0 - u'g,0 = -spu’i(a,0 - wlia, b,

ESE;

(16016 a,0 - ¥a ) 2 55,0 - Wi,

a=0.

Suppose thac there were two distinct solutions (al,tl) and (azdcz).

2'¢a)

27(8)

37(a)

31 (b)

By strict



- 45 -

monetanicity of the utility funceions, we assume without loss of generalicy

1 <732 and tl < t2' Thus 3'(a) is an equalicy at (az,tz) and 2°¢a) is

an equality at (al,tl). Lowering a from 2, to a, lowers the left-hand side of

that a

3'(a} and, hence, the righr-hand sida. Since us(a,O) is increasing and
cencave, ©)-a; < Ey-ay.

Raising a from ay co a2 raises neither the right-hand side of 2'(a) neor
the left-hand side. Since uT(a,G) is decreasing and concave this implies that
t,-a8, = €, -a,. Unigqueness of the solution to (2) and (3) follows from chis

1717~ 7272
contradiction. It Follows from Theorem 1 that the only possible steady states

are 3 and [a*,t*]., QO
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