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1 Introduction

Innovation is important but hard to measure: Innovation and firm strategy regarding
innovation are central features of models in macroeconomics, microeconomics, strategy,
management, and finance. But the key aspects of innovation that are important for economic
models are not readily observable, as they do not generally appear on balance sheets, profit
and loss statements, tax returns, or other reports. For example, new technologies developed
by firms do not typically appear in company reports, and even if they do, it is difficult
to say whether they represent a significant improvement or a marginal advance, whether
they represent a new product or a new manufacturing process, or whether they represent a
technology that augments or substitutes for labor.

As a result, there is a long tradition in innovation research of using artifacts such as
patents and scientific papers to derive proxies for invention and new knowledge. Researchers
have counted these artifacts, and used formal aspects of their creation such as citations and
co-invention and co-authorship as further indicators of various steps in the innovation process.
Most of these artifacts are made up of text, or have written documentation. These texts were
used to understand and contextualize, but until recently it was not possible to do quantitative
analysis of text, and therefore quantitative research based on these artifacts did not use the
texts themselves in deeply meaningful ways.

In recent decades, computational methods have been developed to analyze text as data,
and the power of these methods has increased dramatically in recent years. The application of
these newly powerful methods to innovation-related texts can be used to create new indicators
of innovation that are useful for modeling and has generated a large volume of new empirical
innovation research. In this paper, we will provide an overview of these methods, discuss
their potential to broaden and deepen innovation research, and highlight some important
issues that need to be addressed to realize their full potential.

We use the general phrase “Natural Language Processing” ("NLP") to refer to these
methods. We include within NLP both formulaic methods and those based on deep learn-
ing. Formulaic methods include approaches such as identifying specific words and word
combinations or vectorizing the distribution of words in a document and then calculating
the vector distance between documents. Neural networks—a major class of approaches
within “artificial intelligence” (“Al”)— include both models trained for specific tasks such
as identifying high-impact patents, and the more general models such as “Large Language
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Our goal in this paper is to provide a brief history of the development of these methods,
a snapshot of their current use, and some conjectures as to their long run potential. While
we will discuss specific papers, this literature is developing rapidly, so we have no hope of
providing a definitive catalogue. Rather, or goal is to identify the major themes and the big
issues and provide some useful sources.

The paper proceeds as follows. The next section provides an overview of the measurement
issues and challenges that are inherent in innovation research, and foreshadows in a general
way why NLP is potentially powerful in addressing these. In Section 3, we provide a brief
historical overview of the main NLP approaches, and identify some overarching issues in
using and interpreting them. Section 4 then discusses a handful of specific applications, with
the goal of illustrating concretely both their power and their limitations. In Section 5, we
conclude with our summary of the potential of NLP in innovation research, and the major

issues that researchers using these methods currently face.

2 Measurement: challenges and goals

The framework for empirical analysis of innovation studies can largely be traced to two key
papers by Zvi Griliches. Griliches (1979) lays out the “big questions” in thinking about
how investments in new knowledge play out in the private and public sectors, and how the
consequences of these investments can be measured. In this section we survey briefly the
measurement challenges that researchers have faced in working within this framework, as a
prelude to discussion of the contributions of NLP.

Pakes and Griliches (1980) introduced the idea of a “knowledge production function”
(“KPF”) that has become, either explicitly or implicitly, the measurement framework at
the base of most microeconometric studies of innovation. It posits a functional relationship
between inputs to knowledge generation (e.g. previously existing knowledge and firm ex-
penditure on research) and the creation of new knowledge. This stock of knowledge is an
important variable in most models of endogenous growth, playing a similar role to physical
capital in the neoclassical growth model (e.g., Romer, 1990; Aghion and Howitt, 1992). But
how do we measure new knowledge? Not only is new knowledge not easily observable, there
is also no obvious definition of the appropriate units that we should be measuring it in. Do
we count ideas? And if so, are two new ideas twice as good as one new idea? In general,

researchers need to make assumptions as to how specific indicators of success in knowledge

creation (e.g. patents) relate to this stock of knowledge.



Implementing the KPF framework requires several choices for the measurement of both
inputs and outputs. While specifics vary with context, the inputs to the innovation process
broadly speaking are of three types: (1) the capabilities or skills of people engaged in the
process; (2) the material inputs that those people can bring to bear; and (3) the pool of
existing knowledge that they can draw on in deciding how to proceed. The other side of the
KPF framework is identifying proxies for the unobservable knowledge output, such as scientific
papers, patents, prizes, awards, and so forth. There is some value in merely identifying
and counting these proxies, but research effort and creativity are also devoted to tackling
the quality issue, i.e. trying to come up with characteristics of these proxies that can be
interpreted as conveying information about the size or quality of the invention or innovation.

Many or all of these measurement targets are inherently hard to pin down, in large part
because they reflect or are intimately wrapped up in knowledge. Knowledge is physically
unobservable and has no fundamental units. That is why we use indicators or proxies.
Reliance on these proxies is not necessarily bad. As an example, the amount of money
that a firm spends on research for new products is reasonably well-defined and economically
meaningful. But because it is a step away from the fundamental inputs to the innovation
process, its use in empirical research always raises issues of interpretation that may cloud our
understanding of what we are observing. Similarly, indicators of innovative output such as
patents or counts of new products are connected to what we really want to measure, but the
nature and limitations of those connections cannot be fully known. Even though we do not
observe most of these features directly, we can still in some cases observe characteristics of
products (energy consumption, efficiency, size) or services. But these are hard to observe in
a systematic way, and data are not always available. At the same time, by using multiple
indicators and modeling the underlying relationships, we can still learn a lot.

A related fundamental difficulty flows from the non-rival nature of knowledge. Spillovers
of knowledge across individuals, organizations and geographies operate on both the input
and output sides of the innovation process. The existence of spillovers means that the inputs
and the outputs are, to varying degrees, embedded in complex ways throughout the economic
system. Tracing these linkages and measuring their magnitude poses an additional empirical
challenge that has attracted much attention.

The last two big areas of empirical innovation research is the tracking of the organization
and financing of innovation on the one hand and of the impacts of innovation. This has a first-
order component, in understanding the causes and effects on the performance of innovating

firms and industries. This has included looking at the introduction of new products by



innovators, follow-up innovation, effects on competition and market structure, and effects on
productivity.

As noted above, however, part of the reason we care about innovation is because we
believe it has large social returns and is a major contributor to economic growth. These large
returns do not derive primarily from the first-order impacts; they arise as innovations diffuse
throughout the economy, and thereby have impacts that are at least partially unintended and
unanticipated. We can measure some of this effect at the macroeconomic level (e.g. Jones
and Summers, 2020), but to really understand what is going on requires methods to identify
and quantify the linkages between innovations and innovators on the one hand, and socially
desirable outcomes on the other. Because of the intangible nature of the knowledge flows
and the complexity of the overall system, this is hard to do. All kinds of new public policies,
new kinds of jobs, new health care modes, new forms of entertainment, etc., are facilitated in
part by innovations throughout the entire economysystem. Case studies can illuminate this
process, but systematic measurement is very challenging.

At a general level, NLP has potential to help with all of these measurement challenges, in
three major ways. First in improving on the measurement of existing indicators of knowledge.
Second in creating new indicators out of textual artifacts and third in finding and quantifying
new linkages between innovations and the broader economy. We discuss each of these
possibilities in turn.

First, NLP enables the extraction of more useful, subtle, and meaningful information
from artifacts. We started by counting patents awarded to different agents over different
periods. We then got more useful insight by counting patent claims and tracing patent
citations. “Processing” the full text of a patent in a general and deep way can tell us even
more about the underlying invention. Neural networks can be trained to identify particular
invention attributes based on the text in the associated patents. The importance and impact
of an invention are associated in complex ways with how the invention relates to those that
came before and those that came after. As discussed below, NLP methods have been used
extensively to make such comparisons and use them to quantify importance and impact.

Second, NLP offers the prospect of identification of new proxies in the form of text
artifacts that have not so far been thought of or collected for innovation research. Firms
make many statements about their innovative activities in disparate forms such as financial
reports, trade show presentations, corporate websites, and pitches by entrepreneurs to venture
capitalists. Such unstructured text has not before been used to try to quantify aspects of the

innovation process, but with NLP they could be. In particular, the worldwide web offers an



immense repository of texts whose inconsistent and unstructured nature has so far limited
their usefulness as a source of innovation data, but perhaps NLP can extract some minerals
from this huge reservoir of low-grade ore. By examining how innovation is described in these
texts, researchers can capture hidden signals—Ilike the perceived novelty of a technology,
potential applications of this technology, or the strategic importance a firm assigns to specific
research areas—even when those signals do not translate directly into formal metrics such as
R&D expenditures or patent grants.

Finally, NLP offers the prospect of new ways of identifying and quantifying linkages in
the innovation system. As we discussed above, spillovers of knowledge are an important
aspect of the innovation process. Measuring spillovers in a causally meaningful way is a major
empirical challenge, but a necessary predicate for any such effort is some way to empirically
identify linkages that might allow spillovers to flow between agents or institutions. Thus, an
often necessary, but not sufficient, condition for innovation 7 to have caused innovation j to
occur is that the two innovations are somehow ‘similar’, and NLP can be used to quantify
the degree of similarity. In addition, to quantify the impact of an innovation to the broader
economy, we need a way to identify the pathways along which this impact might occur. The
strength of NLP in finding and measuring linkages is that text is everywhere. We can look
for spillover pathways by analyzing and comparing the text of one firm’s patents or papers
together with those of another firm. And we can look for impact pathways by analyzing and
comparing the text of patents or papers together with the text of job descriptions or policy
pronouncements.

It is useful in thinking about measurement to distinguish what might be called “practical”
and “conceptual” problems. An example of a practical problem is the fact that firms track
and report their spending on R&D in different ways, and standard accounting practice treats
R&D as a current expense, while our models conceive it as a form of investment. While data
constraints prevent us from solving these problems completely, we at least in principle know
how we would solve them if we had access to the right information.

The use and creation of knowledge also presents conceptual problems. That is, it is
difficult to specify the “right” way to measure knowledge, even if there were no constraints
on the data that could be collected. New knowledge is inherently intangible, and we cannot
say, even conceptually, how “big” one new insight is or whether it is “bigger” than another
one. This problem is related to the broader empirical problem of measuring the 'quality’ of
inputs and outputs. To understand the economics of the construction industry, we may need

to look at how the ’quality’ of concrete has changed over time. But the specific physical



characteristics that make concrete "high quality’ in the context of road construction may
differ from the characteristics that make it "high quality’ in a skyscraper, so there isn’t a
well-defined broadly applicable way to measure quality.

The importance and the difficulty of these issues in the context of knowledge-related
inputs and outputs are both much greater. As an example, Robert Gordon has argued that
the inferior economic performance of advanced economies in the last few decades compared
to periods in the twentieth century can be attributed to recent innovations being just less
significant than those that came before (Gordon, 2000, 2014). To test this hypothesis, we
would need a way to measure the “size” or “importance” of innovations, and then test across
different contexts the extent to which economic performance responds to innovation size.
Unfortunately, it is really hard to measure the “size” of innovations in any way other than
looking at their economic impact. But if we measure size in terms of economic impact we
cannot meaningfully then test whether declining performance is due to declining innovation
size. The only way around this issue is to assume/postulate that some measurable attribute
of an invention (e.g. its investment cost or citation pattern) is a measure of its "size”, so
that the relationship between size and economic growth (or other impacts of interest) can be
tested.

The distinction between practical and conceptual problems is useful both in understanding
how NLP can improve innovation research, and in thinking about NLP’s own limitations.
At a practical level, NLP can be useful to fine-tune existing measures, for example, by
distinguishing citations that truly indicate a knowledge relationship from those derived from
courtesy or convention. But it may also help with the conceptual problems of measuring
knowledge and the size of an innovation (or allows to implement existing solutions that
were not practically feasible before NLP). Knowledge and language are closely connected, so
it seems plausible that deep quantitative analysis of text can give us insights into how to
measure the attributes of a new chunk of knowledge. But this potential can only be realized
if researchers operate from the perspective that this is a fundamental conceptual problem.
It cannot be solved by cranking out metrics just because we can. As we proceed to discuss
these methods in more detail and in specific applications, we will see that thinking carefully
about exactly what the metrics generated by NLP mean is a recurring theme.

In the next section, we briefly review the evolution of various NLP approaches, from
early basic methods to advanced semantic analysis, to illustrate how textual data can enrich
traditional innovation metrics and address some of the conceptual and practical challenges we

have raised. The following section then builds on this historical review to describe a number



of recent contributions, and how these contributions illustrate the promise and peril of NLP

methods.

3 A Brief Overview of Different Approaches

Recent advances in NLP have significantly broadened the definition of what researchers
consider to be “data.” Whereas traditional economic analysis focused predominantly on
numeric indicators, NLP makes it possible to incorporate a much richer set of textual sources.
Examples include patents, scientific articles, financial and governmental reports, earnings
calls, job postings, and even websites. These text-based artifacts capture a wide range of
details—from the specific technologies a firm is developing, to the strategic considerations
that drive research investments. Working with text presents its own difficulties, however,
as the meaning is often layered, context-dependent, and shaped by the author’s intent or

domain-specific jargon.

3.1 Proto-NLP (Keyword Search)

Long before sophisticated NLP algorithms emerged, researchers were already harnessing
textual data. Such “proto-NLP” approaches typically involved considerable input on the part
of the researcher as they required identifying or tallying predefined features, most commonly
through keyword searches.

Early examples of this approach include Tetlock (2007) and Loughran and Mcdonald
(2011), who apply keyword-based analyses to gauge the sentiment of corporate financial
reports. In the context of innovation studies, Dechezleprétre, Hemous, Olsen and Zanella
(2019) use search terms (e.g., “robot”) to pinpoint patents associated with automation, while
Bena and Simintzi (2023) and Ganglmair, Robinson and Seeligson (2022) classify patent
documents into process and product innovations by looking at specific semantic patterns.
Similarly, Webb, Short, Bloom and Lerner (2018) identify emergent trends—such as drones,
machine learning, and cloud computing—by tracking relevant terms in the patent corpus.

The main advantage of keyword-centric strategies is their transparency and reproducibility.
Researchers have full control over the words that define a given topic, and can thereby study
robustness and evaluate the importance of each term. This makes these methods straightfor-
ward to implement and to interpret, and ensures that the result will avoid misclassification
(type I error). However, they have significant limitations when compared to the more ad-

vanced NLP techniques discussed later. The principal shortcoming is the subjective nature of



choosing keywords. For example, Bergeaud and Verluise (2023) shows that a strict reliance on
predetermined keywords can overlook a significant share of pertinent documents—particularly
when terminology shifts or when an innovation’s boundaries are not easily captured by a
single word or phrase.

Even though, in principle, the size of the dictionary need not be limited, is not clear
that even a very large and carefully crafted dictionary of expert-chosen keywords can be
enough to truly delineate a technology, a research strategy or a type of product. For
instance, Dechezleprétre et al. (2019) classify only about 1% of patents as automation-
related, which is arguably a lower bound due to their narrow definition. Hence, these
classification strategies face a trade off of reducing false positives at the cost of missing many
relevant documents. These strategies can be sufficient for topics defined by very specific or
unambiguous terminology, and they offer researchers a rapid initial screening tool to flag
potential documents of interest. However, the drawbacks can be particularly relevant for

rapidly evolving fields such as Al or green technologies, where the lexicon is still in flux.

3.2 Vectorization Approaches to Computing Similarity

A fundamental challenge in NLP is the translation of raw text into a numerical representation
that can be manipulated and analyzed. Once a document is expressed as a vector, researchers
can leverage standard algebraic operations—such as calculating the cosine similarity between
two vectors—to gauge how alike the underlying texts are. Once each pair of textual documents
is linked with a measure of distance, clustering or other methods can be applied to classify
the full corpus in pursuit of various research questions. The different methods may vary in
how exactly the text document is transformed into a numerical vector.

In the early stages of NLP, methods such as the Bag-of~-Words (BoW) model laid the
groundwork for textual data representation. BoW simplifies text by converting documents
into vectors based on word frequency, disregarding grammar and word order. Economists
could then compute the similarity between two document vectors: two document vectors
would be similar if they contained the same words with similar relative frequency, and
completely different if they share no common words. Although BoW is relatively easy to
implement and interpret, its lack of contextual understanding and its inability to consider
synonyms as similar words both limit its utility for capturing the nuances of language.

An extension of the BoW approach introduces the concept of n-grams, which help address
some of these limitations. An n-gram is a contiguous sequence of n words from a document

that is treated as a single object when vectorizing the document. The use of n-grams



enhances the BoW model by incorporating information about word order and co-occurrence
patterns. For instance, the bigram “economic growth” carries a more specific meaning than
the individual words “economic” and “growth” considered separately. N-gram models have
been useful in various applications, but they are often computationally unwieldy: as n
increases, the number of possible n-grams grows exponentially. Moreover, n-gram models
still lack a deep understanding of language semantics and long-range dependencies beyond
the chosen value of n.

A further refinement is the Term Frequency—Inverse Document Frequency (TF-IDF)
scheme, which reweights the importance of words according to how rare they are across an
entire corpus. Compared with BoW, TF-IDF gives greater prominence to less frequent but
more informative terms and thereby reduces the emphasis on high-frequency, generic words.
Two TF-IDF document vectors would be similar if they shared a lot of distinctive words.
Though an improvement upon BoW, this technique still struggles with synonyms and context,
as it retains the underlying assumption that each term has a fixed meaning regardless of its
surrounding words.

The advent of word embeddings marks a significant shift in NLP methodologies. Method-
ologies such as Word2Vec (Mikolov, Chen, Corrado and Dean, 2013) and GloVe (Pennington,
Socher and Manning, 2014) transform words into dense, continuous vector spaces where se-
mantically similar words are represented as vectors that have higher (cosine) similarity. These
embeddings are typically learned by training a shallow neural network on large corpora, using
objectives such as predicting the surrounding words given a target word or predicting a target
word given its context. By capturing the statistical co-occurrence patterns of words in their
context, these models encode semantic relationships into the geometry of the vector space,
with meaningful relationships such as analogies often emerging (e.g., the vector difference
between “king” and “queen” is similar to that between “man” and “woman”). These dense
embeddings also enable dimensionality reduction—most models compress each word into a
vector of a few hundred dimensions, far fewer than the full vocabulary. Depending on the
embedding model used, this compact representation enables researchers to efficiently process
and analyze text data. By choosing an appropriate weighting scheme (for example, TF-IDF as
in Seegmiller, Papanikolaou and Schmidt (2023)), researchers can also represent a document
as a weighted average of the underlying word vectors, resulting in a fixed-length vector for
each document. This allows for consistent and computationally manageable representations
of text. By contrast, older methods like the BoW approach and its extensions represent

documents as sparse vectors of a length equal to the size of the vocabulary or the union of all
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words (or n-grams) included in the documents, which can grow unwieldy for large corpora.

The next discrete step in NLP goes beyond static word embeddings to vectorize entire
documents while preserving their intended meaning. Averaging word embeddings provide
a basic way to represent documents but this still lacks the capacity to fully capture the
interplay among words. Transformer architectures have addressed this limitation. Introduced
by Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser and Polosukhin (2017),
transformers analyze the relationships between all words in a sequence simultaneously, rather
than sequentially. Using a mechanism called “attention”, they weigh the importance of each
word relative to others in the text, effectively capturing context and meaning. This capability
allows transformers to generate contextualized embeddings, where the meaning of each word
adapts based on its context within the sentence or document. Pre-trained models based on
transformers, such as BERT (Bidirectional Encoder Representations from Transformers) and
the GPT (Generative Pre-trained Transformer) series, have revolutionized NLP. These models
enable researchers to fine-tune contextual embeddings for specific applications, offering a
significant leap forward in the ability to vectorize and analyze text at both the word and
document levels.

Importantly, many of these approaches can be further fine-tuned via supervised learning
to improve performance based on the type of corpus. For example, Bekamiri, Hain and
Jurowetzki (2024) and Ghosh, Erhardt, Rose, Buunk and Harhoff (2024) respectively developed
PatentSBERTa and PAaECTER, two embedding models that build on BERT but are specifically
trained on patent documents to capture semantic relationships across patents. Compared
to off-the-shelf embeddings trained on general English text, these specialized models could
in principle improve the precision of any NLP task that is applied on comparable corpora.
However, these models have been trained with some specific objective in mind and may
not be appropriate for tasks that do not relate to this objective. For example, Ghosh et
al. (2024)’s PAECTER has been trained with the objective of predicting citations across
patents. The resulting embedding and underlying measure of similarity (e.g., via cosine
distance) will thus reflect this objective rather than any other possible interpretive goal. A
prominent discussion on this point is provided in Ganguli, Lin, Meursault and Reynolds
(2024). This is an illustration of a recurring deep issue: because knowledge and innovation
are conceptually so difficult to quantify, we often train NLP models and interpret their results
based on existing proxies, whose own meaning and interpretation is largely just axiomatic.
This is not "wrong”, but it must be continuously kept in mind as the methods evolve.

Overall, the field of NLP has witnessed a remarkable transformation over the last decade,
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progressing from simple models like Bag of Words and TF-IDF that operate in a fairly
transparent way, to advanced transformer-based architectures that can involve multiple
hidden layers of computation. Ultimately, these methods aim to quantify the degree to which
two documents are ‘similar’, which can range from these documents use similar words, to
these documents contain text that has the same meaning. Ultimately, however, researchers

need to take a stance as to what does it mean, economically, that two documents are similar.

3.3 Application to classification tasks

Building on text-based similarity measures, one can distinguish two principal strategies for
classifying documents: supervised and unsupervised methods. Although both aim to map
documents into meaningful categories, they differ in how those categories are defined and
validated.

In supervised classification, researchers start by specifying a classification scheme in the
form of explicit rules that a document must satisfy to be assigned to a given group. This
approach is especially useful for well-defined categories—for example, patents in a particular
technological domain (e.g., solar panels) or news articles referencing a specific event. In many
cases, these rules derive from so-called proto-NLP methods, often involving the presence or
absence of one or more keywords (see Section 3.1 for several examples). Although rules can
be combined and tailored, they are ultimately dictated by the researcher, which limits the
practicality of high-dimensional text representations in this framework.

Recent advances in machine learning, however, have expanded the scope of supervised
classification. Rather than relying on a fixed set of rules, researchers can begin with a
carefully curated set of example documents and then identify others that resemble them. This
similarity search can capitalize on more advanced NLP techniques, such as embedding-based
models, sometimes based on specifically trained models. Examples of these “automated
patent landscaping” (Abood and Feltenberger, 2018) demonstrate how embeddings enable a
more scalable and fine-grained mechanism for grouping documents into clusters that align
with pre-defined objectives. While this approach lowers the risk of missing relevant documents
that do not contain specific keywords, it demands careful calibration to balance type I and
type II errors. Moreover, selecting an appropriate embedding model is crucial (Ganguli et al.,
2024).

By contrast, unsupervised methods require no pre-labeled examples. Instead, they infer
categories from the data itself, using NLP-derived features ranging from simple keywords (Yoon
and Park, 2004; Hu, Li, Yao, Yu, Yang and Hu, 2018; Bergeaud, Potiron and Raimbault, 2017)
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to multi-dimensional embeddings. A prominent example is the Latent Dirichlet Allocation
(LDA) topic model introduced by Blei, Ng and Jordan (2003), often likened to principal
component analysis (PCA) for text. Here, documents are first transformed via a vectorization
technique—such as TF-IDF—and LDA identifies patterns of co-occurring terms, grouping
them into so-called “topics.” Alternative approaches to generating unsurpevised clusters
include K means, Gaussian Mixture Modeling , Hierarchical Clustering, and DBSCAN.

As with standard principal components analysis, these topics emerge without inherent
labels; researchers must interpret and name them based on contextual knowledge. Hansen,
McMahon and Prat (2017) illustrate this by applying LDA to central bank communication
transcripts, revealing distinct thematic threads in policy discussions. Thus, although unsu-
pervised methods can initially seem appealing, the absence of explicit labels poses its own set
of challenges. Clusters may overlap or be ambiguous, requiring careful judgment to name
and interpret them. Moreover, tracking how a specific cluster changes over time becomes

more difficult if that cluster was not clearly defined from the start.

3.4 Challenges in Implementing NLP

The multiplicity of available NLP methods raises a number of issues that are both practical
and conceptual. This remains true, and perhaps all the more relevant, even as increasingly
powerful and specialized models enrich our capacity to analyze textual artifacts. In this
section, we briefly discuss some of the most salient challenges and offer an illustration using
a simple example.

A first concern relates to the transparency and interpretability of these approaches. While
supervised rule-based methods relying on keywords (potentially weighted by importance) offer
a clear pipeline from the definition of rules to the final output, more recent systems—especially
large language models—remain largely opaque. This “black box” nature can hinder repro-
ducibility, as subtle differences in how text is embedded or vectorized may alter downstream
results. Researchers must therefore confront important questions about how dependent their
conclusions are on the specific model selected, and about how to evaluate the robustness
of their results. Conceptually, a measure of similarity would require some form of formal
statistical inference. One can think of a true underlying relationship variable, x, that might
take values {0,1}. The observed similarity score p is drawn from some distribution f(p|x).
If researchers had access to labeled examples—cases where x = 1 or x = 0 was indepen-
dently verified—they could estimate these conditional distributions and compute P(z = 1|p).

However, in many real-world settings, such labeled data are limited or incomplete, making
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it challenging to quantify measurement error or assess the reliability of similarity-based
conclusions. But constructing such labeled gold standard is far from straightforward. It is
clear that two identical text documents should be assigned a similarity of 1, but for similar,
yet not identical, artifacts, there is no obvious way—even in principle—to determine the
gold-standard value for z (if such a standard even exists).

A second challenge stems from the token limit inherent in many modern transformer-based
large language models (LLMs), which can lead to documents being truncated or split into
segments before processing. If only part of a document is embedded, improved embedding
quality may not necessarily compensate for the loss of context. In some cases, it may be
preferable to use a simpler model that can handle the entire text at once than using a more
advanced one restricted to partial input. A related issue concerns the single similarity score
commonly reported when embedding models compare two documents. A 70% similarity
does not necessarily indicate that 70% of the text overlaps in a meaningful way—one might
be dealing with 30% of the text covering 100% of another text’s content, or vice versa.
Approaches that “chunk” documents into smaller segments and compute similarities between
corresponding segments can alleviate some of these distortions, but they add complexity
to the analysis and require a clear understanding of the conceptual role of these different
chunks. In economic applications, this distinction between partial and near-complete overlap
may lie at the heart of whether two technologies are complements or substitutes, yet a single
similarity value may obscure such nuances. Note that this challenge is essentially a technical
one, likely to be solved at least in the medium run.

Another practical consideration is the distribution of similarity scores that different
methods produce. Traditional approaches like TF-IDF and Bag-of-Words yield sparse
and highly skewed similarity distributions, whereas LLM-based embeddings often generate
smoother distributions. If a dataset contains few genuine relationships, researchers may be
inclined to set a cutoff (for instance, discarding all scores below a certain threshold), but
the choice of this threshold is often arbitrary. Inconsistent distributions across methods
complicate direct comparisons and may influence the interpretation of results.

To illustrate this, we randomly draw a set of 1000 USPTO patents filed in 2018 and
compute their pairwise similarity based on their abstracts using twelve different methods.
First, we use a simple Bag-of-Words representation with 1-gram, 2-gram, and 3-gram features:
each (single) word, pair, or triplet of consecutive words—excluding stopwords—is represented
in a high-dimensional occurrence vector. We then repeat the same process but apply TF-IDF

weighting to each term, giving three additional variants. Next, we employ GloVe (Pennington
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et al., 2014), a word-level embedding model trained on a large English corpus, using the “6B,
300-dimensional” release and averaging each document’s word vectors using TF-IDF weights
as in Seegmiller et al. (2023). We also include three larger, general-purpose language models:
OpenAl’'s ADA-002 (a relatively compact GPT-based embedding model), OpenAl’'s GPT-3
large (a larger GPT-based model), and GTE (Li, Zhang, Zhang, Long, Xie and Zhang, 2023)
(a large language model developed by Alibaba). Finally, we use the two models specialized
for patent data we already mentioned: PatentSBERTa and PAECTER.

In each case, we plot the distribution of the 499,999 measures of similarity constructed
from each possible pairs in Figure 1. Visually it appears clearly that these distributions look
very different and in particular the approaches that are based on Bag of Words (whether
weighted or not) yields distribution that are skewed, with a few outliers cases but mostly
very low values of similarity. The sparsity of the similarity matrix is pronounced for models
that weigh based on TF-IDF. This is not surprising, since these BoW approaches can miss
related documents, even as the documents that they identify similar are very likely related.
By contrast, large language models tend to generate distributions that are more continuous
with large average value of similarities in some cases. Somewhat reassuringly these different
models generate scores that are positively correlated with each other as shown in Table 1, but
the correlation can be low in some cases which reinforce the idea that a measure of similarity
needs to be defined carefully using a model that is appropriate to the exercise.

But is there a model that dominates the others? Again, this depends on what the
researcher expects “similarity” to capture. If the researcher expects the patent similarity
matrix to be relatively sparse, similar to the matrix of citation linkages, then approaches that
generate sparsity are desirable. Absent that, researchers often decide on arbitrary thresholds
for what constitutes a related vs unrelated document, which is another way of generating
artificial sparsity. More generally, however, absent a notion of ‘ground truth’, it is not feasible
to decide which of the different methods of computing document similarity is superior to
others. In addition, which method of converting text into numerical vectors performs better
will likely greatly depend on the specific application in mind. A related issue is that these
similarity scores do not include standard errors; developing methods to perform statistical

inference on similarity metrics is likely a fruitful area for future research.
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Table 1: Rank correlation between pairwise similarities

Bag of Words TF-IDF GloVe OpenAl GTE PSB PAEC
1 2 3 1 2 3 Small Large
%: 1 1.00
3
E 2 1.00 1.00
S
¥
m 3 1.00 1.00 1.00
E 1 0.93 0.93 0.93 1.00
E 2 0.93 093 0.93 1.00 1.00
3 093 093 093 1.00 1.00 1.00
GloVe 049 049 049 054 053 0.53 1.00
= Small 043 044 044 048 048 048 0.56 1.00
=
<]
C% Large 043 043 043 047 047 047 051 082 1.00
GTE 025 025 025 027 027 027 026 042 045 1.00
PSB 041 042 042 045 045 045 053  0.72 0.68 036 1.00
PAEC 0.27 027 027 031 031 031 038 053 055 032 043 1.00

Notes: PSB stands for PatentSBERTa and PAEC for PAECTER. Rank correlation based on 499,999 similarities between each pairs of 1000
randomly selected patent abstract.

4 Applications of NLP in Innovation Research

At its core, NLP is particularly valuable for identifying for extracting information, generating
data, and quantifying linkages between textual artifacts. These tasks, together with specific
assumptions about the economic implications of what they mean, can be used to identify key
objects of interest in the data. Here, we provide a few examples of existing applications of

NLP based measure of innovation and how they contribute to important research questions.

4.1 Enhancing the Quality of Underlying Data

One of the most direct ways NLP can aid innovation research is by improving the quality of
underlying data. Patent documents, for example, typically include structured metadata, such
as inventor names, technological classifications, and issue dates, which already offer valuable
insights into an invention’s nature. Yet, thesemetadata often constitute only a fraction of the

information present in the patent itself: as Aharonson and Schilling (2016) note, unstructured
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text in patent applications can be far richer, encompassing technical specifications, references
to scientific literature, and contextual details about the development process. By applying
NLP to parse and extract these textual clues, researchers can more accurately describe and
classify inventions, ultimately laying a stronger foundation for empirical analysis.

A clear illustration of this potential comes from efforts to identify citations to academic
research within the full text of patent publications. Marx and Fuegi (2020), Bryan, Ozcan and
Sampat (2020), and Verluise, Cristelli, Higham and de Rassenfosse (2020) develop NLP-based
approaches that locate and record references to scholarly articles embedded in patent texts.
These citations, often hidden in footnotes or sections reserved for prior art, provide a crucial
link between scientific discoveries and subsequent technological innovations. To identify them,
researchers train named entity recognition (NER) models on curated datasets, enabling the
models to recognize citation patterns in an otherwise heterogeneous corpus of patents.

Beyond the extraction of academic citations, NLP can also be harnessed to clean and
enrich other patent metadata. Historical patent documents, for instance, might lack complete
or standardized information about inventor affiliations, assignee details, or geographical
origins. Early work in this domain frequently relied on formalized document structures,
employing strategies like direct place-name matching (Petralia, Balland and Rigby, 2016)
and regular expressions (Berkes, 2018) to retrieve and standardize these data. While such
proto-NLP methods have performed reasonably well—especially for historical U.S. patents
(Andrews, 2021)—they can fall short when faced with linguistic variability across different
time periods, jurisdictions, or document templates. Recent advances in NLP, including
sophisticated NER models, now offer more robust solutions for extracting entities from patent
texts (Bergeaud and Verluise, 2024). These models can identify and classify text spans
associated with inventors, assignees, or locations, even in the face of spelling variations or
unstructured formatting.

These data enrichment tasks deliver outputs that can be used “off the shelf” and readily
merged with other datasets. Applications include matching patent assignees to firm-level
registers such as Compustat (Kogan, Papanikolaou, Seru and Stoffman, 2017) or matching
scientists or inventors to Census records (Akcigit and Goldschlag, 2023). Unlike many other
NLP tasks, this process has a straightforward success criterion: once an entity is properly
extracted, cleaned, and accurately matched, there is no further need for improvement. The
key advantage of NLP here is that it automates a labor-intensive task—one that would
otherwise overwhelm human capacity, given the vast number of documents to process. This

highlights the value of more coordinated efforts among researchers. It is inefficient for multiple
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teams to conduct repeated matches of inventors to Census data, assignees to Compustat, or
inventors to locations. A better approach might be to develop a shared validation dataset
that is manually curated, thus defining a clear benchmark for accuracy. Such collaboration
would also allow researchers to compare outputs from different models on a case-by-case basis,
focusing attention on ambiguous observations and ultimately converging on more robust,
standardized results. The NBER Innovation Information Initiative ("I3") and its iiindex

project are recent attempts towards moving to this direction.

4.2 Identifying different types of technologies

Economists are often interested in the impact of specific technologies (e.g., semiconductors or
green energy). Identifying these technologies based on information from the patent document
is not straightforward. Patent offices use rich and detailed classification systems for each
publication (CPC, IPC, USPC, etc.), but these classifications are primarily designed for
engineers and are mainly intended to capture common technical features (for example, metal
fusion bonding). Economists, on the other hand, typically seek clusters of documents that
correspond to broader technological fields, products, or economic activities (e.g., semiconduc-
tors). This difference creates a classification problem, already highlighted by Griliches (1998);
Grupp (1998); Schmookler (1966), and Trajtenberg (1987). The NLP methods described in
Section 3.3 can provide a powerful solution to this classification problem.

When using NLP as a classification tool, both supervised and unsupervised approaches
are possible. Recent examples of supervised methods include Webb et al. (2018), who
identify novel technologies such as drones, machine learning, and cloud computing within
the patent corpus; Dechezleprétre et al. (2019), who use terms like “robot” to pinpoint
technological classes likely related to automation; Mann and Pittmann (2023), who look for
words overrepresented in a manually curated set of “automation patents” to assess patents
concerning labor-saving technologies; Ganglmair et al. (2022), who categorize patents into
process and product innovations; and Calvino, Criscuolo, Dernis and Samek (2023) and
Webb (2019), who apply similar techniques to classify patents related to Al. Beyond patents,
Babina, Fedyk, He and Hodson (2024) and Acemoglu, Autor, Hazell and Restrepo (2022)
adapt similar methodologies to analyze job vacancy postings, measuring Al adoption by firms.
These examples rely largely on transparent, keyword-based strategies.

On the other hand, a growing number of studies adopt machine learning techniques and
text embeddings to identify documents relevant to a given category. For instance, Kriesch and

Losacker (2024) use a manually curated seed of bioeconomy patents and embed the text to
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retrieve other, semantically related patents, while Dunham, Melot and Murdick (2020) assign
a probabilistic score to each scientific article, estimating the likelihood that it is related to
Al Recent approaches have developed more advanced “landscaping” methods that combine
rule-based methods such as a hard-coded list of keywords and relevant technological classes
with example documents and then harness embedding-based expansions that rely heavily
on the structure of the patent corpus. This method introduced by Abood and Feltenberger
(2018) and extended by Bergeaud and Verluise (2023) is designed to reduce reliance on the set
of keywords chosen while maintaining a high level of precision and achieve a better balance
between transparency and scalability.

Unsupervised methods started to rely mostly on NLP to extract keywords and group
documents based on the similarity of these keywords without prior knowledge of the target
groups (see, for example, Yoon and Park (2004); Hu et al. (2018) and Bergeaud et al. (2017)).
They progressively started to incorporate topic-modeling techniques with technology-related
corpus. Such a method is implemented by Kalyani, Bloom, Carvalho, Hassan, Lerner and
Tahoun (2021), who use earnings conference call transcripts to identify the technologies most
frequently cited for contributing to companies’ momentum and by Lenz and Winker, 2020
to track the birth and death of inventions by analyzing 170,000 technology news articles

published in a German newspaper.

4.3 Measuring the rate of innovation

In most macroeconomic models, long-run growth is determined by the rate of technological
progress. Empirically, measuring this rate is challenging because of the invention quality issue
discussed above. Since the seminal works of Zvi Griliches and his coauthors (see, e.g., Griliches,
1998), patent publications have frequently been used as proxies for measuring innovation, but it
is widely recognized that the counting of patents provides a crude measure of innovation (Hall,
Jaffe and Trajtenberg, 2001), since the content and impact of patents can vary significantly
between firms, technologies and countries, as well as over time (De Rassenfosse, Dernis,
Guellec, Picci and De La Potterie, 2013).

To improve measurement of the rate of innovation, it is crucial to identify patents that
contribute significantly to technological advances, given that the impact of patents is highly
skewed (Kogan et al., 2017) and only a relatively small number are critical for growth.
Traditional approaches have focused on metrics intrinsic to the patent system, such as the
number of forward citations received (Hall, Jaffe and Trajtenberg, 2000) or the number of

claims (Lanjouw and Schankerman, 2001). However, even within consistent time windows
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and technologies, these measures cannot fully capture the novel impact of a patent Higham,
De Rassenfosse and Jaffe, 2021; Kuhn, Younge and Marco, 2020. For instance, Fadeev (2023)
explores the possibility that citation counts are influenced by input-output relationships
within supply chains, suggesting that citations may reflect economic linkages between firms
rather than the actual novelty or significance of an innovation.

To address these limitations, researchers have developed various NLP techniques to assess
the true novelty of patents, and then used these measures of novelty to weight patent counts.
Typically, these measures are based on a metric that quantifies similarity between patents
and identifies outliers. A natural question that relies on this measure is the extent to which
the creativity of ideas has changed over time and whether good ideas are indeed becoming
scarcer (Bloom, Jones, Van Reenen and Webb, 2020). If this were the case, we would expect
some measure of aggregate novelty to decline over time.

Document linkages, combined with information on the timing of the document can also be
used to construct measures of novelty for particular innovations. In particular, an innovation
that is dis-similar to prior art can be characterized as novel. Gerken and Moehrle (2012)
construct a measure of novelty based on textual dis-similarity for a sample of 300 automotive
patents. In pharmaceuticals, Krieger, Li and Papanikolaou (2022) measure the novelty of
new drugs based on the chemical distance between the molecular structures of the new
drugs and the existing compounds. In other work, Arts, Hou and Gomez (2021) analyze the
use of novel unigrams, bigrams, and trigrams in patent descriptions to evaluate technical
novelty. They identify patents that diverge from prior work and later shape technological
developments. Kalyani (2024) applies this strategy to identify novel, or creative patents,
de Rassenfosse, Pellegrino and Raiteri (2024) uses it to track similar follow-on applications
and De Rassenfosse and Raiteri (2022) to retrieve competing technologies.

More generally, the same idea can be used to quantify a patent’s impact. For example, if
patent i preceded patent j, and patent ¢ and j are textually similar, we can perhaps infer
that patent j builds upon 7. Naturally, if that were the case, patent j should also cite patent
1, but the practice of citations is specific to patent documents and research papers, and even
then, citations are not always consistently recorded. Kelly, Papanikolaou, Seru and Taddy
(2021) show that these document links are indeed highly predictive of citation linkages. They
leverage this idea to identify ‘novel’ and ‘impactful’ patents from 1850 to the present. A
methological innovation in their approach is the use of a backward-looking variant of the
TF-IDF Bag-of-Word embeddings, where the TF-IDF weights are dynamically updated as

new innovations emerge. This approach may be desirable to identify important terms when
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the documents span long periods of time: the word ‘electricity’ is probably more informative
about a patent’s novelty in 1890 than in 1990.

Moving beyond using the pairwise similarity among patent documents, Bergeaud, Schmidt
and Zago (2022b) use the distance between patents and technical standards to measure
the distance to the technological frontier. In other work, Shi and Evans (2023) employ
statistical models to identify patents and research articles in life sciences that diverge
markedly from the prior art, detecting unexpected combinations of knowledge that indicate
potential breakthroughs. Beyond the use of patent publications, Arts, Melluso and Veugelers
(2023) measures novelty in scientific publications, and Bellstam, Bhagat and Cookson (2021)
use analyst reports to develop a measure of innovation at the firm level that applies to
non-patenting firms using topic modeling.

Do these new measures of novelty or impact outperform traditional metrics that rely on
patent citations? While it is challenging to definitively answer this question without external
validation of a document’s true novelty, they have some advantages relative to the use of
citation data. One clear advantage of NLP-based measures is their availability when other
metrics are not. For instance, patent citations are not systematically recorded in USPTO
data prior to the 1950s, and citation practices have varied considerably over time and across
countries. Additionally, a large portion of patents are never cited, and very few receive more
than five citations, whereas text-based measures of novelty provide a continuous metric,
especially with longer texts. Nevertheless, the NLP approaches often generate metrics of
novelty and impact that strongly correlate with citations (see e.g, Kelly et al., 2021).

At the same time, however, NLP-based approaches to measuring novelty have their own
shortcomings. Specifically, dis-similarity is harder to measure than similarity, especially if one
relies on the older approaches (like BoW) that do not really internalize the semantic meaning
of the document. Specifically, two documents that share similar words are probably similar;
however, two documents that don’t share words may have a very similar meaning if it is
conveyed using different terms. This concern can be salient if one is interested in measuring
the novelty of a technology based on how similar its description is to prior technologies,
though it can be mitigated if technologies consistently use specific terms in a similar way.

In brief, NLP techniques allow researchers to construct measures that are consistent
across both time and space. Like any other measure, of course, there is also the potential for
significant measurement error that will tend to bias researchers to classify technologies as
novel when they are not. The extent to which advances in NLP that internalize the semantic

structure of language minimize this measurement error remains to be seen.
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4.4 Identifying knowledge spillovers

The linear model of innovation suggests a sequential process in which ideas, often originating
from scientific research, generate knowledge spillovers that lead to the development of new
technologies or innovations, typically by private firms. These innovations are then adopted
by economic agents, diffusing through the economy and contributing to productivity and
economic growth. Although admittedly oversimplified, this model is useful in framing the
lifecycle of an idea and has been influential in shaping how modern growth theory endogenizes
innovation. It helps answer important questions such as the role of basic research, the
economic returns of an idea, the optimal financing of innovation, and the role of institutions
in facilitating the diffusion of technologies.

Unfortunately, none of the steps in this model are easy to measure in practice. For
example, measuring the influence that scientific research has on the generation of innovation
has proven particularly challenging due to its nature: knowledge flow does not leave an
obvious paper trail and can take many different forms. Similarly, while patent data are
helpful in identifying which firms are developing new technologies, the actual adoption of the
corresponding products or processes is not generally observable at the firm level.

Researchers have historically relied on the assumption that the influence of science on
innovation should be stronger locally and, in the absence of direct measures, have used
geographical distance as a proxy for knowledge flows (Jaffe, 1989). Other approaches have
exploited funding shocks to universities and leveraged heterogeneity in these shocks to identify
real effects (Kantor and Whalley, 2014; Hausman, 2022). However, a new stream of research
has used NLP to create more direct connections between academic publications and (private)
patents. For example, Poege, Harhoff, Gaessler and Baruffaldi (2019); Marx and Fuegi (2020);
Bryan et al. (2020); Verluise et al. (2020) explore how a specific piece of scientific knowledge
has been used in the development of a specific technology. Such knowledge networks are
informative about the direction and nature of knowledge spillovers and have been used to show
that patents drawing more heavily on science are of higher quality (Krieger, Schnitzer and
Watzinger, 2024) or to measure the returns of scientific research in terms of R&D expenditures
and patent outcomes (Azoulay, Graff Zivin, Li and Sampat, 2019; Bergeaud, Guillouzouic,
Henry and Malgouyres, 2022a).

In sum, the diffusion of knowledge from science to applied technologies (patents) can be
measured through notions of document similarity between patent documents and scientific

articles. What is considerably harder, however, is to measure how the technologies diffuse
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from the patented invention to the rest of the economy. The reason is that there is no
systematic corpus of documents, analogous to papers and patents, that corresponds to the
use of inventions in specific economic contexts.

Lacking a single systematic corpus, researchers have employed different sources of product
descriptions to map patents into products. For example, Argente, Baslandze, Hanley and
Moreira (2020) uses the Wikipedia description of non durable goods to measure the probability
that a given patent would be related to a specific good based on how close text descriptions
are, and then track changes in the price of these goods. and Seegmiller et al. (2023) match
patents to industries using industry descriptions. Masclans-Armengol, Hasan and Cohen
(2024) train a language model to measure the commercial potential of science from the
wording of academic articles and a training set made of patents. de Rassenfosse and Zhou
(2020) describe the use of "Virtual Patent Marking’ to find website connections between
specific products and specific patents. These are just examples of the enormous amount of
text on the worldwide web describing products and technologies; it seems there is additional
potential for NLP methods to extract information on technology diffusion from these.

A related and often easier task is to measure the diffusion of a technology to subsequent
technologies. As an example, Kelly et al. (2021) use the similarity between a focal patent and
subsequent patents to identify ‘impactful’ technologies. Frankel, Krieger, Li and Papanikolaou
(2023) identify knowledge spillovers in pharmaceuticals using measures of molecular similarity.
Naturally, however, this approach entails a significant assumption that the earlier technology
somehow ‘caused’ the emergence of the later, related technology. Though this assumption
may be reasonable in certain settings, it is still an assumption that cannot be easily verified.

The same techniques can be used to extract information about firm’s innovations based
on additional sources of data generated by firms beyond the text of patent documents.
For instance, job postings (Babina et al., 2024; Acemoglu et al., 2022) have been utilized
for this purpose. Assuming that labor is complementary to technology, the adoption of
these technologies often implies the hiring of specific skills that can be identified in the
text of job advertisements. More broadly, Kalyani et al. (2021) combine a large set of
documents, including job postings, patents, and earnings calls, to measure the evolution of
these descriptions in relation to the emergence of new technologies. This allows them to track
a given innovation in space as it is progressively adopted by different users. Other examples
include Bellstam et al. (2021), who propose a new measure of technology adoption using
the text of analyst reports for S&P 500 firms and examine the impact on their performance;

Kinne and Lenz (2021) analyze firms’ public communication through their websites to look
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for evidence of new technologies being used; and Kakhbod, Kogan, Li and Papanikolaou
(2024) who combine information from regulatory filings and patents to construct a measure
of the vulnerability of a firm’s intangible assets to creative destruction.

Last, researchers have also examined the similarity between a firm’s innovations and the
tasks performed by workers in specific occupations. Naturally, the interpretation of this
similarity requires some additional assumptions. For example, Kogan, Papanikolaou, Schmidt
and Seegmiller (2021) use textual similarity between patent documents and occupation task
descriptions to infer which technologies are likely to complement or substitute for specific
occupations. Doing so entails some specific assumptions on the economic interpretation of
a similarity of a patent to an occupation task description. Specifically, they assume that
technologies that are textually related to an occupations routine tasks are more likely to
be labor-substituting, whereas technologies that are textually similar to an occupations
non-routine tasks are more likely to be complements. Naturally, this is an assumption that
needs validation in the data. Consistent with their assumptions, Kogan et al. (2021) show
that improvements in technologies that are related to routine tasks are followed by declines
in employment, while improvements in technology that are related to non-routine tasks are
followed by employment increases. Hampole, Papanikolaou, Schmidt and Seegmiller (2025)
apply a similar idea to identifying the impact of the adoption of Al technologies by firms
on labor demand, exploiting the text of online resumes, job postings, and occupation task

descriptions.

5 Conclusion

The field of natural language processing has witnessed a profound transformation over the
years, evolving from fundamental statistical approaches to intricate architectures that leverage
neural networks. These advances have significantly enhanced the ability of researchers in
economics to process textual artifacts and extract useful data. These approaches vary in
both their sophistication and their transparency. Recent approaches are less transparent
than keyword-based approaches but they are potentially better at capturing the meaning of
a specific document.

At a high level, most of these NLP techniques consist of estimating 'similarities’ across
different types of documents. Researchers then use these similarity measurements in many
ways, tracking linkages between agents and institutions, quantifying the novelty (lack of

similarity to previous artifacts) and measuring the impact (similarity to subsequent artifacts)
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of scientific findings and inventions. But different NLP methods produce somewhat different
similarities, both in terms of the ranking of individual artifacts and the overall distributions
of similarity. And deciding which method is ’better’ is hindered by the lack of an underlying
concept of what similarity of text is supposed to be capturing. Outside of the end cases of
identical or orthogonal objects, it is hard to describe what it means substantively for one
block of text to be more similar or less similar to another. Consider two pairs of text artifacts.
The first pair each contain a couple of paragraphs that are identical, but are otherwise mostly
distinct. The second pair has no common paragraphs or sentences but many of the same
words are used in similar contexts. Which of these would we 'want’ our algorithm to judge
'more similar’, and why? Coming at it from the other direction, we would expect that a
technology that is a substitute for another would be described with text that is somewhat
similar, but we would expect the same to be true for complementary technologies. Does this
mean we should interpret "high’ similarity as evidence that two inventions could be either
complements or substitutes, or that there is some kind of nonlinear relationship between
similarity and complementarity, or that similarity actually tells little about the question? We
don’t really know.

As often occurs with new research methods, the power and the frequency of use of these
methods has grown faster than our understanding of what they are really telling us. There
is no doubt that NLP has great potential to increase what is useful as data in innovation
research, to increase the precision and the accuracy of data already in use, and to illuminate
relationships that were previously hard to study. But to realize that potential we need the
allocation of effort to shift somewhat from applying more and more powerful computational
methods to larger and larger datasets, towards thinking about and modeling the underlying

relationships between the texts and the economic concepts that we care about.
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