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1. Introduction

After the breakdown of the Bretton Woods system, several countries have for many

years maintained target zone exchange rate regimes, rather than completely fixed

exchange rate regimes. In these target zones the exchange rate is allowed to float more or

less freely within a specified band, but foreign exchange interventions prevent the

exchange rate from moving outside the band. The European Exchange Rate Mechanism

within the European Monetary System has exchange rate bands for the member countries

of percent, except Spain which has a *6 percent band (Italy's band was recently

reduced from to The Nordic countries outside EMS have unilateral target

zones; Sweden, for instance, has a band of *1.5 percent. Actually, most historical fixed

exchange rate regimes were in practice target zones, although with narrower bands: even

the Gold Standard had gold points, with a narrow band in between (see Yeager (1976,

p. 19—21, 322)).

The existence of target zone exchange rate regimes gives rise to many questions. For

instance, do target zone regimes with relatively narrow bands differ in essential ways from

completely fixed exchange rate regimes? Does the width of the exchange rate band

matter, and if so for what? Is there an optimal band? Do target zones give central banks

some degree of monetary independence, even if there is relatively free capital mobility?

With regard to the last question, it has indeed been argued that the Swedish target zone

gives Sveriges Riksbank some control over domestic interest rates. For instance, if the

Bank moves the krona close to the strong edge of its band, the krona can only depreciate

and not appreciate, and expectations of a depreciation within the band will increase

domestic interest rates above foreign interest rates (see for instance Jä.rnhäl.1 and

Lindenius (1989)).

The traditional theoretical literature on exchange rate regimes does not distinguish

narrow target zones from completely fixed exchange rates. Fixed exchange rate regimes

have traditionally been modeled as having completely fixed exchange rates, with free
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capital mobility resulting in zero differentials between home and foreign interest rates

(absent devaluation risks) and a complete loss of monetary autonomy for small economies.

This framework is clearly inadequate for a discussion of the questions mentioned above.

Only very recently have researchers started to rigorously model and understand the

details of exchange rate determination within an explicit target zone.

Krugman (1988) presented the first model of an explicit rational expectations target

zone for the nominal exchange rate, using the framework of regulated Brownian motion.

He assumed infinitesimal foreign exchange interventions at the edges of a band for a

'fundamental,' the (log of the) ratio of money supply to money demand, preventing the

fundamental from moving outside the band. He showed that this implies an exchange rate

band which is narrower than the fundamental band (the 'honeymoon effect'), hence there

is an inherent stabilizing effect of a target zone. The reason for this inherent stabilizing is

that a weak currency implies expectations of future interventions to reduce the money

supply and strengthen the currency, and expectations of a future appreciation leads to an

immediate current strengthening of the currency. Krugman (1988) also extended the

analysis to an imperfectly credible target zone regime, where the regime collapses once

and for all to a free float with a given probability when the exchange rate reaches the edge

of its band.

A rapidly growing literature has since extended the analysis of target zones in various

directions.2 As a step in the understanding and evaluation of target zones it is important

1 Krugman (1987) was a discrete-time forerunner.
Before the development of the nominal exchange rate target zone model Dumas

(1989a) specified a two-country general equilibrium model with physical capital
movements where the real exchange rate moves in a band exactly like a target zone.
2 The exchange rate target zone model based on regulated Brownian motion has been
extended by Miller and Weller (1988, 1989a,b,c), Flood and Garber (1989), Froot and
Obstfeld (1989a, b), Klein (1989a, b), Krugman (1989), Bertola and Caballero (1989), and
Delgado and Dumas (1990). Pesach and Razin (1990) test the theory on Israeli data.

Harrison (1985), Dixit (1989a, b) and Dumas (1989b) discuss solution techniques for
problems with regulated Brownian motion. Dixit (1989a, b) also give references to the
rapidly growing literature in which the techniques of regulated Brownian motion are
applied to economic problems other than target zones, notably problems of irreversible
investment and hysteresis.
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to understand the relation between exchange rate and interest rate determination. A

small economy's trade-off between the width of the exchange rate band and the variability

of interest rate differentials was examined in Svensson (1989). There I found that, for

reasonable parameters, the interest rate differential's asymptotic (unconditional)

variability is not monotonic but increases with the exchange rate band for narrow bands,

reaches a maximum, and then slowly decreases for wide exchange rate bands. In contrast,

the interest rate differential's instantaneous (conditional) variability is monotonic and

always decreasing in the exchange rate band. A devaluation/realignment risk was

incorporated and shown to imply an upward shift in the interest rate differential.3

The negative trade-off between the exchange rate band and the interest rate

differential's instantaneous variability implies that narrow target zones have the largest

instantaneous variability of the interest rate differential. An exchange rate band of about

*1 percent is in this aspect quite different from a completely fixed exchange rate regime,

with a zero variability of the interest rate differential. With a il.5 percent exchange rate

band, for reasonable parameters the interest rate differential's instantaneous standard

deviation is about 3 percent per year. (The expected time before the exchange rate

reaches the edge, starting form the middle of its band, may for such a narrow exchange

rate band still be almost a year (see appendix), so the instantaneous variability is

certainly relevant.)

The analysis in Svensson (1989) only concerns the instantaneous interest rates, say

overnight interest rates. The implications for longer term interest rates are at least as

important. For instance, it is often argued that the three-month interest rate has the

largest effect on short term capital movements. Most borrowing and lending is certainly

not at overnight interest rates. There is also reason to expect that longer interest rates

behave differently from shorter ones. For instance, since in the longer run (at least with

credible bands) the exchange rate variability is bounded by the band, the exchange rate

3 1 also showed that an endogenous risk premium is sufficiently small as not to matter,
in particular for narrow exchange rate bands, and that therefore uncovered interest
arbitrage seems to be a reasonable approximation for narrow bands.
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variability per unit of time to maturity decreases with the time to maturity. Therefore,

we might expect both the variability and absolute value of interest rate differentials for

long terms to be less than for short terms.

In the present paper, the interest rate differentials for arbitrary terms are derived and

examined. That is, we compute the complete term structure of interest rate differentials

and derive its properties. This task is complicated by the fact that the exchange rate ina

target zone is in theory a complicated non-linear and heteroscedastic stochastic process.

We will see that the term structure of interest rate differentials can be expressed as the

solution to a so-called parabolic partial differential equation with derivative boundary

conditions (smooth pasting conditions). This equation is a variant of the partial

differential equations arising in option pricing theory (cf. Merton (1973)). The solution to

the equation will be computed in two different ways: via the analytical Fourier-series

solution (using methods described in Churchill and Brown (1987)) and via a direct

numerical method (using methods described in Gerald and Wheatley (1989)). The

solution is then used to derive some testable implications about the term structure of

interest rate differentials. We also consider the effect of devaluation/realignment risks on

the term structure.

Data on the term structure of Swedish interest rate differentials are examined, and

some implications of the theory are found to be broadly consistent with the data.

There exists an extensive and elaborate literature on theory and empirical estimates of

the term structure of interest rates (see for instance the surveys by Shiller and McCulloch

(1987) and Singleton (1987)).4 The theory of the term structure of interest rate

differentials developed here should of course be seen as complement and not a substitute

to that theory: For a small open economy which faces an exogenous term structure of

world interest rates, the domestic term structure of interest rates follows from the term

structure of interest rate differentials. The term structure of interest rate differentials is

4 Ekdahl and Warne (1990) provide a study of the Swedish term structure of interest
rates.
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related via interest parity conditions to the term structure of expected currency

depreciation, if domestic and world capital markets are sufficiently integrated. The term

structure of expected currency depreciation can be explicitly characterized in an exchange

rate target zone. This way, the route via the term structure of interest rate differentials

offers a shortcut. Simultaneously, the term structure of world interest rate may be

determined according to the established theories, and the term structure of the domestic

interest rates may also fulfill the equilibrium conditions of the established theories.

The paper is organized as follows: Section 2 presents Krugman's (1988) target zone

model. Section 3 derives the interest rate differential for different terms. Section 4

discusses the interest rate differentials' variability. Section 4 incorporates a

devaluation/realignment risk. Section 5 presents the empirical results. Section 6 includes

a summary and conclusions. An appendix specifies the expression for the expected time to

bit the edge of an exchange rate band, a variant of the Feynman-Kac formula for

regulated Brownian motion, the analytical Fourier-series solution to the resulting partial

differential equation, and the direct numerical solution to the partial differential equation.

The appendix also includes a discussion of the interest rate differential's variability.

2. The Exchange Rate

We use the basic loglinear model of the exchange rate. The log of the exchange rate

at time r, e(r), is equal to a 'fundamental,' f(r), plus a term proportional to the expected

change in the log exchange rate,

(2.1) e(r) = f(r) + cEtde(r)]/dr, a> 0,

where Eis the expectations operator.5

This exchange rate equation can be seen as a general asset-pricing relation. It can

also be seen as the result of a simple monetary exchange rate theory for a small open

S E[de(r)]/dr denotes lim3 {Ele(r + s)} - e(r)}/s.
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economy. In this case the fundamental is the sum of two components,

(2.2) f(r)=m(r)+tr),
(the log of) the domestic money supply, m, and (the negative of the log of) a composite

money demand shock, v, called velocity. Velocity is given by

(2.3) t.(r) = - y(r) + q(r) - p*(r) + ai*(r) + ap(r) -

Here is the elasticity of money demand with respect to output, p is the log of home

output, q is the log of the real exchange rate, p is the log of the foreign price level, is

(the absolute value of) the semi—elasticity of money demand with respect to the home

nominal interest rate, i' is the foreign nominal interest rate, p is an exogenous risk

premium which equals the interest rate differential less the expected exchange rate

depreciation, and f is a money demand disturbance.

In what follows, velocity will be an exogenous stochastic process whereas the money

supply will be a stochastic process under direct control by a monetary authority.

Together these stochastic processes will determine the endogenous stochastic process of

the exchange rate via equation (2.1).

The saddle—path solution to (2.1) can be written

(2.4) r) =
ETJ {e[-(s -

the expected present value of the path of future fundamentals over , discounted by 1/a,

where Er denote expectations conditional upon information available at time r. The

saddle-path solution excludes bubbles. The expected value of a bubble would grow

exponentially in the present model. Since we are going to discuss exchange rates which

are restricted to a target zone, it makes particular sense to exclude bubbles. Henceforth

6 The exchange rate is measured in units of home currency per unit of foreign currency.
The model consists of the money demand function, m - p = - ci + e, the definition of
the real exchange rate, q = e + p - p, and the definition of the risk premium, p =- - Ede]/dt. Elimination of p and i, assumed to be endogenous and flexible, gives
(2.1)-(2.3).

See Froot and Obstfeld (1989a) for an interpretation in terms of a two—country model.
See also Miller and Weller (1988, 1989b) for an interpretation in terms of Dornbusch's
overshooting model.
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we shall therefore only discuss saddle-path solutions to (2.1).?

In order to model a target zone for the exchange rate, we assume that foreign

exchange market interventions, which directly affect the money supply, are undertaken to

prevent the fundamental to move outside a specified band for the fundamental. As we

shall see this will imply a well defined band for the exchange rate.5

Hence we assume that there are lower and upper bounds for the fundamental,

f and [, such that the fundamental fulfills

(2.5) f ( f(r) � 1.
With interventions affecting the money supply, the stochastic process for the fundamental

obeys

(2.6) df(r) = dm(r) + dt(r),

where we now let dm represent the effect of foreign exchange market interventions on

domestic money supply. Velocity is assumed to follow a Brownian motion with drift p

and instantaneous standard deviation c (this obviously involves conditions on the

components in (2.3),

(2.7) dv(r) =dr + udz(r),

where (r) is a Wiener process with Eldz] = 0 and E[dz2j = dr. Inside the band, there are

no interventions, dm = 0, and the fundamental follows

(2.8) df(r) = dt(r) = pdr + ad2(r).

1 A bubble to (2.1) is a stochastic process B(r) that can be added to the solution (2.4)
and produce another solution. Such a bubble must obviously fulfill B(r) =
cE7.[dB(r)]/dr, that is, it has an expected growth rate equal to lick. Any stochastic
process of the form dB(r) = [B(r)/ck]dr + a(r)dz(r) will do (with z(r) a Wiener process,
and where o-(r) could be a function of B(r)). A special case is the deterministic
exponential B(r) = B(0)exp(r/ck). Since > 0 in the present model, the expected value
of a bubble would grow indefinitely.

As Flood and Garber (1989) and Froot and Obstfeld (1989a) have emphasized, it is
not sufficient to just specify that interventions will occur when the exchange rate reaches
the edges of the band. This is because there are several different ways to intervene to
defend a given exchange rate band. In order to have a determinate equilibrium it is
therefore necessary to specify exactly how the interventions are undertaken.

As argued in Svensson (1989), if an exchange rate band is announced together with
the rule that interventions will be infinitesimal and undertaken at the edges of the band
only, a unique fundamental band can be inferred from the exchange rate band also if the
fundamental band is not explicitly announced.
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At the edges of the band, there are infinitesimal interventions to prevent the fundamental

from moving outside the band.9 These interventions can be represented by lower and

upper 'regulators,' L and U, such that

(2.9) dm(r) = dL(r) — dU(r),

where dL and dUare nonnegative, dL represents increases in money supply and is positive

only if f = 1 and dUrepresents reductions in money supply and is positive only if f = f.
Once the fundamental moves inside the band, the interventions cease. This implies that

the fundamental is a regulated Brownian motion.'°

The saddle-path solution to the differential equation (2.1) under these circumstances

will be a twice differentiable function of the fundamental, e(r) = e(f(r)). More precisely,

it is given by

(2.10) e(f) = f + ap + A1exp(A1f) + A2exp(A2f),

where A1 and A2 are the roots to the characteristic equation in A,

(2.11) (2/2)A2 + apA —1 = 0,

and where the constants A1 and A2 are determined from the much discussed "smooth

pasting" conditions,

(2.12a) ej(I) = e1(fl
= 0,

that the function e(f) should be flat at the edges of the fundamental bandit The smooth

pasting conditions and (2.10) then imply

(2.12b) 1 + A1A1exp(A1f) + A2A2exp(A2f) = 0 and

(2.12c) 1 + A1A1exp(A1fl + A2A2exp(A2fl = 0,

from which the constants A1 and A2 can be solved. 12

9 Flood and Garber (1989) extend the target zone model to include finite interventions.
10 See Harrison (1985) for the theory of regulated Brownian motion.
11 See Krugman (1988), Dixit (198gb) and Dumas (1989b) for further discussion of the
smooth pasting conditions. As emphasized by Dumas (198gb), the smooth pasting
conditions here is really an infinitesimal value-matching condition, arising for any given
infinitesimal regulator. This condition should be distinquished from "higher-order
contact" conditions resulting from optimizing.
12 Application of Ito's lemma on Elde(f)]/dr in (2.1) results in the ordinary differential
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The function e(f) thus derived can be shown to be increasing, and the exchange rate

will have lower and upper bounds given by

(2.13) e = e(J) and =

The familiar S-shaped graph of the exchange rate function is shown in Figure 1. The

smooth pasting conditions imply that the exchange rate curve is tangent to the edges of

the exchange rate band. The parameters are = 0, zero fundamental drift; = .1, which

corresponds to an instantaneous standard deviation of the exchange rate of 10 percent per

year under free float; and a = 3, which corresponds to a money demand interest rate

elasticity of .3 with a 10 percent nominal interest rate. The bounds for the fundamental

in Figure 1 are 9.4 percent (f = -f = .094), which under zero fundamental drift

corresponds to symmetric bounds for the exchange rate equal to 1.& percent ( = e =

.015), the width of the Swedish exchange rate band. This is the set of parameters for

which all diagrams below will be constructed.

3. The Intert Rate Differential

Let i*(r;) denote the foreign nominal interest rate on a pure discount foreign currency

bond purchased at time r, with term (time to maturity) t, that is, maturing at time r + t,

� 0. These foreign interest rates are given for our small open economy. The foreign

interest rates may be stochastic processes (derived, say, as in Cox, Ingersoll and Ross

(1985)) or deterniimstic — as long as they are exogenous to our small open economy. Let

equation e(f) = I +ape1(f)+oa2e11(f)/2. The solution to this differential equation is

(2.10).
In the case of a zero fundamental drift and a symmetric fundamental band, p = 0

and f = -[, there is a neat symmetric solution. Then the roots and can be written

= - < 0 and A2 =\ > 0, where A = /a. The constants A1 and A2 fulfill A1

= A > 0 and A2 = -A < 0, with A = 1/[2Acosh(Af)J. The target zone exchange rate

can then be written as e(f) = f - sinh(Af)4Acosh(A[)]. (We recall that the hyperbolic
sine and cosine fulfill sinh(z) = [exp(z) - exp(-x)J/2 and cosh(z) = [exp(z) + exp(-x)]/2.)
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us also assume that we can disregard any risk premium between home and foreign nominal

bonds, and assume uncovered interest rate parity.13 Let i(f ,r;t) denote the nominal

interest rate on a home currency pure discount bond, purchased at time r with the

fundamental 1(r) equal to 1 and maturing at time r + t, t > 0. Then we assume the

following approximate form of uncovered interest rate parity:

Ele(f(r + t)) 1(r) = 11 - e(f)
(3.1) i(f,r;t) — z*(r,t) = _______________________________

The difference between the home term-t interest rate and the foreign term—t interest rate

equals the expected change in the (log) exchange rate (the expected depreciation until

maturity) divided by the time to maturity. Since the exchange rate and fundamental are

Markov processes, the right-hand side of (3.1) depends only on the level of the

fundamental at the time of purchase, f, and the term, t, not on the time of purchase of

the bond, r. Therefore, the interest rate differential, the left-hand side of (3.1), which we

will denote by E(f ;t), also depends only on f and t. Since both sides of (3.1) are

independent of the purchase time, we can set the purchase time equal to zero and define

the interest rate differential as

Ete(f(t)) I f(0) = fJ - e(f)
(3.2a) cS(f;t) = , t> 0.

The interest rate differential for instantaneous bonds, 5(f;0), will then be given by

(3.2b) ö(f;0) = lim ö(f;t) = Elde(f(r))}/dr.t - 0+

The instantaneous interest rate differential equals the expected rate of change, the drift, of

the exchange rate.

The interest rate differential for very long terms approach zero, since the numerator

on the right-hand side in (3.2a) is bounded,

13 The risk premium should be very small in narrow target zones, as shown in Svensson
(1989,1990), so uncovered interest arbitrage should be a good approximation.

Note that it is the foreign exchange risk premium for the same domestic and foreign
term that is assumed to be small. There may very well be significant term premia
between foreign currency bonds of different terms, This would show up in the exogenous
foreign interest rates ;*(r;t). With uncovered interest parity the same risk premia would
then show up between home currency bonds of different terms.
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(3.2c) (f; ) = urn (f;t) = 0.

3.1 Free Float

Before further consideration of a target zone, let us briefly consider a free float,

meaning an exchange rate regime without any interventions.

First we specify what the exchange rate is under a free float. We assume that under a

free float the money supply m is held constant at, for simplicity, a zero level, m = 0.

Then the fundamental is simply equal to velocity, I = v. Velocity and hence the

fundamental follow the Brownian motion (2.8). This implies that the probability

distribution of f(s) at times, conditional upon 1(r) = f at time r, s > r, is normal with

mean f + (s - r) and variance i2(s - r). By directly integrating (2.4) we see that the

solution to the exchange rate equation (2.1) is simply

(3.3) e(r) = 1(r) + c.

It then follows from (3.2) that the interest rate differential fulfills

(3.4) 5(f;t)=p, t0.
The interest rate differential is equal to the constant expected rate of change of the

exchange rate, the expected rate of depreciation of the home currency, and it is

independent of the term and the fundamental.

3.2 Target Zone

Next we shall consider the target zone exchange rate regime, described by the

stochastic process for the fundamental, the regulated Brownian motion (2.2) and

(2.5)-(2.9), and the stochastic process for the exchange rate, described by (2.10)—(2.12).

For zero term, the instantaneous interest rate differential is by (3.2b) and (2.1) easy to

compute as

(3.5) ö(f;0) = [e(f) - f]/a.
For positive terms, it is more difficult to compute the interest rate differentials (3.2a).

The difficulty lies in computing the expected exchange rate at maturity on the right-hand
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side of(3.2a),

(3.6) h(f;t) = Ekf(t)) 1(0) = 11.

This is difficult since the exchange rate is a complicated nonlinear heteroscedastic

stochastic process, with variable drift and instantaneous standard deviation.

Application of a finite-horizon variant of Harrison's (1985) infinite-horizon version of

the Feynman-Kac formula for regulated Brownian motion (see appendix for details)

shows, after some manipulations, that the function h(f ;t) defined in (3.6) will be the

solution to the partial differential equation,

(3.7a) ht(f;t) = zhj(f;t) + (1/2)2h11(f;t), f � I � f, t> 0,
with the initial condition

(3.7b) h(f;0) = e(f), / � I � 1,
and the derivative boundary conditions

(3.7c) h1(J;t) = 0 and h1(f;t) = 0, t 0.

Equation (3.7a) is a so-called parabolic partial differential equation, similar to those

that arise in option pricing problems (see Merton (1973)). The initial condition (3.7b) is

obvious. The derivative boundary conditions (3.7c) are smooth pasting conditions like

(2.12a). (For equal to zero the partial differential equation is identical to the so-called

heat equation in physics which describes thermal diffusion; see Churchill and Brown

(1987).)

The intuition for the smooth pasting conditions for the expected maturity exchange

rate is similar to, although somewhat more involved than, the smooth pasting conditions

for the exchange rate: For a fixed future date T, define the the stochastic process

Ff(r),r) according to

(3.8) F(f,r) = h(f;T- T), r T.

That is, F(f(r),r) is the expectation at cakndar time r, given the value of the

fundamental at time r, of the exchange rate at a fixed future date T (h(f;t) is a function

of term). Let us express (3.7) in terms of Ff,r). It is shown in the appendix that (3.8)

and Ito's lemma implies that (3.7a) is equivalent to
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(3.9a) EdFf(r),r)] = 0, J � f(r) � f, r
that is, the expected change in Ff(r),r) is zero. The initial condition (3.7b) is now

equivalent to a terminal condition,

(3.9b) FJ,T) = e(f).

Since by (3.8) F1(f,r) = h1(f;T- r), the smooth pasting conditions (3.7c) for h(f;t) are

equivalent to the smooth pasting conditions

(3.9c) Fj(f,r) = 0, and Fj(f,r) = 0, r T,

for Ff,r).

Let us now propose that there exists a solution h(f;t) to (3.7a) and (3.7b) that does

not fulfill the smooth pasting conditions (3.7c) for all t � 0. Then there also exists a

solution F(f,r) fulfilling (3.9a) and (3.9b) but not the smooth pasting conditions (3.9c).

This solution is also the (mathematical, but not economically meaningful) solution to

(3.9a) and (3.9b) under a free float when no interventions are undertaken and the

fundamental is allowed to drift freely outside the fundamental band. (We then interpret

the function e(f) in (3.9b) as referring to the mathematical extension of the exchange rate

function (2.10), with (2.11) and (2.12), to values of the fundamental outside the

fundamental band.) Suppose that Ff,r) instead of fulfilling the smooth pasting condition

is increasing at the upper edge of the fundamental band, Fj(f,r) > 0, for a particular

r < T. Such an Ff,r) is illustrated in Figure by the dashed curve, increasing at

point Y at the upper edge of the fundamental band. Under a free float, at point Y the

fundamental can either decrease and move inside the band or increase and move outside

the band. We know that F(f,r) fulfills (3.9a) for f =[ under a free float. If we impose

the band, interventions prohibit the fundamental from taking values above f. Then, at

point Y, the fundamental can either stay the same or decrease, never increase. Since

F(f,r) is increasing, it follows that it must now be the case that EtdFf,r)] < 0, in

violation of (3.9a). Hence the proposed F(f,r) and h(f;t) cannot be a solution with the

band. The only case when F(f,r) and h(f;t) can be a solution both with and without the

band is when they are neither increasing or decreasing at the edges of the band, that is,
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the smooth pasting conditions (3.7c) and (3.9c) must be fulfilled. Such an P1f ,r) is

illustrated by the solid curve through point X in Figure 2. This completes the discussion

of the intuition of the smooth pasting conditions.

The partial differential equation (3.7a) with initial condition (3.7b) and boundary

conditions (3.7c) can be solved in (at least) two different ways. First, it has an analytical

Fourier-series solution, which can be derived with methods described in for instance

Churchill (1963). This series involve a summation of infinitely many terms, and in

practice this analytical solution has to be computed numerically as a summation of a

truncated series. The Fourier—series solution is presented in the appendix. Second, the

partial differential equation can be solved in a direct numerical way, using for instance the

so-called explicit method described by Gerald and Wheatley (1989). This method of

solution is also presented in the appendix. It is reassuring that both methods of

computing the solution give the same result.

The numerical solution to the expected maturity exchange rate h(f;t) is illustrated in

Figures 3a-c, for a zero fundamental drift. Figure Sa shows the expected maturity

exchange rate as a function of the fundamental, for terms equal to 0, 1, 3, 6, 12, and 60

months. For zero term the expected exchange rate, of course, coincides with the current

exchange rate, the solid curve. For positive terms the expected maturity exchange rate

has a similar but flatter S-shape, still increasing in the fundamental and flat at the edges.

The expected maturity exchange rate lies between the current exchange rate and the

exchange rate's unconditional mean. (With a symmetric band and zero fundamental drift,

the exchange rate's unconditional mean is zero.) The further into the future the maturity,

the closer the expected maturity exchange rate is to the unconditional mean. This is seen

also in Figure b, which shows the expected maturity exchange rate as a function of the

term for given levels of the fundamental equal to zero, * half the fundamental band, and *

the full fundamental band (that is, f equals 0 %, *4.7 %, and *9.4 %). The solid curve

corresponds to the fundamental and the exchange rate being at their lower edges. The

expected exchange rate five years ahead or more is practically equal to the unconditional
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mean.

Figure Sc shows a three-dimensional graph of the expected maturity exchange rate as

a function of both the fundamental and the term.

Given the behavior of the expected maturity exchange rate h(f;t), it is then straight-

forward to compute the interest rate differential for positive terms as

h(f;t)- e(f)
(3.10) 5(f;t) = , for I > 0.

The interest rate differential for a given positive term can be found in Figure 3a, first, by

taking the vertical signed difference between the corresponding expected maturity

exchange rate curve and the current exchange rate curve and, second, by dividing the

difference by the term. The interest rate differential is illustrated in Figures 4a-d.

Figure a shows the interest rate differential as a function of the fundamental, for the

same terms as in Figure 3a, that is, 0, 1, 3, 6, 12, and 60 months. The solid curve is the

instantaneous (zero-term) interest rate differential, ö(f;0), which coincides with the drift

of the exchange rate and the expected instantaneous depreciation of the currency, and

which can easily be computed according to (3.5). The properties of the instantaneous

interest rate differential are extensively examined in Svensson (1989). Here it is only

necessary to note that it is decreasing in the fundamental. In the left and lower part of

the fundamental and the exchange rate bands, that is when the currency is strong,

expectations of future interventions to increase the money supply imply expectations of a

depreciation of the currency and hence a positive interest rate differential. Conversely, in

the right and upper part of the fundamental and exchange rate band, expectations of

future interventions to reduce the money supply imply expectations of an appreciation

and a negative interest rate differential. The instantaneous interest rate differential does

not fulfill the smooth pasting conditions.'4

' The instantaneous interest rate differential is, in the case with zero drift and
symmetric bands, by footnote 11 and (3.5) given by 5(f;t) = -sinh(\f)/[a.\cosh(.[)].
The interest rate differential's derivative with respect to the fundamental is then given by

51(f;t) = -cosh(\f)/[oosh(A[)], and the derivative at the edges are oj(J;t) =
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For positive terms the interest rate differential curves are flatter than for zero term,

except for very short terms and in the middle of the band. In contrast to the

instantaneous interest rate differential, positive—term interest rate differentials fulfill the

smooth-pasting conditions and are flat at the edges of the band.' This implies that the

derivative of the interest rate differential with respect to the fundamental, j(f;t), is

discontinuous at t = 0. Figure b shows the interest rate differential as a function of the

term for the same levels of the fundamental as in Figure 3b (zero, half the fundamental

band, and the full fundamental band). The solid curve corresponds to the fundamental

and exchange rate being at the lower edges of their bands. The interest rate differential is

decreasing in the term, except for very short terms and intermediate levels of the

fundamental, where it is approximately flat. For long terms the expected maturity

exchange rate is close to its unconditional mean, and the absolute value of the interest

rate differential is approximately the distance between the exchange rate's unconditional

mean and its current level, divided by the term, which will be decreasing in the term. For

shorter terms, the difference between the exchange rate's expected maturity value and

current value (the vertical difference between the corresponding curves in Figure 3a) is

increasing in the term, which effect goes the other way. Except for very short terms and

intermediate levels of the fundamental, the effect of dividing by the term dominates.

We also see that for very long terms, the interest rate differential approaches zero, in

accordance with (3.2c).

Figure jc shows a three-dimensional graph of the interest rate differential as a

function of both the fundamental and the term.

Figure (d shows the interest rate differential as a function of the exchange rate rather

than the fundamental, for given terms. We note that for positive terms, the relationship

is approximately linear, and more so for longer terms.

= -1/cr < 0.
'5 The interest rate differential fulfills the smooth pasting conditions for positive
maturities, since by (3.13) 6 = (h1

-
e1)/t and both h(f;t) and e(f) fulfill the smooth

pasting conditions.
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We see that we get very specific conclusions about the properties of the interest rate

differential for different terms. These specific properties certainly invite empirical testing

of the target zone model, in particular the relations between the term structure of interest

rate differentials and the exchange rate depicted in Figure 4d. We shall return to Figure

4d when we look at some data. But first we shall deal with devaluation risk.

4. Devaluation risk

So far the target zone exchange rate regime has been assumed to be perfectly credible.

Let us now extend our analysis of the term structure of interest rate differentials by

allowing for a devaluation/realignment risk.

There are several ways of modeling devaluations/realignments. We follow Svensson

(1989) and model devaluations as reoccurring with some given constant probability,

regardless of where in the band the exchange rate lies. This will allow a simple analytic

solution of the exchange rate equation. Also, some real world devaluations seem indeed to

occur when the exchange rate is in the interior of the band.16 More precisely we model

devaluations as occurring according to a Poisson process Mr) with constant parameter

u> 0, meaning that during the interval dr the process will take at least one jump of unity

with probability vdr + o(dr) and remain unchanged with probability (1 - zidr) + o(dr).17

Then Mr), taking integer values, can be interpreted as the number of devaluations that

have occurred up to and induding time r.

A devaluation is then modeled as a simultaneous shift of the same magnitude g in the

lower and upper bounds for the fundamental as well as in the money supply. (A positive g

corresponds to a net devaluation, a negative to a net revaluation.) Then a devaluation

16 For instance, when Sweden devalued in September 1981 and October 1982 the Krona's
value was above previous minimum values.

See Miller and Weller (1988, 1989a) and Bertola and Caballero (1989) for an analysis
of repeated realignments that occur with a given probability at the edge of the band.
'7 We let o(dr) denote terms of order higher than dr, that is, limdT o(dr)/dr =0.
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maintains the fundamental's position relative to the fundamental band. More precisely,

the lower and upper bounds for the fundamental are functions f(N) and [(N) of the

number of devaluations given by

(4.1) =4) + gN and [(N) = + 9N,

where 4) and are constants. After N devaluations, the fundamental is restricted to

fulfill

(4.2) � I � [(N).
The upper and lower bounds thus change according to

(4.3) df = gdN and d[= gdN,

where dN is unity with probability vdt and zero with probability (1 - vdt). Similarly, the

money supply is now given by the process in = L - U + gq, that is,

(4.4) dm = dL - dU+ gdN,

where L and U are the lower and upper regulators described in section 2.

The exchange rate still fulfills the exchange rate equation (2.1) (we continue to

disregard the risk premium), but it will now be a function e(f,N)ofboth the fundamental

and the number of devaluations. It is easy to show (see Svensson (1989)) that the

exchange rate equation is given by

(4.5) e(f,N) = f + p + &vg + A1exp[A1(f - gN)] + A2exp[)\2(f -

where and 2 are the roots of the characteristic equation (2.11) and the constants A1

and A2 are given by (2.12) with 4) and substituted for f and [.

Comparing (4.4) for N = 0 with the solution without devaluation risk, (2.10), we

realize that the only modification of the exchange rate function is the addition of the

term iug, times the rate of expected devaluation. Indeed, the exchange rate functions

with and without devaluation risks are related by

(4.6) e(f,N) = e(f - gN) + gN + wg.

In Figure 1, for instance, the only modification is that the curve corresponding to the

target zone exchange rate is shifted up by avg. When a devaluation occurs, the curve is

shifted each time up and to the right by the magnitude g, hence every point on the curve
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is shifted on a 45 degree line northeast in the figure.

Let 5(f,N 1) denote the term-t interest rate differential, given the current level of the

fundamental and number of devaluations. It is given by

- hf,N;t) -
(4.7) 5(f,N;t) =

where

(4.8) h(f,N;t) = Efe(f(t), N(t)) I f(0) = f, N(0) = N]
is the expected maturity exchange rate. We observe that the expected maturity exchange

rate can be written

(4.9)

h(f,N;L) = E[e(f(t) — gf) I f(1) = f, N(t) = VI + LgN() N(0) = NI + vg =
= h(f-gN;1)+gN+zigt+avg.

The first equality follows from (4.6) and the fact that the expected maturity exchange

rate can be decomposed into the expected movement inside the band absent any

devaluations (the first term on the right-hand side of the first equality) and the expected

devaluations (the second term on the right-hand side of the first equality). The second

equality follows from the definition of h(f;t) in (3.6) in the absence of a devaluation risk,

and from the properties of a Poisson process.

Substitution of (4.9) and (4.6) into (4.7) gives
- h(f - 9N ;t) + ugi - e(f -

(4.10) o(f,N;1) = = E(f - 9N;t) + i'g,

where the second equality follows from the definition of the interest rate differentials

(3.10) in the absence of any devaluation risk.

Hence, with a devaluation risk the only modification of the interest rate differentials is

that a constant equal to the rate of expected devaluation, ug, is added for each term.

Otherwise, the interest rate differentials depend on the term and the fundamental relative

to the current fundamental band as without devaluation risk. In particular, for very long

terms the interest rate differential does not approach zero but the rate of expected

devaluation,
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(4.11) (f,N; ) = ug.

In Figures 4a-d, the only modification is that all graphs are shifted up by ug.

5. Empirical Results: Sweden 1986-1988 18

Sweden has had a unilateral exchange rate target zone since 1977. The band for the

krona is specified in terms of an index for a currency basket of trade-weighted currencies,

with double weight for the dollar. The krona was devalued 1981 and 1982 by 10 and 16

percen. respectively. At the last devaluation the central parity was set at 132. The

width of the band was initially kept secret at *2.25 percent. During the Spring of 1985

there were considerable capital out-flows, the krona depreciated, and the index rose above

132. This may have caused increased uncertainty about the exchange rate band. Interest

rate differentials rose to very high levels. In June 1985 the band was reduced to *1.5

percent and publicly announced. During the Fall of 1985 the interest rate differentials fell

considerably and capital flows stabilized.' During the winter 1989-1990, after

considerable nominal wage increases, interest rates rose dramatically and devaluation

rumors started to circulate.

I have chosen to examine the period February 1986-October 1989 because thisappears

to be a rather stable period for the Swedish target zone, after the unrest of 1985 and the

regime shift of June 1985 and before the unrest of the winter 1989—1990.

Monthly data (last day of month quotations) of the exchange rate index, Swedish

Treasury Bill interest rates, and Euro interest rates have been collected for terms 1, 3, 6,

12 and 60 months. From the Euro interest rates a foreign interest rate index has been

computed with the same weights as in the currency basket. The interest rate differentials

are then the difference between the Swedish interest rate and the foreign interest rate

18 I thank Nils Gottfries for many discussions on this section (and exempt him fromany
responsibility).
19 See Hörngren and Viotti (1985) and Ringström (1987) for details.
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index. (The sample of 60 month Euro interest rates is incomplete. Some national bond

interest rates have been added. The corresponding currencies make up only about 50

percent of the currency basket.)

The exchange rates and the interest rate differential data is plotted for the period

February 1986-February 1990 (months numbered 2-50) in Figure 5a. The exchange rate

is measured in percentage deviation from the central parity, and the interest rate

differentials are measured in percent per year. Figure 5b shows the interest rate

differentials for 1, 3, 6, 12 and 60 months shifted up 0, 1, 2, 3 and 4 percent, respectively.

Summary statistics for the period February 1986-October 1989 are collected in Table 1.

The correlation coefficients are displayed in Table 2.

We initially note in Figure 5 and Table 1 that the exchange rate during 1986-89

fluctuated between the lower edge (-1.5%) and the middle of the band (0%) and never

went far into the upper half of the band. This raises the possibility that the Riksbank

during the period actually defended an implicit band consisting of the lower half of the

explicit band.20 We will return to this possibility below. With regard to the issue of any

drift in the fundamental, a positive drift would imply that the exchange rate were most of

the time away from the lower edge of the band. In Figure 5 the exchange rate is fairly

evenly distributed in the lower part of the band, which is not inconsistent with a zero

fundamental drift. Let us tentatively condude that the hypothesis of a zero drift cannot

be rejected.

Let us recall Figure 4d, which summarizes the theoretically derived relations between

the exchange rate and the interest rate differential for different terms, with zero

fundamental drift and in the absence of a devaluation risk. In the theory, the mean of the

interest rate differentials is zero, absent any devaluation risk. In the data, we see in

Figure 5 and Table 1 that the mean i positive and between 1.2 and 2 for all interest rate

differentials, alerting us to the possibility of a devaluation risk. In the theory, the interest

20 See Horngren and Viotti (1985), Ringstrom (1987) and Klein (1989a) on implicit
bands inside the official band.
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rate differentials are negatively correlated with the exchange rate. In the data, Table 2

indeed displays a clear negative correlation between the exchange rate and the
differentials.

In the theory, the band for each interest rate differential should be decreasing in the

term, as is apparent from Figure 4d. In the data, Table 1 shows that the interest rate

differentials' minimum is increasing in the term (except for the 60-month interest rate

differential), and that the maximum is decreasing in the term. Hence, the interest rate

differential bands defined this way are indeed decreasing in the term. In the theory, the

(unconditional) standard deviations of the interest rate differentials are decreasing in the

term. We see in in Table 1 that this is also the case for the data. Even if the differences

in the standard deviations may not be significant, we note that there are no reversals in

the order.

It has often been observed that the variablitiy of long term interest rates is less than

the variability of short term interest rates (see Shiller and McCulloch (1987)). Here we

see a similar result with respect to the interest rate differentials. The similarity is only

superficial, though. The theoretical explanation for the result on the differentials is

completely independentent of the variability of interest rates; it has only to do with the

variability of expected future exchange rates.

Hence, we see that the theoretical results on the interest rate differentials are indeed

consistent with some summary statistics of the data. Let us however look a bit closer at

the data. In Figure 4d, the theoretical relations between the interest rate differentials and

the exchange rate are fairly linear (especially for longer terms). Let us consider a linear

approximation to the relation the interest rate differentials and the exchange rate, for

given terms t:

(5.1) r;t) = a(t) + b(t)e(r) + e(r;t).

The coefficients b(t) are negative and increasing in term, according the theory. Absent

fundamental drift, the constants a(t) should be zero if there is no devaluation risk. We

take the error terms e(r;t) to have zero mean and to be uncorrelated with theexchange
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rate. Then it is appropriate to do a linear regression of the interest rate differentials on

the exchange rate, for each term, in order to estimate a(t) and b(t).

OLS regressions reveal low Durbin-Watson statistics and hence possible serial

correlation of the error terms. I have therefore used Hansen and Hodrick's (1980) version

of 0MM (General Methods of Moment) together with Newey and West's (1987)

modification which makes sure that the estimate of the variance-covariance matrix is

positive semidefinite. This method allows serially correlated and heteroscedastic errors.

In the particular case considered here, the GMM estimator coincides with the OLS

estimator, whereas the standard errors are computed differently.a1

The results from the GMM regressions are reported in Table S. The estimates of the

constants and the coefficients of the exchange rate are displayed in columns (2) and (3).

I have also run iterated GLS regressions under the assumption that error terms are AR(1)

(using a modified Cochrane-Orcutt procedure which includes the first observation). The

GLS regressions give similar results and are not reported here.

The estimates of the constants are all significantly positive. Under the maintained

hypothesis of zero fundamental drift, we can therefore reject the hypothesis of no

devaluation risk. The estimates of the coefficients for the exchange rate are negative as in

the theory. They are significantly less than zero except for a 60 months term. The

coefficients are decreasing in the term, as in the theory. Even if each decrease in that

slope is not significant, we note that there are no reversals in the order. The regression

lines are plotted in Figure 6. Except for the differing intercepts, the similarity between

the theoretical Figure 4b and the empirical Figure 6 is striking. The steepest line

corresponds to a 1 month term, the second steepest line to a 3 month term, etc., exactly

as in the theory. The slope of the 60-month term line is not significantly different from

zero. In the theory it should be very flat.

Let us go on and discuss the estimates of the constant terms in the regressions. A

21 I am grateful to John Campbell and Bernard Dumas for suggesting the use of GMM.
Further details on GMM are given in Hansen (1980), Cumby, Huizinga and Obstfeld
(1983) and the survey by Hodrick (1987).
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constant in the regression equation might (according to (4.10) and the theoretical analysis

in section 4) be interpreted as an estimate of an average devaluation risk, measured as the

expected rate of devaluation, the probability per unit of time of a devaluation times the

size of the devaluation. (For instance, a 10 percent probability per year of a 20 percent

devaluation results in an expected rate of devaluation of 2 percent.) The constants

correspond to the intercepts of the regression lines in Figure 6, that is, the levels of the

regression lines for a zero exchange rate. Looking at the intercepts in Figure 6, we see

that the devaluation risk is about 1.2 percent.

Suppose, however, that the exchange rate band has actually been only the lower half

of the official &1.5 percent band. Then the relevant estimate of the average devaluation

risk is not the intercept in the middle of the official band, at a zero exchange rate, but the

level of the regression lines in the middle of the lower half of the band, that is for an

exchange rate equal to - .75 percent. Then we see from Figure 6 that the average

devaluation risk is about 1.9 percent for a 1-12 month horizon, and about 1.2 percent for a

60 month horizon. We recall that the sample of 60-month Euro interest rates is

incomplete, which may be one reason why that differential appears to be an outlier.

A considerable proportion of the total variability of the interest rate differentials

remains unexplained by the exchange rate and is instead explained by serial correlation in

the error terms. (The R-squared of the regressions is between .2 and .4, for 1-12 months

term, see column (4) in Table 3.) A rather reasonable interpretation of these error terms

is that they are serially correlated devaluation risks. It makes sense that the perceived

devaluation risk might vary over the period, and it also makes sense that it would be

serially correlated. The estimates of the constants referred to above are then the averages

of these time-varying devaluation risks. If time-varying devaluation risks actually enter

the error terms, it is important that they are uncorrelated with the exchange rate.

Otherwise the estimates of the coefficients b(t) are biased. Since the exchange rate has

been rather stable in the strong half of its band during this period, it does not seem

impossible that any devaluation risks actually have been uncorrelated with the exchange
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rate.

Any non-zero correlation between devaluation risks and the exchange rate is bound to

be positive rather than negative (increased devaluation risk should if anything depreciate

the currency). Such positive correlation would make the estimates of the slopes of the

regression lines biased towards less negative slopes and more positive slopes. Even with

such possible bias the estimated slopes are still negative and significantly different from

zero (except for a 60 months term). Any bias would therefore actually seem to strengthen

our results.

Miller and Weller (1988, 1989a) and Bertola and Caballero (1989) have developed

models where devaluations occur with a given probability at the upper edge of the

exchange rate band. In such models there may arise a positive relation between the

interest rate differential and the exchange rate.22 Whereas there is some evidence for such

a positive relation for Franc-Deutschmark and Lire-Deutschmark interest rate

differentials (see Bertola and Caballero (1989) and Bodner (1989)) our results show that

there is no evidence for this in Swedish data from the period February 1986 - October

1989. Our results on a negative relation between interest rate differentials and the

exchange rate indicate that any devaluation risk is at most weakly and possibly not at all

correlated with the exchange rate. It may very well be the case that the Swedish target

zone has operated quite differently from the French and Italian target zones in the

European Monetary System.

Another interpretation of the serially correlated error terms is that they are shadow

taxes, or transactions costs, due to remaining exchange controls. Swedish exchange

controls have been gradually dismantled during the last few years, and were (almost)

completely abolished only in July 1989. The effects of the exchange controls in the last

few years have been much discussed. The general view seems to be that they have hardly

been binding during the period and probably had very little effect.

22 As shown by Bertola and Caballero (1989) the positive relation occurs when the
exchange rate function has a reversed S-shape.
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A third interpretation of the serially correlated error terms is that they might be

time-dependent serially correlated foreign exchange risk premia, as discussed in the

survey by Hodrick (1987) and by Hörngren and Vredin (1988). However, for relatively

small target zones (like the Swedish one) Svensson (1989, 1990) finds that in eory such

risk preinia should be insignificant, at least with limited devaluation risks.

I conclude from this look at the data that, although the error terms need further

explanation, and the theory need further elaboration (for instance to include more

sophisticated devaluation risks than the ones considered in section 4), the theory and the

Swedish data for the period examined are consistent to a considerable extent, for instance

as summarized in Figures 4d and 6.

6. Summary and Condusions

We have computed the term structure of interest rate differentials in a narrow target

zone, as a function of the fundamental's and the exchange rate's position in their bands.

The computation has been done in two different ways, via an analytical Fourier-series

method and via a direct numerical method. Both methods give the same results. In

diagrams we have illustrated both the qualitative and quantitative behavior of the interest

rate differentials.

The interest rate differentials' qualitative dependence on the position in the band is

quite intuitive. For a given term, the interest rate differential is decreasing in the

fundamental and the exchange rate. In the lower part of the exchange rate and

fundamental bands, that is, when the currency is strong, expectations of future

interventions to increase money supply imply an expected future depreciation, which in

turn imply positive interest rate differentials; vice versa in the upper part of the

fundamental and exchange rate bands. In contrast to the instantaneous interest rate

differential, finite-term interest rate differentials fulfill smooth pasting conditions at the

edges of the band. The relation between interest rate differentials and log exchange rates
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is rather linear, especially for longer terms.

The interest rate differentials' qualitative dependence on the term is also quite

intuitive. The interest rate differential is determined by expected depreciation until

maturity, divided by the term. For a given position in the fundamental and exchange rate

bands, for medium and long terms the interest rate differential's absolute value is

decreasing in the term, since the expected depredation until maturity is bounded by the

exchange rate band and not much affected by changes in the term.

We have also shown how devaluation/realignment risks can be incorporated. For the

particular assumptions used here, for instance that the devaluation risk is independent of

the exchange rate's position in the band, a devaluation risk simply implies a constant

upward shift, equal to the expected rate of devaluation, of all interest rate differentials.

An examination of Swedish data shows broad consistency between some implications

of the theory and the data. The theory's prediction that the interest rate differentials are

decreasing in the exchange rate, less so for longer terms, and that the interest rate

differentials' bands and standard deviations are decreasing in the term are all confirmed in

the data. On the other hand, a limited proportion of the total variability of interest rate

differentials are explained by variations in the exchange rate.

As possible factors explaining the remaining variability of interest rate differential and

serial correlation of error terms, we have noted serially correlated devaluation risks,

remalning exchange controls, and risk premia. The possibility of distinguishing these will

be subject to further theoretical and empirical work.

That interest rate differentials are decreasing in the exchange rate supports the

assumption that devaluation risks in the Swedish target zone do not increase when the

Krona depreciates within the band. In this respect the Swedish target zone may differ

from how the French and Italian target zones have operated within the European

Monetary System, where it appears that interest rate differentials increase when the Franc

and Lira depreciate relative to the Mark, as discussed by Bertola and Caballero (1989)

and Bodner (1989).
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In the introduction we remarked that the the theory of the term structure of interest

rate differentials developed here is a complement and not a substitute to established

theories of the term structure of interest rates. One way to combine the two would be to

use the relations derived in this paper as additional restrictions in empirical tests of the

established theories of the term structure of interest rates.

Let us also briefly comment upon some real or only apparent limitations of the

analysis. A most obvious limitation is perhap8 the simplifying assumptions about the

behavior of velocity shocks, and the assumption about infinitesimal marginal interventioas

only. These two assumptions imply that the fundamental follows a regulated Brownian

motion with reflecting barriers, that is, with constant drift and instantaneous standard

deviation inside the band. Intramarginal interventions, that is, interventions inside the

band, can be incorporated to a considerable extent, though. If they lead to a process for

the fundamental with mean reversion, or more generally to any process with a variable

drift that depends on the level of the fundamental, 4f), the exchange rate function e(f)

can always be solved numerically.23 The numerical solution to the exchange rate function

can then be used in our procedure to solve the interest rate differentials numerically. Our

partial differential equation (3.7a) is a bit more complicated, with a variable ji, but it can

always be solved with the direct numerical method should the Fourier—series method

become cumbersome. I believe that the relation between interest rate differentials and the

exchange rate illustrated in Figure 4d is rather robust and should appear also with other

specifications. Clearly, data on central bank interventions would be extremely helpful in

deciding which stochastic process is the best representation of central bank behavior. 24

Finite interventions rather than infinitesimal can be handled and the exchange rate

function can then still be solved analytically, as demonstrated by Flood and Garber (1989)

23 Actually, if the drift function p(f) is linear, an analytical solution to the exchange
rate function exists, namely the so-called confluent hypergeometric function (see
Dumas (1988) and Froot and Obstfeld (1989b)).

24 Mundaca (1989) uses intervention data to model interventions of Norges Bank and the
effect of interventions on exchange rate volatility in the Norwegian target zone.
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and Bertola and Caballero (1989). Our numerical method of determining interest rate

differentials would, it seems, still work; only the smooth pasting conditions would be

replaced by so called value-matching conditions (see Dixit (1989b) and Dumas (1989b) for

a discussion of the relation between smooth pasting and value-matching conditions).

Again, data on central bank interventions would be extremely helpful in deciding whether

finite or infinitesimal interventions are the best approximation.
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Appendix

A.1 The Expected Time to Hit the Edges of the Band

The fundamental is a regulated Brownian motion fulfilling (2.5)-(2.9). Using results

in Harrison (1985), it is not difficult to find the expected time EtIf)] for the

fundamental to hit the first time either of the edges, starting at the level f, J � f < f. It

is given by

(Ala) f)J = U - -
for p= 0, and

1 - exp[-2(f - j)/2]
(A.lb) 2 ([-J)-U-f)}/ for 0.1 - exp[-2i(f -

Consider the zero drift case. With f = -J = .094 and = .1 per year, EtT(f)] is

about 10.6 months for f = 0.

A.2 The Finite-Horizon Feynman-Kac Formula for Regulated Brownian Motion

We use a finite-horizon variant of Harrison's (1985, p. 83) infinite-horizon Feynman-

Kac formula for regulated Brownian motion:

Consider a regulated Brownian motion Z. (r is calendar time) with lower and upper

bounds a and b,

Z = X + Lr - U E [a,b].

The stochastic process X. is a Brownian motion with drift and instantaneous variance

and L and U are the lower and upper regulators, respectively. Let n(r,r) and g(z,r)

be given twice continuously real-valued functions [a,b} R - R and let T, i, c and r be

given constants. Assume g1(a, I) = c and g(b, fl = r. Consider the integral

(A.2)

;r) = E{ J e1T)[u(Z3,s)ds
-

cdL8 + rdU8] + e TT)zT 'fl I =

for a x � b and r T. Then the finite-horizon Feynman-Kac formula for regulated

Brownian motion says that, under some regularity conditions, Fx,r) is the unique
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solution to the partial differential equation

(A.3a) DF(r,r) - qFTz,r) + u(z,r) = 0, a z b, r T,
with the terminal condition

(A.3b) Fr,7) = g(;T)

and the derivative boundary conditions (smooth pasting conditions)

(A.3c) F1(a,r) = c and F(b,r) = r, r 7'.

Here D denotes the differential operator

DFx,r) = F(x,r) + pF(z,r) + (1/2)a2F11(x,r).
If we restrict 17 to be positive, let T go to infinity, delete the function (•) and the

terminal condition, assume that the function u(.) does not depend on r, observe that then

Fr.) will not depend on r, and for convenience set r = 0, we get Harrison's (1985, p. 83)

formulation (with t = s, A = i, a = 0, and h(x) = Fr,t)).
If we instead let a and b go to minus and plus infinity, respectively, delete the

regulators and the smooth pasting conditions (that is, we consider an unregulated

Brownian motion, Zr = Xv), we get the formulation in Duffle (1988, p. 226) (with t=

V(x,t) = Fz,t), p(x,t) = i, p(z,t) = p, and c(z,t) = a).

In order to solve (3.6), we can define, for a given constant 7',

Ff,r)=E[e(fT) 4=f] r T.
That is, in (A.2) we have Z. = f, x = 1 a = f, b = [, u(.) 0, and 17 = C = r= 0.

Then it follows from (A.3) that Ff,r) is the unique solution to the partial differential

equation

(A.4a) F(f,r) + pFj(f,r) + (1/2)a2F11(f,r) = 0,

with terminal condition

(A.4b) F1f,T) = e(f)

and derivative boundary conditions

(A.4c) Fj(f,r)=0 and Fj(f,r)=0,
for / � I � [ and r T.

We now set the term t = 7' - r for r T, that is, t � 0. We then define h(f,t)
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F(f,T - t), in which case we have h1(f,t) Fj(f T - 1) and h(f ,t) T - t).

Then (3.7) follows from (A.4).

By Ito's lemma we have EtdFf(r),r)] = DF(f(r),r)dr. Therefore, (A.4a) is

equivalent to

EIdF(f(r),r)] = 0,

that is, (39a).

A.3 The Analytical Solution to the Partical Differential Equation (3.7)

The analytical Fourier-series solution to the partial differential equation (3.7) can be

derived with methods described in, for instance, Churchill and Brown (1987). For p =0,

the problem is identical to the boundary value problem for the temperature h(f;t) in an

inflrute slab of material, bounded by the planes f= f and f= 1, when the slab's faces are

insulated and the initial temperature distribution is the prescribed function e(f) (see

Churchill and Brown (1987, p. 36_42)).25

Let a = ([ - f)/ir, x= (f - f)/a, (x) = e(az-i- J), and (r,t) = h(az+ f;t).
Then (3.7) implies the partial differential equation for g(x,t)

(A.5a) = pg + agJ2,
(A.5b) z,0) = e(x), and

(A.5c) g(O,t) = g(ir,t) = 0,

for 0 � x � 'r and t � 0, with p = p/a and a = a/a. Separation of variables, x,t) =

X(z)7t), leads to two ordinary differential equations,

(A.6) T(t) + It) = 0

and a version of the so-called Sturm-Liouville problem,

(A.7a) X1(x) + 9X(z) + \(O/p)X(x) = 0,

(A.7b) X(0) = X1(r) = 0,

where 0 = 2p/a2 and ,\ is a constant.

There is a countable infinity of real numbers .\, i' 2'' eigenvalnes, of the

25 am grateful to Harald Lang for showing me how to compute the solution.
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parameter A for each of which the Sturm-Liouville problem has a solution not identically

zero fulfilling (A.7). The corresponding solutions X0(z), X1(r),.. are called eigenfanctions.

The eigenfunctions are orthogonal with weight factor exp(Ox), the integrating factor of

this Sturm-Liouville problem.

The differential equation (A.6) for 1(1) is solved by 1(1) =exp(-At) for each A. Then

any solution to the partial differential equation (A.5) can then be written as the Fourier

series

g(r,t) = c X(z) exp(-At),

where the constants c are determined by the initial condition (A.5b) according to

=
J exp(0z) e(z) X(z)dz / J exp(Ox) I X(z) I 2dz.

Given this, with a fair amount of algebra it can be shown that the solution to (3.7)

can be written (with 0 =2p/ci2):

(A.8a) h(f;t) = c y(f) exp(-At), f (f � f, t � 0,

where

(A.8b) y(f) = 1,

(A.8c) (f) = exp[-O(f-J)/2] {2n cos[n(f-J)/aJ + Oa sin[nf-f)/a1}, n? 1,

(A.8d) c0=J1e(f)df
1

, for=0,

(A.8e) c0 = J exp(Of) e(f)df , for jz 0,f exp(O[) - exp(Of)

c =J1e[f-f)] e(f) y(f)df
)Aa2/2'

1,

(A.8g) A0 = 0,

and

(A.8h) A = (n2/a2 + 02/4)i2/2 > 0, n?1.
For p = 0 this solution coincides with the solution reported in Churchill and Brown
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(1987, p. 41)).

We see that h(f;t) -. for t -+ T. Indeed, c0 is the unconditional expected exchange

rate. When p = 0, the unconditional (that is, ergodic) probability distribution is uniform,

whereas for # 0 it is truncated exponential, with density function ,(f) =

Oexp(Of)/[exp(91) - exp(Of)], J � f [ (see Harrison (1985)).
Since the function e(f) in our case by (2.10) is a sum of linear and exponential terms,

the integrals in (A.8d-f) are exact and c0 and c can actually be solved explicitly. (The

solutions are not reported here.) When e(f) is such that explicit solutions of and c
cannot be found, (A.8d-f) can still easily be computed numerically.

We note that it follows from (A.8) that h(f;t) can be written

(A.9a) h (f;t) =
J e(g) (f,g ;t)dg,

where

- expjO(f -J)] (f)(A.9b) (f,g ;t) = (g) +
n=1 \a2/a2

exp (_At),

(A.9c) (g) = 1/Cf - f) for p = 0,

(A.9d) (g) = 9exp(g) / [exp(8[) - exp(9f)] for p # 0.

Here (f,g ;t) is the transition densityoff(t) = g at time t, given 1(0) = fat time 0.

Given this, the transition densities of the exchange rate, interest rate differentials,

etc., can all be computed. The exchange rate's transition density is for instance given by

(A.10) (e0,e;t) = (f(e0),f(e);t) / 1(f(e)), e < e < ,
where f(e) denotes the inverse of e(f).

A.4 The Numerical Solution to the Partial Differential EQuationjfl

We like to find the twice continuously differentiable function u(z,t): [x,J [0,) - R

that is the solution to the parabolic partial differential equation

(A.lla) u(r,t) = pu(z,t) + (1/2)c2u(z,t),
with initial condition
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(A.llb) u(z,O) = x)
(where e(x): [x,z] -. R is twice continuously differentiable and fulfills e1(r) = e(3) = 0)

and the derivative boundary conditions

(A.llc) u(z,t) = 0 and u1(,t) = 0.

We follow the so-called explicit method described in Gerald and Wheatley (1989,

Chapter 8), where further details are discussed.

First, we define an I x Jgrid for (r,t). For a given positive integer I, let

z= (i - 1)zx+ z, for i= 1,.., 1, with zx= (— z)/(I- 1).

For a given positive integer J and a given positive real time-step t, let

= jLt, j = 0,.., J— 1.

We then define

u=u(rt) for 0j
Second, we approximate the derivatives and u2 by central differences and the

derivative u by a forward difference:

u(z t) = (u.1+i
-

u(z,t2) = - 2w+ t1)/(Lx)2, and

U(z ,t) = (v -

Third, we substitute these approximations of the derivatives into (A.8a) and get the

difference equation

- u)/t = - _i)/(2r) + (1/2)12(u - 2u+ _i)I(z)2.
This difference equation can be rewritten as

(A.12a) = (. + s)u + (1 - 2r)u + (r - s)u1, with

(A.12b) r= azt and
2(Az)2 2Lx

Fourth, the difference equation (A.9) is defined for the interior of the z-band, 2 � i �

I - 1, but we also need to find the difference equation for the boundaries, I =1 and i = I.

We then incorporate the derivative boundary conditions by adding an x-point below and

above the previous i-grid,



that is,

(A.13)

A.5 The Interest Rate Differential's Variability

For given positive term t > 0 the interest rate differential at time r, E(r;t), will be an

Ito process with drift p5(f;t) and instantaneous standard deviation o(f;t), given by the

36

x0=z-Az and
The conditions (A.8c) can then be expressed as

u(rtj) = (u - u)/(2zz) = 0 and = (u1 - = 0,

= u and = t41.
Fifth, we can now substitute (A.13) into (A.12a) for i = 1 and i = I in order to define

the difference equation also on the boundaries. The we get the system

uJ+l = (1 - 2ru + 2ru;
u1 = (r+ s)r+i + (1- 2r+ (r- )-i' 2< 1< 1- 1; and

= 2ru1 + (1 - 2r)u
We can write the system more compactly by defining the tn-diagonal I 'J matrix A =

(ad) such that = 0 for all i and j except that

(A.14a) a11 = 1- 2r, a12 = 2r;

(A.14b) a2,2_i=r_s,a=1_2r,a,+i=r+s for 2�iI—1; and
(A.14c) a111 = 2r, a11= 1 - 2r.

We let denote the I-dimensional column vector (u)1. Then the system can finaliy

be written

(A,15a) ?71=A?1forj=O,i,.,,J-l,
with the initial condition

(A.15b) = (u')1 = (e(x))1.
This system is straightforward to solve numerically by forward iteration. In order to

ensure stability of the system, zx and t must be chosen such that r defined in (A.10)

fulfills

(A.16) r .5.
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stochastic differential equation

(A.17) dE(r;t) = p5(f;t)dr - a5(f;t)d2(r).

(Since we know that the interest rate differential is negatively correlated with the

fundamental, we write a minus sign before the Wiener component, in order to define

c8(f;t) as positive.) The drift inside the band for the interest rate differential is by Ito's

lemma given by

(A.18) ji(f;t) =
p81(f;t) +

The instantaneous standard deviation is given by

(A.19) c5(f;t) =

the product of the absolute value of the derivative of the interest rate differential and the

instantaneous standard deviation of velocity. For zero term, the stochastic differential

equation for the instantaneous interest rate differential also includes the effect of the lower

and upper regulators in (2.9). This is because the instantaneous interest rate differential

does not fulfill the smooth pasting conditions.26

The interest rate differential's instantaneous standard deviation as a function of the

fundamental is shown in Figure Al, for different terms (0, 1, 3, 6, 12, and 60 months).

The solid curve corresponds to zero term. We note the discontinuity between finite and

zero term at the edges, corresponding to the discontinuity of the derivative bj(f;t) at t =

0, which we have discussed above. Positive-term instantaneous standard deviations are

largest in the middle of the band, and fall to zero towards the edges of the band, in

contrast to the zero-term instantaneous standard deviation. This is because the positive-

term interest rate differentials fulfill the smooth pasting conditions, which is not the case

26 By Ito's lemma we have dr;t) =
81(f;t)df+ (1/2)511(f;t)df2 =

= 81(f;t)(dv + dL - dU) + (1/2)511(f;t)u2dr =

= [p51(f;t) + (1/2)c2Sjj(f;t)]dr + ö(f ;t)dL - 51([;t)dU+ 61(f;t)adz.
By the smooth pasting conditions, we have 51(f;t) =

51(f;t)
= 0 for positive maturities,

and the terms including dL and dU vanish, which gives (A.18) and (A.19). For zero
maturity, the terms including dL and dUremain.
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for the zero-term interest rate differential. We also see that the instantaneous standard

deviations are decreasing in the term, except for small terms and intermediate values of

the fundamental.

The asymptotic (unconditional) variability of the interest rate differentials are easy to

compute numerically. The asymptotic probability density function ç(f) for the

fundamental is derived in Harrison (1985). It is uniform with zero drift and truncated

exponential with nonzero drift. Then the asymptotic probability density function for the

term-t interest rate differential, tt)(6), is given by

(A.20) t)( = f(5;t))/o1(f(5;t)), 5(f;t) < 5< J;t),
where f(5;t) denotes the inverse of b(f;t) with respect to I (because of the smooth pasting

conditions, the probability density function (A.20) is only defined on the interior of the

interest rate differential band). These probability density functions can easily be plotted

for different terms. The interest rate differentials' asymptotic standard deviations can

then be computed numerically.21

27 The instantaneous interest rate differential's asymptotic standard deviation can
actually be computed exactly even though its probability density function can only be
computed numerically (see Svensson (1989)).
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Table 1. Snmmry Statisti

Variable Mean Std Dev Minimum Maximum

e -0.78 0.46 -1.48 0.24

5(1) 2.03 0.88 0.16 3.73

5(3) 1.90 0.76 0.22 3.36

5(6) 1.89 0.64 0.28 3.18

5(12) 1.94 0.54 0.38 3.06

5(60) 1.24 0.54 -0.34 2.17

5(t) denotes the interest rate differential for t months term.

Table 2. Corrdation Coedents

Variable e 5(1) 5(3) 5(6) 5(12) 5(60)

e 1.00

5(1) -0,60 1.00

5(3) -0.63 0.96 1.00

5(6) —0.63 0.92 0.98 1.00

5(12) -0.48 0.76 0.82 0.89 1.00

5(60) -0.22 0.48 0.50 0.58 0.75 1.00
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Table 3. General Method of Moments Regressions of 5 on e

(1)

Dependent
Variable

(2)

Constant

(3)

Coefficient

(4)

R2

(5)

DW

(6)

Auto-
correlation

5(1) 1.13**
(0.21)

- 1.16**
(0.19)

0.36 0.90 0.54

5(3) 1.08**
(0.23)

— 1.05**

(0.21)
0.40 0.72 0.64

5(6) 1.22**
(0.22)

- 0.87**
(0.19)

0.39 0.72 0.64

5(12) 1.50**
(0.25)

- 0.56k
(0.19)

0.23 0.72 0.64

5(60) 1.04
(0.29)

- 0.26
(0.23)

0.05 0.51 0.76

Standard errors are given in parenthesis. We use ** (*) to denote significance at 5%
(10%) level. The number of nonzero autocorrelations of the errors has been set to 8. The
standard errors are not very sensitive to changes in this number. Column (6) shows the
estimate of the autocorrelation of the error terms.
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