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1 Introduction

Production takes time. From the extraction and preparation of raw materials to the design,
manufacturing, assembly, and distribution of finished goods, each step entails a distinct duration
influenced by technological and economic factors. The importance of time in production was
emphasized by Classical economists, including David Ricardo and Karl Marx, and was at the
core of the capital theory proposed by Böhm-Bawerk (1889). This ‘Austrian’ capital theory
was somewhat anticipated by Jevons (1871), and was further elaborated by Wicksell (1934),
Hicks (1939) and Dorfman (1959), among many others. A central concept in this literature
is the existence of an average period of production which governs the demand for circulating
capital associated with a production process.

This old literature invoked several examples to illustrate the benefits of longer, more working-
capital-intensive production processes. Jevons (1871) and Wicksell (1934) describe the problem
of a tree planter who needs to decide when to harvest a forest to maximize returns. If the
trees are cut down too early, they yield little timber and profit. If left to grow longer, the
trees increase in size, and their economic value rises—but the planter must wait longer for
the returns. Similarly, Böhm-Bawerk (1889) mentioned wine aging to demonstrate how time
adds value to goods through production processes that are inherently dependent on waiting.
These examples highlight the trade-off between immediate returns and the gains from a longer
production process. These examples also hint at a natural connection between production
length and interest rates, as the tree planter and wine producer must weigh the time value of
money against the increased output from waiting.

The benefits of longer production processes are not limited to these stylized examples. In
modern manufacturing processes, the need for care and precision often leads to trade-offs in
which longer production processes are favored despite the higher associated working capital
needs. Beyond manufacturing, time is crucial for research and development. The pharmaceutical
production process often spans 10 or 15 years for a single drug, involving discovery, preclinical
testing, and multiple phases of clinical trials. Each phase is designed to ensure the drug’s
safety and efficacy, but the long duration highlights the enormous time investment required
before market approval. Time impacts costs significantly: estimates suggest that, in the
biopharmaceutical industry, over $1 billion is required to bring a new compound to market,
with much of the expense tied to sustaining operations during prolonged R&D efforts (DiMasi
and Grabowski, 2007).

Building on the work of Böhm-Bawerk (1889) and Hicks (1939), in this paper we propose a
measure of the average period of production (or APP), defined as a weighted average temporal
distance between the time at which a firm employs its inputs and the time at which these inputs
deliver finished goods that are sold to consumers. In Section 2, we develop the theoretical
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underpinnings of this measure and study how it is shaped by the cost of capital faced by firms.
In Section 3, we develop specific examples that connect with prior theoretical work on the topic.
In Section 4, we show that, under stationarity conditions, this measure corresponds to the ratio
of a firm’s stock of inventories to the cost of the goods it sells in a given period, opening the
door for empirical explorations of the average period of production in a wide range of sectors.

Using data from publicly traded companies, in Sections 5 and 6, we compute this measure
for firms and industries in several countries, and we show that, consistent with theory, this
measure increases as the cost of capital faced by firms decreases. We also find that the ranking
of industries by their average period of production is quite stable across countries. This
suggests that there are important technological determinants of production length that shape
the temporal dimension of certain production processes regardless of where they are conducted,
a feature that is reminiscent of the absence of factor intensity reversals in neoclassical trade
theory. Furthermore, we find that industries with longer production processes tend to feature
higher skill intensity but lower physical capital intensity, pointing to an interesting dichotomy
between physical capital intensity and working capital intensity.

2 A Conceptual Measure of the Average Period of
Production

Consider a production process taking place in continuous time over a potentially endogenous
time interval r0, T s. We will refer to T as the length of the production process. The mapping
between inputs and output is governed by the production function

Y pLq “ Z pLq F pLq , (1)

where L is the infinite-dimensional vector of inputs employed along the production process, i.e.,
L “ tℓ ptqutPr0,T s

. We think of the input vector as encompassing both labor and materials but
we will simplify the exposition by often referring to it as labor, with an associated wage rate w.
Firms treat w and the price p of the good as given, and for simplicity we assume, for the time
being, that these prices are time-invariant.

The function F pLq captures a production technology mapping labor L into output, and
we assume it is homogeneous of degree one in the vector L. The function Z pLq is interpreted
as a measure of productivity, which is also potentially affected by the path of labor used in
production. Specifically, we assume that Z pLq is homogeneous of degree 0 in L (to avoid
introducing scale effects), and we define the vector λ “ tℓ ptq {LutPr0,T s

, where L “
şT

0 ℓ ptq dt is
the total labor use along the whole production process. Thus, λ ptq captures the distribution of
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labor expenditures along the production process.
Given a path of labor used along the production process, we define the average period of

production or APP as

APP pλq “

ż T

0
pT ´ tq λ ptq dt. (2)

This measure represents a weighted average temporal distance between the time t P r0, T s when
inputs are utilized and the time T marking the completion of the process and the sale of the
good. The weights are determined by the shares of employment λ ptq at different points in
time. While this definition is closely related to the one proposed by Böhm-Bawerk (1889), his
formulation was developed in discrete time.

Böhm-Bawerk (1889) famously posited that more roundabout production
processes—featuring a disproportionately large share of input expenditures happening far from
the completion and sale of the product—tend to be associated with disproportionately higher
labor efficiency. In his own words:

A greater result is obtained by producing goods in roundabout ways than by
producing them directly. Where a good can be produced in either way, we have the
fact that, by the indirect way, a greater product can be got with equal labour, or the
same product with less labour. [...] That roundabout methods lead to greater results
than direct methods is one of the most important and fundamental propositions in
the whole theory of production. Böhm-Bawerk (1889, p. 19-20).

According to this view, it may be sensible to let the function Z pLq depend on L in a way
that makes Z increasing in the average period of production, or Z pLq “ Z pAPPq, with
Z 1 pAPPq ą 0.

Because the cost of inputs w is time-invariant, it is clear that APP pλq also captures a
weighted distance of labor expenditures from the collection of final-good sale revenue. Such an
expenditure-based alternative measure of the APP can easily be amended to allow for time-
varying wages by instead defining λ “ tw ptq ℓ ptq {ELutPr0,T s

, where EL “
şT

0 w ptq ℓ ptq dt is the
total input spending along the whole production process. Hicks (1939, Chapter XVII) proposed
an expenditure-based definition of the average period of production, but instead advocated
applying a discount factor for input expenditures at different dates.1 Hicks’ adjustment is
definitely appropriate when computing the circulating capital demands associated with a
production process, but it is less obviously suitable when studying the effect of the average
period of production on productivity. We will return to this point in Section 4.

1Specifically, APPHicks is given by (2) with λHicks “

!

w ptq ℓ ptq e´rt{
şT

0 w ptq ℓ ptq e´rtdt
)

, where r is the
relevant discount rate (e.g., the interest rate).
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Note that the average period of production in (2) is naturally bounded below by 0 and
bounded above by T . For a given production length T , the average period of production is
higher, the higher the share of inputs that are used in earlier phases of production. The average
period of production will also typically be increasing in T , though this will not necessarily be
the case for any possible path of λ ptq. For instance, if ℓ ptq is disproportionately large for values
of t close to T , the APP may well be reduced by an increase in T , as this may tilt average
input expenditures closer to the completion of the good. In Appendix A.1, we show, however,
that, for continuous lptq, APP in equation (2) is necessarily increasing in T whenever (i) ℓ pT q

is no larger than the average input use (i.e., L{T ) along the chain, or (ii) ℓ ptq grows along the
chain at a constant exponential rate.

We next consider the endogenous determination of the average period of production with
the ultimate aim of illustrating the existence of a negative relationship between the APP—as
defined in equation (2)—and the cost of capital faced by firms. For simplicity, we focus on an
environment with frictionless and perfectly competitive capital markets, in which firms can
borrow and lend at a time-invariant interest rate r.

Consider then the problem of a firm deciding on input choices along the production process.
The firm chooses the labor input vector L and the length of the interval r0, T s, to maximize
profits when evaluated at the beginning of the production process (t “ 0), or

max
L,T

π “ pZ pLq F pLq e´rT
´ w

ż T

0
ℓ ptq e´rtdt, (3)

Because the sale revenue is realized T units of time after the initial date t “ 0, it is discounted
by the compound interest term e´rT . Similarly, the effective cost of labor hired at date t

incorporates the discount factor e´rt.2

Whenever the functions Z pLq and F pLq are continuously differentiable, we can express the
first-order condition for the choice of ℓ ptq as

BZ pLq F pLq

Bℓ ptq
“

w

p
erpT ´tq.

Given two labor inputs at two different points in time, say tH ą tL, we have that

ℓ ptHq

ℓ ptLq
“

εY,ℓptH q

εY,ℓptLq

erptH ´tLq, (4)

where εY,ℓptq is the elasticity of output Y with respect to ℓ ptq. Equation (4) indicates that labor
is allocated throughout the production process in a way that prioritizes ’stages’ of production

2Although we have assumed that firms treat p and w as given, in equilibrium w{p will be such that the firm
makes zero profits, since Y pLq “ Z pLq F pLq is homogeneous of degree one in L, given our assumptions.
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with disproportionately large impact on output. In Böhm-Bawerk’s theory, such stages with
disproportionately large impact on value are expected to be those further removed from the
completion of the good (thereby capturing a benefit of ‘roundaboutness’). For uniform output
elasticities along the production chain, however, equation (4) indicates a desire to backload
input expenditures closer to the end of the process, and more so the higher the interest rate r

is. This will be one of the key forces generating a negative relationship between interest rates
and the average period of production, as demonstrated in the next section.

Turning to the first-order condition with respect to T , we can express it as

p
B pZ pLq F pLqq

BT
“ wℓ pT q ` rpZ pLq F pLq . (5)

Importantly, given the envelope theorem, the term B pZ pLq F pLqq {BT is a partial derivative
that holds L fixed, and captures the direct positive impact of T on productivity Z pLq (e.g.,
via a higher degree of ‘roundaboutness’) and on physical output F pLq (via a higher amount of
input use). The two right-hand-side terms reflect the costs of extending the production process.
The first one is the direct cost of the extra inputs added to production, while the second term
captures the financial costs associated with delaying the collection of final-good revenue. This
second term is naturally increasing in the interest rate r and in sale revenue. Overall, the
first-order condition (5) above can be succinctly expressed as

T “
εY,T

αT ` r
, (6)

where εY,T is the elasticity of output with respect to T (holding the vector L fixed), and αT is
the ratio of input expenditure at T relative to sale revenue, or αT “ wℓ pT q { ppZ pLq F pLqq.
Equation (6) hints at a negative relationship between T and r, which in turn suggests an
additional channel via which higher interest rates negatively impact average production periods.

Despite the above intuitive effects of the interest rate r on L and T , it is hard to formally
show these relationships for a general production function Y pLq “ Z pLq F pLq even when
assuming, as we have, that it is homogeneous of degree one. To make more progress, in the next
section we turn to three specific examples, which have been focal in the ‘Austrian’ literature on
the temporal dimension of production.

3 Three Examples

In this section, we consider three specific formulations of the production function Y pLq “

Z pLq F pLq with the goal of further sharpening the characterization of how the interest rate r

shapes the average period of production APP .
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3.1 Point-Input Point-Output

Suppose that the production technology F pLq is such that inputs are only needed at the very
beginning of production, i.e., t “ 0, and thus an interval T before completion. This corresponds
to the point-input point-output model of Wicksell (1934), Metzler (1950), Cass (1973) and
Findlay (1978), among others. It maps particularly closely to the production of timber, in
which trees are planted by labor at some initial instant, and one needs only wait for trees to
grow, with no further labor input needed (this literature often ignores the labor needed to cut
down the tree). Böhm-Bawerk (1889) invoked the similarly suitable example of wine production,
which may also benefit from a process of maturation.

In terms of the more general specification in the last section, this point-input point-output
formulation boils down to assuming that ℓptq “ Lδptq, where δptq is the Dirac delta function.3

Then λptq “ δptq and
şT

0 λptqdt “ 1. According to the definition of the average period of
production in equation (2), this immediately delivers APP “ T . The average period of
production thus coincides with the interval of time over which production takes place. Given
our constant returns to scale assumption, we must necessarily have F pLq “ κ

şT

0 ℓ ptq dt “ κL,
for some constant κ, which we normalize to 1 without loss of generality.

This extreme version of the ‘Austrian’ model of production is typically coupled with the
assumption that the technology function Z pLq is increasing and concave in the average period of
production, thereby capturing the benefits of ‘maturation’ (e.g., growth of trees or maturation of
wine). More formally, we specify Z pLq “ Z pAPPq “ Z pT q, with Z 1 pT q ą 0 and Z2 pT q ă 0.

Turning to the general optimization problem in (3), in this case the firm does not really
optimize over the choice of L as we exogenously impose that labor is only employed at t “ 0.
With constant returns to scale, the level of ℓ p0q “ L is indeterminate at the firm level. The
problem in (3) then reduces to choosing T to solve:

max
T

π “ pZ pT q Le´rT
´ wL.

Regardless of the choice of ℓ p0q “ L, the first-order condition for T is given by

Z 1 pT q

Z pT q
“ r. (7)

Equation (7) is a well-known formula in Austrian models of capital, though it was first derived
by Jevons (1871, p. 245). It indicates that, at the optimal production length, the growth of
labor productivity is equated to the interest rate. Given the concavity of the function Z pT q, it
immediately follows that:

3A Dirac delta function is a function whose value is zero everywhere except at zero, and whose integral over
the entire real line is equal to one.
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Proposition 1. In the point-input point-output model, the average period of production
(APP) is equal to the production length T , and the APP is decreasing in the interest rate r.

3.2 Uniform Input Use

Suppose now that inputs are used at a constant rate along the whole production process, so that
λ ptq “ 1{T for all t. Such a constant input flow would be optimal, for instance, if the production
technology is given by F pLq “ mintPr0,T s tℓ ptqu. Production processes with a uniform input use
have been studied as far back as Jevons (1871, Chapter VII) and Böhm-Bawerk (1889, p. 89).

Given λ ptq “ 1{T and our definition of the average period of production in (2), one can
easily show that

APP “

ż T

0
pT ´ tq

1
T

dt “
1
2T.

Therefore, the average period of production is equal to one-half the time interval over which
production occurs. In the ‘Austrian’ models, this specific formulation of the path of labor used
in production is also typically coupled with a productivity function Z pLq that is increasing
and concave in the average period of production, or Z pLq “ Z pAPPq, with Z 1 pAPPq ą 0
and Z2 pAPPq ă 0.

Given constant returns to scale, the time-invariant labor input level ℓ ptq “ ℓ̄ is indeterminate
at the firm level, but the function F can be expressed as F pLq “ κℓ̄, where again we can safely
set κ “ 1. The problem in (3) then simplifies to choosing T to solve:

max
T

π “ pZ

ˆ

1
2T

˙

ℓ̄e´rT
´ wℓ̄

ż T

0
e´rtdt,

The first-order condition of this problem (after imposing zero profits) can be rewritten as

1
2

Z 1
`1

2T
˘

Z
`1

2T
˘ “

r

1 ´ e´rT
, (8)

which is a slightly modified version of the ‘Jevons’ equation in (7).4

Differentiating with respect to r and using the fact that ex ´ x ´ 1 ě 0 for all x, one can
verify that the right-hand side of this equation is increasing in the interest rate r, and thus
the marginal cost of lengthening production is again increasing in the interest rate. A subtle
aspect of equation (8) is that its right-hand side is now also decreasing in T , thereby seemingly
complicating the characterization of the impact of r on T . Nevertheless, this turns out to be a
dominated effect, and in Appendix A.2 we show that:

4Note also that equation (8) is a special case of the more general optimality condition (6), given that
εY,T “ 1

2 Z 1
` 1

2 T
˘

T {Z
` 1

2 T
˘

and that (imposing zero profits) αT “ e´rT {
şT

0 e´rtdt.
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Proposition 2. In the uniform input use model, the average period of production (APP) is
equal to half the production length T , and the APP is decreasing in the interest rate r.

3.3 Time-Separable Technology

Finally, suppose that input choices are endogenously determined with some positive amount
of substitution across stages. We maintain the assumption that F pLq is homogeneous of
degree one and thus homothetic. Furthermore, as is typical in intertemporal problems, to
avoid time-inconsistency issues, we assume that F pLq can be written in the following explicitly
separable manner

F pLq “ H

ˆ
ż T

0
h

“

a ptq , ℓ ptq
‰

dt

˙

, (9)

for some functions H, h, and a. As has been well known since Bergson (1936), the only
homothetic production technology of the separable type as in (9) is a constant elasticity of
substitution production technology, which, in the case of constant returns to scale, can be
written as

F pLq “

ˆ
ż T

0
a ptq

`

ℓ ptq
˘

σ´1
σ dt

˙

σ
σ´1

, (10)

for σ ą 0.5 As we will show below, with this production technology, the marginal rate of
substitution between two input choices ℓ ptLq and ℓ ptHq will be a monotonic function of the
ratio ℓ ptLq {ℓ ptHq, independently of the scale of production.

Turning to the productivity function Z pLq, we could in principle allow it to be a function
of the allocation of labor L over time, but we will simplify matters by making it a function
of the interval of production T , or Z pLq “ Z pT q, with Z 1 pT q ą 0 and Z2 pT q ă 0, just as
in the two cases studied above. Note, however, that the positive effect of ‘roundaboutness’
on productivity can also be captured by assuming that the function a ptq is increasing in the
distance T ´ t, thereby further incentivizing the choice of labor allocations associated with
higher average production periods.

The profit maximization problem in (3) now becomes

max
L,T

π “ pZ pT q

ˆ
ż T

0
a ptq

`

ℓ ptq
˘

σ´1
σ dt

˙

σ
σ´1

e´rT
´ w

ż T

0
ℓ ptq e´rtdt. (11)

The first-order condition for the choice of ℓ ptq is

pZ pT q
`

F pLq
˘

1
σ a ptq

`

ℓ ptq
˘´ 1

σ e´rT
“ we´rt, (12)

5As shown by Berndt and Christensen (1973), the only homothetic production technology that features a
dual cost function that is separable in the cost of the various inputs (in our case, input choices at various points
along the production process) is also a constant elasticity of substitution production function.
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thus implying that for two input choices ℓ ptLq and ℓ ptHq, we have

ℓ ptHq

ℓ ptLq
“

ˆ

a ptHq

a ptLq

˙σ

erptH ´tLqσ.

It is easily verified that this expression is a special case of our more general expression in
(4), with the ratio of output elasticities εY,ℓptH q{εY,ℓptLq being a simple function of the ratios
a ptHq {a ptLq and ℓ ptHq {ℓ ptLq. This allows us to formalize our previously anticipated insight
that a higher interest rate r will enhance the attractiveness of backloading input expenditures,
thereby leading to a lower average period of production. Specifically, note that holding T

constant, a lower interest rate r increases the ratio ℓ ptLq {ℓ ptHq for all tL ă tH , thereby leading
to disproportionately more labor being allocated farther from completion. More formally,
consider two interest rates r and r̃ with r ą r̃, and associated distributions of labor input λ and
λ̃, respectively. Because the lower interest rate r̃ is associated with a higher ratio ℓ ptLq {ℓ ptHq

for tL ă tH , we can then conclude that

λ̃ ptLq

λ̃ ptHq
ą

λ ptLq

λ ptHq

for tL ă tH . It then follows that λ first-order stochastically dominates λ̃ and thus

APP
´

λ̃
¯

“

ż T

0
pT ´ tq λ̃ ptq dt ą

ż T

0
pT ´ tq λ ptq dt “ APP pλq .

In sum, the average period of production APP is higher under the lower interest rate r̃.

Proposition 3. With time-separable technology, holding the interval T constant, the average
period of production (APP) is decreasing in the interest rate r.

Turning to the choice of T , the associated first-order condition can be expressed—after some
manipulations, applying the zero-profits condition, and using (12)—as

Z 1 pT q

Z pT q
“ r ´

1
σ ´ 1

1
şT

0

´

aptq

apT q

¯σ

e´pT ´tqrpσ´1qdt
, (13)

which is a modified version of the Jevons-style equations (7) and (8). Given Z2 pT q ă 0, this
will tend to generate a negative relationship between T and r, but the second term in the
left-hand side complicates proving this result in full generality for any arbitrary path of the
function a ptq. In addition, as pointed out in Section 2, even if T were to be decreasing in r, it
is not clear that a lower T will be associated with a lower average production APP for any
path of a ptq, as the expansion of production when a ptq is disproportionately large in the later
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stages of production can lead to a lower weighted average value of APP. To make progress,
we assume that a ptq “ a0e

gt for some constants g P R and a0 P R, so that input demand ℓ ptq

grows or falls at a constant rate along the production process. Specifically, from equation (12),
ℓ ptq “ ℓ0e

tσpg`rq for some constant l0 P R. Equation (13) then reduces to

Z 1 pT q

Z pT q
“ r ´

1
σ ´ 1

gσ ` r pσ ´ 1q

1 ´ e´pgσ`rpσ´1qqT
. (14)

As long as the second-order condition for the choice of T is satisfied, we can show (see
Appendix A.3) that regardless of the sign of g:

Proposition 4. Under the time-separable technology as in formula (9) with a ptq “ a0e
gt, both

the production length T and the average period of production (APP) are decreasing in the
interest rate r.

4 An Empirical Measure of the Average Period of
Production

In this section, we develop an empirical counterpart to our measure of the average period of
production. For this purpose, we return to the general model in Section 2, in which a production
process is associated with the use of a sequence of labor inputs, tℓ ptqutPr0,T s. Focusing on a
given process leading to the production of a good, note that the cumulative cost of the good in
an initial interval

“

0, t̂
‰

of production is given by

C
`

t̂
˘

“

ż t̂

0
wℓ ptq dt. (15)

Empirically, C
`

t̂
˘

will be recorded as a component of inventories. This cumulative cost differs
from the last term in the profit-maximization problem in (3) by the financial term e´rt. We
omit this term because it is standard practice to measure inventories on a cost basis, which
does not include the financial costs associated with holding inventories.

Consider now a stationary equilibrium in which a firm simultaneously carries out various
production processes of the type above, and these processes are at various phases of completion.
For simplicity, we assume a uniform time-invariant distribution of production processes of
different ages. More specifically, at each instant t, the firm begins the production of N goods,
continues to add value to goods begun in previous periods t1 P pt ´ T, tq, and also completes
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the production of N goods that begun at t ´ T . Total inventories in steady state are then

I “ N

ż T

0
C

`

t̂
˘

dt̂ “ Nw

ż T

0

ż t̂

0
ℓ psq dsdt̂, (16)

regardless of initial conditions.
The total labor cost embodied in the goods completed at that instant is given by C pT q “

NwL, where we recall that L “
şT

0 ℓ ptq dt is total labor use along the whole production process.
Empirically, C pT q corresponds to the accounting concept of the cost of goods sold (or COGS),
which typically excludes financing costs incurred during production, thereby justifying our
omission of these terms as well.

With equation (16) at hand, we can thus express the ratio of inventories to the cost of goods
sold as

I

CpT q
“

ż T

0

ż t̂

0

ℓ psq

L
dsdt̂ “

ż T

0

ż t̂

0
λ psq dsdt̂.

Solving this double integral by changing the order of integration yields

I

CpT q
“

ż T

0

ż t̂

0
λ psq dsdt̂ “

ż T

0

ż T

s

λ psq dt̂ds “

ż T

0
λ psq pT ´ sq ds “ APP .

The ratio of inventories to the cost of goods sold I{C pT q thus exactly corresponds to our
conceptual measure of the average period of production APP in equation (2).6

In sum, we have:

Proposition 5. The average period of production (APP) associated with a firm’s production
process can be computed as the ratio of the firm’s inventories to its cost of goods sold (COGS).

To better grasp the meaning of this result, consider the case in which a firm’s annual
financial report states that the ratio of inventories to the cost of goods sold equals to 0.5, thus
indicating an average period of production of two quarters. Of course, this does not mean
that the production process takes two quarters to complete from beginning to end. Indeed,
remember that APP is necessarily smaller than the production length T . Instead, APP “ 0.5
indicates that inputs were employed, on average, two quarters before the sale of the good.

6The older, less math-savvy co-author of this paper was mystified by the above derivation using a change in
the order of integration, and suggested offering an alternative derivation based on integration by parts:

I

CpT q
“

ż T

0

ż t̂

0
λ psq dsdt̂ “

ˇ

ˇ

ˇ

ˇ

ˇ

t̂

ż t̂

0
λ psq ds

ˇ

ˇ

ˇ

ˇ

ˇ

T

0

´

ż T

0
t̂λ

`

t̂
˘

dt̂ “

ż T

0

`

T ´ t̂
˘

λ
`

t̂
˘

dt̂ “ APP.
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Precedents Although our sense is that the result in Proposition 5 is not well known in the
literature, it is admittedly not new. The idea that, in a stationary equilibrium with a uniform
distribution of production processes of different ages, the average period of production can be
computed as the ratio of the stock of goods in process to the flow of goods sold can be traced
back to Marschak (1934). In a highly illuminating piece, Dorfman (1959) studied the temporal
dimension of production and related the stationary equilibrium of a firm’s production processes
to the so-called “bathtub theorem”, which asserts that “in any reservoir of constant content, so
that the rate of inflow equals the rate of outflow, the average period of detention equals the
content of the reservoir divided by the rate of flow” (Dorfman, 1959, p. 353). In this bathtub
analogy, the constant rate of water inflow corresponds to new input expenditures at a point in
time, while the water outflow represents past input expenditures embodied in the goods sold
at a point in time. Thus, the average “detention” of input expenditures (or average period of
production) is the ratio of inventories to the cost of goods sold, as shown above.7

More recently, Schwartzman (2014) has derived a similar link between what he refers to as
“time to produce and distribute” (or time to produce, for short) and a firm’s inventory over
cost ratio. However, his derivation is developed in discrete time, and primarily examines how
changes in interest rates affect output depending on the ratio of inventories to cost in various
sectors. We further discuss his empirical contribution in the next section.

Alternatives Before concluding this theoretical section, we briefly comment on two variants
of our measure of the average production period. First, we have assumed that wages (or the
price of inputs more broadly) are time-invariant. If instead we allow wages to change over the
production process, perhaps because different types of workers are used at different stages of
production, we can alternatively define an average production length as

APPExp “

ż T

0
pT ´ tq

w ptq ℓ ptq
şT

0 w ptq ℓ ptq dt
dt, (17)

which now represents a weighted average temporal distance between the time when labor
expenditures are incurred and the time when revenue is collected. Note, however, that we can
define λ ptq “ w ptq ℓ ptq {EL, where EL “

şT

0 w ptq ℓ ptq dt, so if the shares λ ptq are stationary
(e.g., because all wages grow at a common rate), then our main results in Propositions 3, 4 and
5 continue to apply: APPExp can be computed as the ratio of a firm’s inventories to its cost of
goods sold, and it is expected to depend negatively on the cost of capital faced by a firm.

Next, we consider Hicks’ preferred notion of the average period of production, which is
closely related to the concept of duration in finance (Macaulay, 1938). In particular, Hicks

7There is also a close connection between this result and the so-called Little’s law in queueing theory (see
Little, 1961).
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(1939) proposed to measure the average period of production as

APPHicks “

ż T

0
pT ´ tq

w ptq ℓ ptq e´rt

şT

0 w ptq ℓ ptq e´rtdt
dt, (18)

which is analogous to (17) except that it applies a discount factor for input expenditures at
later dates (or, alternatively, it accounts for interest compounding on early input expenditures).
This definition is appealing when attempting to compute the capital demands associated with a
production process of a given length, but the inclusion of the discount factors e´rt generates a
mechanical positive impact of the interest rate r on APPHicks. Hicks (1939) was uncomfortable
with this direct impact, so when considering the overall impact of the interest rate on the
average period of production, he advocated ignoring this direct effect.8 This naturally results in
a negative relationship between APPHicks and r, as we have derived above. In a more recent
piece, Malinvaud (2003) derived the same result, again purposefully ignoring the direct effect of
interest rates on APPHicks arising from the discounting term e´rt. Beyond these conceptual
aspects, the fact that inventories are measured on a cost basis also implies that APPHicks will
typically not map directly to the ratio of inventories to the cost of goods sold. This rationalizes
our preference for the measure APP (or APPExp) over APPHicks.

5 The Average Period of Production in the U.S.

Having discussed the conceptual underpinnings of our measure of the temporal dimension of
production, we now turn to its measurement. This requires two key inputs: a measure of a
firm’s inventories and a measure of the costs embodied in the goods it sells. Fortunately, as
discussed below, these inputs are readily available for publicly traded companies. In this section,
we begin our analysis with data for U.S. companies, and in Section 6, we expand the analysis
to a dataset of global publicly traded companies.

5.1 Data Sources and Variable Definitions

We construct our proposed measure of the average period of production using annual financial
reports from publicly traded U.S. firms for the period 1980–2018. This data is obtained from
the Compustat North America database (S&P Global, 2025). Financial reports provide detailed
information on cost of goods sold (COGS) and total inventories, which are in turn disaggregated

8In Hick’s own words: “if the average period changes, without the rate of interest having changed, it must
indicate a change in the stream; but if it changes, when the rate of interest changes, this need not indicate any
change in the stream at all. Consequently, even when we are considering the effect of changes in the rate of
interest on the production plan, we must not allow the rate of interest which we use in the calculation of the
average period to be changed” (Hicks, 1939, p. 220).
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into raw materials, work-in-process, and finished goods. Guided by the theoretical analysis, we
calculate the average period of production for a given firm in a given year as the ratio of total
inventories to COGS. We continue to refer to this measure as APP .

Compustat also allows us to estimate the cost of capital each firm faces as the ratio of interest
expenses to the sum of long-term and short-term debt. In addition to financial fundamentals,
Compustat provides time-varying information on a firm’s industry classification, which we
standardize to the 2012 vintage of the North American Industry Classification System (NAICS).
More details on the data preparation algorithm are provided in Appendix A.4.

Since information and communication technologies (ICT) is a key factor influencing inventory
management (Kahn, McConnell and Perez-Quiros, 2002), we supplement the Compustat data
with an industry-level measure of the stock of information processing capital equipment relative
to sectoral output, obtained from the BLS (Bureau of Labor Statistics, 2025). This measure is
available at the three- or four-digit NAICS levels. For brevity, we refer to this measure as “IT
capital intensity.”

Finally, to examine the relationship between APP and other variables at the industry level,
we use a broad range of industry-level variables (discussed below) obtained from the NBER-CES
Manufacturing Industry Database (Becker, Gray and Marvakov, 2021).

In the main text, we focus on presenting results based on the sample of all firms in Compustat
classified as belonging to the manufacturing sector (NAICS codes 31–32–33). However, in
Appendix A.5 we report results for all goods-producing industries (NAICS codes 11–21–22–23,
in addition to the manufacturing). The exclusion of privately held firms from our sample is
certainly a limitation of our study, but we lack systematic and reliable data on COGS for
non-publicly traded firms. Nonetheless, we occasionally benchmark our results against imperfect
proxies for APP , which can be constructed using data that includes privately held companies.

5.2 Aggregate Trends

Although our measure of the temporal length of production can be computed at both the firm
and industry levels, we first present evidence of its evolution at the aggregate level for the
period 1980–2018. We do so by computing a cost-weighted average of APP for U.S. firms in the
manufacturing sector, which naturally coincides with the ratio of the sum of their inventories
to the sum of their COGS.

Panel (a) of Figure 1 illustrates the evolution of cost-weighted average APP . This measure
fluctuated during the 1980s but then declined significantly in the 1990s and early 2000s,
coinciding with the widespread adoption of IT in U.S. manufacturing. Starting in the mid
2000s, we observe a marked increase in average APP in U.S. manufacturing, reaching 0.19 in
2018. In that year, inputs were employed for an average of 365 ˆ 0.19 “ 69 days before the sale
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Figure 1: APP and Cost of Capital in U.S Manufacturing
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Notes: The figure shows the cost-weighted annual averages of APP and cost of capital for U.S. publicly traded
companies in manufacturing industries from 1980 to 2018. APP represents the ratio of inventories to COGS,
while cost of capital is the ratio of interest expenses to total debt (short- and long-term). Source: Compustat.

of the goods in which they were used.9

The recent increase in APP could, in part, be explained by the significant decline in the
cost of capital faced by firms.10 Indeed, Panel (b) of Figure 1 also shows that average cost of
capital for U.S. manufacturing firms fell from around 12% in 1980 to about 4% in 2018, with
more than half of this decline occurring after 2006.

Was the decline in cost of capital partly responsible for the observed increase in APP since
2006? We explore this possibility below by regressing our firm-level measure of APP on our
firm-level measure of cost of capital, while controlling for the industry-level measures of IT
capital intensity and other industry characteristics in some specifications. Before discussing
these results, however, we document several interesting aspects of the cross-sectoral variation in
APP within U.S. manufacturing.

5.3 Variation in the Average Period of Production Across Industries

How much does the average period of production vary across U.S. manufacturing sectors when
computed at the six-digit NAICS level? Figure 2 shows significant variation in APPs within

9Data from the U.S. Census Bureau (U.S. Census Bureau, 2025) indicates that total monthly inventories
relative to sales were around 1.36 months, or 0.11 years, in 2018. Naturally, sales are higher than COGS, and
this disparity has grown in recent years. De Loecker, Eeckhout and Unger (2020) use U.S. Census data, including
non-publicly traded companies, to estimate that average markup in U.S. manufacturing fluctuated between 1.60
and 1.85 from 1980 to 2012. For values closer to 1.80 in the later years of their sample, this implies a ratio of
inventories to costs of 0.11 ˆ 1.80 “ 0.20, which is remarkably close to our estimates based on Compustat.

10Carreras-Valle (2024) documents a parallel recent rise in the ratio of inventories over sales among U.S.
firms and relates it to increased trade with China.
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our sample, which includes 242 manufacturing sectors. We exclude sectors with fewer than 50
firm-year observations after the data preparation.11

Figure 2: Distribution of APP in U.S. Manufacturing
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Notes: The figure shows the distribution of industries (N “ 242) based on APP. For each industry, defined
as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year, then
averaged across years from 1980 to 2018. The data covers U.S. publicly traded companies in manufacturing
industries. Industries with fewer than 50 firm-year observations are excluded. Source: Compustat.

While most sectors exhibit APP values ranging from 0.1 to 0.4 (equivalent to 36.5 to 146
days), a small number of sectors display significantly higher APP values.12 The only previous
paper we are aware of that computes the ratio of inventories to COGS is Schwartzman (2014),
which calculated this ratio for 26 fairly aggregated manufacturing sectors. The range of APP
values in his study is naturally somewhat narrower than ours, but the mean APP in his sample
appears to be around 2.25 months, or 0.19 years, aligning with our estimates.

In Table 1, we present the top 10 manufacturing industries based on the average period of
production. It is noteworthy that the ‘lengthier’ production processes—distilleries and wineries—
coincide with two of the examples provided by the illustrious economists who discussed the
benefits of aging in production. To some extent, maturation is also relevant for the fourth

11Our replication package includes a file containing these estimates of the average period of production for
269 six-digit NAICS U.S. goods-producing industries. The file can also be downloaded at https://antras.
scholars.harvard.edu/sites/g/files/omnuum5876/files/2025-02/complete_ranking_usa_goods.csv.

12In addition to analyzing average APP, Figure A.3 presents a histogram of the standard deviation of the
log of APP within six-digit NAICS industries. The standard deviation pooled across industries (0.717) is
significantly higher than the average within-industry standard deviation (0.531). This suggests that a large
share of the total heterogeneity in APP arises from differences between industries, rather than within them.
These differences likely reflect variations in production technology across industries.
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‘longest’ production process, tobacco manufacturing, which involves leaf processing and aging.
Other industries with high APP values are sectors that produce technically complex products,
such as ophthalmic goods, pharmaceutical preparations, and electromedical instruments.

Table 2 instead reports the bottom 10 manufacturing industries based on the average period
of production. Reassuringly, the list includes a combination of sectors that produce largely
homogeneous goods (e.g., petroleum refineries, ethyl alcohol), perishable goods (e.g., fluid milk,
baked goods, ice cream), and industries with relatively simple manufacturing processes (e.g.,
bottled water manufacturing, motor vehicle metal stamping).

We also explore how our measure of the average period of production correlates with
other industry characteristics. We construct measures of the latter using the NBER-CES
Manufacturing Industry Database. Table 3 reports the correlations between APP and several
industry variables, including measures that have been commonly used to capture the skill and
physical capital intensities. Specifically, for each industry variable, we calculate the average
from 1980 to 2018 and then calculate its correlation with APP .

As indicated in Table 3, APP is positively correlated with skill intensity, possibly reflecting
the disproportionate need for care and precision in skill-intensive processes, while it is negatively
correlated with physical capital intensity. This latter correlation highlights an interesting
dichotomy between physical capital and working capital intensities, which, to the best of our
knowledge, has not been previously noted in the literature. Both correlations of APP with
skill intensity and physical capital intensity are highly statistically significant (at the 1% level).

We also define three measures of inventory intensity based on variables available from the
NBER-CES Manufacturing Industry Database. First, we compute the simple ratio of inventories
to sales, which is highly correlated (0.703) with our APP measure derived from Compustat
data. We then refine the denominator of this variable by approximating COGS as the sum of
payroll, material costs, and energy costs. This refinement increases the correlation with APP
to 0.799. We have confirmed that this high correlation is not driven by outliers (see Figure A.4
in the Appendix). Finally, we further refine this measure by excluding non-production worker
wages from total payroll (to better approximate the labor cost component of COGS), but this
has a minimal impact on the correlation. These very high correlations alleviate concerns that
our focus on publicly traded companies may bias our results.

In the bottom rows of Table 3, we correlate industry-level APP values with two industry-
level measures of productivity. In both cases, the correlations are essentially zero, in contrast
to the positive relationship posited by ‘Austrian’ theories. Nevertheless, this zero correlation
appears to be partly explained by the fact that APP is itself negatively correlated with physical
capital intensity. In fact, a simple regression of log value added per worker on APP and log
capital-labor ratio reveals a positive and highly statistically significant coefficient for APP
(t-stat = 3.11). See the partial correlation plot in Figure A.5 in the Appendix.
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Table 1: The Top 10 U.S. Manufacturing Industries by APP

NAICS Industry APP

312140 Distilleries 0.814
312130 Wineries 0.737
339115 Ophthalmic Goods Manuf. 0.573
312230 Tobacco Manuf. 0.488
333997 Scale and Balance Manuf. 0.441
333132 Oil and Gas Field Machinery and Equipment Manuf. 0.439
316998 All Other Leather Good and Allied Product Manuf. 0.432
325412 Pharmaceutical Preparation Manuf. 0.430
334510 Electromedical and Electrotherapeutic Apparatus Manuf. 0.421
332215 Metal Kitchen Cookware, Utensil, Cutlery, and Flatware Manuf. 0.415

Notes: The table lists the top 10 U.S. manufacturing industries ranked by APP. For each industry, defined
as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year, then
averaged from 1980 to 2018. Industries with fewer than 50 firm-year observations are excluded. Please refer to
the replication package for the complete ranking. Source: Compustat.

Table 2: The Bottom 10 U.S. Manufacturing Industries by APP

NAICS Industry APP

324110 Petroleum Refineries 0.068
311511 Fluid Milk Manuf. 0.069
311812 Commercial Bakeries 0.071
325193 Ethyl Alcohol Manuf. 0.073
336370 Motor Vehicle Metal Stamping 0.083
312112 Bottled Water Manuf. 0.097
327992 Ground or Treated Mineral and Earth Manuf. 0.112
336350 Motor Vehicle Transmission and Power Train Parts Manuf. 0.112
337214 Office Furniture (except Wood) Manuf. 0.115
311520 Ice Cream and Frozen Dessert Manuf. 0.116

Notes: The table lists the bottom 10 U.S. manufacturing industries ranked by APP . For each industry, defined
as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year, then
averaged from 1980 to 2018. Industries with fewer than 50 firm-year observations are excluded. Please refer to
the replication package for the complete ranking. Source: Compustat.
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Table 3: Correlation of APP with Industry Characteristics in U.S. Manufacturing

Correlation
Characteristic with APP p-Value

Capital Intensity
Log (Real Capital Stock / Total Workers) ´0.197 0.002
Log (Capital Expenditures / Payroll) ´0.205 0.001

Skill Intensity
Log (Non-Production Workers / Total Workers) 0.276 0.000
Non-Production Payroll / Payroll 0.355 0.000

Inventory Intensity
Inventories / Sales 0.703 0.000
Inventories / (Payroll + Material Costs + Energy Costs) 0.799 0.000
Inventories / (Prod. Worker Wages + Material Costs + Energy Costs) 0.795 0.000

Productivity
Log (Real Value Added / Total Workers) 0.003 0.962
Total Factor Productivity ´0.002 0.971

Notes: The table reports the Pearson correlations between APP and various industry characteristics for U.S.
six-digit NAICS manufacturing industries (N “ 242). The data was constructed by averaging annual values
of variables from 1980 to 2018. Annual APP values were calculated as cost-weighted averages across firms
within each industry. Industries with fewer than 50 firm-year observations in Compustat were excluded. Sources:
Compustat, NBER-CES.

5.4 The Average Period of Production and the Cost of Capital

Our conceptual framework in Sections 2 and 3 predicts that the average period of production
should be negatively associated with the cost of capital. In this section, we perform regression
analyses to examine the empirical relationship between these two variables. Specifically, we
estimate the following regression equation:

APP it “ βRit ` γZit ` µi ` λt ` εit, (19)

where i and t denote firms and years, respectively, APP it represents the average period of
production of firm i in year t, Rit is the cost of capital faced by firm i in year t, Zit is a vector
of industry-level controls for the sector to which firm i belongs, and µi and λt are firm and year
fixed effects. Table 4 presents summary statistics for the variables used in these regressions.
We can see that the distributions of all these variables are skewed, with the mean exceeding the
median for each variable.

Table 5 presents the results of estimating equation (19). All variables are expressed in
logarithms, allowing the regression coefficients to be interpreted as elasticities. All regressions
include firm and year fixed effects. The standard errors are clustered at the industry (six-digit
NAICS codes) and year levels (two-way clustering).
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Column (1) of Table 5 presents the results of the regression without industry controls. The
coefficient of ´0.090 reflects the elasticity of APP with respect to changes in cost of capital
faced by firms. In our sample of manufacturing firms, it is evident that a higher firm-level cost
of capital is associated with a shorter firm-level average period of production.

How large is this coefficient in economic terms? To gauge the magnitude of this effect,
note that between 2006 and 2018, APP increased from 0.142 to 0.191, corresponding to a log
change of 0.296. Over the same period, cost of capital faced by firms declined from 0.081 to
0.043, a log change of ´0.633. Based on our estimates, this predicts a log change in APP of
´0.633 ˆ ´0.090 “ 0.057, which accounts for approximately 19% of the observed log change in
APP during this period. However, it is important to note that the regression in Table 5 only
captures the correlation between these variables and does not establish a causal relationship.
Future research should aim to identify how exogenous changes in cost of capital influence firms’
average period of production.

In the remaining columns of Table 5, we assess the robustness of our results to controlling
for various industry-level characteristics. In column (2), we include an industry-level measure
of IT intensity, and in column (3), we additionally include industry-level measures of capital
intensity (log of real capital stock per worker), skill intensity (share of non-production workers),
and labor productivity (log of real value added per worker). The inclusion of these variables
has a negligible effect on the estimated elasticity of APP with respect to cost of capital.13

Table 4: Summary Statistics for Firms in U.S. Manufacturing, 1980–2018

Mean Std. Dev. P25 Median P75 N

Average Period of Production 0.310 0.243 0.161 0.251 0.388 57,800
Cost of Capital 0.106 0.082 0.064 0.090 0.121 57,800
IT Capital Intensity 0.048 0.049 0.014 0.022 0.072 46,135
Capital Intensity 166.4 257.9 49.15 85.58 163.5 56,273
Skill Intensity 0.362 0.140 0.242 0.356 0.470 57,791
Labor Productivity 193.9 272.0 81.03 121.5 203.9 57,791

Notes: The table reports summary statistics for a panel of U.S. manufacturing companies from 1980 to 2018.
Capital intensity and labor productivity are in thousands of 2012 U.S. dollars. IT capital intensity, capital
intensity, skill intensity, and labor productivity are industry-level variables that have been imputed to firm-level
observations based on NAICS. Sources: BLS, Compustat, NBER-CES.

13The addition of industry-level variables reduces the sample size as these measures are not available for all
industries. We re-estimate the specifications in columns (1) and (2) using the same 44,608 observations available
in column (3), ensuring consistency across samples. We find that restricting the sample does not significantly
affect the estimated elasticity of APP with respect to cost of capital.
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Table 5: APP and Cost of Capital in U.S. Manufacturing

Dependent Variable: Average Period of Production
(1) (2) (3)

Cost of Capital ´0.090a ´0.088a ´0.090a

(0.007) (0.007) (0.007)
IT Capital Intensity – 0.006 0.005

– (0.020) (0.019)
Capital Intensity – – ´0.030

– – (0.028)
Skill Intensity – – ´0.046

– – (0.049)
Labor Productivity – – ´0.045

– – (0.047)

R2 0.789 0.810 0.812
Observations 57,800 46,135 44,608

Notes: The table presents the results of estimating equation (19) on a panel of U.S. publicly traded manufacturing
companies from 1980 to 2018. All variables are in logarithms. All regressions include firm and year fixed effects.
The standard errors are clustered at the industry (six-digit NAICS codes) and year levels (two-way clustering).
Statistical significance at the 1%, 5%, and 10% levels is denoted by superscripts a, b, and c, respectively. IT
capital intensity, capital intensity, skill intensity, and labor productivity are industry-level variables that have
been imputed to firm-level observations based on NAICS. Sources: BLS, Compustat, NBER-CES.

5.5 Disaggregation by the Type of Inventory

We now turn to exploring the extent to which our results in Table 5 are disproportionately driven
by specific components of inventory. As mentioned in Section 5.1, firms’ financial statements
disaggregate inventories into raw materials, work-in-process, and finished goods. As shown in
Figure 3, on average, finished goods account for more than 40 percent of total inventories, while
work-in-process accounts for less than 30 percent and raw materials for about a third.

In Table 6, we estimate the regression equation (19) for the ratio of each type of inventory to
COGS, without including any industry-level controls14. All variables are expressed in logarithms,
allowing the regression coefficients to be interpreted as elasticities. All regressions include firm
and year fixed effects. The standard errors are clustered at the industry (six-digit NAICS codes)
and year levels (two-way clustering). Only about two-thirds of the observations contain data
disaggregated by types of inventory, and we estimate each regression on that subset.

As is clear from Table 6, a higher cost of capital is associated with lower values for all these
ratios, and these negative relationships are characterized by remarkably similar elasticities.
Thus, a higher cost of capital tends to reduce the average period of production by decreasing
the stock of raw materials, work-in-process, and finished goods.

14We find that the results in Table 6 concerning the elasticity of APP with respect to cost of capital are
robust to the inclusion of the industry-level control variables as in column (3) of Table 5.
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Figure 3: Cost-Weighted Average Shares of Total Inventories in U.S. Manufacturing
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Notes: The figure shows the cost-weighted annual averages of raw materials, work-in-process, and finished
goods as shares of total inventories for U.S. publicly traded companies in manufacturing from 1980 to 2018.
Source: Compustat.

Table 6: APP and Cost of Capital by Inventory Type in U.S. Manufacturing

Total Inventories Raw Materials Work-in-Process Finished Goods
to COGS to COGS to COGS to COGS

(1) (2) (3) (4)

Cost of Capital ´0.101a ´0.100a ´0.123a ´0.107a

(0.006) (0.009) (0.011) (0.010)

R2 0.793 0.766 0.796 0.763
Observations 37,418 37,418 37,418 37,418

Notes: The table presents the results of estimating equation (19) on a panel of U.S. publicly traded companies
in manufacturing from 1980 to 2018. The dependent variables are the ratios of certain types of inventory to
COGS. We estimate each regression on the subset of observations that contain complete data on inventory types.
All variables are in logarithms. All regressions include firm and year fixed effects. The standard errors are
clustered at the industry (six-digit NAICS codes) and year levels (two-way clustering). Statistical significance at
the 1%, 5%, and 10% levels is denoted by superscripts a, b, and c, respectively. Source: Compustat.
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6 The Average Period of Production Worldwide

Compustat also contains data on a large sample of publicly traded firms worldwide. In this
section, we use this data to calculate the average period of production for the years 1980–2018
across various countries and sectors, while restricting the analysis to manufacturing industries.
Because we lack cross-country, industry-level data comparable to the NBER-CES Manufacturing
Industry Database for the U.S., we will only compare our sectoral measures of production length
across countries. Additionally, we revisit the link between the average period of production and
the cost of capital faced by firms using a larger global sample.

6.1 Rank Correlations of Industries by the Average Period of
Production Across Countries

As described in the previous sections, U.S. industries differ significantly in their APP. How
consistent are industry rankings of APPs across countries? In Table 7, we present Spearman
rank correlations for industry rankings, defined using six-digit NAICS codes, based on APP
across pairs of countries. To construct the rankings, for each country-industry pair, we first
calculate cost-weighted average of APP within each year from 1980 to 2018, and then compute
the average across those years. We restrict the analysis to country-industry pairs with at least
50 observations during the period and report rank correlations only for pairs of countries with
at least 10 overlapping industries. Table 7 includes 11 countries.15

Reassuringly, all rank correlations are positive, and many are both high and highly
statistically significant. The U.S. ranking is particularly correlated with those of France (0.87),
the UK (0.76), Canada (0.71), South Korea (0.69), China (0.64), and Germany (0.64), but all
correlations are above 0.50, except for India (0.42) and Malaysia (0.05).

6.2 Pooled Regressions

We now return to the specification in (19) with the sample of global manufacturing companies.
We present the estimation results in Table 8. For comparison, we first replicate the results from
column (1) of Table 5 for U.S. firms only. The results in column (2) are for the sample of firms
that includes all countries, and the results in column (3) exclude U.S. firms. All variables are
expressed in logarithms, allowing the regression coefficients to be interpreted as elasticities. All
regressions include firm and year fixed effects. The standard errors are clustered at the industry
(six-digit NAICS codes) and year levels (two-way clustering).

15In Figure A.7 in the Appendix, we report the rank correlations calculated using an alternative criterion
for the inclusion of country-industry pairs. Specifically, we include country-industry pairs with at least 30
observations during the period 1980–2018, resulting in a larger set of country pairs.
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Table 7: Rank Correlations of Manufacturing Industries by APP Across Countries

CAN CHN DEU FRA GBR IND JPN KOR MYS TWN USA

CAN – 0.41 – – 0.57c 0.64b 0.75a – – 0.57c 0.71a

CHN 0.41 – – – 0.42 0.42b 0.50a 0.69a – 0.47b 0.64a

DEU – – – – – – – – – – 0.64b

FRA – – – – – – – – – – 0.87a

GBR 0.57c 0.42 – – – 0.83a 0.62a 0.71b – 0.41 0.76a

IND 0.64b 0.42b – – 0.83a – 0.43a 0.45b 0.38 0.29 0.42a

JPN 0.75a 0.50a – – 0.62a 0.43a – 0.73a 0.21 0.34b 0.57a

KOR – 0.69a – – 0.71b 0.45b 0.73a – – 0.58a 0.69a

MYS – – – – – 0.38 0.21 – – – 0.05
TWN 0.57c 0.47b – – 0.41 0.29 0.34b 0.58a – – 0.61a

USA 0.71a 0.64a 0.64b 0.87a 0.76a 0.42a 0.57a 0.69a 0.05 0.61a –

Notes: Spearman rank correlations are reported. To construct the rankings of industries (defined as six-digit
NAICS codes) for each country, we first calculate the cost-weighted average of APP for each country-industry
pair within each year from 1980 to 2018 and then compute the average of these values across those years. We
limit the analysis to country-industry pairs with at least 50 observations during this period. Rank correlations
are reported only for country pairs with at least 10 overlapping industries. The analysis is based on a panel of
publicly traded manufacturing companies. Statistical significance at the 1%, 5%, and 10% levels is denoted by
superscripts a, b, and c, respectively. Source: Compustat.

Table 8: APP and Cost of Capital Worldwide

Dependent Variable: Average Period of Production
(1) (2) (3)

U.S. only All Countries U.S. excluded

Cost of Capital ´0.090a ´0.079a ´0.071a

(0.007) (0.005) (0.005)

R2 0.789 0.786 0.786
Observations 57,800 180,954 123,154

Notes: The table presents the results of estimating equation (19) on a panel of global publicly traded companies
in manufacturing from 1980 to 2018. The first column uses data for U.S. firms, the second includes firms from
all countries, and the last excludes U.S. firms. All variables are in logarithms. All regressions include firm and
year fixed effects. The standard errors are clustered at the industry (six-digit NAICS codes) and year levels
(two-way clustering). Statistical significance at the 1%, 5%, and 10% levels is denoted by superscripts a, b, and
c, respectively. Source: Compustat.
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As shown in Table 8, the results in all three columns are qualitatively and quantitatively
very similar. The elasticity found in the pooled regressions is slightly smaller than in the U.S.
sample (´0.078 vs. ´0.090). However, when computing the 2006–2018 increase in APP that
our regressions attribute to the decline in cost of capital faced by firms, the implied contribution
remains economically meaningful.

Specifically, between 2006 and 2018, global average APP increased from 0.293 to 0.335,
corresponding to a log change of 0.134. Over the same period, average cost of capital for
global firms declined from 0.074 to 0.059, representing a log change of ´0.227. Based on our
estimates, this predicts a log change in APP of ´0.227 ˆ ´0.079 “ 0.018, which accounts for
approximately 13% of the observed log change in APP during this period.16

6.3 Heterogeneity at the Industry and Country Levels

Beyond the pooled regressions in Table 8, we also experimented with running equation (19)
country-by-country (using data on manufacturers) and industry-by-industry (using global data).
We exclude industries or countries with fewer than 750 firm-year observations each.

The results of these exercises are plotted in Figures 4 and 5, demonstrating the robustness
of the negative relationship between APP and cost of capital. Specifically, cost of capital is
negatively correlated with APP in all countries, with results significantly negative at the 5%
level in 17 of 26 countries. Similarly, we find a negative coefficient on cost of capital in all but 4
of 69 manufacturing industries, with the coefficient significantly negative in most of them.

16Global averages are calculated by first taking cost-weighted averages within country-industry pairs and
then computing the average across these pairs.
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Figure 4: APP and Cost of Capital in Manufacturing: Country Heterogeneity
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Notes: The plot displays the results of estimating regression (19) separately for each country. The estimated
coefficients and 95% confidence intervals are reported. The data is a panel of global publicly traded companies
in manufacturing from 1980 to 2018. All variables are in logarithms. All regressions include firm and year fixed
effects. The standard errors are clustered at the firm and year levels (two-way clustering). Source: Compustat.
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Figure 5: APP and Cost of Capital Worldwide: Industry Heterogeneity
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Notes: The plot displays the results of estimating regression (19) separately for each six-digit NAICS industry.
The estimated coefficients and 95% confidence intervals are reported. The data is a panel of global publicly
traded companies from 1980 to 2018. All variables are in logarithms. All regressions include firm and year fixed
effects. The standard errors are clustered at the firm and year levels (two-way clustering). Source: Compustat.

27



7 Conclusions

In this paper, we have developed a measure to capture the temporal dimension of production,
building on the Austrian capital theory of Böhm-Bawerk (1889). We define the average period of
production as a weighted average temporal distance between the time a firm employs its inputs
and the time these inputs deliver finished goods to consumers. Under stationarity conditions,
this measure corresponds to the ratio of a firm’s stock of inventories to the cost of goods it sells
in a given period, making it readily computable using data from publicly traded companies
worldwide. Consistent with theoretical predictions, we have demonstrated that firms facing
higher capital costs tend to exhibit shorter average production periods.

Our ultimate aim is to foster further empirical research into how production length and
interest rates shape industrial structure. Recent work by Antràs (2023a,b) has explored
the theoretical connections between interest rates and comparative advantage in models of
international trade and global value chains. The measure developed in this paper provides
a foundation for empirically testing these ‘Austrian’ theories of international specialization.
More generally, we hope that our measure will find broader applications across fields, offering
new insights into the interplay between production length, financial conditions, and industrial
structure.
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A Appendix

A.1 Effect of a Change in T on APP

From straightforward differentiation of equation (2), we have that

APP 1
pT q “ pT ´ T q

ℓ pT q

L
`
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0

„

ℓ ptq
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´ pT ´ tq
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„
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ȷ
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“ 1 ´
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L
APP .

Note that if ℓ ptq stays constant or decreases along the production process, we then have
ℓ pT q {L ą 1{T , and thus

APP 1
pT q ą 1 ´

APP
T

ą 0,

where the last inequality follows from APP being bounded above by T .
Next, consider the case in which ℓ ptq grows at some constant rate g. In such a case, note

that
ℓ ptq “ λegt,
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0
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We then obtain

APP 1
pT q “ 1 ´

ℓ pT q

L
APP

“ 1 ´
egT

´

şT

0 egtdt
¯2

ż T

0
pT ´ tq egtdt

“ 1 ´
egT

´

şT

0 egtdt
¯2

ˆ

T

ż T

0
egtdt ´

ż T

0
tegtdt

˙

“ 1 ´
egT

´

1
g

pegT ´ 1q

¯2

ˆ

T
1
g

`

egT
´ 1

˘

´
1
g2

`

egT
pgT ´ 1q ` 1

˘

˙

“ 1 ´
egT

egT ´ 1

ˆ

1 ´
gT

egT ´ 1

˙

.

31



It is then straightforward to show that ex

ex´1

`

1 ´ x
ex´1

˘

ď 1 for any x, and thus APP 1
pT q ą 0.

On the other hand, it may well be possible for APP to fall when T is increased. As a simple
illustration, consider a comparison of two production processes in discrete time. The first one
lasts for T “ 10 periods and all labor inputs occur at t “ 0, so APP “ 10. The second process
is exactly identical to the first one, except that it lasts for an additional period (T “ 11) and
half of the inputs are provided in that last period t “ 11, with the remaining inputs being
employed at t “ 0. In that case, APP “ 5.5 ă 10, and thus the APP is lower for the process
with a higher T .

A.2 Effect of r on T in Uniform Input Model

Take equation (8) and rearrange it as

g pT, rq “
1
2

Z 1
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2T
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Z
`1

2T
˘

`

1 ´ e´rT
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Differentiating with respect to r, we have
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because xe´x ´ 1 ` e´x ă 0 for all x.
Next, differentiate with respect to T to obtain, after a few manipulations
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where the sign follows from Z2 ă 0 and e´rT ă 1.
Thus g pT, rq is decreasing in T and r, and thus invoking the implicit function theorem we

can conclude that T is decreasing in r.
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A.3 Choice of T with Time-Separable Technology

Start from equation (14), and define

f pT, rq “
Z 1 pT q

Z pT q
´

ˆ

r ´
1

σ ´ 1
gσ ` r pσ ´ 1q

1 ´ e´pgσ`rpσ´1qqT

˙

,

so that T is such that f pT, rq “ 0. For the first-order condition (14) to be associated with a
profit-maximizing choice of T , we need to impose Bf pT, rq {BT ă 0. Note that

Bf pT, rq

BT
“

Z2 pT q

Z pT q
´

pZ 1 pT qq
2

pZ pT qq2 ´
pgσ ` r pσ ´ 1qq

2 e´pgσ`rpσ´1qqT

p1 ´ e´pgσ`rpσ´1qqT q
2

pσ ´ 1q
,

so it is clear that as long as σ ą 1, we will indeed necessarily have Bf pT, rq {BT ă 0.
Taking the derivative of f pT, rq with respect to r delivers

Bf pT, rq

Br
“ e´pgσ`rpσ´1qqT 1 ´ e´T pgσ`rpσ´1qq ´ T pgσ ` r pσ ´ 1qq

pe´T pgσ`rpσ´1qq ´ 1q
2 ă 0,

where the sign follows from 1 ´ e´x ´ x ă 0 for all x ‰ 0. By the implicit function theorem, it
thus follows that BT {Br ă 0.
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A.4 Data Preparation Algorithm

In this section, we outline the algorithm for preparing the data for empirical analysis.

1. We use the Wharton Research Data Services (WRDS) API to query data on annual firm
fundamentals from Compustat.17 We apply the following standard filters:

(a) We require variables identifying the firm, fiscal year, reporting date, and country of
incorporation (gvkey, fyear, datadate, and fic, respectively) to be non-empty.

(b) We require the reporting date to be before December 31, 2023.

(c) For North American firms, we require the report to be consolidated (consol = "C"),
in the industrial format (indfmt = "INDL"), the data format to be standardized
(datafmt = "STD"), and the population source to be domestic (popsrc = "D").

(d) For Global firms, we require the report to be consolidated (consol = "C"), in the
industrial format (indfmt = "INDL"), the data format to be standardized data
collected from the company’s original filing (datafmt = "HIST_STD"), and the
population source to be international (popsrc = "I").

We pool North American and Global data. We then drop all duplicates based on firm
and reporting date (gvkey and datadate), unless duplicates are identical, in which case
we keep a single occurrence.

2. We use the WRDS API to query data on the industry classification of firms from Compustat.
On WRDS, the data on industry classification is stored separately for North American
and Global firms. The variable naicsh contains industry classification according to the
current vintage at the fiscal year. For instance, if the fiscal year is 2003, then the code in
naicsh is according to the 2002 vintage. We retrieve that variable, together with the firm
and year identifiers, for observations whose reporting date is before December 31, 2023.
We pool the North American and Global data. We then drop all duplicates based on firm
and reporting date identifiers gvkey and datadate, unless the naicsh codes are nested
(in which case we keep one instance with the longest code) or have a common prefix (in
which case we keep one instance and assign the longest common prefix to it).

3. We add, whenever possible, data on industry classification to the data on fundamentals,
based on gvkey and datadate. We drop firms that have no naicsh in any year. We

17WRDS data is updated daily, with changes that may include additions, removals, or modifications of
observations. While we did not find a way to access specific dated versions of the data, and the results are
therefore not fully reproducible, such updates are unlikely to significantly affect the findings. The authors have
preserved a copy of the data used in this paper on their local machines, retrieved on Jan 9, 2025, 10:31 PM EST.
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conduct data imputation: whenever a group, defined as all observations having the same
gvkey and NAICS vintage, has naicsh codes that are nested (e.g., codes 11 and 111), we
assign the longest code to observations with non-missing NAICS in the group. When a
firm has two observations for the same fiscal year, fyear, we retain only the observation
with the earliest datadate.

4. We obtain concordances between NAICS vintages (1997, 2002, 2007, 2012, 2017, and
2022) from the United States Census Bureau. These concordances are not one-to-one.

5. We convert naicsh to 2012 NAICS and impute missing values as follows:

(a) If naicsh maps to a unique 2012 NAICS code, we assign that unique code.

(b) If naicsh maps to multiple 2012 NAICS codes:

i. If the firm has a naicsh in 2012, and this code is one of the possible mappings,
we assign that code.

ii. If not, we uniformly draw a random code from the possible mappings. We use
the hashlib Python library to draw codes consistently for replicability.

(c) For remaining observations, we assign the code from the closest same-gvkey
observation that has a 2012 NAICS code.

6. We then perform the following data cleaning steps:

(a) We drop observations with fiscal year outside of the range 1980–2018. In the paper
analysis, year refers to the fiscal year.

(b) We drop observations for which the following variables are negative or missing: sales,
COGS, interest expenses, long-term debt, short-term debt, and total inventories
(sale, cogs, xint, dltt, dlc, invt, respectively).

(c) We drop observations outside the 1st and 99th percentiles of the following variables:
the APP , the cost of capital, and the ratio of sales to COGS.

(d) In the paper analysis, a firm ID is the combination of gvkey, fic, and the six-digit
2012 NAICS code. We use the country of incorporation, fic, as a country ID.

(e) We remove observations with an incomplete six-digit NAICS code.

7. We download annual industry-level data (based on the 2017 NAICS classification at the
3- or 4-digit level) for the years 1987 to 2018 from the Bureau of Labor Statistics website.
We convert the industry classification to 2012 NAICS, and compute IT capital intensity
as the ratio of total information processing capital stock to sectoral output.
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8. We download the 2021a version (classified according to the six-digit level of 2012 NAICS)
of the NBER-CES Manufacturing Industry Database, which provides annual industry-level
data from 1958 to 2018, from the NBER website.

Table A.1 contains the number of firm-year observations after the implementation of the
data preparation algorithm.

Table A.1: Number of Firm-Year Observations by Sample and NAICS Imputation

Non-Imputed NAICS Imputed NAICS Total

U.S. Manufacturing Industries 46,511 11,289 57,800
U.S. All Goods-Producing Industries 53,284 14,051 67,335
Global Manufacturing Industries 151,831 29,123 180,954
Global All Goods-Producing Industries 171,432 35,754 207,186

Notes: The table presents the number of firm-year observations by sample (rows) and NAICS origin. “Non-
imputed” refers to cases where the naicsh code was present for the given firm and year in the industry
classification files and was unambiguously converted to the 2012 vintage of NAICS. All other observations are
classified as “imputed NAICS”. See Step 5 of the data preparation algorithm

In Appendix A.7, we reproduce some results from the main text using the restricted sample
of observations with non-imputed NAICS and demonstrate that the results remain qualitatively
and quantitatively similar. This suggests that the findings in the main text are not driven by
the data imputations.
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A.5 Analysis Beyond Manufacturing: All Goods Producers

In the main text, we focus our analysis on data for manufacturing industries under NAICS codes
31–32–33. In this section, we extend the analysis to include all goods-producing industries,
which encompass NAICS codes 11, 21, 22, and 23, in addition to manufacturing. This broader
scope incorporates agriculture, forestry, fishing and hunting; mining, quarrying, and oil and gas
extraction; utilities; and construction, alongside manufacturing.

Figure A.1 illustrates the evolution of cost-weighted average APP and cost of capital, similar
to Figure 1 in the main text. Comparing the two figures reveals that the increase in APP from
the mid-2000s to 2018 was more pronounced for goods-producing firms than for manufacturing
firms, although the overall trends remain consistent.

Figure A.1: APP and Cost of Capital in U.S Goods-Producing Industries.
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Notes: The figure shows the cost-weighted annual averages of APP and cost of capital for U.S. publicly traded
companies in goods-producing industries from 1980 to 2018. APP represents the ratio of inventories to COGS,
while cost of capital is the ratio of interest expenses to total debt (short- and long-term). Source: Compustat.

Figure A.2, similar to Figure 2, shows the distribution of goods-producing industries by
APP . With only 27 additional industries included, the two figures are very similar.

Table A.2 presents the top 20 industries by APP . Compared to Table 1 in the main text,
some non-manufacturing industries—land subdivision, housing construction, and residential
remodeling—naturally enter Table A.2. These industries engage in projects with extended
duration, requiring substantial working capital investments throughout the production length.

Table A.3 presents the bottom 20 industries ranked by APP , similar to Table 2 in the main
text. Interestingly, the six goods-producing industries with the shortest APP values are not
manufacturers. The list naturally includes utilities (NAICS code 22), such as water, electricity,
gas, and hydroelectric power, which operate through real-time production and delivery of
services. It also includes coal, petroleum, and natural gas mining (NAICS code 21), as the
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Figure A.2: Distribution of APP in U.S. Goods-Producing Industries
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Notes: The figure shows the distribution of industries (N “ 269) based on APP. For each industry, defined
as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year, then
averaged across years from 1980 to 2018. The data covers U.S. publicly traded companies in goods-producing
industries. Industries with fewer than 50 firm-year observations are excluded. Source: Compustat.

standardized mining process often involves the direct and continuous supply of resources to
buyers. Conversely, the inclusion of certain construction industries (NAICS code 23) near the
bottom is less intuitive and likely reflects differences in inventory accounting practices across
industries rather than variations in actual production timelines.

Table A.4 presents summary statistics for firms in U.S. goods-producing industries from
1980 to 2018. These statistics are similar to those in Table 4 in the main text, which is expected,
as manufacturing firms make up 86% of the sample.

We next return to the specification in (19) with the sample of U.S. goods-producing firms.
Estimation findings are presented in Table A.5. For comparison, we first replicate the findings
from column (1) of Table 5 for U.S. manufacturing firms only. Column (2) shows results for the
sample that includes U.S. firms in all goods-producing industries, while column (3) excludes
manufacturers. Table A.5 indicates that APP appears more sensitive to cost of capital for
firms in goods-producing industries outside manufacturing than within manufacturing. We also
find that the elasticity of APP with respect to cost of capital in Table A.5 is robust to the
inclusion of IT capital intensity as a control variable, as shown in column (2) of Table 5.

In Table A.6, we present Spearman rank correlations for industry rankings based on APP
across pairs of countries, similar to Table 7 in the main text. The resulting Table A.6 includes
11 countries, and the results overall are very similar to Table 7.
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Table A.2: The Top 20 U.S. Goods-Producing Industries by APP

NAICS Industry APP

237210 Land Subdivision 1.063
236117 New Housing For-Sale Builders 0.870
312140 Distilleries 0.814
312130 Wineries 0.737
236115 New Single-Family Housing Construction (except For-Sale Builders) 0.716
236118 Residential Remodelers 0.601
339115 Ophthalmic Goods Manuf. 0.573
312230 Tobacco Manuf. 0.488
333997 Scale and Balance Manuf. 0.441
333132 Oil and Gas Field Machinery and Equipment Manuf. 0.439
316998 All Other Leather Good and Allied Product Manuf. 0.432
325412 Pharmaceutical Preparation Manuf. 0.430
334510 Electromedical and Electrotherapeutic Apparatus Manuf. 0.421
332215 Metal Kitchen Cookware, Utensil, Cutlery, and Flatware Manuf. 0.415
333131 Mining Machinery and Equipment Manuf. 0.404
339112 Surgical and Medical Instrument Manuf. 0.396
334516 Analytical Laboratory Instrument Manuf. 0.392
325620 Toilet Preparation Manuf. 0.388
315190 Other Apparel Knitting Mills 0.383
334519 Other Measuring and Controlling Device Manuf. 0.381

Notes: The table lists the top 20 U.S. goods-producing industries ranked by APP. For each industry, defined
as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year, then
averaged from 1980 to 2018. Industries with fewer than 50 firm-year observations are excluded. Please refer to
the replication package for the complete ranking. Source: Compustat.
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Table A.3: The Bottom 20 U.S. Goods-Producing Industries by APP

NAICS Industry APP

221310 Water Supply and Irrigation Systems 0.036
237310 Highway, Street, and Bridge Construction 0.048
238210 Electrical Contractors and Other Wiring Installation Contractors 0.051
212112 Bituminous Coal Underground Mining 0.055
237130 Power and Communication Line and Related Structures Construction 0.061
221122 Electric Power Distribution 0.064
324110 Petroleum Refineries 0.068
311511 Fluid Milk Manuf. 0.069
311812 Commercial Bakeries 0.071
325193 Ethyl Alcohol Manuf. 0.073
237990 Other Heavy and Civil Engineering Construction 0.075
211111 Crude Petroleum and Natural Gas Extraction 0.079
237110 Water and Sewer Line and Related Structures Construction 0.081
336370 Motor Vehicle Metal Stamping 0.083
221210 Natural Gas Distribution 0.085
212111 Bituminous Coal and Lignite Surface Mining 0.089
238990 All Other Specialty Trade Contractors 0.093
312112 Bottled Water Manuf. 0.097
221111 Hydroelectric Power Generation 0.100
213111 Drilling Oil and Gas Wells 0.107

Notes: The table lists the bottom 20 U.S. goods-producing industries ranked by APP. For each industry,
defined as a six-digit NAICS code, APP is calculated as a cost-weighted average across firms within each year,
then averaged from 1980 to 2018. Industries with fewer than 50 firm-year observations are excluded. Please
refer to the replication package for the complete ranking. Source: Compustat.
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Table A.4: Summary Statistics for Firms in U.S. Goods-Producing Industries, 1980–2018

Mean Std. Dev. P25 Median P75 N

Average Period of Production 0.299 0.267 0.136 0.232 0.376 67,335
Cost of Capital 0.104 0.079 0.064 0.088 0.119 67,335
IT Capital Intensity 0.047 0.047 0.014 0.024 0.067 53,452

Notes: The table reports summary statistics for a panel of U.S. companies in goods-producing industries from
1980 to 2018. IT capital intensity is an industry-level variable that has been imputed to firm-level observations
based on NAICS classifications. Sources: BLS, Compustat.

Table A.5: APP and Cost of Capital in the U.S.

Dependent Variable: Average Period of Production
(1) (2) (3)

Manufacturing All Goods Prod. Manuf. Excluded

Cost of Capital ´0.090a ´0.094a ´0.125a

(0.007) (0.006) (0.024)

R2 0.789 0.819 0.814
Observations 57,800 67,335 9,535

Notes: The table presents the results of estimating equation (19) on a panel of U.S. publicly traded companies
in goods-producing industries from 1980 to 2018. The first column is based on data for firms in manufacturing,
the second is based on data for all firms, and the last excludes manufacturing. All variables are in logarithms.
All regressions include firm and year fixed effects. The standard errors are clustered at the industry (six-digit
NAICS codes) and year levels (two-way clustering). Statistical significance at the 1%, 5%, and 10% levels is
denoted by superscripts a, b, and c, respectively. Source: Compustat.
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Table A.6: Rank Correlations of Goods-Producing Industries by APP Across Countries

CAN CHN DEU FRA GBR IND JPN KOR MYS TWN USA

CAN – 0.51b – – 0.65a 0.64b 0.81a 0.88a – 0.57c 0.80a

CHN 0.51b – – – 0.13 0.47a 0.53a 0.73a 0.34 0.47b 0.61a

DEU – – – – – – – – – – 0.64b

FRA – – – – – – – – – – 0.87a

GBR 0.65a 0.13 – – – 0.83a 0.50a 0.71b 0.15 0.41 0.86a

IND 0.64b 0.47a – – 0.83a – 0.46a 0.45b 0.54c 0.29 0.47a

JPN 0.81a 0.53a – – 0.50a 0.46a – 0.75a 0.35 0.34b 0.57a

KOR 0.88a 0.73a – – 0.71b 0.45b 0.75a – – 0.58a 0.72a

MYS – 0.34 – – 0.15 0.54c 0.35 – – – 0.27
TWN 0.57c 0.47b – – 0.41 0.29 0.34b 0.58a – – 0.61a

USA 0.80a 0.61a 0.64b 0.87a 0.86a 0.47a 0.57a 0.72a 0.27 0.61a –

Notes: Spearman rank correlations are reported. To construct the rankings of industries (defined as six-digit
NAICS codes) for each country, we first calculate the cost-weighted average of APP for each country-industry
pair within each year from 1980 to 2018 and then compute the average of these values across those years. We
limit the analysis to country-industry pairs with at least 50 observations during this period. Rank correlations
are reported only for country pairs with at least 10 overlapping industries. The analysis is based on a panel of
publicly traded goods-producing companies. Statistical significance at the 1%, 5%, and 10% levels is denoted by
superscripts a, b, and c, respectively. Source: Compustat.
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A.6 Figures and Tables Referenced in the Main Text

Figure A.3: Distribution of the Standard Deviation of APP in U.S. Manufacturing
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Notes: The figure shows the distribution of industries, defined as six-digit 2012 NAICS codes (N “ 242), based
on the standard deviation of the logarithm of APP. The analysis is based on a panel of U.S. publicly traded
manufacturing companies from 1980 to 2018. Industries with fewer than 50 observations are excluded. The red
line represents the standard deviation constructed using the pooled sample, while the blue line represents the
average of within-industry standard deviations. Source: Compustat.
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Figure A.4: Inventory Intensity and APP in U.S. Manufacturing
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Notes: The figure presents a scatterplot with (X-axis) representing the ratio of inventories to a measure of
COGS and (Y-axis) representing APP . Each point pN “ 242q represents a U.S. manufacturing industry, defined
by a six-digit NAICS code. The red line depicts the OLS regression. Annual values of variables were averaged
from 1980 to 2018. For APP, annual values were first obtained by taking cost-weighted averages across firms
in each industry. Industries with fewer than 50 firm-year observations in Compustat were excluded. Sources:
Compustat, NBER-CES.
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Figure A.5: Partial Effect of APP on Labor Productivity in U.S. Manufacturing
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Notes: The figure presents a scatterplot with (X-axis) residuals from the regression of APP on log cost of
capital and (Y-axis) residuals from the regression of log labor productivity on log cost of capital. Each point
pN “ 242q represents a U.S. manufacturing industry, defined by a six-digit NAICS code. The red line depicts
the OLS regression. Annual values of variables were averaged from 1980 to 2018. For APP , annual values were
first obtained by taking cost-weighted averages across firms in each industry. Industries with fewer than 50
firm-year observations in Compustat were excluded. Sources: Compustat, NBER-CES.
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Table A.7: Rank Correlations of Manufacturing Industries by APP Across Countries

AUS BMU BRA CAN CHN CYM DEU FRA GBR IDN IND JPN KOR MYS PAK SGP SWE THA TWN USA

AUS – – – 0.41 0.36 – – – 0.58c – 0.24 0.26 0.44 – – – – – 0.62c 0.35
BMU – – – – 0.49c – – – 0.79a – 0.17 ´0.13 0.47 – – – – – – 0.62b

BRA – – – – – – – – – – – 0.25 – – – – – – – 0.42
CAN 0.41 – – – 0.49a 0.51 0.15 0.58b 0.49a – 0.31 0.55a 0.59a ´0.23 – – – 0.50 0.54a 0.65a

CHN 0.36 0.49c – 0.49a – 0.53c 0.41 0.58a 0.55a 0.62b 0.52a 0.41a 0.41a 0.06 – 0.79a 0.31 0.62b 0.59a 0.58a

CYM – – – 0.51 0.53c – – – – – 0.38 0.41 0.70b – – – – – 0.38 0.29
DEU – – – 0.15 0.41 – – 0.39 0.46c – 0.61a 0.57a 0.27 0.64b – – – – 0.36 0.55a

FRA – – – 0.58b 0.58a – 0.39 – 0.70a – 0.57b 0.45b 0.81a 0.53 – – – – 0.64b 0.63a

GBR 0.58c 0.79a – 0.49a 0.55a – 0.46c 0.70a – – 0.69a 0.59a 0.67a 0.07 – – 0.50c – 0.52b 0.67a

IDN – – – – 0.62b – – – – – 0.85a 0.58b 0.67a 0.78a – – – – – 0.64a

IND 0.24 0.17 – 0.31 0.52a 0.38 0.61a 0.57b 0.69a 0.85a – 0.44a 0.39b 0.45b – 0.16 0.45 0.44c 0.31b 0.41a

JPN 0.26 ´0.13 0.25 0.55a 0.41a 0.41 0.57a 0.45b 0.59a 0.58b 0.44a – 0.64a 0.22 – 0.46 0.63b 0.26 0.25c 0.56a

KOR 0.44 0.47 – 0.59a 0.41a 0.70b 0.27 0.81a 0.67a 0.67a 0.39b 0.64a – 0.20 – – – 0.49 0.68a 0.62a

MYS – – – ´0.23 0.06 – 0.64b 0.53 0.07 0.78a 0.45b 0.22 0.20 – – ´0.25 – 0.83a 0.26 ´0.02
PAK – – – – – – – – – – – – – – – – – – – 0.88a

SGP – – – – 0.79a – – – – – 0.16 0.46 – ´0.25 – – – – – 0.36
SWE – – – – 0.31 – – – 0.50c – 0.45 0.63b – – – – – – – 0.70a

THA – – – 0.50 0.62b – – – – – 0.44c 0.26 0.49 0.83a – – – – 0.49c 0.31
TWN 0.62c – – 0.54a 0.59a 0.38 0.36 0.64b 0.52b – 0.31b 0.25c 0.68a 0.26 – – – 0.49c – 0.46a

USA 0.35 0.62b 0.42 0.65a 0.58a 0.29 0.55a 0.63a 0.67a 0.64a 0.41a 0.56a 0.62a ´0.02 0.88a 0.36 0.70a 0.31 0.46a –

Notes: Spearman rank correlations are reported. To construct the rankings of industries (defined as six-digit
NAICS codes) for each country, we first calculate the cost-weighted average of APP for each country-industry
pair within each year from 1980 to 2018 and then compute the average of these values across those years. We
limit the analysis to country-industry pairs with at least 30 observations during this period. Rank correlations
are reported only for country pairs with at least 10 overlapping industries. The analysis is based on a panel of
publicly traded manufacturing companies. Statistical significance at the 1%, 5%, and 10% levels is denoted by
superscripts a, b, and c, respectively. Source: Compustat.
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A.7 Robustness to Imputation of NAICS

Step 5 of the data preparation algorithm outlines the process of imputing NAICS values. Below,
we replicate three results from the main text for the restricted subset of observations with
non-imputed NAICS. Specifically, we restrict the data to cases where the naicsh variable was
non-empty for the given firm and year in the industry classification files and was unambiguously
converted to the 2012 vintage of NAICS (case (a) of Step 5). All other observations are classified
as “imputed NAICS.”

Table A.8 is based on Table 3, Table A.9 is based on Table 5, and Table A.10 is based on
Table 7. We observe that the results remain qualitatively and quantitatively similar, which
suggests that our findings are not driven by our procedure for imputing NAICS codes.

Table A.8: Robustness to Imputation of NAICS:
Correlation of APP with Industry Characteristics in U.S. Manufacturing

Correlation
Characteristic with APP p-Value

Capital Intensity
Log (Real Capital Stock / Total Workers) ´0.156 0.015
Log (Capital Expenditures / Payroll) ´0.177 0.006

Skill Intensity
Log (Non-Production Workers / Total Workers) 0.270 0.000
Non-Production Payroll / Payroll 0.342 0.000

Inventory Intensity
Inventories / Sales 0.699 0.000
Inventories / (Payroll + Material Costs + Energy Costs) 0.801 0.000
Inventories / (Prod. Worker Wages + Material Costs + Energy Costs) 0.795 0.000

Productivity
Log (Real Value Added / Total Workers) 0.030 0.640
Total Factor Productivity ´0.010 0.874

Notes: This table replicates Table 3 using only observations with non-imputed NAICS codes. Sources:
Compustat, NBER-CES.
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Table A.9: Robustness to Imputation of NAICS:
APP and Cost of Capital in U.S. Manufacturing

Dependent Variable: Average Period of Production
(1) (2) (3)

Cost of Capital ´0.093a ´0.089a ´0.091a

(0.008) (0.008) (0.008)
IT Capital Intensity – 0.012 0.012

– (0.021) (0.019)
Capital Intensity – – ´0.019

– – (0.029)
Skill Intensity – – ´0.058

– – (0.049)
Labor Productivity – – ´0.048

– – (0.049)

R2 0.810 0.815 0.817
Observations 46,511 42,968 41,458

Notes: This table replicates Table 5 using only observations with non-imputed NAICS codes. Sources: BLS,
Compustat, NBER-CES.

Table A.10: Robustness to Imputation of NAICS:
Rank Correlations of Manufacturing Industries by APP Across Countries

CAN CHN DEU FRA GBR IND JPN KOR MYS TWN USA

CAN – 0.36 – – 0.59b 0.68b 0.66a – – 0.54c 0.66a

CHN 0.36 – – – 0.52b 0.30 0.47a 0.47c – 0.47b 0.59a

DEU – – – – – – – – – – 0.68b

FRA – – – – – – – – – – 0.84a

GBR 0.59b 0.52b – – – 0.76a 0.63a 0.89a – 0.71a 0.83a

IND 0.68b 0.30 – – 0.76a – 0.47a 0.69a 0.43 0.29 0.46a

JPN 0.66a 0.47a – – 0.63a 0.47a – 0.57a 0.20 0.32b 0.58a

KOR – 0.47c – – 0.89a 0.69a 0.57a – – 0.57b 0.61a

MYS – – – – – 0.43 0.20 – – – 0.05
TWN 0.54c 0.47b – – 0.71a 0.29 0.32b 0.57b – – 0.60a

USA 0.66a 0.59a 0.68b 0.84a 0.83a 0.46a 0.58a 0.61a 0.05 0.60a –

Notes: This table replicates Table 7 using only observations with non-imputed NAICS codes. Source:
Compustat.
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