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ABSTRACT
The resurgence of subsidies and industrial policies has raised concerns about their potential 
inefficiency and alignment with multilateral principles. Critics warn that such policies may divert 
resources to less efficient firms and provoke retaliatory measures from other countries, leading to 
a wasteful “subsidy race.” However, subsidies for sectors with inherent cross-border externalities 
can have positive global effects. This paper examines these issues within the semiconductor 
industry: a key driver of economic growth and innovation with potentially significant learning-
by-doing and strategic importance due to its dual-use applications.

Our study aims to: (1) document and quantify recent industrial policies in the global 
semiconductor sector, (2) explore the rationale behind these policies, and (3) evaluate their 
economic impacts, particularly their cross-border effects, and compatibility with multilateral 
principles. We employ historical analysis, natural language processing, and a model-based 
approach to measure government support and its impacts. Our findings indicate that government 
support has been vital for the industry’s growth, with subsidies being the primary form of 
support. They also highlight the importance of cross-border technology transfers through FDI, 
business and research collaborations, and technology licensing. China, despite significant 
subsidies, does not stand out as an outlier compared to other countries, given its market size.

Preliminary model estimates indicate that while learning-by-doing exists, it is smaller than 
commonly believed, with significant international spillovers. These spillovers likely reflect cross-
country technology transfers and the role of fabless clients in disseminating knowledge globally 
through their interactions with foundries. Such cross-border spillovers are not merely accidental 
but result from deliberate actions by market participants that cannot be taken for granted. Firms 
may choose to share knowledge across borders or restrict access to frontier technology, thereby 
excluding certain countries. Future research will use model estimates to simulate the quantitative 
implications of subsidies and to explore the dynamics of a “subsidy race” in the semiconductor 
industry.
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1 Introduction

The recent resurgence of subsidies and other forms of industrial policy is widely perceived as

a significant departure from the principles of multilateralism and international cooperation.

Economists are generally skeptical of industrial policy as it can lead to inefficiency by diverting

resources to less efficient firms. Internationally, industrial policies may have negative cross-

border effects if resources are reallocated towards less efficient domestic producers, prompting

retaliation and similar policies from other countries. The resulting “subsidy race” can become

a “race to the bottom,” a wasteful competition of resources that fails to achieve policy goals.

However, some subsidies, such as those for new goods, green technologies, or sectors with

inherent cross-border externalities, can have positive cross-border effects and benefit other

countries. Assessing these cross-border effects is challenging when comparative advantage

is dynamic. Subsidies today might have minimal immediate impact on other countries but

could lead to significant future effects. Conversely, some countries may not currently use

subsidies, yet their past subsidies have helped them secure a dominant position in the global

market. This raises broader questions: (a) Can the new subsidies be economically justified?

(b) Should current WTO subsidy rules be updated to address the complexities of new and

rapidly evolving industries?

This paper is part of a larger project aimed at understanding these issues within key sectors

of the global economy. It focuses on semiconductors, one of the most dynamic and globally

integrated industries, heavily targeted by industrial policies worldwide. The semiconductor

industry is a key driver of economic growth, enabling all facets of modern digital life and

accelerating scientific innovation through high-performance computing. Learning-by-doing

and dynamic comparative advantage are considered to be crucial features of the industry,

leading to “infant industry protection” arguments in favor of government support. Additionally,

the industry has strategic importance stemming from semiconductors being “dual-use” goods,

with both civilian and military applications, prompting national security-based arguments for

government intervention.

Our study has three primary objectives:

1. To document and quantify, where possible, the industrial policies that have been recently

implemented in the global semiconductor sector.

2. To explore the rationale behind these policies.

3. To evaluate their economic impacts, particularly their cross-border effects, and assess

their compatibility with multilateral principles.

Our first objective focuses on policy description and measurement. Accurate measurement

of implemented policies is a crucial prerequisite for analyzing their effects. However, as

our analysis will reveal, this task is far from straightforward. Policymakers and industry
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experts frequently cite various figures in their statements and reports, but the sources of

these numbers are often unclear, and the approaches used to measure government support

are inconsistently applied across countries. An exception is the excellent study by the OECD

(2019), which we incorporate into our discussion. To advance measurement, we combine three

different approaches: (a) historical analysis of state support of the industry worldwide based

on existing sources; (b) the natural language processing (NLP) approach pioneered by Juhász,

Lane, Oehlsen, and Perez (2023) to identify industrial policies in the Global Trade Alert

(GTA) database between 2010 and 2022; (c) a model-based approach to identify (unobserved)

production subsidies as a residual factor lowering the marginal cost of production after

controlling for all other relevant cost determinants.

We compare our findings with those of the OECD study throughout our analysis. The

two studies differ in many important respects, both conceptually and in terms of firm and

year coverage, so it is unsurprising that our findings vary in some dimensions. Nonetheless, a

common conclusion of both studies is that government support in the semiconductor industry

is exceedingly difficult to quantify due to the diverse instruments and targets used by different

governments across the value chain. Measurement difficulties are particularly pronounced

in the case of China. The GTA database does not cover financial support provided by the

Chinese government, much of which is provided by subnational governments. One exception

is China’s “Big Fund” in 2014. Estimates from other sources, such as JW Insights reported in

the Financial Times, do not break down support by year or firm, making economic analysis

of the policies challenging. This is partly why we also consider the model-based approach,

inspired by Kalouptsidi (2018) and Barwick, Kalouptsidi, and Zahur (2023).

Our model-based approach involves specifying a model of the semiconductor industry,

estimating key demand and cost parameters using firm- or industry-level data, and then

using the model structure to back out marginal costs for each product. In this framework,

production subsidies are identified as a residual factor that reduces the marginal cost of all

firms in a country, i.e., a factor that leads to lower marginal costs in a country relative to a

benchmark country after accounting for all other relevant cost determinants. The disadvantage

of this approach is that the estimates depend on modeling and identification assumptions,

though it is possible to test their robustness against alternative assumptions. Nevertheless, a

significant advantage of this approach is that it allows not only for measurement, but also for

the evaluation of the subsidies’ economic effects, which is impossible without a theoretical

framework. From a measurement perspective, the model-based approach is particularly useful

when its findings can be contrasted and potentially corroborated with evidence from other

sources. In our context, we use confidential data from the Global Semiconductor Alliance

(GSA) to implement the model-based approach. However, the overlap between this data,

which covers 2004-2014, and the GTA data, which covers 2010-2022, is limited, making the
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comparison less informative. Thus, we currently view the model-based approach as a proof

of concept, hoping that future data will provide more robust conclusions.

Despite these caveats, the combined use of the three approaches leads to some clear

takeaways:

First, government support has been critical for the semiconductor industry’s growth,

particularly during its initial development phase. This support is evident across all major

segments of the value chain, benefiting established leaders at the technology frontier, such

as Korea and Taiwan, countries seeking to advance their industry, such as China and the

U.S., and countries attempting to enter the market, such as India. In more mature markets,

governments have traditionally allowed the private sector to take the lead. However, since

2020, there has been a significant increase in government intervention, with China, the United

States, Japan, Korea, and India notably ramping up financial support for the industry.

Second, subsidies are the primary form of government support, manifesting as financial

grants, state aid, tax incentives, loans and loan guarantees, and equity injections. This trend

aligns with the findings of the OECD report. These policies primarily target production

improvement and research, development and innovation.

Third, China has been a prominent user of subsidies. However, our estimates do not

pinpoint China as an outlier in its subsidy use; rather, its level of support is comparable to

other countries, when considering the size of its market. This conclusion is supported by

both our NLP-based analysis of GTA data and the subsidy estimates from our model-based

approach.

Fourth, cross-border technology transfer from more advanced to less advanced firms has

been as crucial as state support for the industry’s development. This transfer has occurred

through foreign direct investment (FDI), research collaborations, and technology licensing.

Outside of the United States, our analysis found no instance where a domestic semiconductor

industry developed without substantial foreign technology. This underscores the difficulty of

developing the industry without foreign partners willing to share technology. It also explains

why China has struggled to reach the technological frontier despite pursuing similar policies

to other Asian economies that, as U.S. allies, had better access to foreign technology.

Fifth, policymakers aim to achieve several goals through their support of the semicon-

ductor industry, including economic growth and development, international competitiveness,

resilience, and national security. Implicit in these objectives is the belief in strong learning-

by-doing effects in chip manufacturing, which lead to dynamic comparative advantage,

economies of scale, and high industry concentration. In the presence of learning-by-doing,

subsidies have a multiplier effect, amplifying and accelerating cost reductions as experience

accumulates. Even when firms internalize the benefits of learning spillovers, so that private

production is socially optimal, governments may still have valid reasons to support their

domestic semiconductor industry. This support helps counter the natural tendency toward
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industry concentration, diversify the supply chain, and enhance its resilience. These objectives

become even more critical when considering national security concerns, given that crucial

segments of the semiconductor supply chain are concentrated in a few geopolitically critical

countries. Learning spillovers across technologies and firms provides additional justification

for subsidies.

Sixth, our preliminary empirical estimates suggest, somewhat surprisingly, that learning-

by-doing, while present, is smaller than commonly believed in the industry. We show that

this result is driven by the pricing trends evident in our data. Moreover, we find that learning

internal to each manufacturing facility (foundry) and product is very small. However, learning

across technologies within a firm is more significant, indicating economies of scope in

learning. We also find evidence of significant international spillovers in learning.

Although our data and model cannot pinpoint the sources of these international spillovers,

we hypothesize that they stem from the highly fragmented yet concentrated nature of the sup-

ply chain and the importance of firm-to-firm relationships between buyers and manufacturers.

Chip design and manufacturing require close cooperation between buyers and manufacturers.

Manufacturers pool orders across buyers to exploit economies of scale, leading to standard-

ization of designs and processes. Buyers also place orders with manufacturers in different

countries, thus intermediating knowledge acquired through interactions with manufacturers

across borders. Another likely source of international spillovers is foreign technology transfer,

including through foreign direct investment (FDI), research collaborations, or the cross-border

recruitment of engineers and professionals. As previously noted, foreign technology transfer

is a crucial driver of growth in the industry. Our findings on international spillovers are

consistent with this premise.

While we consider these results preliminary and are cautious about drawing strong

conclusions or making policy recommendations, they do have interesting implications for the

cross-border effects of subsidies. International learning spillovers imply positive cross-border

effects. However, since these spillovers may result from foreign technology transfers or

business and research collaborations that require deliberate actions by market participants,

they are neither automatic nor inevitable. Just as firms can share knowledge across borders,

they can also restrict access to frontier technology, cutting off certain countries. In such cases,

cross-border learning spillovers will be small, and non-subsidized firms in other countries

will suffer from business stealing. Nevertheless, positive cross-border effects may still

occur if subsidies lead to product innovation and lower costs at subsidized foundries, which

benefit international buyers. In the future, we plan to use our model estimates to assess the

quantitative implications of subsidies through counterfactual simulations. Additionally, we

intend to explore the implications of a “subsidy race,” where multiple countries subsidize

their semiconductor industries. This will help us determine whether subsidies act as global

complements or substitutes when learning-by-doing is present.
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The remainder of the paper is structured as follows. Section 2 provides a brief overview of

the industry. Section 3 summarizes the history of industrial policy in the semiconductor sector

to offer context and background for the policies we analyze later. Section 4 presents the main

findings from the NLP-based analysis of the GTA database and compares them with the results

of the OECD report. Section 5 outlines the primary objectives pursued by policymakers as

identified in the GTA database. Section 6 introduces the model-based approach, the additional

proprietary data used to estimate the model, the rationale for using subsidies, and presents the

empirical findings. Section 7 concludes.

2 The Semiconductor Industry

Semiconductor firms are firms engaged in the design and/or fabrication of semiconductors—

any material whose electrical conductivity ranges between that of a conductor and that of an

insulator. The bulk of industry revenue is accounted for by integrated circuits (ICs), which

are networks of transistors fabricated on a surface to process binary data by switching them

on and off. The semiconductor industry forms the backbone of the hi-tech industry and is

considered a prime driver of economic growth.

2.1 The manufacturing process

Semiconductor fabrication begins with designing chips using software that lays out and

simulates transistor networks on semiconducting material. Manufacturing occurs in a fab-

rication facility, colloquially known as a “fab.” Transistors are etched onto a wafer via

photolithography, a process akin to photographic development that repeats to form multiple

chip copies. After layers are added, the wafer undergoes “wafer probe” testing to identify

defects. Successful chips are then cut from the wafer, and each of these pieces is called a

“die.” The dies are then encased and prepared for integration with other components.

Technological advancements in fabrication manifest in a number of product characteristics;

these include increased wafer sizes and reduced line widths, enhancing the number of chips

per wafer, and the density of transistors on each chip. For instance, larger wafers reduce costs

per die (a single chip cut from a wafer) by about 30%, while a 30% reduction in line width

roughly doubles transistor density, making chips smaller, faster, and more efficient. Despite

initial higher costs and the increased potential of defects, refinements in fabrication confer

benefits such as increased output and performance.
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2.2 The semiconductor supply chain

Table 1 summarizes the four broad categories of products within the semiconductor industry.

First, firms such as Intel and Advanced Micro Devices (AMD) produce microprocessors,

which amount to integrated circuits (ICs) containing one or more central processing units

(CPUs). This first category of products are used in personal computers, tablets, and servers.

The second category, system on a chip (SoC), is the newest type of semiconductor chip,

which combines all the necessary components of an entire system on a single chip. These

products are popularly used in small devices, such as smartphones, as they integrate CPUs with

graphics, cameras, as well as audio and video processing. Key firms in the SoC market include

names such as Nvidia, Broadcom, and Qualcomm.1 The third category includes commodity

integrated circuits commonly used in simple technological devices, such as barcode scanners.

Finally, the fourth category includes memory chips, particularly flash memory, which are

produced by large conglomerates such as IBM and Samsung.

Table 1: Categories of Semiconductor Products and Major Firms

Semiconductor Products Example Firms Example End-Products

1. Microprocessors AMD, Intel Computers, servers
2. “System on a Chip” Broadcom, Nvidia, Qualcomm Mobile phones
3. Commodity integrated circuits Analog Devices, Xilinx Barcode scanners
4. Memory IBM, Samsung, Toshiba Computers, flash drives

Comparative advantage comes through innovation, and innovation is a fast-paced, cumula-

tive effort in which tomorrow’s new product depends heavily on a broad set of today’s products

and ideas. In a 1965 paper, Intel co-founder Gordon E. Moore noted that the capabilities of

the integrated circuit doubled roughly every 18 months.2 This prediction is popularly known

as “Moore’s Law” and has held up remarkably well for over 50 years since its inception.

Additionally, Moore’s Law speaks to the short life span of any current product and the need

to develop tomorrow’s great idea today. Accordingly, R&D comprises a significant—and

increasing—component of firm expenses.

There are four primary components of the value chain: design, fabrication, testing, and

sales/distribution. During the design stage, skilled design engineers construct prototypes of

next-generation chips using expensive, high-end electronic design automation (EDA) software.

1. To illustrate the importance of these products: In early 2018, Singapore-based Broadcom attempted
a hostile takeover of Qualcomm ($120 billion), which was later blocked by the Trump Administration
due to national security concerns. Intel has since expressed interest in acquiring Qualcomm to solidify
its position to deliver 5G mobile services in the future.
2. At the time, he was referring to the number of transistors a firm could inexpensively place on a
single silicon wafer. Today, advancement generally refers more generically to processor speed.
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When completed, these plans are delivered to a (potentially external) fabrication facility, where

the chip circuits are constructed in successive layers on the surface of flat silicon wafers.

Firms engaged in the fabrication stage must incur a large fixed capital investment (≈$2 billion)

to build a plant, or fab, which consists of a wide variety of expensive equipment capable of

building the chips under extreme environmental requirements for cleanliness. During the

assembly stage, the wafers are split into individual dies for distribution to customers.

During the 1970s and 1980s, the industry was dominated by vertically integrated device

manufacturers (IDMs), which managed all components of the value chain (design, fabrica-

tion, testing, and distribution). The establishment of Taiwan Semiconductor Manufacturing

Company (TSMC) in 1987 by the Taiwanese government marked the beginning of an alter-

native business model, where production was outsourced to low-cost, third-party foundries.

Firms choosing this business model lack an internal fabrication facility or follow a “fabless”

model. Today, fabless firms account for roughly 90% of all semiconductor firms and generate

one-third of industry revenue. The fabless business model provides two advantages to the tra-

ditional IDM. First, outsourcing fabrication enables these firms to avoid the substantial capital

investment required to build fabrication facilities. Second, outsourcing—often overseas—

enables these firms to take advantage of scale to lower input costs, pooling production with

other fabless firms in third-party foundries. Outsourcing overseas also enables firms to benefit

from lower foreign wages and weaker environmental standards. Thus, the fabless business

model is thought to decrease upfront costs and ongoing production costs.

Outsourcing fabrication is particularly attractive in this industry as semiconductors tend

to be high value, weigh little, and thus have low transportation costs. As many low-wage

countries lack the technical expertise and capital infrastructure to establish viable foundries,

the majority of foundries are located in a specific set of markets: mainly China, Europe, Japan,

Taiwan, and the United States. The vast majority of outsourcing is done in Asia (Taiwan

accounts for approximately 59% of all outsourced wafers produced), while U.S. foundries

account for four percent of all third-party wafers produced. Hence, global supply chains have

played an important, though not necessarily pivotal, role in facilitating growth of the fabless

business model.

Today, the semiconductor supply chain is globally integrated, with different countries

dominating different parts of the supply chain. Advanced economies such as the United States

and the Netherlands lead in research and design. East Asia, particularly Taiwan and China,

dominates fabrication, producing the vast majority of wafers in "pure play" foundries. Testing,

assembly, and distribution are primarily controlled by East Asian countries (OECD, 2019;

Bown, 2020). Each of these segments is highly concentrated, so that while manufacturing a

chip requires cooperation among several firms across different countries, there is minimal
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competition at each stage of the process.3 The global nature of the semiconductor chain

has important implications for the assessment of subsidies or any other form of government

support by individual countries, as these actions resonate through global linkages across the

entire supply chain. In other words, cross-border effects of industrial policies are inherent in

this industry, and the key question is whether these effects are positive or negative.

2.3 Learning by doing

Semiconductor manufacturing includes several intricate steps, such as wafer fabrication,

lithography, etching, and doping, each demanding precise control. Given the complexities

and microscopic scale of these processes, mastering them requires more than just theoretical

knowledge; it necessitates practical, hands-on experience. The fast-paced nature of the

industry means that there is a large opportunity for continuous process improvement via the

accumulation of knowledge through hands-on experience in manufacturing operations.

Learning by doing can show up in several areas. First, there is scope to optimize opera-

tional processes. Regular involvement in fabrication processes helps engineers and technicians

identify process inefficiencies and subtle variations, which are often missed in theoretical

training. This practical experience is vital for developing more efficient manufacturing tech-

niques, enhancing yield rates and product quality. Second, semiconductor manufacturing

firms – both IDMs and fabless – promote a culture of innovation in which production floor

personnel are expected to experiment with new ideas in real-time. This hands-on adaptability

is crucial in an industry characterized by rapid technological changes and shifting market

demands. Third, semiconductor firms are constantly re-evaluating and improving worker

skills. The advanced skills required to manage and optimize cutting-edge semiconductor

manufacturing equipment are best developed through on-the-job learning, enhancing the

technical proficiency of the workforce.

Intel Corporation, for example, has integrated learning by doing into its operational ethos,

enabling it to maintain leadership in process technology. Specifically, Intel’s development of

its 14-nanometer and 10-nanometer technology nodes involved extensive iterative testing and

process refinement. This experiential approach allowed the company to overcome significant

manufacturing challenges and achieve high yield efficiencies, which were crucial during the

competitive surge from rivals like AMD and Global Foundries.

Similarly, TSMC actively promotes rapid learning cycles in semiconductor manufacturing.

As the world’s leading semiconductor foundry, TSMC mastered the art of quick iteration

across its advanced technology nodes, notably its 7-nanometer and 5-nanometer processes.

From Figure 1 we observe that TSMC operates several line-widths at a given time and that the

3. For instance, in the EDA software market, three US-based companies – Synopsys, Cadence Design
Systems, and Mentor Graphics — control ca. 85% of the global market (Bown, 2020).
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Figure 1: TSMC Sales by Line Width
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company quickly ramps-up production followed by a long period of reduced sales as a percent

of total TSMC revenue. TSMC’s approach involves close collaboration with equipment

suppliers and customers to speed up problem-solving and process optimization, resulting in

high yield rates and enabling faster commercialization of new technologies. This focus on

continuous improvement through hands-on problem solving has enabled TSMC’s market

dominance and attractiveness to global clients like Apple and NVIDIA.

3 A Brief History of Industrial Policy in Semiconductors

Historically, governments have played an important role in shaping the semiconductor industry.

In this section, we describe the different ways in which governments have facilitated the

establishment of the industry, both at the technology frontier and in follower countries. The

historical evidence suggests that the early phase of the industry’s development may be the

period where the government has the most important role to play.

We start with the U.S., the birthplace of the industry. Although most accounts of the indus-

try’s early days focus on the scientists and entrepreneurs who developed and commercialized

the technology, the government was also involved in numerous ways. First, through the

1960s, the US military bought most integrated circuits produced (72% of all integrated circuits

produced in 1965 (Miller, 2022, p. 31)). This major source of demand allowed producers to

learn how to commercialize and mass produce a technology that was still in its infancy.
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More subtly, large-scale government procurement meant that public agencies played

an outsized role in shaping how the industry developed. As one example, the U.S. Army,

Navy, and Air Force funded distinct approaches to solving the technical problem of soldering

together more transistors before silicon integrated circuits emerged as the best solution (Berger,

Khan, Schrank, and Fuchs, 2023). Importantly, the US military required that contractors

share technology, a policy that promoted the flow of knowledge. This, together with rigorous

antitrust policies pursued in the postwar period, allowed for the rapid dissemination of

technology (Choi, 2008; Berger et al., 2023).

For technological follower countries, governments have used a variety of policy levers to

foster a domestic semiconductor industry. Particularly in those economies where the technol-

ogy gap was large, the state played a dominant and sometimes leading role in establishing the

industry. This is seen to different degrees in all the economies which subsequently became

major producers at the technology frontier (Japan, South Korea and Taiwan), in economies

such as China that have pursued industrial policy in the sector for decades with mixed results,

and also in economies such as Israel (Breznitz, 2007), which successfully entered the industry,

but command a smaller share of the global market. This is important, as while we will focus

our discussion on the establishment of the industry in East Asian economies, the economic

forces at play seem to extend beyond “East Asia specific” factors.

We now turn to East Asian economies which have succeeded in catching up with the tech-

nology frontier. Although each pursued the objective of establishing a semiconductor industry

differently, their policies also share broad similarities. Crucially, beyond making the industry

more attractive to entrepreneurs by changing relative prices (through tariffs, subsidized loans,

tax breaks etc.), each state was directly involved in the process of international technology

acquisition, absorption, and diffusion. Put differently, developing a domestic industry seems

to have required some infant industry promotion and, critically, also extensive international

technology transfer facilitated by public agencies.4

In Japan, the famous pilot agency, MITI (Japanese Ministry of International Trade and

Industry), directly controlled technology import policy. As Japanese firms began entering

semiconductors in the 1950s, MITI determined which firms received a technology license and,

once approved, the government guaranteed that payments would be made (Lynn, 1998). There

were a number of potential advantages to Japan’s coordination. First, in the 1950s, Japan

was emerging from two decades of isolation from the world economy. Its firms were behind

the technology frontier, had few foreign links, and limited experience with international

agreements. Thus, by coordinating technology licensing directly, the government pooled

knowledge and lent the credibility of the Japanese government to firms that were unknown to

4. Another important element was the availability of human capital. Taiwan established a semiconductor
laboratory to study microelectronic physics when it only had semiconductor assembly capabilities
(Liu, 1993).
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the West. The weight of the Japanese state arguably also helped firms’ bargaining power; in

40% of all cases submitted for approval, the government intervened and forced changes to the

agreement that favored Japanese firms (Lynn, 1998; Choi, 2008).

In Korea, the government began pushing the electronics industry to move beyond the

assembly stage in its Fourth Five-Year Development Plan (1977-1981), when its per-capita

income stood at $459, roughly on par with Guatemala’s (Amsden, 1989). Semiconductors

were one of the strategic products named in this plan; according to Amsden, beyond the usual

incentive package for prioritized sectors, the government established an industrial estate for

the production of semiconductors and computers, it protected the domestic market, and, most

famously, it established the Electronics and Telecommunication Research Institute (ETRI).

In Korea, ETRI would play a key role in working together with the private sector to

coordinate R&D efforts between public researchers and the private sector. In fact, the

government accounted for the vast majority of the R&D spending in semiconductor technology

through the 1980s, with private firms contributing a smaller share (Chen and Sewell, 1996,

Table 5). At least as importantly however, through ETRI, the state pushed the chaebol, large

conglomerates, to upgrade their production and move into more design-intensive, higher-

return markets (Evans, 1992). In some cases, it did so by subsidizing and coordinating efforts

by the private sector; in others, it undertook the basic research itself, working closely with the

private sector (Evans, 1992).

One case in particular illustrates the extent to which public agencies took the lead in

pushing the domestic technological frontier: electronic switching systems.5 The Ministry

of Communications (MOC) decided to develop indigenous switching technology, a hugely

risky proposition that private firms would not have been willing to undertake on their own.

The MOC however used its control of telecommunications public procurement to persuade

foreign firms supplying the Korean market such as Ericsson to transfer some of their switch-

ing technology (a form of quid pro quo), and train ETRI personnel. ETRI then used this

knowledge, as well as generous funding from the MOC, to design an electronic switching

system that was better suited to developing country contexts with large rural populations.

Importantly, however, private firms were intimately involved with ETRI at the research stage,

and production was undertaken by private firms from the very beginning.

As this case illustrates, much like Japan, Korea did not develop the technology in isolation.

Instead, it relied extensively on technology alliances with foreign, mostly US, firms. Chen

and Sewell (1996) document how each of the three chaebol involved in semiconductors

(Samsung, Goldstar and Hyundai) had multiple technology alliances for a variety of products

with foreign firms (the authors list twenty-two distinct alliances for three years between

1983-1985). Moreover, each acquired US based firms “providing them with direct access to

5. This paragraph is based on the account in Evans (1992, p. 142).
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highly qualified scientists and engineers, advanced technologies and major markets” (Chen

and Sewell, 1996, p. 765).

While Korea entered the industry at a relatively low level of economic development, its

concentrated industrial structure meant that there were large, incumbent private sector firms

that the state could work with to develop the industry. Taiwan also entered the industry at a

similar level of development, yet its economy was characterized by small and medium-sized

firms. Thus, among the three cases we examine, the government’s singular role in establishing

the industry is most evident here. Much like Korea and Japan, however, Taiwan also relied

extensively on foreign technology at the outset.

Liu (1993) denotes three stages in the initial development of the industry from the mid-

1970s. First, through the newly founded Electronics Industry Research Center (reorganized

later as Electronics Research and Service Organization, ESRO) the government set up a public

pilot plant that developed technologies increasingly close to the frontier (in cooperation with

RCA, a US-based firm). In this way, the government assumed the entirety of the risk of

high-tech R&D. Over time, ESRO moved into all areas of the supply chain including computer-

aided design (CAD) and IC mask making. Later, in the 1980s, it closed the technology gap

further by moving into Very Large Scale Integration Technology (VLSI) – i.e., more than

100,000 elements in a chip.

In the second stage, the government transferred the technology it had developed at ESRO

to the private sector through licensing, spin-offs (including both United Microelectronics

Corp. and Taiwan Semiconductor Manufacturing Co.) and technology diffusion policies. In

the third stage, the government provided a variety of incentives to encourage the private sector

to enter the industry. Like Korea, the government set up an industrial park and also offered a

large range of generous fiscal incentives (cheap loans, tax breaks, accelerated depreciation of

R&D equipment and low-cost land).

These historical accounts suggest that the government was instrumental, and, in some

cases, the driving force in the initial development of the industry in successful follower

countries. However, observers agree that as the industries matured, government involvement

took more of backseat to the private sector, “shift[ing] from that of father to friend” (Liu,

1993, p. 304). This is worth noting as we move to measuring more contemporary industrial

policy in some of these same countries below in Section 4.

It is important to highlight the likely critical role US policymakers and firms played in

making the technology available to these economies (all of whom were key US allies in the

Cold War context). The technology became accessible to foreign firms partly because of

U.S. antitrust policies (Choi, 2008), and partly because U.S. firms themselves were willing to

share technology. This was not a given, and some authors note that Japanese firms shared

much less technology with Korean firms in anticipation of future competitive threats (Chen

and Sewell, 1996). Given the importance of international technology acquisition for all three
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economies, it is difficult to imagine them achieving similar success without some access to

frontier technologies.

We conclude this section by examining the history of semiconductor industrial policy in

China. Like other East Asian economies, China has sought to incubate a domestic semicon-

ductor industry for decades, with the earliest efforts dating back to the 1960s.6 Following

Mao’s death and the economic reform pursued by Deng Xiaoping, the Chinese leadership

has consistently prioritized, guided, and generously financed the development of a domestic

semiconductor industry, often using policy levers similar to other East Asian economies

discussed above (Minnich, 2023, p. 194 Figure 6.1). Notably, from the 1980s onwards,

Chinese industrial policy has sought to establish joint ventures or partner with foreign firms in

an attempt to transfer the foreign technology that leaders understood was necessary to close

the gap with the technology frontier.

Yet, unlike other East Asian economies above, China has not yet succeeded in reaching the

technological frontier in any part of the semiconductor value chain. Based on data compiled

by researchers at Georgetown University’s Center for Strategic and Emerging Technology,

China accounts for less than one percent of the market for software tools used to design chips,

two percent of the market for core intellectual property, four percent of the market for silicon

wafers and other materials used to make chips, one percent of the market for the tools used

to fabricate chips, five percent of the market for chip designs, and seven percent of market

share in fabrication (none of the latter capacity involves frontier technology). This has led

one observer to conclude that “China is staggeringly dependent on foreign technology, almost

all of which is controlled by China’s geopolitical rivals” (Miller, 2022, p. 249).

China’s modest progress in semiconductors, after decades of industrial policy, merits

further discussion. Why has China’s efforts yielded different results, particularly when

China has been remarkably successful at absorbing foreign technology in other sectors. One

compelling explanation comes from Minnich (2023), who argues that until the 2010s, due to

low domestic final demand as opposed to production for exports, China lacked the bargaining

power to effectively use quid pro quo policies—such as trading market access for foreign

technology—to facilitate technology transfer. The author provides multiple examples where

China repeatedly failed to secure the desired foreign partners for its national champions.

Moreover, consistent with their low bargaining power in semiconductors, Minnich shows that

China did not formalize technology-sharing requirements in their semiconductor industrial

policy in the post-WTO period. This is in stark contrast to other sectors, such as automobiles

(Bai, Barwick, Cao, and Li, 2020) or wind turbines (Minnich, 2023), where China has made

extensive use these policy tools.

6. This summary draws from Minnich (2023). A full description of Chinese industrial policy is beyond
the scope of this paper; we refer the reader to Minnich (2023) for an excellent discussion.
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Importantly, this argument is consistent with a potentially more successful industrial

policy pursued by China recently. Researchers suggest that China’s latest push, which many

date to the launch of the National Integrated Circuit Investment Fund in 2014 (see Section 4.3),

has appeared more promising (VerWey, 2019; Miller, 2022; Minnich, 2023). This is partly

due to the fact that as China has developed, the domestic market has become more lucrative,

increasing China’s bargaining power vis-à-vis foreign firms. As a consequence, China has

appeared more assertive in its efforts to acquire foreign technology (Minnich, 2023).7

Lessons from China’s efforts are also consistent with lessons from earlier East Asian

experiences. In particular, China’s efforts only highlight the importance of technology transfer

for successful industrial policy; outside of the U.S., our historical analysis has not uncovered

a single instance where a domestic semiconductor industry developed without substantial

foreign technology. This highlights that developing the industry, even with generous support,

is difficult without foreign partners willing to share technology. The importance of foreign

technology also provides insights into recent efforts by the Biden Administration to stymie

China’s technological advancement in semiconductors through export restrictions targeted at

advanced software and advanced capital equipment.

4 Quantifying Recent Government Support in Semiconductors

Having reviewed the main government policies employed in the early phase of the industry,

we now turn to more recent years. In this section, we discuss two approaches to measuring

government support in the semiconductor value chain post-2010. The first, employed by

the OECD in its 2019 report on semiconductors, applies the institution’s longstanding work

measuring market distortions to semiconductors (OECD, 2019). The second, which we

implement and refine in this paper for the semiconductor value chain, builds on Juhász et al.

(2023)’s approach to identifying industrial policy, henceforth JLOP. The two perspectives

take different, disciplined approaches to quantifying policy and use distinct concepts of

government support and implementation. We first provide a short description of each, compare

their relative strengths and weaknesses, and then describe their findings. We summarize the

main features of each approach in Table 2.

7. Due to the backlash surrounding the use of quid pro quo measures from foreign governments and
firms, these policies have become more informal over time, making them harder to detect (Minnich,
2023). In addition, outward FDI (much of which was tied to state venture capital funds) emerged
as one of the more visible forms of technology acquisition, although this has come under increasing
scrutiny since the mid-2010s.
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Table 2: Comparison of OECD (2019) and this paper

OECD (2019) This paper

Aim Quantify market distortions Identify industrial policies

Years covered Average for 2014-2018 2010-2022

Unit of analysis Firms Policies

Support reported for 21 firms Countries

Input data Companies’ own publications JLOP (2023) for classifying

and financial disclosures industrial policies in GTA

4.1 OECD’s (2019) methodology for quantifying government support

The OECD (2019) methodology aims to quantify market distortions relative to an unobserved

laissez-faire counterfactual. More precisely, the OECD uses an expansive definition of

government support, which includes “any financial or regulatory measures that can affect

costs, prices or the profitability of market actors in any portion of the value chain, wherever

they operate” (p. 62).

Practically, the report quantifies two main forms of government support for 2014–2018: i)

budgetary government support (e.g., tax incentives, financial grants etc.), and ii) government

support provided through the financial system. The former, budgetary government support,

is primarily taken from firms’ financial reports and disclosures. For the latter, the authors

estimate below-market debt and the below-market provision of equity. Quantifying these

requires comparing financial support to a hypothetical, unobserved market-based benchmark,

which we discuss in Section 4.4.

Government support is then estimated from the “bottom-up,” with firms as the unit of

analysis. The report estimates the two forms of government support for twenty-one firms

in the global semiconductor industry. These firms account for two-thirds of global industry

revenue and cover different parts of the value chain. Given data limitations, this process

excludes non-publicly traded firms (e.g., HiSilicon). Multinational firms play an important

role in the sector and are common in the sample. Since multinationals receive government

support from multiple jurisdictions, this complicates country-level calculations.

4.2 Our method: quantifying government support from Juhász et al. (2023)

This study takes a different approach to quantifying government support, building off the

industrial policy dataset of Juhász et al. (2023). We do this in two steps: i) we use data

from JLOP to identify industrial policies affecting the semiconductor industry; ii) we then
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systematically quantify the government spending for each, using a combination of policy text

and source documents. We discuss both steps below, but first describe the JLOP dataset.

JLOP uses machine learning to identify industrial policies from policy text and produce

counts of new industrial policies at the sector-country-year level for 2010-2022. The authors

define industrial policies as those policies that “seek to change the relative prices across sectors

or direct resources towards certain selectively targeted activities (e.g., exporting, R&D), to

shift the long-run composition of economic activity” (p. 5). They take this definition to

data using natural language processing (NLP) techniques to automatically classify industrial

policies from the Global Trade Alert (GTA) database, an international inventory of commercial

policy (Evenett, 2009).

By construction, the GTA database focuses on economic policies that meaningfully

affect foreign commercial interests relative to domestic ones (capturing both positive and

negative discrimination).8 Hence, the policies identified by JLOP cover industrial policies

that differentially impact domestic commercial interests, such as preferential subsidies and

lending to domestic firms.

For this study, we identify and quantify semiconductor industrial policy in two steps.

First, we select industrial policies from the JLOP dataset impacting the semiconductor sector.

Although the source data provides Harmonized System (HS) industry codes, HS codes are

insufficient to identify semiconductor industrial policies (Bown, 2020). Categories may be

too broad; for instance, “semiconductor devices” (HS 8541) encompasses not only discrete

semiconductors but also solar panels and light-emitting diodes (LED). Moreover, they may

not account for complex, evolving supply chains, which span chemical inputs (photographic

chemicals HS 370790) and machinery for manufacturing wafers (HS 848610). Additionally,

the GTA is missing HS codes for about one-third of the policies.

Hence, we combine “dictionary-based” methods from text analysis with HS code to

identify semiconductor industrial policies. Specifically, we identify policies from a dictionary

of terms associated with the semiconductor industry, such as “integrated circuit”, “chip”,

or “semiconductor wafer fab” in the textual descriptions of the policies. This process

produces an initial set of semiconductor industrial policies. We then manually verify that each

industrial policy is related to the semiconductor sector and collect contextual information

using additional sources (e.g., primary source statements, economic reporting, and trade

industry associations). For all countries, we employ research assistants with local knowledge

and language skills.

Second, we quantify government spending associated with each policy using source text

and validate the data using research assistants with area expertise. This approach identified

8. Specifically, the GTA Handbook defines its scope as covering “credible announcement of a mean-
ingful and unilateral change in the relative treatment of foreign versus domestic commercial interests”
(Evenett and Fritz, 2022, p. 1).
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fifty-eight industrial policies affecting semiconductor manufacturing in seventeen countries.

Table 3 contains the summary statistics.

Table 3: Summary statistics

Mean Std. Dev. Min. 25p 75p Max.

All policies (n = 58)

Policies per country 4.00 3.52 1 1 7 11
Policies per country per year 0.31 0.64 0 0 0 3
Billions USD per country 12.79 22.19 0 0.10 16.06 77.77
Billions USD per country per year 0.98 6.72 0 0 0 76.82

National policies (n = 35)

Policies per country 2.24 2.25 0 1 4 7
Policies per country per year 0.17 0.48 0 0 0 3
Billions USD per country 12.44 22.15 0 0 15.96 77.77
Billions USD per country per year 0.96 6.72 0 0 0 76.82

Notes: Count of policies and aggregate expenditure for the seventeen countries identified as
having any semiconductor industrial policies for the period 2010 – 2022. National policies ex-
clude policies targeting specific firms. European countries are reported individually. The value
of policies jointly implemented by a group of countries is equally split across the participating
jurisdictions. This table excludes the aggregate expenditure of Chinese provinces.

4.3 Chinese semiconductor policy

Chinese industrial policy is difficult to quantify (Kalouptsidi, 2018), and it is worth describing

the details and limitations of accounting for Chinese semiconductor policy. In particular,

our method does not allow us to ascribe monetary values to new Chinese industrial policy

programs, with the exception of one policy: the National Integrated Circuit Investment Fund

(typically referred to as the “Big Fund”).9 The core issue follows from the provincial nature

of Chinese industrial policy governance. Specifically, in China, national policy guidelines are

deployed by provinces, which design and fund provincial industrial policies. Thus, unlike

other countries in the sample, in China there are typically no monetary values associated with

national industrial policy announcements (which is what we capture through the GTA).

Figure 2 shows the importance of subnational policy in China and presents the number of

provinces implementing each national policy among the semiconductor policies identified in

our data. We see substantial take-up among China’s thirty-one provinces across the various

industrial policies. All three Five-Year Plans (FYPs) covered by our sample period include

9. China’s “Big Fund” is a public venture capital fund set up in 2014 with a capitalization of USD 47
billion and a mandate to invest in semiconductor firms (dollar value obtained from the Financial Times
based on market intelligence from JW Insights).
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semiconductor policy, and around two-thirds or more of the provinces are implementing

industrial policies to develop semiconductor capacity locally, with an increasing trend over

time. The two dedicated integrated circuit development plans have more limited take-up,

with about one-third of the provinces implementing industrial policies linked to national

guidelines.

Figure 2: Take-up of national semiconductor industrial policies across Chinese provinces

Notes: The figure plots the number of Chinese provinces implementing each major national semiconductor industrial policy. Each province
is coded as having taken up a particular national industrial policy if we could identify a specific provincial implementation plan. Source:
authors’ own research.

The provincial implementation of Chinese industrial policy means that we are almost

certainly underestimating the value of semiconductor support if we do not include provincial

spending. Figure 2 shows provincial spending is an issue; the question is how to quantify it.

We supplement our data with estimates of provincial spending on semiconductor policies,

using information from the Financial Times based on market intelligence from JW Insights,

a Chinese ICT market research firm.10 A number of caveats are in order. We do not know

how these estimates were constructed, nor what they include. Specifically, we do not know

whether they include equity investments through the “Big Fund,” which we do include in our

initial, non-provincial estimates. Moreover, we do not know whether the estimates include

spending beyond what was disbursed by implementing national-level industrial policies.

Hence, additional information is required to make comparisons with other jurisdictions. For

this reason, although we report numbers for China, we caution readers that they are uncertain

and are not constructed like the other countries in our sample.

10. In the article titled “How Huawei surprised the U.S. with a cutting-edge chip made in China” dated
November 29 2023, the Financial Times reports two types of data from JW Insights that we use to
construct our estimates. First, they report spending by major provinces for 2016-2022. Second, for
2021-2022, they provide a breakdown of spending by the following categories: foundry, materials,
testing, memory/storage, equipment, IDM, display panel, and others. We exclude the latter two
categories (other and display panel) when disaggregated spending data are available.
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4.4 Contrasting our approach and OECD (2019)

It is important to highlight the differences between the OECD’s approach and ours. The

OECD takes the firm as the unit of analysis and builds its estimation from the bottom up.

Its goal is to quantify distortions relative to the unobserved laissez-faire. This approach has

the important advantage of yielding estimates for both budgetary support and below-market

financing. However, this method comes with some assumptions and some practical challenges.

First, the OECD method assumes that the policymaker changes incentives for individual

firms at the margin. Put differently, this method is not well-suited to quantifying market

distortions from “big push,” or “moonshot” type government interventions that seek to catalyze

large-scale change in an industry. To illustrate the issue, consider the case of the government

investing in a portfolio of firms in the semiconductor industry, similar to the mandate of

China’s public semiconductor venture capital fund launched in 2014 (the “Big Fund”). The

OECD methodology evaluates ex-post, firm-by-firm, whether the required return on capital

was met, and classifies those that did not as receiving below-market equity investment. Yet

precisely because the methodology evaluates outcomes firm-by-firm, it misses the fact that

the portfolio of investments needs to be evaluated jointly, with the potential losses of many

firms covered by the large gains of a few.

Second, relatedly, by quantifying distortions relative to a laissez-faire benchmark, re-

searchers make an implicit assumption that a purely market-based counterfactual exists. This

is certainly a plausible assumption in some cases, but in the presence of market failures,

certain socially desirable economic activities do not exist without government intervention

(see Juhász, Lane, and Rodrik (2024)). Practically, the OECD method assumes these cases

away by positing a required return on equity that is the same for all semiconductor firms,

irrespective of which market that activity takes place in.

Third, in terms of practical challenges, this approach is inherently suited to capturing

support for large and successful firms, particularly publicly listed ones required by law to

release financial statements, the key data source for the OECD study. Consequently, the

approach will miss quantifying the effects of government support for firms that failed or did

not become large enough to be enumerated. These issues may mean government support is

underestimated.

Fourth, a distinct practical challenge relates to estimating below-market financing, which

requires imposing some strong assumptions. This is particularly true for estimating the

provision of below-market equity. Given that this source of support is important for the

report’s findings, we consider it in more detail. Broadly, the OECD compares the estimated

required rate of return in the semiconductor industry (RRR) to a firm’s net operating profits

each year.11 A firm is said to receive below-market equity any year in which the estimated

11. For a full description, see pp. 81-85 of the report.
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cost of capital is lower than operating profits. The approach requires the authors to estimate

RRR, which they do using a capital asset pricing model (CAPM).

Most importantly, we note that returns are evaluated on an annual basis instead of a net

present value (NPV) basis. Although flow-based evaluations may be more straightforward

to calculate, they may not be well-suited to projects where cash inflows and outflows vary

through time. High-capital investment projects (e.g., a chip fab) may require large upfront

expenditures with the anticipation of eventual, long-run payoffs. Evaluating annual profits

at early stages of a project’s life cycle may bias returns downwards for firms undertaking

investment projects in anticipation of large future profits. In fact, the government’s ability to

provide this type of “patient” capital is often invoked as a justification for government equity

investment.

Likewise, the approach taken in this paper has its own advantages and disadvantages. Here,

the state and, in particular, its industrial policies are the unit of analysis. The advantage is that

this allows us to more accurately capture ex-ante what the state is trying to do, regardless of

whether that effort is successful. Another distinct advantage of working at the policy level

is that it allows us to capture national-level policies that do not entail spending (e.g., import

tariffs) and those that require expenditure.

An obvious disadvantage of JLOP is that it relies on count-based measures rather than val-

ues. We deal with this in two ways. First, GTA source data contains both major national policy

announcements and, for some countries, detailed, firm-level data documenting disbursements

of support. As these two types of policies are typically very different in magnitude, we present

a version of our count-based measure of policies with and without disbursements of support

to individual firms. Second, we estimate the magnitude of government support by assigning

monetary values to semiconductor industrial policies.

That said, one should keep in mind a number of issues in interpreting values. First, in the

case of instruments such as tax credits, total government support depends on the take-up of

the policy. As such, our measure captures ex-ante (intended) support for the semiconductor

industry. This may differ from ex-post support measured at the firm level after take-up. If

the policy is uncapped, ex-post support may be larger than the estimated ex-ante support. If,

however, take-up is lower than what the government intends, ex-ante support may be larger

than ex-post support. Related to take-up, a spending package announced in a particular year

may be disbursed over many years. The U.S. CHIPS and Science Act is a good example.

While the bill was passed in 2022, support is being disbursed at the time of writing (2024).

Second, for instruments such as public loans and equity, we do not attempt to isolate

the implicit subsidy from the full value of the loan or equity injection. This is not feasible

in our context, given we do not observe disaggregated information, nor is it necessarily the

object of interest. The reason is the different aims of the two measures. The OECD seeks to

quantify market distortions resulting from government support, while we seek to characterize
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the pattern of industrial policy spending. In that sense, a dollar of government support for

semiconductors is a dollar not spent by the government elsewhere, holding total spending

constant. Thus, for understanding patterns of industrial policy, taking the monetary value of

the spending package is informative, though it measures a slightly different object than the

OECD study.

There are also practical measurement challenges with our approach. One is that it is often

difficult to pinpoint the budget allocated for supporting semiconductors when part of a larger

spending package.12 Moreover, spending may be adjusted or updated over time.13 We deal

with these cases through individual validation exercises and follow-ups.

Finally, we re-iterate the limitations surrounding Chinese industrial policies discussed in

the previous section, specifically issues related to decentralized implementation. In these cases,

our general approach is insufficient and requires supplemental data. Given the importance of

China’s semiconductor policy, we use external estimates of budgetary support for the sector

to capture the possible magnitudes of the policy. These numbers should be taken as rough

approximations.

Beyond the challenges of assigning monetary values to industrial policies, there are other

limitations to consider with the JLOP data. First, by construction, JLOP captures policy flows.

The GTA source data only tracks new policy announcements and does not capture the stock of

pre-existing policies (e.g., any longstanding tax-incentives or budgetary support). Second,

there is a risk of double-counting budgetary support in the GTA. For example, for China, the

GTA includes disclosures of government support received by publicly listed firms. Thus, we

may count support twice if we measure it once at the policy level and once at the firm level.

Partly for this reason, we report two count-based measures below; one including all policies,

and one including only national policy announcements (excluding firm policies). Finally, we

note that the GTA is a living dataset. Our sample period ends in 2022, meaning that we likely

undercount policies in more recent years, as there is substantial backfilling of data.

4.5 Patterns of Government Support in the Global Semiconductor Industry

We now describe the basic patterns of support for the global semiconductor industry based

on our methodology. Where possible, we compare our findings to those in the OECD study.

We emphasize two points, which are detailed above (Section 4.4). One is that the OECD

reports data at the firm level, while we report data at the country level. In general, there is

12. For example, in 2021 the Japanese government announced a large COVID-19 recovery plan with
USD 489 billion in spending. However, the portion of funding allocated to semiconductors was only
USD 6 billion.
13. For example, the GTA entry for the “Big Fund” set up by China in 2014 states that by September
2015, the fund had exceeded USD 16.3 billion. However, the estimates of JW Insights reported in the
Financial Times assessed the overall spending of the fund to be USD 47 billion.
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no mapping from firms to countries in the OECD report. Second, while our data are annual,

covering 2010 – 2022, the OECD data is not time-varying and instead captures averages for

the 2014 – 2018 period.

4.5.1 Supporting jurisdictions

Figure 3 shows the jurisdictions that implemented semiconductor industrial policies during

our sample period. Given the measurement challenges described above, we provide three

different measures: Panel A provides the counts of all policies, Panel B plots the counts of

national policies (excluding policies for individual firms), and Panel C plots the estimated

monetary value of support.

The number of distinct jurisdictions reporting any semiconductor industrial policy is small.

Specifically, there are seventeen jurisdictions that implemented at least one new industrial

policy during our sample period (eleven if we group European countries). This may be a result

of the capital and R&D intensity of the sector, which leads to both high levels of concentration

and high barriers to entry.

We find industrial policy concentrated predominantly among current major producers:

China, Europe, Japan, South Korea, and the U.S. The notable exception to this is Taiwan,

where we have identified no industrial policy. India stands out as a jurisdiction spending

heavily to create a semiconductor industry without an established presence in the sector. This

is notable; in terms of monetary value, India ranks fourth among all countries. Likewise,

this result illustrates the advantages of an ex-ante measure of support, as the state appears to

be trying to facilitate the establishment of the industry. Apart from India, we find no other

country attempting to enter the industry with large-scale government involvement.

Which jurisdictions appear to provide the most support? Although not definitive, our

analysis suggests the following tentative patterns. First, all measures point to six jurisdictions

that provide the most intensive support: the five established producers (China, Europe, Japan,

South Korea, and the U.S.) and India. Across all measures in Figure 3, industrial policy

activity outside of the top-six jurisdictions is negligible.

Second, our results are consistent with conventional wisdom that China has undertaken a

substantial state-led push in the semiconductor industry over the past decade. China tops our

list, marginally, if we compare the count of national policies across countries (Figure 3 Panel

B). In absolute terms, for spending, our estimates suggest a substantial difference between

China and other countries (Panel C). However, this does not take into account differences

in the size of the economies. Although these results should be treated with caution, we

believe they are broadly plausible. We explained in Section 4.3 that all three of China’s

latest Five-Year Plans have prioritized developing the semiconductor supply chain. Moreover,

these national guidelines have been widely implemented across Chinese provinces (Figure 2).

Alongside Five-Year Plans, there have also been two major integrated circuit policies, which
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(a) Counts (all)

(b) Counts (national policies only)

(c) Monetary values (billions nominal USD)

Figure 3: Industrial policy by country

Notes: Panel A includes the count of all semiconductor policies. Panel B excludes policies deploying
funds to individual firms and only enumerates national-level policies. Panel C assigns monetary values
to all policies. The monetary value for China should be interpreted as follows: the dark green shading
is spending on the “Big Fund”. Light green shading refers to provincial spending on semiconductors
for 2016-2022 as estimated by JW Insights and reported in the Financial Times. We group Europe
together, which includes policies implemented by the following countries: Czechia, France, Germany,
Italy, Netherlands, Malta, and the UK.
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have been taken up by many provinces. Taken together, these sources suggest substantial

support for semiconductors in China over the past decade. Yet, is China an outlier?

Although these estimates support the popular notion that China’s government is substan-

tially funding its domestic semiconductor industry, it is harder to assess whether this level of

support is extraordinary. Indeed, an absolute, dollar-for-dollar comparison suggests China’s

support is overwhelming relative to other countries. Yet, comparing monetary support relative

to the size of the economy, South Korea dominates China’s spending.14

Thus, a judicious interpretation of this evidence suggests that while China provides

substantial support to its industry, so do other major producers, with the notable exception

of Taiwan (currently, according to our estimates). That is, most major producers actively

support their domestic industries with large-scale national policies, especially when viewed

as a share of total economic activity. Moreover, China’s state-led effort in semiconductors is

not historically unique. Our historical analysis above (Section 3) shows that every successful

follower country we are aware of pursued aggressive industrial policy at the early stages of

their domestic industry’s development. In light of this, India’s recent semiconductor push is

also consistent with historical precedent.

Next, in Figure 4 we examine the time trend of support over the sample period using

the same three measures. Panel A of Figure 4 reports the count of all industrial policies by

country and year. Panel B reports the same but excludes firm-level policies, and Panel C

reports monetary values. Note that for monetary values in Panel C, we do not have a temporal

breakdown of Chinese provincial spending, and only the value for the “Big Fund” is reported.

Panel C also highlights the lumpiness of major spending packages in our measure; we report

the date the policy was announced, not when funds are disbursed. For major policy packages,

the dispersal typically takes place over multiple years.

Figure 4 suggests semiconductor activism has increased post-2020. While all countries

have offered support to semiconductor firms through the sample period, the post-2020 period is

notable. Table 4 details that since the COVID-19 pandemic, multiple countries have introduced

major national policy packages specifically aimed at their semiconductor industries.

We next consider which distinct parts of the semiconductor supply chain are targeted

by industrial policy. We distinguish three parts of the value chain: i) inputs; ii) design

and manufacturing; and iii) assembling, packaging, and testing.15 Table 5 shows that each

part of the value chain has received government support. While design and manufacturing

14. Over 2010-2022, South Korea and China had an average GDP of USD 1.5 trillion, and USD 12
trillion respectively. Thus, for every USD 1,000 in GDP, South Korea and China have each spent USD
51, and USD 42 on semiconductor policies.
15. We use the classification from Bown (2020). We exclude ten policies that generically target the
entire industry. These policies do not provide sufficiently granular information to assign monetary
values to distinguish parts of the value chain. Among the ten excluded policies, six are Chinese policies
and four are South Korean policies.
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(a) Counts (all)

(b) Counts (national policies only)

(c) Monetary values excluding Chinese
provincial spending (billions nominal USD)

Figure 4: Industrial policy by country and year

Notes: Panel A includes the count of all semiconductor policies. Panel B excludes policies deploying
funds to individual firms and only enumerates national-level policies. Panel C assigns monetary
values to all policies. For China, we lack the temporal breakdown of provincial spending. Only the
monetary value of the “Big Fund” is included for China. We group Europe together, it includes policies
implemented by the following countries: Czechia, France, Germany, Italy, Netherlands, Malta and the
UK. “Other” comprises Brazil, Canada, Saudi Arabia, Thailand, and Russia.
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Table 4: Timeline of major policies

Year Policy Country Value

2011 12th Five-Year Plan China -

2012 National Policy on Electronics India -

2012 Modified Special Incentive Package Scheme India $1.6 billion

2014 Integrated Circuit Development Outline China -

2014
National Integrated Circuit Industry
Investment Fund (Big Fund) China $47 billion

2016 13th Five-Year Plan China -

2018
Microelectronics research and
innovation project

France, Germany,
Italy, and UK $2 billion

2019 Artificial Intelligence Strategy South Korea $1 billion

2020 14th Five-Year Plan China -

2020 Integrated Circuit Development Outline China -

2020
Program for Promoting Investment
to Strengthen Supply Chains Japan $3.5 billion

2021 National Recovery and Resilience Plan Germany $1.7 billion

2021
Modified Programme for Semiconductors
and Display Fab Ecosystem India $17.5 billion*

2021 Specified Semiconductor Funding Program Japan $5.4 billion

2021
Economic Measures for Overcoming COVID-19
and Opening Up a New Era

Japan $6 billion

2021 Korean New Deal South Korea $72 billion

2021 Export control licensing USA -

2022 Electronique 2030 France $5 billion

2022 CHIPS and Science Act USA $39 billion

Notes: The table is not a comprehensive list of all policies, only major policies are included.
* This value includes $7.5 billion approved under the Production Linked Incentives for Large Scale Elec-
tronics Manufacturing, the Production Linked Incentives for IT Hardware, the Scheme for Promotion of
Manufacturing of Electronic Components and Semiconductors, and the Modified Electronics Manufactur-
ing Clusters Scheme.
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seem to have received the most support, inputs, as well as the most downstream, assembly,

packaging and testing have also been targeted. This last step is typically targeted by emerging

economies (Brazil in 2011, Russia and Thailand in 2021), though more recently also by

advanced economies (Japan in 2019, and the US and Canada in 2022).16

Table 5: Industrial policy by part of the value chain targeted

All National

i) Inputs 18 9

Semiconductor manufacturing equipment 13 8
Specialized chemicals and materials 8 6
Electronic Design Automation software 7 5

ii) Design and Manufacture 35 22

Integrated Device Manufacturers 23 15
Semiconductor designers 15 14
Foundries 21 16

iii) Assemble, Package, and Test 10 9

Too generic 10 10

Notes: The same policy can target multiple parts and subparts of the value
chain. “Too generic” refers to policies that contain no information on which
part of the value chain is targeted (six Chinese and four South Korean). The
first column reports all policies, the second column excludes firm-specific
policies.

In comparison, the OECD findings can be summarized as follows. First, the OECD also

find that almost all firms in their sample receive support, mostly in the form of budgetary

support. Second, in terms of the absolute magnitudes of support received (which are most

comparable to our estimates), they find large levels of support for some of the largest firms in

their sample, such as Samsung and Intel.17

Third, a number of Chinese firms also receive large amounts of support, although these

results are driven by below-market equity provision, which relies on the assumptions discussed

in the previous sections (see Section 4.4).

Fourth, the report is able to identify the source of some budgetary support (though not

consistently). Based on partial information, China, Singapore, Taiwan, and the U.S. were

16. Appendix Figure A.1 plots the time trend of policies by the part of the value chain targeted.
17. In the case of Samsung, the jurisdiction of where the budgetary support came from could not be
identified. For Intel, budgetary support came from a variety of jurisdictions, the major ones being the
U.S. and China.
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identified as major supporters. This completes the picture painted from our estimates; the

OECD finds that Taiwan, the only major producer missing from our estimates, also provides

major support for semiconductor firms. Moreover, another discrepancy between our estimates

and the OECD’s is the large-scale support we identify for Japan and South Korea. This is

likely due to the fact that Japan and Korea announced their major support packages after the

OECD sample period (post-2018).

Taking all the findings together, we argue that government support in this industry seems

to be a fairly general feature. Government support can be identified at all major parts of

the value chain. Support can be identified amongst established producers at the technology

frontier (notably, Korea and Taiwan), in countries hoping to develop their industry (China and

the U.S.), and in countries attempting to enter the industry (India).

4.5.2 Policy instruments

We now turn to the question of how government support for the industry is provided. Unlike

in the previous subsections, it is not possible to assign monetary spending at this level of

disaggregation.

Subsidies are the dominant form of support. In Figure 5, we plot the policy instrument used

to provide support.18 We classify policy instruments using two taxonomies. Panels A and B

break down policies by the UN MAST (Multi-Agency Support Team) Chapter classification

for non-tariff measures. Panels C and D do so using GTA’s more disaggregated classification

scheme.

Subsidies are by far the most common type of support offered by countries (see panels A

and B), which aligns with OECD findings. Consistent with the main forms of government

support covered by the OECD report, we find subsidies predominantly taking the form of

financial grants, state aid, tax measures, loans, loan guarantees, and equity injections to be

prevalent.

Alongside these, we can also see some other forms of support that may be harder to identify

in firm-level data, including FDI incentives (Japan), local content incentives (India), as well

as trade policy instruments such as import tariffs (China) and export licensing requirements

(U.S.).

18. We note that a single policy is often composed of many types of measures. For example, in 2021
India introduced the Programme for Development of Semiconductors and Display Manufacturing
Ecosystem. This policy covers two UN MAST categories: subsidies, and local content and trade-
balancing measures.
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(a) MAST classification (all) (b) MAST classification (national)

(c) GTA classification (all) (d) GTA classification (national)

Figure 5: Type of support by country

Notes: Panels A and B show policies broken down by type according to the UN MAST Group. Panels
C and D show policies broken down by type according to the GTA internal classification. Panels A
and C include all semiconductor policies, while Panels B and D exclude policies deploying funds to
individual firms and only enumerate national-level policies. We group Europe together, which includes
policies implemented by the following countries: Czechia, France, Germany, Italy, Netherlands, Malta,
and the UK. “Other” comprises Brazil, Canada, Saudi Arabia, Thailand, and Russia.
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5 Policy Objectives

Why do governments target semiconductors with industrial policy? Having established that

government support for the industry is ubiquitous among semiconductor-producing countries,

we now turn to understanding more about the intentions of the policymakers.

An emphasis on growth, competitiveness, and, increasingly, resilience. For each policy, we

have manually labelled both the stated goal of the policymaker, and the stated means to

achieving that goal.19 Table 6 shows that economic growth and development goals are by far

the most prevalent. Indeed, this goal shows up across most jurisdictions and attests to the fact

that domestic participation in the industry is widely seen as economically desirable. Similarly,

the goal of enhancing international competitiveness is also widespread. Strikingly, resilience

to supply chain disruptions was already an objective of the Indian and Chinese governments

in the early 2010s. National security, not shown in Appendix Figure A.2, appears as a goal in

European countries, the United States, Japan, and Canada starting in 2018 (Appendix Figure

A.2 contains the time trends for the top three goals).

By what means do policymakers try to achieve these goals? Table 7 shows that policymak-

ers are predominantly targeting the manufacturing process by subsidizing capacity expansion

and the construction of new fabs, as well as supporting research and development across

different parts of the value chain. We see fewer policies that try to achieve their goal by

affecting international trade and investment decisions.

In comparison, the OECD finds that the vast majority of the budgetary support they

identify is provided through research grants or the tax treatment of R&D spending (p. 9).

They find smaller support for what they call investment incentives (production improvement

in our terminology). This may be related to the fact that incentivizing investment is a more

lumpy form of support, though it’s also likely that production improvement policies became

more important since the pandemic, and hence are not covered in the OECD report’s time

frame (for evidence of this, see Appendix Figure A.3, which shows the uptick in policies

supporting production improvement since 2020).

Government documents may reveal growth, competitiveness, and resilience as the stated

goals of policymakers, but government intervention in the semiconductor sector, and the

use of subsidies in particular, require further justification. We turn to this next, with our

model-based approach.

19. While there are fifty-eight total policy measures, a single measure can mention multiple means and
multiple goals.

31



Table 6: Policies mentioning specific goals

Goal (broader aim) All National

Economic growth and development 38 25
International competitiveness 23 14
Resilience 10 8
National security 6 5
Green economy 4 3
COVID-19 support 3 3

No goal available 1 1

Notes: The first column reports the number of policies mentioning a spe-
cific goal. The second column excludes firm-specific policies, thus report-
ing only national-level policies. There are a total of 58 semiconductor
industrial policies, 35 of which are national-level policies, as opposed to
supra- or sub-national policies. Each policy can mention multiple goals.
Economic growth and development include goals tied to industrial or tech-
nological development, economic growth, satisfying domestic demand,
and addressing sub-optimal investment levels. International competitive-
ness includes the goals of expanding exports, becoming a global hub,
catching up with the international frontier, or improving international com-
petitiveness. Resilience includes the goals of self-sufficiency, supply chain
resilience, and resilience to climate change or health pandemics. We use
green economy for policies aimed at promoting the next generation of en-
ergy efficiency, resource saving, or the decarbonization and renovation of
semiconductor production facilities. We further add the goal of providing
economic support after the COVID-19 pandemic. (Note that we do not
have enough information to identify the goal for one Korean policy.)

6 Model-Based Analysis

Industrial policy in the semiconductor sector is often justified based on the presumption

of learning-by-doing (see the discussion in Section 2.3), which is a source of dynamic

comparative advantage, high industry concentration, and market power. High concentration

may make the industry vulnerable to disruptions, especially since the few firms dominating the

industry are concentrated in a handful of countries. This section considers the evidence around

learning-by-doing and government intervention; we do so with the help of a model-based

analysis.

Our model serves three goals. First, it helps illustrate the industry features potentially

justifying government intervention. Second, it provides an alternative way of measuring a

subset of subsidies, namely production subsidies, beyond the data-driven analysis of Section 4.

This analysis demonstrated the difficulties around measuring subsidies in the industry. China,

in particular, is a complicated case. Hence, we complement this analysis using a model-based
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Table 7: Policies mentioning specific means

Mean (direct objective) All National

Production improvement 34 24
Research, Development, and Innovation 30 19
International Trade and Investment 10 5
Other 1 0

No means available 3 3

Notes: The first column reports the number of policies mentioning a direct
objective, or mean. The second column excludes firm-specific policies,
thus reporting only national-level policies. There is a total of 58 chips-
related industrial policies, of which 35 are national-level policies. Each
measure can mention multiple means. “Production improvement” includes
capacity expansion, creation of new fabs, production subsidies, preferen-
tial market access, tax incentives, and capital injection. “Research, De-
velopment, and Innovation” includes product innovation, investment in
R&D, development of high-tech machines, and training of the workforce.
“International Trade and Investment” includes export tax rebates, export
licensing requirements, loans to export, and restrictions or encouragements
to inward FDI. The category “Other” includes a generic capital increase
for a specific company. Of the measures with no available means, all are
South Korean.

approach for measuring subsidies, similar to the approach taken by Kalouptsidi (2018) and

Barwick et al. (2023). Our approach focuses on estimating a firm’s marginal cost function

using techniques from empirical Industrial Organization (IO). We identify “subsidies” as a

residual in this function—i.e., a term contributing to a marginal cost decline, which cannot be

explained by any other factors measured in the analysis. The advantage of this approach is

that it provides a means of measuring the policy without direct policy data. A disadvantage,

however, is that our results can be sensitive to modeling and identification assumptions. Third,

the model helps us assess the effects of subsidies on both the implementing country and the

rest of the world via counterfactual simulations.

6.1 A Simple Industry Model

We now describe our model and summarize its implications in non-technical terms. The

detailed model, estimation details, identification assumptions, and further results are provided

in Appendix B.

The model focuses on the relationship between foundries where chips are produced— the

suppliers in the model (e.g., TSMC in Taiwan or SMIC in China)—and the fabless firms

who purchase chips—the buyers in the model (e.g., NVIDIA)—from foundries. We seek to
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identify and analyze production subsidies to the foundries, i.e., the transfers or other forms

of implicit financial support that lower the cost of chip production. Of course, this is only

a subset of policies that may be employed by the semiconductor sector. For instance, such

subsidies do not include R&D subsidies. However, production subsidies are first order and

arguably one of the more politically sensitive policy instruments targeted towards the sector.

We think of these subsidies as tools which lower foundries’ marginal costs, leading to lower

prices for buyers.

Demand Side

We assume each buyer i maximizes a nested CES utility function over technologies k and

suppliers j at time t. Buyers place orders for semiconductor wafers, and each wafer contains

many integrated circuits (ICs). “Technology” here refers to wafer diameter and the line width

of the IC chips. More advanced chip generations have smaller line widths (measured in

nanometers), which translate into more transistors (i.e., logic gateways), more computing

potential, and greater energy efficiency.

We allow buyer-specific product quality (ξijkt) to vary independently by supplier, technol-

ogy, and time. Specifically, we model quality using the following functional form:

ξijkt = νD
j × ϕD

k × ρDt ×∆ξijkt (1)

where νD
j , ϕD

k and ρDt are demand-side supplier, technology, and time effects, respectively.

The term ∆ξijkt is the residual unobserved quality. This specification allows for a country to

provide high-quality chips of a certain technology while also allowing end-customer demand

to vary across chip technologies. Moreover, allowing demand to vary by time across for all

suppliers, in all countries and technologies, accounts for aggregate demand shocks that impact

the entire fabrication industry—for instance, as customers increase their demand for digital

devices.

Utility maximization leads to a demand equation where buyer i’s demand for chips

quantity yijkt of supplier j’s technology k in period t is a function of price pijkt, a set of

supplier fixed effects, a set of technology fixed effects, a set of time fixed effects, and an

idiosyncratic error term ϵ:

log(yijkt) =− σ log(pijkt) + Supplier FEs

+ Technology FEs + Time FEs + εijkt (2)

Supply Side

We assume that each country has only one supplier j (e.g., TSMC in the case of Taiwan,

SMIC in the case of China). This assumption is driven by data constraints; in the data made

available to us, we can identify only the country in which a foundry is located, but not the
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foundry itself. Suppliers choose price to maximize expected discounted profits according to

the recursive first order condition:

Et

{
yikt + pikt ×

∂yikt
∂pikt︸ ︷︷ ︸

Marginal Revenue

− cikt ×
∂yikt
∂pikt

− 1

1 + d
×

∑
r∈K

∂cir,t+1

∂pikt
× yir,t+1︸ ︷︷ ︸

Dynamic Marginal Cost

}
= 0 (3)

where, for simplicity, we have dropped the product j subscript. The expectations operator

Et indicates that suppliers choose prices conditional on information available at time t. The

fixed exogenous risk-free rate is d and the demand function is given by y(p). We allow

the supplier’s marginal cost c(p) to vary across time because of potential learning-by-doing

effects. Importantly, the supplier considers how the prices of technology k impact the future

marginal costs for all technologies (r) in its portfolio via learning-by-doing.

From the first order condition (3), we see that the optimal price is a function of the

standard markup and a dynamic component. When today’s quantity demanded has no impact

on tomorrow’s cost
(
∂ct+1

∂pt
= 0

)
, we get the standard static firm markup. When there is

learning-by-doing, ∂ct+1

∂yt
< 0 ≡ ∂ct+1

∂pt
> 0, we see that the forward-looking firm sets their

price below the optimal static price to take advantage of future cost savings.

Learning by Doing

We follow Irwin and Klenow (1994) and assume the marginal cost in period t evolves with

cumulative experience Hjkt:

cijkt = νS
j ϕ

S
kρ

S
t w

κ
jtH

γ
jkte

uijkt (4)

Hjkt = 1 + Yjkt + α×(Yjt − Yjkt) + µ×(YWt − Yjt) (5)

where νS
j , ϕS

k and ρSt are supply-side fixed effects: supplier, technology, and time, respectively.

Manufacturing wages in country in country j in period t are denoted by wjt, and errors uijkt

are iid. The cumulative output sold to all buyers (i ∈ I) is Yjkt, where Yjkt=
∑t−1

τ=0

∑
i yijkτ .

The terms Yjt and YWt are the cumulative output for the supplying firm and the world,

respectively, across all technologies K.

We refer to Hjkt as the “experience” of (supplier) firm j producing technology k in period

t. We assume experience is linear in past production. The γ term reflects the importance of

learning by doing as a function of experience. When γ=0 there is no learning, and we get

the standard static markup. When γ< 0 , the firm’s cost decreases as it gains experience (i.e.,

as Hjkt ↑). As learning-by-doing effects grow (γ ↓−∞), the supplier optimally chooses to
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decrease its price relative to the static case, leading to higher period t output and lower future

costs

Importantly, equation (7) captures two types of learning spillovers: spillovers from other

technologies (α) and from other (foreign) firms (µ). When α>0, firm j internalizes learning

across K technologies. In other words, there are economies of scope in the learning process.

When µ>0, firm j internalizes learning from across foreign W firms. That is, learning spills

over across firms (countries) due to, for example, technology transfers and improvements in

inputs (e.g., photolithography equipment).

6.1.1 Implications for subsidies

Consider an industrial policy that decreases the firm’s marginal cost, such as a per unit subsidy.

Under static pricing, such a policy has static price effects. However, with learning-by-doing,

a policy in period t which reduces a firm’s marginal cost increases demand in period t via

lower prices, and subsequently decreases the firm’s marginal cost in period t + 1. The net

effect is an industrial policy multiplier—one which is amplified (or mitigated) by the firm’s

strategic pricing response to the policy. See details in Appendix B as to how a firm’s pricing

response depends on expectations about future demand and costs.

Yet, learning-by-doing per se does not necessarily justify the use of subsidies. If firms

fully internalize the benefits of learning, then their private production decisions are socially

optimal rendering subsidies redundant. However there may be other considerations that justify

the use of subsidies, even when learning-by-doing is internal to the firm —especially in the

case of semiconductors.

One such consideration is that learning-by-doing generates dynamic comparative advan-

tage and dynamic economies of scale, which can lead to high industry concentration. This is

particularly significant in the case where learning-by-doing spills over across technologies

(i.e., economies of scope). Anecdotal evidence suggests that within-firm learning is not exclu-

sive to each chip generation; a firm’s experience producing earlier generation chips impacts

newer generation chips. For instance, TSMC’s accumulated experience in producing chips

has made it easier for the company to manufacture the newest, most advanced chip generation

of <3nm line width. In the language of our model, this corresponds to the case of α > 0.

These internal-to-the-firm, but external-to-the-technology, spillovers can amplify the effects

of learning-by-doing on market concentration. This is illustrated by TSMC’s dominance of

the advanced logic chip market segment. While such concentration may be desirable from

an efficiency perspective, it can lead to excessive reliance on a few firms within the world’s

semiconductor industry. Any disruption in the activities of these firms may jeopardize not

only semiconductor production, but also the broader high-tech industry.

To the extent that economies of scope lead to an undesirable concentration of production

making it vulnerable to shocks, subsidies to the domestic industry may increase diversification
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and enhance supply chain resilience. This argument becomes even stronger when coupled with

geopolitical or national security concerns, especially if the countries where chip production is

concentrated are vulnerable to major disruptions or considered antagonistic.

Beyond resilience and national security argument, policymakers might also be motivated

by a profit-shifting motive, given that high concentration and market power imply supra-

normal profits. However, profit-based arguments are more rare. A more common justification

used by policymakers is that semiconductor manufacturing may create incentives for people

to invest in skills and education, thereby upgrading the labor force and leading to positive

spillovers to human capital. While anecdotal evidence from countries like Taiwan and Korea

supports this claim, it is unclear what the direction of causality was. As discussed in Section

2, countries like Taiwan also invested heavily ex-ante in skills and education to make chip

production possible within their borders.

Alternatively, if part of the learning-by-doing is external to each firm, then we have the

classic case for industrial policy to increase production. In our model, this happens when

µ>0. In this case, production of foreign companies across the global semiconductor industry

may produce spillovers that benefit domestic firms, and vice versa, domestic production

benefits foreign producers. The case for subsidies is less clear here however, as the benefits of

domestically funded subsidies may in part accrue to foreigners.

In summary, the strength of the argument in favor of subsidies depends on the nature of

learning-by-doing, specifically whether there are strong spillovers across technologies and

whether learning is entirely internal to the firm. The empirical estimates of the model can

inform these questions.

Cross-Border Effects and Welfare

Our model can be used to highlight several potential cross-border effects.

To the extent that subsidies accelerate or magnify learning-by-doing, they have positive

effects on buyers in other countries benefiting from lower prices. We note that the buyers in

this case are other firms (IDMs or fabless firms), most of which are located in countries other

than the producing countries. In fact, the growth of the fabless business model, and the recent

evolution of the industry more broadly, might not have been possible without initial subsidies

that fostered learning-by-doing (see Section 3).

However, the positive effects of subsidy-accelerated learning can be mitigated if dynamic

economies of scale lead to market power and higher markups. Similarly, they may be

diminished if subsidies shift production towards less efficient producers.

Additionally, if the industry is concentrated in a few countries, the rest of the world may

become dependent on economic and political developments in these countries, reducing the

industry’s resilience and potentially raising national security concerns.

37



Unilateral subsidies will generally have a negative effect on chip producers in other

countries through market stealing—we term this the “market-stealing effect.” However, if

there are learning spillovers across borders, it is possible that other chip producers benefit

from subsidies to their competitors. Yet, even where the market-stealing effect dominates

cross-border spillovers (i.e., unilateral subsidies make chip producers in the rest of the world

worse off), it is possible that such subsidies increase global welfare if the subsidy-induced

learning-by-doing sufficiently lowers global prices.

Finally, it is interesting to consider what happens when multiple countries subsidize

their semiconductor sectors, engaging in a “subsidy race.” Depending on the strength of the

learning-by-doing and the shape of the learning curve (modulated by γ in the marginal cost

function 4), it is possible that a subsidy race increases aggregate world production. This is

more likely when the marginal return of experience is decreasing, i.e., costs reduce the most

with a little bit of experience. In such a case, it might be optimal to spread experience across

countries so as to foster competition that will counter the tendency towards high industry

concentration and high markups. Similarly, when cross-border experience spillovers exist,

competition in subsidies may improve welfare and the the subsidy race may become a “race

to the top.”

In summary, subsidies to the semiconductor sector can potentially have positive cross-

border welfare effects. However, the extent of these effects is an empirical question. This

empirical case hinges on the strength and nature of learning-by-doing and the initial efficiency

of competing producers. At the same time, the economic forces that drive these welfare gains

can also result in high industry concentration. Such concentration is problematic from both

an economic and a geopolitical perspective, particularly if the dominant firms are located in

only one or a few countries.

6.2 Identifying (Unobserved) Subsidies

The model introduced above provides a way of identifying production subsidies. Specifically,

we can interpret the supply-side fixed effect νS
j from the marginal cost function (4) as the

average (across years) subsidy in each country j.

The fixed effect νS
j captures all factors, beyond those controlled for in the marginal cost

specification, that reduce (or, alternatively, increase) the marginal cost of production in country

j relative to the benchmark country. The credibility of interpreting this fixed effect as subsidy

depends on the extent to which all other factors affecting marginal cost are accounted for in

equation (4).

Two aspects of this subsidy identification strategy are worth noting:

First, in an ideal setting, we would want to identify individual foundries in the data. In

this case, we would control for foundry-specific characteristics that may impact marginal cost.
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However, in practice, this may not be a significant issue, given the high degree of market

concentration in this sector. In many countries, a single firm holds a dominant market share,

notably in the case of TSMC in Taiwan and SMIC in China.

Second, in theory, we can compare our inference-based subsidies to the subsidies calcu-

lated from our data in Section 4. For many countries (excluding China), we provide fairly

reliable estimates of subsidies announced in policy documents. Thus, the subsidy estimates

from the model could – in principle – be cross-validated against this information. Although

this may not be possible for China, the strength of non-China comparisons provides a plau-

sible way to evaluate the model-based inference. By extrapolation, this could enhance the

credibility of the model-based estimates for China.

6.3 Data

The data used to estimate the model are from a proprietary database collected by the Global

Semiconductor Alliance (GSA). The GSA is a nonprofit industry organization consisting of

fabless firms. Each quarter the organization surveys its members to collect information on

wafer fabrication prices, quantities, and characteristics of their orders from both domestic

and foreign foundries. Responses are anonymous and firms which participate are granted

access to the results. The dataset consists of 14,692 individual quarterly responses to the

“Wafer Fabrication & Back-End Pricing Survey” covering years 2004-2015. According to

GSA the sample is representative of the industry and accounts for roughly one-fifth of all

fabless semiconductor wafers produced worldwide. Our analysis focuses on the first three

chip categories of Table 1 (i.e., microprocessors, “system of chip,” and commodity ICs). We

exclude memory chips because these are manufactured by large technological conglomerates

such as IBM and Samsung, which also supply a large set of products outside the industry that

are subject to different economic forces.

We note that because this data set covers only the 2004-2015 period, the overlap with the

GTA data (2010-2021) is very limited, so that the comparison of the model-based subsidy

estimates with the GTA-based figures is not informative. Hence, at this point, the model-based

approach should be considered as a proof of concept. We hope to extend the sample to more

recent years which would make comparisons with the GTA feasible.

The data include nominal price paid, the number of wafers purchased, and the foundry’s

country location. We also observe wafer characteristics, including the line width, wafer

size, and number of layers. We can therefore examine how foundry wafer prices vary by

foundry location, after controlling for physical characteristics. Recall, we cannot identify the

specific foundry which fulfilled each order, though the dominance of Taiwan Semiconductor

Manufacturing Corporation (TSMC) in the Taiwanese market, Semiconductor Manufactur-

ing International Corporation (SMIC) in Chinese market, and Chartered Semiconductor in
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Singapore market suggests that transactions which involve wafers fabricated in the Taiwan,

Chinese, and Singapore markets where fulfilled by these firms, respectively. U.S. foundries

produced on average 3.96% of the wafers during the sample. In comparison, fabrication plants

in Taiwan, Singapore, and China accounted for 58.22%, 9.06%, and 7.42% of the market,

respectively. Thus, while there are a variety of foundries producing semiconductor wafers

for fabless semiconductor firms, the bulk of the wafers are produced overseas in Taiwan,

presumably by TSMC.

6.3.1 Descriptive Analysis

The data reveals several interesting patterns, which we discuss before turning to model

estimates.

Yields. We conduct an initial investigation of whether countries’ market shares may be due

to differences in quality across foundries. We do this via descriptive analysis of wafer “yields,”

defined as the percent of fabricated wafers which meet the specification required by the buyer;

higher yield means higher quality.

Contract manufacturing service providers typically assume the risk of product defects.

If some products are defective, the supplier must compensate by producing extra units to

meet order requirements for functional products. This process increases the supplier’s costs

but does not generally affect the perceived service quality unless yields are so low that the

supplier cannot meet the order timely. In such cases, low yields can cause missed delivery

dates or unfulfilled orders, impacting quality regardless of contractual terms.

In the semiconductor industry, both buyers and producers share the risk of low yields

through explicit contractual terms. For example, contracts may define a minimum acceptable

yield; if yields are below this threshold, the supplier must replace the wafer at no extra charge.

Such contractual arrangements mean that while buyers assume some risk above this minimum

yield, extremely low yields disrupt supply chain for the buyer which we interpret as the wafer

being of low “quality.” Byrne, Kovak, and Michaels (2017) report that a contract between

Integrated Device Technology, Inc. and Taiwan Semiconductor Manufacturing Corporation

required a minimum yield 65% for the first 300 wafers.

The data contain yield information for 2005 through 2008 where survey respondents

(buyers) report whether their order fell into one of four buckets: 0-25%, 26-50%, 51-75%,

and 76-100%. Table 8 presents these reported yields by source country. These results line-up

with Byrne et al. (2017) and indicate Chinese yields are higher than yields reported in other

countries. Interestingly, Taiwan has among the lowest yields. These patterns may be due to the

fact that the reported yields refer to multiple chip generations. China produces predominantly

older-generation chips, whereas Taiwan is at the technological frontier, producing the newest

chip generation that has not yet benefited from learning-by-doing.
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Table 8: Semiconductor Yields (2005-2008)

COUNTRY 0%-25% 26%-50% 51%-75% 76%-100%

CHINA 0 0 0 100
EUROPE 0 0 0.72 99.27
JAPAN 0 1.8 4.5 93.69
MALAYSIA 0 0 0 100
OTHER 0 0 16 84
SINGAPORE 0 0 3.87 96.12
SOUTH KOREA 0 0 3.9 96.09
TAIWAN 0.03 1.14 10.23 88.58
UNITED STATES 0 7.88 14.1 78

Notes: Authors’ calculations based on quarterly GSA survey responses from 2005
through 2008.

Pricing Trends. Figure 6 plots wafer prices for two countries, Taiwan and China, and for

two different technologies, one older and one newer. The plots suggest that prices start high

and fall over time even when there is no competition as in Panel (b). As the downward trend

presented in Figure 6 is persistent across technologies, especially for new technologies, there

is suggestive descriptive evidence of learning-by-doing specific to each technology.

The comparison between Taiwan and China is also of interest. The graph indicates that

China offers lower prices. This could be because their wafers are of lower quality or because

they have a cost advantage. Given that the previous descriptive results showed that yields are

higher for Chinese firms, the second explanation seems more plausible. The cost advantage

could in turn be due to lower wages, more efficient practices or subsidies in China. The

descriptive analysis does not allow one to distinguish between these hypotheses. However,

it is interesting to note that the price trend for China does not exhibit the downward trend

consistent with learning-by-doing evident in the data for Taiwan, but is instead relatively flat

over time. This pattern would be consistent with the government subsidizing the early phase

of the production cycle until learning-by-doing, enabling lower production costs, kicks in.

6.4 Empirical Results

6.4.1 Results: Key model estimates

This subsection discusses some key estimates and their implications for the evaluation of

industrial policy. The full set of estimation results are provided in Table I of Appendix B.

Demand-side country fixed effects. Figure 7 plots the estimated country fixed effects, all

relative to Taiwan. The bars in blue show the demand-side fixed effects, which capture

average (across technologies and across time) “quality” differences across countries. The
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Figure 6: Pricing Trends
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(b) New Technology: 300mm, 90nm
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notion of “quality” is open-ended here - quality is interpreted as the set of factors that make

demand for a country’s products higher than the demand for its competitors, conditional on

price. As explained earlier, one of these factors is presumed to be the “yield.” The high fixed

effects for Malaysia and Korea are consistent with this interpretation. The US estimate, on

the other hand, has a high estimated fixed effect despite having the lowest yields. However, as

noted earlier, the yields in Table 8 conflate information across multiple chip generations (i.e.,

technologies), while Figure 7 conditions on technology.

Subsidies: Supply-side country fixed effects. The production-side fixed effects, shown in

orange in Figure 7, are the main focus of our empirical study. Assuming that the marginal

cost function has adequately controlled for all factors affecting variable costs, the fixed effects

can be interpreted as capturing the average, across time and technologies, subsidies for each

country. Labor cost is a significant cost component in semiconductor manufacturing, and our

specification controls for wages. The second significant component of variable costs is the

cost of inputs; these are internationally traded and absorbed by the time fixed effects.

The orange bars indicate that on average, every country in our sample - with the exception

of the US and European countries - has subsidized foundries’ manufacturing costs relative

to Taiwan. The positive fixed effects for Europe and the US, indicating lack of production

subsidies, are consistent with the fact that these two regions tend to subsidize research and

development rather than production (OECD 2019). Consistent with what was reported in the

first part of this project based on the GTA data analysis, China does not appear to be an outlier

(though we remind the reader that there is little overlap in the years covered in the two parts

of our paper). We note however that the bars refer to averages across time and technologies.

With additional, and more recent data, we could explore subsidies at a more granular level

and directly compare them to the post-2010 GTA information.

Learning-by-doing estimates. The estimated learning rate under different assumptions

regarding the nature of the learning spillovers is shown in the last row of Table I in Appendix

B. The estimated learning rate for a specific technology is very small, ca. 3.37%. This

contrasts with industry lore, as well as Irwin and Klenow’s (1994), which suggest sectoral

learning rates between 20-30%.20

The pricing patterns in Figure 6 provide some intuition of why our estimate is so low:

For Taiwan, we observe prices declining over time, albeit slowly in the case of the older

technology. For China however, the price remains relatively stable over time. Given that we

identify learning-by-doing using price variation over time, the low price variation in Figure 6

may lead to low estimates of the learning rate.

20. Irwin and Klenow (1994) study memory chips (DRAM), which are much more homogenous than
the ICs we consider.
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Figure 7: Estimated Country Fixed Effects
(Relative to Taiwan)
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However, the firm-specific learning rate, which accounts for spillovers across technologies

within a firm, is higher, or approximately 4.7%. This aligns with anecdotal evidence suggesting

economies of scope in learning. For instance, semiconductor firms are characterized by a

culture of promoting creativity, innovation, and experimentation (see Section 2.3), which

plausibly benefits multiple product lines and aids the introduction of new, more advanced

products.

Interestingly, the learning rate nearly doubles to around 8% when we consider cross-border

spillovers. The intuition for this estimate is, again, given in Figure 6, which shows China

entering at a low price (relative to the incumbent, Taiwan) in the newer technology (90nm).

In our framework, this happens partly because it benefits from the earlier experience of other

countries (i.e., Taiwan).

This finding contrasts with anecdotal evidence suggesting that learning in this sector is

primarily internal to the firm with minimal international spillovers. One possible explanation

for our results is that buyers, specifically the fabless firms in our data, facilitate knowledge

transfer across borders. To leverage economies of scale in chip manufacturing, chip designers

must coordinate closely with foundries on the exact specifications of the chips and the

manufacturing process. Once these specifications are established, other chip designers can

adopt them to benefit from manufacturing economies of scale. This leads to the standardization

of designs and processes and allows foundries to pool orders from multiple buyers. Once

designs and processes are standardized, buyers can approach foundries in other countries with
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potential orders, sharing information gained from earlier interactions with different foundries.

This process can create significant spillovers not only across buyers but also across foundries.

For instance, suppose that TSMC works with ASML to improve some design feature of their

machinery. ASML works with several other foundries in the industry, so this knowledge will

spill over to everyone else.

Other mechanisms that could generate cross-border spillovers are foreign direct investment

(FDI), R&D collaborations, technology licensing and/or the recruitment of engineers or other

experts from foundries in other countries. Our current framework does not allow us to

distinguish between these hypotheses.

In summary, our findings indicate the presence of learning-by-doing, yet they diverge

from earlier estimates and industry beliefs in two significant ways. First, our estimates are

small. Second, they reveal substantial cross-border spillovers relative to the spillovers within

firms. As discussed, this may be attributed to the fabless-foundry business model of the past

three decades, which promotes cross-border knowledge sharing. However, further research

with more current data is required to validate these results.

Implications of learning-by-doing for prices and profit margins. We conclude the discus-

sion of the results by examining how prices and profit margins are affected by learning-by-

doing. Figure 8 shows by how much prices in each supplier country would have been higher

if suppliers did not internalize learning-by-doing (panel a), as well as the actual and foregone

profit margins (panel b).

Figure 8: Impact of Learning-by-Doing

(a) Prices

China Europe Japan Malaysia Sing. S. Korea Taiwan USA
 0.0

20.0

40.0

60.0

80.0

100.0

Av
er

ag
e 

Pe
rc

en
t C

ha
ng

e 
in

 S
em

ico
nd

uc
to

r P
ric

e

93.83%

80.36%

86.41% 87.85%
84.56% 83.55%

79.97%
82.29%

Price Changes without Learning-by-Doing
(b) Margins

China Europe Japan Malaysia Sing. S. Korea Taiwan USA
 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Av
er

ag
e 

Es
tim

at
ed

 S
em

ico
nd

uc
to

r M
ar

gi
n

60.99% 60.04% 61.05% 61.74% 61.13% 60.43% 60.14% 60.63%60.99% 60.04% 61.05% 61.74% 61.13% 60.43% 60.14% 60.63%

24.12%
28.12% 27.72% 28.25% 28.42% 27.54% 28.44% 28.37%

How Much Margin Are Firms Sacrificing to Increase Experience?

 Estimated Margin  Foregone Margin

If suppliers in each country did not internalize learning-by-doing, they would have charged

on average between 80% (Taiwan) and 94% (China) more than the observed price. There is

little variation in this percentage across countries, with the exception of China where wafers

would have been nearly twice as expensive had there been no dynamic learning-by-doing

incentive. One interpretation for this pattern is that for China, the estimated experience H is
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large relative to the other components of the marginal cost function for the technologies they

supply.

Regarding the margins, note that without learning-by-doing, profit margins would be

high, around 61%. Dynamic pricing leads firms to forego margins, so that the actual margins

estimated in our data are around only 24-28%, with little variation across countries. These

estimated margins are slightly below the average reported operating margin for TSMC during

the period (38.9%). Consistent with the patterns of panel a, China exhibits the largest foregone

margin, though the difference to other countries is small.

6.4.2 Results: Implications for cross-border effects

The finding of large international learning spillovers relative to the spillovers within a firm

implies large cross-border effects of subsidies. A subsidy provided by one country not only

helps its domestic firms reduce costs but also leads to cost reductions in other countries. To

the extent that some of the benefits of the subsidy are captured by foreign firms, one may

question the wisdom of subsidization.

Note, however, that cross-border effects operate in both directions in this industry. As

we noted earlier, learning may result from foreign technology transfer, which is – by defi-

nition – a cross-border mechanism, or from firm-to-firm relationships between buyers and

foundries located in different countries. Once learning has occurred, the same mechanisms

that facilitated its creation will also help disseminate it across other foundries. The entire

“fabless-foundry” model is based on these cross-border mechanisms. Therefore, one could

argue that cross-border effects are not only present but are a defining feature of the current

industry business model.

The realization of cross-border learning, however, is neither automatic nor inevitable.

It depends on deliberate actions by market participants. Just as firms can share learning

through business and research collaborations or technology licensing with other countries,

they can also restrict access to frontier technology, cutting off certain countries. In such cases,

international learning spillovers will be small, and the subsidy benefits will primarily accrue

to domestic firms. However, positive cross-border effects may still occur if international

buyers benefit from lower prices and innovations at the subsidized foundries.

It is also interesting to consider the effects when multiple countries subsidize their semi-

conductor industries. We are currently using model estimates to simulate such a “subsidy

game” involving two countries. The results will provide insight into whether learning-by-

doing makes subsidies global complements, suggesting that competition in subsidies could

improve overall welfare. We aim to have these results available in the near future.
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7 Conclusions

Our analysis highlights the important role of government support in the semiconductor

industry’s growth, especially during its nascent stages. Financial grants, tax incentives, loans,

and equity injections have been fundamental in helping countries like Korea, Taiwan, China,

and the United States enhance their semiconductor capabilities. Equally crucial is the role of

cross-border technology transfer, which has historically enabled firms in follower countries to

reach the technological frontier. Forces like foreign direct investment, research collaborations,

and technology licensing not only promoted the industry’s evolution but also fueled the rise of

the “fabless” business model. These dynamics underscore the inherent nature of cross-border

knowledge transfers in the semiconductor sector.

Quantifying subsidies, the primary form of government support, remains challenging.

Our comparative analysis with the OECD study highlights the challenges of measurement,

particularly in the case of China. In light of these challenges, our model-based approach

offers a promising alternative for identifying and evaluating subsidies in this pivotal global

sector. However, we emphasize that our model-based approach is currently a proof of concept

and is not yet a definitive tool. Importantly, data constraints limit our ability to explore recent

industry developments and to provide a more granular analysis of technology-specific effects.

In the future, we hope to develop our analysis further with expanded data.

Nevertheless, the subsidy findings implied by our model broadly align with the patterns

of semiconductor policy documented using GTA data. These parallels are notable, given the

distinct methods and the lack of overlap (in years) between the two datasets. Furthermore,

our analyses indicate that subsidies are employed by all countries active in the semiconductor

industry. While China is a significant user of subsidies in monetary terms, it is not an outlier

when accounting for the size of its market.

Surprisingly, our model estimates suggest limited learning-by-doing at the firm-technology

level—results which contrast with industry expectations and previous estimates. These

findings, driven by pricing trends in our data rather than modeling assumptions, warrant

skepticism. Importantly, however, our results indicate substantial within-firm spillovers

across technologies, so that we estimate larger learning-by-doing at the firm level. Moreover,

international spillovers across firms appear to be even larger. Although the exact source

of these spillovers is beyond the scope of this study, we hypothesize that they result from

cross-country technology transfers and the close relationships between fabless firms and

foundries, the latter of which may facilitate the global dissemination of knowledge.

International spillovers imply potentially positive cross-border effects of subsidies. How-

ever, these effects depend on deliberate actions by market participants, meaning that firms in

specific countries could be excluded. Future research will use counterfactual simulations to

quantify these effects and explore the dynamics of a potential “subsidy race” among countries.
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Understanding whether subsidies are global complements or substitutes in the presence of

learning-by-doing is essential, especially in understanding whether their use is compatible

with the principles of multilateralism.
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(a) Inputs (all) (b) Inputs (national policies only)

(c) DM (all) (d) DM (national policies only)

(e) APT (all) (f) APT (national policies only)

Figure A.1: Supply Chain targeted over time

Notes: Panels A, C, and E include the count of all semiconductor policies. Panels B, D, and F exclude
policies deploying funds to individual firms and only enumerate national-level policies. Panels A and
B show policies targeting Inputs. Panels C and D show policies targeting Design and Manufacture
(DM). Panels E and F show policies targeting Assemble, Package, and Test (APT). We group Europe
together, it includes policies implemented by the following countries: Czechia, France, Germany,
Italy, Netherlands, Malta, and the UK. “Other” comprises Brazil, Canada, Saudi Arabia, Thailand, and
Russia.
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(a) Growth (all) (b) Growth (national policies only)

(c) Competitiveness (all) (d) Competitiveness (national policies only)

(e) Resilience (all) (f) Resilience (national policies only)

Figure A.2: Goals over time

Notes: Panels A, C, and E include the count of all semiconductor policies. Panels B, D, and F exclude
policies deploying funds to individual firms and only enumerate national-level policies. Panels A and
B show policies with the goal of promoting economic growth and development. Panels C and D show
policies with the goal of fostering international competitiveness. Panels E and F show policies aimed
at improving resilience. We group Europe together, it includes policies implemented by the following
countries: Czechia, France, Germany, Italy, Netherlands, Malta, and the UK. “Other” comprises Brazil,
Canada, Saudi Arabia, Thailand, and Russia.
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(a) Production (all) (b) Production (national policies only)

(c) RDI (all) (d) RDI (national policies only)

(e) ITI (all) (f) ITI (national policies only)

Figure A.3: Means over time

Notes: Panels A, C, and E include the count of all semiconductor policies. Panels B, D, and F exclude
policies deploying funds to individual firms and only enumerate national-level policies. Panels A and
B show policies with the direct objective of improving production. Panels C and D show policies
with the direct objective of supporting Research, Development, and Innovation (RDI). Panels E and
F show policies with the direct objective of supporting International Trade and Investment (ITI). We
group Europe together, it includes policies implemented by the following countries: Czechia, France,
Germany, Italy, Netherlands, Malta, and the UK. “Other” comprises Brazil, Canada, Saudi Arabia,
Thailand, and Russia.

4



B A Model-Based Approach

We develop a model of demand and supply for semiconductors, which we use to estimate

production subsidies and assess their effects. The theory combines several areas of economic

literature. First, we follow the industrial organization literature in using the theory to generate

demand- and supply-side conditions to detect industrial subsidies (e.g., Kalouptsidi (2018);

Barwick et al. (2023); Miravete, Moral, and Thurk (2018)). Second, our demand system

leverages the international trade literature’s approach to estimating cross-country quality

differences (e.g., Hummels and Klenow (2005); Khandelwal (2010); Hallak and Schott

(2011); Kugler and Verhoogen (2011); Johnson (2012)). Finally, we incorporate dynamics by

leveraging the empirical learning-by-doing literature (e.g., Irwin and Klenow (1994); Benkard

(2000); Besanko, Doraszelski, and Kryukov (2019)).

Each period buyers (e.g., NVIDIA) source their chips from countries around the world.

Each country is endowed with a single firm which produces chips (e.g., TSMC in Taiwan

and SMIC in China). All period t information is known to buyers and firms but firms make

expectations given period t information. Dynamics matter only through the supply-side via

learning by doing. We further assume that buyers are myopic.1

B.1 Demand

We assume that each buyer i maximizes a nested CES objective function over technologies k

and suppliers j in each quarter t:

Uit = Πkbikuikt (1)

where
∑
k

bik = 1, bik ∈ [0, 1] ∀k

and uikt =

[∑
j

(
ξijktyijkt

)σ−1
σ

] σ
σ−1

.

Buyers consume quantity yijkt where we allow buyer preferences to vary over varieties (ξijkt)

by source, technology, and time. We model these product characteristics using the following

functional form:

ξijkt = νD
j × ϕD

k × ρDt ×∆ξijkt . (2)

Thus, we allow buyer-specific product quality to vary by source, technology, and time

independently. This provides for the possibility that a country by provide high-quality chips of

a particular geometry-size pair while also allowing end-customer demand to vary across chip

1. See Sweeting, Jia, Hui, and Yao (2022) and Deng, Jia, Leccese, and Sweeting (2024) for the case of
strategic buyers.
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technologies. Finally, allowing demand to vary by time across all countries and technologies

provides are aggregate demand shocks to the entire fabrication industry as customers increase

their demand for digital devices.

Our utility specification means that buyer i’s demand for product j of technology k in period

t is

log(yijkt) =− σ log(pijkt) + (σ − 1) log(νD
j )︸ ︷︷ ︸

Country FEs

+ (σ − 1) log(ϕD
k )︸ ︷︷ ︸

Technology FEs

+(σ − 1) log(ρDt )︸ ︷︷ ︸
Time FEs

+ log(RiktP
σ−1
ikt ) + (σ − 1) log(∆ξijkt)︸ ︷︷ ︸

Idiosyncratic shocks (εijkt)

. (3)

We define pijkt is the price of product j of technology k in period t. The term Rikt is total

expenditure of buyer i on technology k in period t while the term Pikt = (
∑

j p
σ−1
ijkt ξijkt)

1/(1−σ)

is the buyer i CES price index for technology k in period t.

B.2 Firm Pricing

Each source country j is operated by a single firm (e.g., TSMC in the case of Taiwan and SMIC

in the case of China) and maximizes expected discounted profits via offering take-it-or-leave-it

price offers to buyers i for its k ∈ K technologies; i.e.,

max
{pikt}

{
E0

∞∑
t=0

[(
1

1 + d

)t ∑
k∈K

∑
i∈I

(
piktyikt(p)− cikt(p)yikt(p)

)]}
(4)

where, for simplicity, we have dropped the product j subscript. The expectations operator

E0 indicates that a firm chooses prices conditional on information available at time zero, d

is a fixed exogenous risk-free rate, y(p) is the firm’s demand function, and c(p) is the firm’s

marginal cost which we allow to vary across time because of learning-by-doing effects. The

optimal period t buyer i price for technology k solves the following recursive first-order

condition:

Et

{
yikt + pikt ×

∂yikt
∂pikt︸ ︷︷ ︸

Marginal Revenue

− cikt ×
∂yikt
∂pikt

− 1

1 + d
×

∑
m∈I

∑
r∈K

∂cmr,t+1

∂pikt
× ymr,t+1︸ ︷︷ ︸

Dynamic Marginal Cost

}
= 0 (5)
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where firms choose period t prices conditional on information available at that time. Impor-

tantly, the firm considers how technology k prices impact the future marginal costs for all

technologies (r) in its portfolio. We assume firms do not internalize the competitive effects of

their pricing decisions.2

From (5), we observe that optimal price is a function of the standard markup and a dynamic

component. In particular, when today’s quantity demanded has no impact on tomorrow’s cost(
∂ct+1

∂pt
=0

)
or when the firm does not care about future profits

(
d = ∞

)
, the standard static

firm markup results. When there is learning-by-doing, ∂ct+1

∂yt
< 0 ≡ ∂ct+1

∂pt
> 0, we see the

forward-looking firm sets price below the optimal static price to take advantage of future cost

savings.

We follow Irwin and Klenow (1994) and assume period t marginal cost evolves with

cumulative experience Hjkt:

cijkt = νS
j ϕ

S
kρ

S
t w

κ
jtH

γ
jkte

uijkt (6)

Hjkt = 1 + Yjkt + α×(Yjt − Yjkt)︸ ︷︷ ︸
Intra-Firm

+µ×(YWt − Yjt)︸ ︷︷ ︸
Across Firms

(7)

where errors uijkt are iid and wjt denotes manufacturing wages in country j in period t.

Yjkt is cumulative output sold to all i ∈ I buyers (Yjkt =
∑t−1

τ=0

∑
i yijkτ ). The terms Yjt

and YWt are the cumulative output within the firm and the world, respectively, across the

K technologies. We refer to Hjkt as the “experience” of firm j producing technology k at

period t and assume assume experience is linear in past production. The γ term controls

the importance of learning-by-doing as a function of a firm’s experience. When γ=0 there

exists no learning while for γ < 0, the firm’s cost decreases as it gains experience (i.e., as

Hjkt ↑). When α>0, learning is internalized by the firm across the K technologies so there

exists economies of scope in the learning process. When µ>0, learning spills over across

firms (countries) due to, for example, technology transfers and improvements in inputs (e.g.,

photolithography equipment).

2. This is done for simplicity as estimating the strategic pricing decisions in dynamic games is complex
due to multiple equilibria. See Deng et al. (2024) for a two-firm numerical example. It is not clear
how restrictive this assumption is in the data, or equivalently the degree to which foundries and buyers
negotiate over individual orders. Modeling pricing as a Nash-in-Nash Bargaining problem replaces
this assumption with one where we assume negotiations are done independently (Collard-Wexler,
Gowrisankaran, and Lee, 2019) which is also strong.
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Given CES demand and the evolution of marginal cost, the firm’s recursive first-order

condition simplifies to3

pikt =
σ

σ − 1

(
cikt +

γ

1 + d
× Et

[∑
m∈I

∑
r∈K

∆r,k
cmr,t+1ymr,t+1

Hr,t+1

])
(8)

where ∆r,k =

1− µ if r = k

α− µ if r ̸= k

Learning by Doing

We observe that when γ = 0, there exists no scope for learning-by-doing and we get the

standard static CES markup. As learning-by-doing effects grow (γ ↓ −∞), however, the

firm optimally chooses to decrease its price from the static CES case, leading to higher

period t output and lower future costs. Similar intuition holds for α> 0as firm internalizes

cross-technology experience leading it to decrease prices across all of its K technologies.

When α=0, there is no cross-technology spillover and production of technology r has no

dynamic incentive for technology k. The extent to which firms internalize cross-country

learning comes via µ where we have assumed firms do not internalize their impact on the

stock of global knowledge (captured via Y W
t ). The learning channel amounts to a cross-border

externality where µ>0 amounts to free learning so the dynamic incentive to decrease price

diminishes. Thus, the firm chooses price closer to the static profit-maximizing price when µ is

large. We think of this as reflecting improvements in supplier inputs such as photolithography

equipment and technology transfers.

The strength of learning-by-doing effects also depend upon the firm’s expectations about

future demand and cost shocks via Et

[
ct+1yt+1

]
. If the firm thinks costs next period will be

higher (i.e., high u), it chooses to decrease price today to increase production and reduce

future costs by moving down the learning curve. On the other hand, if the firm thinks there

3. Specifically,

(from CES Demand)
∂yt
∂pt

= −σ
yt
pt

(from Marginal Cost)
∂ct+1

∂pt
= − ct+1

Hr,t+1
× yt

pt
× γσ

(from Learning Process)
∂Hr,t+1

∂pikt
= −σ

yikt
pikt

×

{
1− µ if r = k

α− µ if r ̸= k
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will be a positive demand shock next period, it reduces price to increase margins next period.

These dynamic price incentives fall as the firm gains experience (i.e., H ↑), however.

B.3 Estimation

We recover the demand and supply parameter estimates θ̂ = [σ̂, γ̂, κ̂, νD
j , ϕ̂

D
k , ρ̂

D
t , ν̂

S
j , ϕ̂

S
k , ρ̂

S
t ]

via a generalized method of moments (GMM) estimator using the GSA panel data and period

t variables as instruments; i.e.,

θ̂ =θ {g(θ)′ZWZ ′g(θ)} , (9)

where g(θ) is a stacked vector of the demand and supply-side structural errors and W is the

weighting matrix, representing a consistent estimate of E[Z
′
gg′Z].4 The estimator exploits

the fact that at the true value of the learning-by-doing parameter (γ⋆), the instruments Z

are orthogonal to the structural errors because any ex post errors are not correlated with ex

ante information available to the firms. To address any biases associated with sampling error

in the underling survey data, we bootstrapped the data (100 draws) and instruments with

replacement within each period (year-quarter) and foundry location.

Recovering the underlying model parameters requires addressing price endogeneity in Equa-

tion 3 and unobserved expectation of future endogenous variables in Equation 8. We address

price endogeneity by including local foundry cost shocks (real manufacturing wage). We also

include year-quarter and product line fixed effects to address variation in unobservables across

time. These fixed effects capture variation in downstream global demand for chips. We also

include foundry location fixed effects to absorb variation in wafer quality across foundries.

On the supply-side, we include manufacturing wages in the (Cobb-Douglas) cost function.

We also include a similar set of fixed effects as in demand but the rationale is different as

year-quarter fixed effects capture changes in costs across time as input manufacturers change

their prices wither because they become more efficient (i.e., input prices fall) or they gain

pricing power (i.e., prices increase). Product line fixed effects capture the different costs of

producing each line, while foundry fixed effects capture differences in foundry-level marginal

costs required to be consistent with observed prices and customer demand. Finally, we set the

interest rate outside the model as r=4% which implies a risk-free rate of return consistent

with US Government Treasuries.

4. In constructing the optimal weighting matrix, we first assume homoscedastic errors and use
W = [Z

′
Z]−1 to derive initial parameter estimates. Given these estimates, we solve equation (9) and

use the resulting structural errors (ε, u) to update the weight matrix.

9



B.3.1 Solving the model

We solve the model as follows conditional on a guess of the learning-by-doing parameters

{γ, α, µ}.

1. Estimate {σ̂, νD
j , ϕ̂

D
k , ρ̂

D
t } via Equation (3) and recover structural demand-side errors {ε̂t}.

As buyers maximize static utility (Equation 1), these estimates are fixed for all γ.

2. Recover marginal costs {ĉjkt} using Equation 6. We do this by using the fact that learning-

by-doing effects erode over time so marginal cost for each product-technology (j, k) pair

are approximately fixed at the end of the sample; i.e., pT = σ
σ−1

ĉT at terminal value T .

From this, backwards-induction generates the sequence of marginal costs {ct}Tt=1 using

{yt}Tt=1 and (6).

3. Recover supply-side structural errors {ujkt} using a log-linear representation of Equation 6;

i.e.,

log
(
ĉijkt

)
− γ log

(
Hjkt

)
− κ log

(
wjt) = log

(
νS
j

)
+ log

(
ϕS
k

)
+ log

(
ρSt

)
+ uijkt .

These errors follow from the estimated demand and the functional form assumptions for

learning-by-doing in marginal costs (Equation 6) via cumulative experience (Equation 7).

4. Construct orthogonality moments E[ε|ZD] = 0 and E[u|ZS] = 0. The instruments for

demand (ZD) and supply (ZS) use the fact that firms make pricing decisions given their

period t information sets. At the optimal parameters, the structural errors are orthogonal to

the information set.

B.4 Results

Table I presents GMM estimation results for three different specifications of learning-by-

doing.5

5. An implication of our identification strategy is that demand estimates are not affected by how we
specify the learning process. This is because of the block-diagonal structure of the GMM estimator.
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Table I: GMM Estimation Results

(1) (2) (3)

PARAMETER ESTIMATE SE ESTIMATE SE ESTIMATE SE

DEMAND

PRICE (σ) -2.5718 (0.8300) -2.5718 (0.8300) -2.5718 (0.8300)
CONSTANT 20.2310 (3.5057) 20.2310 (3.5057) 20.2310 (3.5057)
CHINA 0.2122 (0.2254) 0.2122 (0.2254) 0.2122 (0.2254)
JAPAN 0.6054 (0.1546) 0.6054 (0.1546) 0.6054 (0.1546)
MALAYSIA 0.8950 (0.2885) 0.8950 (0.2885) 0.8950 (0.2885)
SINGAPORE -0.0507 (0.1163) -0.0507 (0.1163) -0.0507 (0.1163)
SOUTH KOREA 0.8056 (0.0649) 0.8056 (0.0649) 0.8056 (0.0649)
EUROPE 0.2324 (0.119) 0.2324 (0.119) 0.2324 (0.119)
OTHER -0.3981 (0.069) -0.3981 (0.069) -0.3981 (0.069)
USA 0.7992 (0.1691) 0.7992 (0.1691) 0.7992 (0.1691)
PROCESS MASKS 0.0102 (0.0013) 0.0102 (0.0013) 0.0102 (0.0013)
METAL LAYERS -0.1162 (0.0862) -0.1162 (0.0862) -0.1162 (0.0862)
POLY LAYERS 0.1248 (0.1245) 0.1248 (0.1245) 0.1248 (0.1245)

SUPPLY

WAGES 0.0322 (0.0501) 0.1693 (0.0196) 0.1481 (0.0075)
CONSTANT 7.8606 (1.8094) 3.6757 (0.2189) 3.2282 (0.0667)
CHINA -0.1527 (0.0629) -0.1924 (0.0263) -0.0208 (0.0127)
JAPAN -0.0889 (0.0854) -0.5523 (0.0314) -0.3247 (0.0115)
MALAYSIA -0.0762 (0.121) -0.3609 (0.0481) -0.1660 (0.0118)
SINGAPORE -0.1439 (0.0347) -0.3112 (0.0142) -0.1790 (0.0071)
SOUTH KOREA -0.0611 (0.0481) -0.3758 (0.0226) -0.1298 (0.0076)
EUROPE 0.1194 (0.0685) -0.2406 (0.0301) 0.0063 (0.0105)
OTHER -0.0038 (0.0801) -0.3147 (0.0334) -0.0741 (0.0077)
USA 0.1798 (0.0432) -0.0720 (0.0218) 0.1344 (0.0092)
PROCESS MASKS 0.0021 (0.0007) 0.0014 (0.0003) 0.0004 (0.0002)
METAL LAYERS 0.1094 (0.0054) 0.1138 (0.0026) 0.1056 (0.0018)
POLY LAYERS 0.0737 (0.0134) 0.0677 (0.0082) 0.1395 (0.0047)
TECHNOLOGY (γ) -0.0396 (0.0176) -0.1018 (0.0321) -0.0539 (0.0301)
FIRM (α) 0.0592 (0.0341) 0.0728 (0.026)
WORLD (µ) 0.1391 (0.0277)

LEARNING RATE 3.37% 4.69% 7.96%

Notes: The table presents demand and supply GMM estimates based on the GSA Semiconductor Wafer
Pricing Survey (2004-2015). Estimates based on bootstrapping with replacement within each period
and foundry location. Demand estimates are identical across each learning process modeled because
the instruments are block-diagonal so changes in price elasticity have no effect on the supply-side
instruments. All models include time (quarter-year) and line (line width-geometry) fixed effects in
both demand and supply. Wages are quarterly average hourly manufacturing wages collected from
each country’s local statistical bureau and converted to US dollars using nominal exchange rates from
the Feenstra, Inklaar, and Timmer (2015). Prices and wages are in 1982 dollars using the consumer
price index from FRED.
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