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1 Introduction

Recent advances in AI promise signi�cant productivity gains, but have also
renewed fears about the displacement of labor. A growing number of both AI
researchers and industry leaders suggest that it is time for humanity to prepare
for the possibility that we may soon reach Arti�cial General Intelligence (AGI)
� AI that can perform all cognitive tasks at human levels and thus automate
them.1 This raises a number of fundamental economic questions. What would
the transition to AGI look like? What would AGI imply for output, wages, and
ultimately human welfare? Would wages rise or collapse?

Our paper introduces an economic framework to think about these questions
and evaluate alternative scenarios of technological progress that may culminate
in AGI. Our starting assumption is that human work can be decomposed into
unchanging atomistic tasks that di�er in how complex they are. Advances in
technology make ever more complex tasks amenable to automation. We cap-
ture this by assuming that there is a threshold of task complexity that can be
automated at a given time, captured by an automation index. This index grows
exogenously over time, in line with regularities such as Moore's Law. Although
our results hold more broadly, we suggest that in the Age of AI, a natural mea-
sure of task complexity is the amount of compute (shorthand for computational
resources) required for the execution of a task by machines. Some tasks, such
as adding up numbers in a spreadsheet, can be performed with minimal com-
putation. In contrast, others require a substantial amount of computation for
machines, despite seeming natural and e�ortless for humans, such as navigat-
ing a bipedal body over an uneven surface. We describe how tasks di�er in
computational complexity using a distribution function that captures tasks in
complexity space or, referring to our preferred interpretation, tasks in compute
space.2

Throughout the paper, we analyze two opposing cases for the distribution
of tasks in complexity space, which result in sharply di�erent economic out-
comes. First, we consider the possibility that human tasks are of unbounded
complexity, illustrated in the left-hand panel of Figure 1. In this case, advances
in the automation index, illustrated by the right-ward movement of the vertical
�frontier of automation,� imply that more and more tasks are automated over
time, but that there always remain tasks and by extension jobs that cannot
be automated. Second, we consider a bounded distribution of task complex-
ity, which re�ects that the computational capabilities of the human brain are
�nite, as discussed, e.g., in Carlsmith (2020). Bounded distributions result in
full automation within �nite time when the frontier of automation crosses the

1This includes, for example, the CEOs of the three leading AGI labs, OpenAI's Sam
Altman, Google Deepmind's Demis Hassabis, and Anthropic's Dario Amodei (Kruppa, 2023;
Time, 2024). It also includes the world's most renowned AI researchers, for example two of
the godfathers of deep learning, Geo�rey Hinton and Yoshua Bengio.

2Although the computational complexity of tasks is most evident for cognitive tasks, the
automation of physical tasks is also greatly constrained by the computational complexity
involved, as captured, e.g., by Moravec's paradox (Moravec, 1988). We analyze an extension
that explicitly accounts for cognitive and physical tasks in Section 4.
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Figure 1: Unbounded and bounded distributions of tasks in complexity space

maximum complexity of tasks performed by humans. An alternative interpre-
tation for tasks being to complex to automate is that society may choose not
to automate certain tasks even when it is feasible to do so. This may apply, for
example, to some of the tasks performed by priests, judges, or lawmakers.

We lay out an economic model in which atomistic tasks are gross comple-
ments that are combined to produce �nal goods. In the spirit of Zeira (1998)
and Acemoglu and Restrepo (2018, 2022), all tasks can be performed by labor,
and automated tasks can be performed by either labor or capital. However,
unlike in the described works, our main focus is on the edge cases that arise as
we come close to full automation.

Our analysis begins by examining the equilibrium under �xed supplies of
capital and labor. We show that automation can have dramatic impacts on
wages and output even before it reaches all tasks. There exists a threshold level
of the automation index that separates two distinct regions. As long as the index
remains below the threshold, labor remains scarce relative to capital, and wages
remain high. However, once the automation index surpasses the threshold, the
economy enters a second region, where the scarcity of labor is alleviated, despite
the presence of some tasks that still need to be performed by humans. In this
region, labor and capital become perfect substitutes at the margin so wages
decline starkly to equal the marginal product of capital. The economy exhibits
behavior akin to an AK model.

Next, we characterize the e�ects of automation on the economy's factor price
frontier (FPF), which re�ects all possible combinations of factor prices that may
result from a given level of technology under di�erent capital/labor ratios. The
FPF provides general insights into the e�ects of automation that do not depend
on speci�c assumptions on capital accumulation. We �nd that for a given level of
automation, wages lie within a bounded interval that expands as the automation
index rises � but only as long as automation is incomplete. Once all tasks are
automated, the factor price frontier discontinuously collapses to a single point at
which the e�ective returns to labor and capital are equalized. For given factor
endowments, the e�ects of automation on wages are hump-shaped: for low levels
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of automation, advances in automation increase wages as the economy becomes
more productive, but for higher levels of automation, wages decline due to the
displacement of labor.

We analyze dynamic settings and show that the e�ects on wages are de-
termined by a race between automation and capital accumulation. In addition
to the previous two opposing e�ects on wages from rising productivity and la-
bor displacement, automation also triggers capital accumulation that moves the
economy up on the factor price frontier, increasing wages. We characterize an
upper bound on output and wages that is reached in the limit case that the cap-
ital stock can instantaneously adjust to its optimal level whenever automation
advances. We show a powerful analytic result: For any optimizing represen-
tative agent with linearly separable intertemporal preferences, the e�ects of
automation on output and wages will lie between a lower bound captured by
the constant-capital case and the described upper bound.

When the complexity distribution of tasks is bounded, full automation is
reached in �nite time and leads to a collapse in wages, no matter what savings
behavior the representative agent pursues. For unbounded complexity distribu-
tions of tasks, we show that if the tail of remaining tasks is su�ciently thick,
wages will rise forever. By contrast, if the tail of unautomated tasks is too thin,
wages will eventually collapse.

Next, we simulate a range of scenarios to illustrate our �ndings numerically.
(Figure 8 on page 24 shows the main results.) We start with a �business-as-usual
scenario,� which captures the traditional notion that a constant fraction of tasks
is automated each period, similar to Aghion et al. (2019). This corresponds to
a Pareto distribution for task complexity together with exponential growth in
the automation index. Since the maximum complexity of tasks in this scenario
is unbounded, true AGI will not be reached in �nite time. In our calibration,
both output and wages rise forever in this scenario, at a pace similar to what
advanced countries have experienced over the past century.

Next we consider two AGI scenarios that span the range of estimates pro-
vided by Geo�rey Hinton, one of the godfathers of deep learning, who estimated
in May 2023 that AGI may be reached within 5 to 20 years�after declaring that
he had �suddenly switched [his] views on whether these things are going to be
more intelligent than us.� In our �baseline AGI scenario� we assume a bounded
task distribution such that full automation is obtained within 20 year.3 In an
�aggressive AGI scenario� we assume a shorter-tailed distribution that implies
full automation within �ve years. Our simulation results imply ten times faster
growth than in the business-as-usual scenario, especially in the aggressive AGI
scenario. However, wages collapse as the economy approaches full automation.

In a fourth scenario, we consider the possibility that there is a large bout
of automation in the near term�for example because AI rapidly automates
cognitive jobs�but that there remains a long tail of tasks that are harder to
automate. As a result of the initial bout of automation, the economy enters the

3As economists, we hope that the computational complexity of at least some atomistic
tasks that go into writing economics papers is far into that right tail. Alas, this might be
wishful thinking.
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region in which labor loses its relative scarcity value, and wages in our simulation
collapse. However, after capital accumulation has caught up su�ciently, labor
becomes su�ciently scarce again so that the economy returns to region 1 and
wages rise in line with output growth.

We extend our baseline model to analyze several additional important con-
siderations. First, we consider the role of �xed factors (such as minerals or
matter) and show that they may pose a bottleneck that holds back economic
growth and worsens the outlook for wages, ultimately leading to stagnation ac-
companied by a wage collapse. Next, we add an innovation sector to analyze
the potential for automating technological progress and show that this lifts the
returns of all factors including wages. We illustrate that su�cient automation
may give rise to a growth singularity whereby output takes o�.

Furthermore, we analyze societal choices to retain certain jobs as exclusively
human even when they can be automated (e.g., priests and judges), and show
that a su�cient volume of such �nostalgic jobs� may help to keep labor suf-
�ciently scarce so that wages continue to grow even when full automation is
technically possible. We analyze the wage-maximizing rate of automation and
show that slowing down automation in an AGI scenario may deliver signi�cant
gains to workers albeit at the cost of forgoing a growing fraction of output.

Next, we evaluate the impact of automation on workers with heterogeneous
skills and susceptibility to being automated. We �nd that automation in such a
scenario may give rise to an ever-declining fraction of superstar workers earnings
ever-growing wages, whereas the majority of the labor force is starkly devalued
by automation. Finally, we explore the role of compute as an example of speci�c
capital that is tailored to automating speci�c tasks. We observe that in the short
term, compute may earn very high returns, but after an adjustment period
during which su�cient compute has been accumulated (and which may last
long), compute may become just another form of capital that earns the same
return as all other types of capital.

Related Literature The foundational work of Aghion et al. (2019) explores
the impact of arti�cial intelligence on economic growth, o�ering valuable in-
sights into how technological advances in AI, including AGI, might in�uence
future economic trajectories. Jones (2023) underscores the risk of technologi-
cal progress, emphasizing existential risk�a concept crucial in AGI discussions.
Davidson (2023) analyzes a model of the factors that may lead to a take-o� in
economic growth if technology advances near AGI but does not focus on the
wage implications. Besiroglu et al. (2022) show how advances in AI may ac-
celerate growth by speeding up R&D, and Erdil and Besiroglu (2023) review
the factors by which AGI may give rise to exponential growth. Trammell and
Korinek (2023) provide a useful survey on the broader implications of advanced
arti�cial intelligence on economic growth.

A critical body of literature explores the dynamics between labor and au-
tomation. Seminal works by Acemoglu and Restrepo (2018, 2022) and Autor
(2019) provide insights into how automation reshapes labor markets, focusing on
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technology as a substitute for individual worker tasks or how workers and tasks
can complement or substitute for technology. Eloundou et al. (2023) and Felten
et al. (2023) provide excellent empirical analyses of which tasks are amenable
to automation by the current wave of foundation models. These studies o�er
a useful lens for understanding the economic implications of AI before AGI is
reached. Our contribution to these strands of literature is to look at the limit
case of what happens if either all work tasks are automated or we asymptote
towards a world in which all tasks are automated.

Our paper is also related to a broader literature on AGI and superintelli-
gence literature. Good (1965) was the �rst to articulate the potential of an
intelligence explosion if AGI is reached. Bostrom (2014) provides a comprehen-
sive exploration of superintelligence, highlighting the potential capabilities of
AGI and the profound implications these might have for society. Yudkowsky
(2013) discusses several of the economic implications of the transition to AGI.

2 A Compute-Centric Model of Automation

2.1 Tasks in Compute Space

compute /k@m-"pyüt/

verb: to determine by calculation
The system computed the length of the shortest path.

noun: the combined computational resources available for information pro-
cessing tasks
Modern AI relies on vast amounts of compute.

Etymology: Derived from the Latin verb "computare," meaning "to count,
sum up, or reckon together," the word "compute" entered the English lan-
guage as a verb in the 16th century. The noun form "compute" gained promi-
nence more recently with the advent of high-performance digital computers
and the increasing need to describe the resources required for computation.

Atomistic Job Tasks A central assumption of our analysis is that the work
performed by humans is composed of tasks and sub-tasks � or unchanging atom-
istic task � that di�er in how easily they are automated. In our baseline model,
we focus on cognitive tasks and their potential for automation. In this setting,
an atomistic task is a well-de�ned computational assignment that contributes
to the accomplishment of a larger job task.

These atomistic tasks are fundamental and are signi�cantly smaller than
the tasks that are listed in O*Net. Table 1 lists, for example, the top-5 O*Net
tasks of economists: to study data; conduct and disseminate research; compile,
analyze and report data; supervise research; and teach. Each of these O*Net
�job tasks� involves a wide variety of di�erent atomistic tasks. For example, the
O*Net task �teach theories of economics� may require �rst planning the overall
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� Study economic and statistical data in area of specialization, such as �-
nance, labor, or agriculture.

� Conduct research on economic issues, and disseminate research �ndings
through technical reports or scienti�c articles in journals.

� Compile, analyze, and report data to explain economic phenomena and
forecast market trends, applying mathematical models and statistical tech-
niques.

� Supervise research projects and students' study projects.

� Teach theories, principles, and methods of economics.

Table 1: Top-5 Tasks performed by economists (O*Net database)

task, recalling di�erent economic theories, synthesizing a structure, preparing
slides, formulating lectures, synthesizing speech and a�ect, decoding and re-
sponding to student questions, preparing problem sets, distributing problem
sets, grading problem sets, and so on�all while keeping track of the plan. It
may also require tasks such as recognizing emotional expressions on students'
faces, using theory of mind to evaluate student progress and dynamically adjust
the structure, etc.

All of these tasks involve a set of basic human brain functions, which con-
stitute a form of computation. Some of these functions are easily performed
by machines and therefore highly susceptible to cognitive automation (Korinek,
2023), whereas others are more di�cult. What matters for our purposes here is
how computation-intensive they are using machines.

Recent literature on technology on labor markets observes that innovation
typically gives rise to new job tasks (e.g., Acemoglu and Restrepo, 2018; Autor,
2019). This holds true when viewed from the perspective of high-level job tasks
such as those captured by O*Net. However, when viewed from an atomistic
level that re�ects basic brain functions, innovation merely recombines atomistic
tasks in novel ways to produce novel high-level tasks and jobs. For example, the
novel task of �prompt engineering� may require atomistic tasks such as de�ning
a desired output, crafting an initial prompt, entering it, reading the output,
evaluating it, deciding whether to iterate, and �nally sharing the output�all
functions that existed long before the invention of generative AI systems that
triggered prompt engineering.

Task Complexity and Compute Intensity Our baseline model emphasizes
di�erences in complexity as a key dimension when studying the automation po-
tential of tasks. Our preferred interpretation for what makes tasks di�cult to
automate is their compute intensity, which refers to the amount of computa-
tional resources required to perform a speci�c task. Compute intensity can
easily be measured by the amount of �oating point operations (FLOP) that
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Figure 2: Training compute of frontier AI systems over time
(Copyright© 2024 by Epoch under a CC-BY-4.0 license; Sevilla et al., 2022.)

need to be executed to perform a given task. The computational complexity
for machines to execute a task often di�ers starkly from how easy or di�cult
it is for humans.4 Still, it is the computational complexity for machines that
determines whether a task can be automated.

Advances in Computing One of the main drivers of recent advances in
AI has been the increased availability of computing power. Moore's Law, �rst
described by Gordon Moore (1965), describes that the performance of cutting-
edge computer chips doubles approximately every two years. The regularity has
held for the past sixty years. Additionally, the amount of compute deployed in
cutting-edge AI systems has grown even faster over the past decade, doubling
roughly every six months, as shown in Sevilla et al. (2022) and depicted in
Figure 2. Improvements in algorithms have further accelerated the growth in
capabilities of cutting-edge AI systems (Besiroglu et al., 2022).

For our analysis below, we assume that there is an automation index that
captures the maximum complexity of tasks that can be automated. This in-
dex grows exponentially at an exogenous rate, mirroring the type of advances
captured by Moore's Law and Figure 2. As the automation index increases, a
growing mass of tasks can be automated.

4For example, Moravec (1988) observed that some tasks that feel easy to execute for
humans, such as vision processing, employ a large amount of dedicated grey matter and are,
in fact, computationally quite intensive. There are also certain tasks that require very little
compute in dedicated machines but that are di�cult for the human brain since it has not
evolved for them: for example, arithmetic operations take just one FLOP on a basic computer
but require signi�cant amounts of grey matter for human brains to perform, likely involving
the equivalent of billions of FLOP.
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2.2 Baseline Model

Consider a representative household in a static economy who is endowed with
L = 1 units of labor and K > 0 units of capital. There is a continuum of tasks
that di�er in their computational complexity i. The distribution function Φ(i)
re�ects the cumulative mass of tasks with complexity ≤ i and satis�es Φ(0) = 0
and limi→∞ Φ(i) = 1. If the distribution function is di�erentiable, we call its
derivative ϕ(i) the density of tasks of complexity i. Examples are shown in
Figure 1.

To produce aggregate output Y , we combine all the tasks of di�erent com-
plexity using a CES aggregator with elasticity of substitution σ.

Y = A

[∫

i

y(i)
σ−1
σ dΦ(i)

] σ
σ−1

(1)

where y(i) is the amount of type i tasks employed in the production of out-
put. We generally assume σ < 1, re�ecting that the atomistic tasks are gross
complements.

Each task is performed using capital k(i) and labor ℓ(i) according to the
production function

y(i) = aK(i)k(i) + aL(i)ℓ(i) (2)

where the coe�cients aK(i) and aL(i) re�ect the e�ciency of capital and labor.
We assume that the exogenous index I re�ects the state of automation and
de�nes a complexity threshold such that all tasks below the threshold can be
performed with either capital or labor but all the tasks above the threshold
require labor. We normalize the technological parameters aK (i) = aL (i) = 1
except that aK (i) = 0 if i ≥ I. In other words,

y (i) =

{
k (i) + ℓ (i) for i < I

ℓ (i) for i ≥ I

Strategies The representative agent supplies her endowments of labor and
capital every period at the prevailing factor prices w and R and makes no inter-
esting economic decisions. The representative �rm in the economy maximizes
pro�ts by hiring capital k (i) and labor ℓ (i) for each task at the prevailing factor
prices w and R to produce y (i), which is then combined to produce �nal output.
The �rm's maximization problem is

max
k(i),ℓ(i)

Y −R

∫

i

k(i)dΦ(i)− w

∫

i

ℓ(i)dΦ(i) s.t. (1), (2)

Equilibrium An equilibrium in the baseline model consists of a set of {k (i) , ℓ (i) , y (i)}i≥0

and factor prices w and R such that the representative �rm solves its maximiza-
tion problem and markets for capital and labor clear, i.e.,

∫

i

k(i)dΦ(i) = K

∫

i

ℓ(i)dΦ(i) = 1
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Since there are no market imperfections, the described equilibrium also consti-
tutes the �rst-best of the economy.

2.3 Equilibrium: Characterizing Two Regions

Scarcity of Labor For given factor endowments (K,L), there are two possible
regimes for the scarcity of labor, depending on the level of the automation index
I: If the index is low enough so that labor is relatively scarce, then the return
on labor is greater than the return on capital, w > R, and the scarce labor is
employed solely in those tasks that cannot be automated.

Conversely, if the state of automation is su�ciently advanced that only a
small fraction of tasks are exclusive to human labor, then w = R holds, and
labor is employed not only in the remaining unautomated tasks but also in some
of the automated tasks. At the margin, capital and labor are perfect substitutes.

Lemma 1 (Scarcity of labor). For given (K,L), there is a threshold value for
the state of automation Î that is de�ned by

Φ
(
Î
)
=

K/L

1 +K/L
(3)

and increasing in the K/L-ratio such that there are two regions:
Region 1: If I < Î, then labor is scarce compared to capital. In this regime,
labor is employed only for tasks with i > I. Output is

Y = F (K,L; I) = A
[
K

σ−1
σ Φ(I)

1
σ + L

σ−1
σ (1− Φ(I))

1
σ

] σ
σ−1

(4)

and wages satisfy

w = A
σ−1
σ (Y/L)

1
σ · (1− Φ(I))

1
σ > R

Region 2: If I ≥ Î, then the relative scarcity of labor is relieved, and labor
earns the same return as capital w = R = A; if the inequality is strict, some
labor is deployed alongside capital for tasks with i < I, and labor and capital are
perfect substitutes for the marginal task. Output is given by the linear function

Y = F (K,L) = A (K + L) (5)

Conversely, for given I, there is a threshold κ (I) = Φ(I)/ [1− Φ (I)] such
that the economy is in region 1 if K/L > κ (I) and in region 2 if K/L ≤
κ(I). The threshold κ(I) is increasing in I, i.e., if K/L is marginally above the
threshold, further automation pushes the economy from region 1 into region 2
where the scarcity of labor is relieved.

Proof. Assume �rst that all labor is employed in tasks with i ≥ I and observe
that the symmetry of the production function across all tasks implies that an
identical amount of capital k = K/Φ(I) will be employed in each task below
the threshold and an identical amount of labor ℓ = L/(1 − Φ(I)) for each task
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above the threshold for given aggregate K and L. The production function can
then be written as

Y = F (K,L; I) = A
[
k

σ−1
σ Φ(I) + ℓ

σ−1
σ (1− Φ(I))

] σ
σ−1

= A
[
K

σ−1
σ Φ(I)

1
σ + L

σ−1
σ (1− Φ(I))

1
σ

] σ
σ−1

proving equation (4).
The �rm's optimization problem implies the �rst-order conditions

FK = A
σ−1
σ Y

1
σ ·K− 1

σ Φ(I)
1
σ = R (6)

FL = A
σ−1
σ Y

1
σ · L− 1

σ (1− Φ(I))
1
σ = w (7)

By comparing these two expressions, we can see that the return on capital
R is less than the return on labor w as long as K− 1

σ Φ(I)
1
σ < L− 1

σ (1− Φ(I))
1
σ

or, equivalently, k > ℓ, i.e., the capital assigned to each automated task is
greater than the labor assigned to unautomated tasks. Expressing this in terms
of aggregate supplies of factors, the condition is

K

L
> κ(I) :=

Φ(I)

1− Φ(I)
(8)

The right-hand side is an increasing function of I that goes from 0 to ∞. By
implication, there is a value of I such that the inequality is violated for all I > Î.

When that threshold is crossed, it is more e�cient to allocate some labor to
tasks with i < I, and the marginal unit of labor is perfectly substituable with
capital. By implication, k (i) = ℓ (i) = K+L, and the CES aggregator simpli�es
to equation (5). Alternatively, the threshold for Φ(I) can be expressed explicitly
as an increasing function of the K/L-ratio by solving for

Φ
(
Î
)
=

K/L

1 +K/L

The remaining results stated in the lemma follow immediately.

Intuitively, region 1 re�ects the world as we have experienced it over the past
200 years, in which capital and labor are complementary in production, and
labor is comparatively scarce. Figure 3 shows that for given factor supplies, a
higher automation index I increases the mass of tasks that can be accomplished
with capital, implying that the available capital is spread over a greater number
of tasks and becomes scarcer. Conversely, automation reduces the mass of tasks
that is exclusive to labor, implying that the available labor can be concentrated
on fewer tasks and becomes less scarce. As the automation index reaches the
threshold Î, there are so few tasks left that are exclusive to labor that labor
no longer enjoys a scarcity advantage over capital, and the returns on the two
factors are equated.
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Figure 3: Automation and the scarcity of labor

Note that the threshold Î depends solely on relative factor supplies, not on
the elasticity of substitution σ between capital and labor. As soon as labor is no
longer scarce, it will be used interchangably with capital in the marginal task,
and this holds even when individual tasks are highly complementary as re�ected
by low values of the elasticity of substitution (as long as σ > 0).

2.4 Factor Price Frontier (FPF)

For an analysis of the e�ects of advances in automation I on factor returns, let
us characterize the factor price frontier associated with the �rm's technology.
The factor price frontier depicts all possible combinations of factor prices R and
w that will result from di�erent proportions of factor supplies K and L in a
competitive economy with pro�t-maximizing �rms under a given technology.

Lemma 2 (Factor Price Frontier (FPF)). For a given automation index I, the
factor price frontier slopes downwards, starting from a limiting point w∗(I) =

A(1 − Φ(I))
1

σ−1 and R = 0 as K/L → ∞ to the point w = R = A when
K/L ≤ κ(I). Increases in A move the FPF proportionately outwards. Increases
in I raise w∗(I) and swivel the factor price frontier clock-wise.

Proof. We obtain the factor price frontier from the aggregate cost function,
which is the dual of the aggregate production function. The associated unit
cost function represents the minimum cost at which a competitive optimizing
�rm can produce one unit of �nal output, given factor prices w and R. In the
region of I < Î, the unit cost function associated with equation (4) is

C(w,R; I) =
1

A

(
R1−σΦ(I) + w1−σ(1− Φ(I))

) 1
1−σ

12
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Figure 4: Factor price frontier and its dependence on A

Since we employed the �nal good as the numeraire good, this cost function needs
to equal 1 in a competitive economy. The factor price frontier when I < Î is
thus given by all pairs of (w,R) that satisfy the equation C (w,R; I) = 1, or
equivalently,

w =

(
A1−σ −R1−σΦ(I)

1− Φ(I)

) 1
1−σ

(9)

Asymptotically, as K/L goes to in�nity, we can see from equations (6) and (7)
that the return to capital R goes to zero, whereas the wage converges to

w∗(I) = lim
K/L→∞

w = A
[
0 · Φ(I) 1

σ + (1− Φ(I))
1
σ

] 1
σ−1

(1−Φ(I))
1
σ = A(1−Φ(I))

1
σ−1

(10)
Conversely, when I ≥ Î, the cost function is simply C (w,R; I) = min {w,R} /A,
and the factor price frontier is degenerate and consists of a single point w =
R = A.

The factor price frontier is illustrated in Figure 4. The area above the 45
degree line corresponds to Region 1 of Lemma 1, re�ecting a high capital-labor
ratio K/L > κ(I) and w > R. Higher capital intensity K/L moves factor
returns up and to the left along the frontier, i.e., it increases w and reduce
R. Conversely, when K/L ≤ κ(I), we enter Region 2 of the lemma, and the
factor price frontier corresponds to a single dot on the 45 degree line at which
w = R = A.

The right panel of Figure 4 shows how an increase in the level of technology
A pushes out the factor price frontier � for any ratio of K/L, it scales the
returns of all factors proportionately. This exempli�es how the factor price
frontier serves as a convenient tool to describe how factor returns are impacted
by technological changes across any levels of factors supplies.
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The Automation Path on the Factor Price Frontier

We next turn to the e�ects of automation for a given capital stock K or equiv-
alently, capital intensity k = K/L. Then it is easy to see that:

Lemma 3 (Automation and Output). An increase in automation dΦ(I) raises
output as long as I < Î, and leaves output una�ected otherwise.

Proof. For I < Î, the result follows by di�erentiating expression (4),

dY

dΦ(I)
=

1

σ − 1
A

σ−1
σ Y

1
σ ·

(
k

σ−1
σ − ℓ

σ−1
σ

)

Given σ < 1, the derivative is positive as long as k > ℓ, which is the condition
for being in region 1 in Lemma 1 in which the production function is relevant.
For I ≥ Î, the relevant production function is (5), which is independent of I.

Intuitively, for output to rise, capital must be su�ciently abundant, deliver-
ing a productivity gain from deploying the amply available capital to a greater
number of tasks. This is frequently termed the productivity e�ect of automation.

Let us look at factor returns next.

Lemma 4 (Automation and Factor Returns). (i) An increase in automation
dΦ(I) always raises R as long as I < Î. The e�ect on w is hump-shaped: there
is a threshold I∗(K/L) with Φ(I∗(·)) ∈ (0, 1) such that wages w rise in Φ(I) as
long as I < I∗(K/L) or, equivalently, as long as K/L > κ∗(I), but decline in
Φ(I) for I > I∗(K/L) or, equivalently, K/L < κ∗(I).

(ii) For Φ(I) = 0, the return on capital is R = 0, and wages equal w = A.
For Φ(I) ≥ κ/(1+κ), both equal R = w = A. The latter condition always holds
if Φ(I) = 1.

Proof. The limit results follow readily from equations (6) and (7) and from the
second part of Lemma 1. By di�erentiating equation (6), with respect to Φ(I),
we can see that automation always raises the return on capital.

To see how automation a�ects wages, consider the derivative of logw with
respect to Φ from the �rm's optimality condition (7):

d logw

dΦ(I)
=

1

σ − 1

1

σ

(
k

σ−1
σ − ℓ

σ−1
σ

)
(Y/A)

1−σ
σ − 1

σ

1

1− Φ(I)
. (11)

The �rst term re�ects the productivity e�ect of automation, which is pos-
itive under condition (8), re�ecting that producing the marginal task using
a relatively more abundant k units of capital rather than a scarce ℓ units of
labor increases output. The second term captures the displacement e�ect of
automation and reduces labor income. It re�ects that the labor used in each
unautomated task ℓ = L/(1 − Φ) increases, as captured by the term in the
denominator, thereby pulling down the marginal product of labor.

As I rises, wages rise at �rst�at Φ(I) = 0 we �nd d logw
dΦ(I) = 1

1−σ > 0. As

I becomes larger, the �rst term in (4) declines, reaching zero for I = Î, and
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the absolute value of the second term grows and eventually dominates the �rst
term�in the limit of Φ → 1, the second term becomes in�nitely large. Thus,
there exists an intermediate value I∗(K/L) after which further automation re-
duces wages. Notice that the �rst term is increasing in K/L whereas the second
term is independent of K/L. The threshold can alternatively be expressed as
K/L < κ∗(I).

Figure 5 illustrates that an increase in automation I �rotates� the factor
price frontier clockwise, for example, from the dotted to the dashed and solid
lines. If the economy is in the labor-scarce region 1 (above the 45 degree line),
automation raises wages for a given return of capital and also the maximum
wage level w∗(I). For given K/L, the path of factor prices that results from
rising automation I is illustrated by the hump-shaped bold line with arrows
in the �gure. Along the path, R rises continually whereas w at �rst rises but
eventually falls. When automation reaches Î(K/L), the economy ends up in the
degenerate equilibrium with w = R = A on the 45-degree line.

2.5 Automation and Factor Earnings

Figure 6 shows the e�ects of automation on total output for given factor supplies
as well as its split into the wage bill and the total returns to capital. The
horizontal axis depicts the fraction Φ (I) of automated tasks, which goes from
zero to one. The left-hand panel illustrates the case of equal capital and labor
endowments, K = L = 1, and modest complementarity with an elasticity of
substitution σ = 0.5 between the two. As long as the economy is in the scarce-
labor region (Region 1), output is a strictly monotonic function of automation.
At �rst, automation almost exclusively bene�ts labor, and the returns to capital
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Figure 6: Static equilibria under rising automation

are minuscule. But as automation increases and we come closer to Region 2,
the wage bill reaches a ceiling and starts to decline. Further automation still
raises output, but the returns to capital grow faster than output, at the expense
of the wage bill. When Region 2 is reached at Φ = 0.5, both factors earn equal
returns. Given equal endowments, this translates into capital and labor shares
of one-half each.

The right panel of the �gure shows an alternative scenario in which the
e�ective supply of capital is ten times higher than labor, i.e., L = 1 and K = 10,
and in which the two are strong complements with σ = 0.2. The abundance of
capital and the strong complementarity imply that the region in which most of
the bene�ts go to labor is much larger, but so is the drop in the wage bill once a
critical threshold is surpassed: whereas wages seem to be growing exponentially
in Φ (I) up until Φ ≈ 0.80, they experience a precipitous decline by about 85%
starting around Φ ≈ 0.83, accompanied by a meteoric rise in the returns to
capital. When Region 2 is reached at Φ = 10/11, factor returns are equalized,
and given the relative factor endowments, the capital share of the economy is
ten times the labor share. This example highlights that the fate of labor can
change rapidly when certain thresholds are crossed.

Crucially, the e�ect of automation on output�and per-capita income�
depends on the capital available. In the illustration in the left panel, full au-
tomation merely doubles output; in the right panel, output grows eleven-fold.
This observation naturally leads us to the next step of our analysis�to analyze
how automation interacts with capital accumulation in a dynamic setting.

3 Dynamics: The Race between Automation and

Capital Accumulation

The dynamics of output and wages depend not only on technological advances�
captured by the automation index I�but also on capital accumulation and by
extension on the savings behavior of the agents in the economy. This section
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analyzes these forces in a dynamic setting.

3.1 Automation Scenarios

Progress in automation We assume that the automation index I grows
exponentially over time at an exogenous rate of g, re�ecting Moore's law and
similar regularities. For an initial I0, the time path of I (omitting the time
index t for conciseness) is given by

I = I0e
gt

We can equivalently write that log I = log I0 + gt grows linearly at the rate g.
We consider di�erent distributions Φ (i) of task complexity or tasks in com-

pute space to capture alternative scenarios for the advent of AGI:

Business-As-Usual Scenario (Unbounded Distribution) We model un-
bounded complexity distributions of tasks Φ (i) as Pareto, implying that log i is
described by an exponential distribution, log i ∼ Exp(λ) with decay parameter
λ. The resulting cumulative distribution function is Φ(i) = 1 − e−λ log i. If the
automation index I grows exponentially at rate g, the fraction of non-automated
tasks declines at rate λ · g. This distribution has an in�nite right tail, meaning
that there will always be tasks that cannot be automated.

Baseline and Aggressive AGI Scenarios (Bounded Distributions) For
our AGI scenarios, we assume a bounded complexity distribution of tasks to
capture the scenario that the tasks that can be performed by human brains
is limited by an upper bound so automation crosses the threshold Î within
�nite time. We assume that Φ(i) follows a power function Φ(i) = 1 − (1 −
log i/ log Imax)β with β = 1 and with normalization Imax = I0e

gT such that
all tasks are automated after T years.5 Following Hinton's predictions, we set
T = 20 in the baseline AGI scenario and T = 5 in the aggressive AGI scenario.
For I > Imax, we keep Φ(i) = 1 capturing full automation.

Bout of Automation (Mixed Distribution) We consider a fourth scenario
in which rapid advances in AI automate a large fraction of tasks within a short
time span, but in which we assume that there remains an unbounded tail of tasks
that cannot be automated, for example, because of legal or cultural reasons.
Analytically, we assume a mixture of the two scenarios above. Speci�cally, Φ(i)

is de�ned as Φ(i) = ω

[
1− (1− log i/ log Imax)

β

]
+ (1− ω)

[
1− e−λ log i

]
where

ω ∈ [0, 1] is a weight parameter. We assume the same values for the parameters
of the Pareto and power function distributions as in the previous two cases.

5Power function distributions are a special case of beta distributions with a beta parameter
α = 1.
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3.2 Consumer Problem

The representative household seeks to maximize its lifetime utility by choosing
consumption Ct over time:

max
{Ct}

U =

∫ ∞

0

e−ρtu(Ct)dt (12)

subject to the law of motion for capital:

K̇t = F (Kt, Lt; It)− δKt − Ct (13)

for given K0. The current-value Hamiltonian for this problem is:

Hc = u(Ct) + µt [F (Kt, Lt)− δKt − Ct]

The �rst-order conditions with respect to consumption and capital are:

∂Hc

∂Ct
= u′(Ct)− µt = 0

∂Hc

∂Kt
= µt [FK − δ] = −µ̇t + ρµt

Di�erentiating the �rst optimality condition with respect to time yields u′′(Ct)Ċt =
µ̇t, and substituting into the second optimality condition gives

Ċt

Ct
=

1

η(Ct)
[FK(Kt, Lt)− ρ− δ] (14)

where η(Ct) = −u′′(Ct)Ct

u′(Ct)
is the elasticity of intertemporal substitution.

Limit Behavior in Region 2 When the economy is in region 2, then FK = A.
If the agent's utility function exhibits constant elasticity of substitution η, then
the Euler equation implies a constant growth rate of consumption

gC =
Ċt

Ct
=

A− ρ− δ

η
(15)

Let us assume that A > ρ + δ so consumption growth is positive and consider
the case that the economy remains in region 2 forever�for example, because
full automation Φ(I) = 1 has been reached. Then the economy will converge
towards a balanced growth path in which gY = gK = gC as in (15) and the
savings rate s∞ = 1− C/Y is constant. From (13), we obtain that

gK =
K̇t

Kt
=

sA(Kt + L)

Kt
− δ

As limt→∞ L/Kt = 0, we can equate gC = gK and solve for the long-run savings
rate

s∞ =
A− ρ− δ + ηδ

Aη
=

1

η
− ρ+ (1− η)δ

Aη
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Bounds Assume an initial I0 and K0 that satisfy FK (K0, L; I0) ≥ ρ + δ,
i.e., there was no excessive capital accumulation in the past. Then the following
proposition holds for any intertemporal utility function that is linearly separable
as speci�ed in (12) with a twice continuously di�erentiable, increasing, and
strictly concave period utility function u(C):

Proposition 5 (Bounds for Output and Wages). For any distribution Φ (i) of
tasks in compute space and exogenous growth in the automation index It, the
paths of capital, output, and wages lie between lower and upper bounds K− ≤
Kt ≤ K+

t , Y
−
t ≤ Yt ≤ Y +

t and w−
t ≤ wt ≤ w+

t .
The lower bounds are de�ned by the �xed-capital case with K− = K0 ∀t and

Y −
t = F (K−, L, It), w

−
t = FL(K

−, L, It). The lower bound on wages �rst rises
in It and then declines in It. It declines to A in �nite time if full automation
is reached asymptotically, i.e., if limI→∞ Φ(I) = 1.

If Φ(It) < 1, an upper bound K+
t for capital is de�ned by FK

(
K+

t , L, It
)
=

R = ρ+ δ ∀t as long as a solution exists; otherwise we set K+
t = ∞. The upper

bounds for output and wages are Y +
t = F (K+

t , L, It) and w+
t = FL(K

+
t , L, It).

All three upper bounds are increasing in the automation index It. If automation
is full, Φ(It) = 1, the upper bounds are K+

t = ∞ and Y +
t = ∞, and the upper

bound on wages discontinuously collapses to w+
t = A.

Proof. Observe that for any twice continuously di�erentiable period utility func-
tion that is increasing and strictly concave, the elasticity in the Euler equation
(14) satis�es η(Ct) ∈ (0,∞). Consumption on the optimal path is increasing as
long as FK > ρ+ δ and constant when FK = ρ+ δ. Our characterization of the
factor price frontier delivers most of the remaining results.

For the lower bound, observe that increases in I and Φ(I) raise the marginal
product FK for givenK, triggering additional capital accumulation, which raises
output and wages above the lower bound. For the upper bound, observe that by
the Euler equation, capital accumulation will never exceed the upper threshold
K+

t , which is given by

K+
t =

AσL(1− Φ(It))
1

σ−1Φ(It)

(Rσ−1 −Aσ−1Φ(It))
σ

σ−1
. (16)

For given It, output and wages are increasing in Kt, implying that they must
lie between the lower and upper bounds de�ned by K− and K+

t . If Φ(It) = 1,
the production function is AK-style, and Lemma 4 implies that wt = A.

On the factor price frontier, the lower bound on wages w− is pinned down by
the automation path in Figure 5; it collapses to A in �nite time if the economy
asymptotically converges to full automation. As long as Φ(I) < 1, the upper
bound on wages w+

t is pinned down by the intersection of the corresponding
factor price frontier with a vertical line at R = ρ+ δ and rises without bounds
in I. However, when full automation Φ(I) = 1 is reached, the upper bound
on wages w+

t discontinuously collapses to A, which equals the lower bound
and must therefore equal the equilibrium wage. This result is independent of
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intertemporal preferences and savings behavior and occurs in �nite time if the
distribution of task complexity Φ(I) is bounded, as in our two AGI scenarios.

The Balancing Savings Rate To further investigate the race between au-
tomation and capital accumulation, we analyze the threshold at which the wage
e�ects of automation and capital accumulation precisely o�set each other. For
this, we take the total di�erential of the equilibrium wage, wt = FL(Kt, L; It),
and set dwt = 0 to �nd

FKL(Kt, L; It)
dKt

dt
+ FLI(Kt, L; It)

dIt
dt

= 0 (17)

Suppose, for simplicity, that δ = 0 so we can denote the savings rate at t by
st = K̇t/Yt. Also, note that FLI(Kt, L; It)

dIt
dt = FLΦΦ̇t. Then

stYt · FKL = −FLΦΦ̇t

The left-hand side is the increase in wages due to capital accumulation. The
right-hand side is the change in wages due to automation. As we observed
above in Lemma 4, the term FLΦ encompasses the productivity e�ect and the
displacement e�ect of automation on wages. Dividing by the cross-derivative
FKL, the fraction

FLΦ

FKL
captures the wage e�ects of automation relative to capital

accumulation. After some algebra, we obtain

FLΦ

FKL
=

[
σ

1− σ
(k/ℓ)

1−σ
σ −

(
κ+

1

1− σ

)]
k

The �rst term in the brackets is the productivity e�ect that is increasing in
the relative abundance of capital k/ℓ � if capital is very abundant compared to
labor, then using capital for newly automated tasks signi�cantly raises output.
The second term is the displacement e�ect that is increasing in κ and thus
in the automation index I. (Recall that for the given level of automation I,
κ (I) = Φ(I)/ [1− Φ (I)] re�ects the threshold of the capital/labor ratio below
which the economy is in region 2 such that the scarcity of labor is lifted.)
Intuitively, if a large fraction of tasks has already been automated, then further
automation of marginal tasks will result in a large fall in labor demand since
the automated labor has to be reallocated to an ever smaller set of human-only
tasks.

By rearranging terms, we obtain the following expression for the savings rate
that, given Φ and g, perfectly o�sets the e�ect of automation on wages

s̃t =

[(
κ+

1

1− σ

)
− σ

1− σ
(k/ℓ)

1−σ
σ

]
· Kt

Yt
· ϕtIt
Φt

· g (18)

The condition tells us that, to o�set the e�ect of automation on wages, the
savings rate must be increasing with (i) the displacement e�ect net of the pro-
ductivity e�ect, (ii) the capital-output ratio, (iii) the relative mass of automated
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tasks at the current compute threshold for task automation, and (iv) the growth
of compute g. Intuitively, a large fraction of output must be invested if (i) the
displacement e�ect reduces wages signi�cantly, or (ii) there is already a large
amount of capital stock in the economy, or (iii) a large amount of tasks are
being automated, or (iv) automation is fast.

The expression in (18) tells us about the threshold level for the savings rate
at time t above which wages rise and below which wages fall, given the extent of
automation occurring at time t. In other words, it characterizes the short-run
behavior of wages as an outcome of the race between automation and capital
accumulation.

Long-Run Dynamics for Unbounded Task Distributions To further
illuminate the trade-o� in (18), we turn to the long-run dynamics of wages. To
do so, we start by characterizing the conditions for the existence of a balanced
growth path (BGP). We de�ne a BPG as an equilibrium path on which output
and capital stock grow at a constant rate and factor shares remain constant.

Lemma 6. Suppose that as t increases, Φ(It) → 1, and focus on the limit case.
Then the return to capital converges to A. Moreover, output and capital stock
grow at the rate (A−ρ−δ)/η and the savings rate converges to (A−ρ−δ+ηδ)/Aη.

Proof. If the economy is in region 1 in the limit, then the production function
converges to

lim
Φ→1

A
[
K

σ−1
σ Φ

1
σ + L

σ−1
σ (1− Φ)

1
σ

] σ
σ−1

= AK

If the economy is in region 2 in the limit, then F (K,L) = A(K + L). In both
cases,

lim
Φ→1

FK = A

As a result, the Euler equation implies

Ċt

Ct
=

1

η
[FK − ρ− δ] → 1

η
[A− ρ− δ]

as Φ → 1. Output and capital must grow at the same rate, which implies that
the savings rate must satisfy

Ċt

Ct
=

K̇t

Kt
=

s∞Yt

Kt
− δ

Since limΦ→1
Yt

Kt
= A, this requires that K̇t/Kt → s∞A−δ. Therefore, we have

s∞A− δ =
1

η
[A− ρ− δ]

s∞ =
A− ρ− δ + ηδ

Aη
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Figure 7: Wage growth rate (gw) as a function of the rate of automation (λg)

Since we are interested in the long-run dynamics of wages, we make a sim-
plifying assumption that the savings rate is given exogenously at a constant
value s∞, which can be interpreted as the long-run savings rate. Under the
assumption, s is a key parameter determining the rate of capital accumula-
tion. Depending on the value of s∞ relative to the rate of automation g, the
race between automation and capital accumlulation can result in three possible
outcomes. The following proposition summarizes the results.

Proposition 7 (Race between automation and capital accumulation). Suppose
the complexity distribution of tasks is Pareto and that the economy starts in
region 1, i.e., I0 < Î0. Then the growth of wages and long-run labor shares are
characterized by two thresholds on the rate of automation λg:

1. If λg > A−ρ−δ
η then limt→∞ wt = A and the labor share converges to zero.

2. If A−ρ−δ
η · (1 − σ) < λg ≤ A−ρ−δ

η then wages grow exponentially at an

asymptotic rate 1
σ

(
A−ρ−δ

η − λg

)
and the labor share converges to one.

3. Lastly, if λg ≤ A−ρ−δ
η ·(1−σ) then wages grow exponentially at an asymp-

totic rate λg
1−σ and the labor share converges to 1−

[
(A−ρ−δ+ηδ)/η

λg
1−σ+δ

]σ−1
σ

.

Proof. See Appendix A.1.

Intuitively, the proposition illustrates how wages evolve as the result of a race
between automation and capital accumulation. As observed above, the fraction

22



Parameter Value Description

ρ 0.04 Discount rate

η 2
Risk aversion
parameter

δ 0.1 Depreciation rate

σ 0.5
Elasticity of
substitution

A 0.5
Total factor
productivity

L 1 Labor endowment

Φ0 0.608
Initial fraction of
automated tasks

K0 4.6 Initial capital stock

Table 2: Parameter values for the numerical illustration

A−ρ−δ
η is proportional to the long-run savings rate of the economy. In the

�rst case, if the rate of task automation λg is too high compared the savings
rate, then the automation index I crosses the threshold Î in �nite time and
the economy transitions into region 2, where wages collapse to A and remain
stagnant. If the rate of task automation λg is at an intermediate value, then
wage growth is constrained by capital accumulation. Wages grow perpetually
at rate 1

σ (
A−ρ−δ

η −λg), which is proportional to the savings rate minus the rate
of automation. Finally, if λg is low enough, then the rate of automation rather
than capital accumulation constrains wage growth. In other words, wage growth
depends on how fast automation increases the e�ciency of factor allocation and
allows the utilization of abundant capital. Indeed, the growth rate of wages (and
of the entire economy) in this regime is increasing in the rate of automation.

Figure 7 illustrates the three cases in Proposition 7. The �gure plots the
long-run growth rate of wages as a function of the rate of automation. If λg
is su�ciently low as in case 1, then the wage growth rate is increasing in the
rate of automation as the upward-sloping part of the curve indicates. Once λg
surpasses the �rst threshold value, the growth rate of wages starts to decline
as λg increases further. Lastly, if λg surpasses the second threshold value, then
wages do not grow in the long run and stay at A.

3.3 Numerical Illustration

To provide an illustration of the theoretical results, we present simulations of
the four automation scenarios described in Section 3.1. Table 2 summarizes
the parameter values that were common to all the simulations. The �rst �ve
parameters are standard in the literature, and L = 1 is a normalization. We
chose Φ0 and K0 to match a 66% initial labor share with capital at its steady
state for that level of technology.

Figure 8 presents the results. Panel (a) shows the traditional automation
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(a) Business-as-usual scenario (b) Baseline AGI scenario

(c) Aggressive AGI scenario (d) Mixed scenario

Figure 8: Simulations of the four scenarios
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scenario �business-as-usual,� in which Φ(i) re�ects a rate of task automation
of λg = 0.01 per year. The upper part of the panel shows the output, split
into the returns to capital (red, upper area) and the wage bill (green, lower
area), on a logarithmic scale. The lower part of the panel shows the fraction of
unautomated tasks 1−Φ on a logarithmic scale�for panel (a), this is a straight
line, capturing exponential decay. We observe that in the �business-as-usual�
scenario, output grows at approximately 2% per year, and both the returns to
capital and the wage bill rise approximately in tandem (with a small decline
in the labor share due to the e�ects of automation). Note that this scenario
corresponds to case 3 in Proposition 7, i.e., capital accumulation is su�ciently
fast so that growth is constrained by the speed of automation.

Panels (b) and (c) show the AGI scenarios, in which the fraction of unau-
tomated tasks collapses to zero in 20 or 5 years, respectively. In the baseline
AGI scenario, wages grow slightly during the initial periods but then collapse
before full automation is reached. After the collapse, wages are equal to the
returns to capital, and the economy remains in region 2 where labor and capital
are perfectly substitutable, with steady-state growth of 18% per year. In the
aggressive AGI scenario, the wage collapse happens after about 3 years. Since
the scarcity of labor is relieved earlier than in the baseline AGI scenario, the
growth take-o� occurs earlier.

Panel (d) shows the �bout-of-automation� scenario. During the initial peri-
ods, a large fraction of tasks are automated, leading to wage collapse similar to
the aggressive AGI scenario as the economy enters region 2�labor is abundant
because of the rapid automation and comparatively low capital stock. How-
ever, over time, the economy accumulates more capital, making labor scarcer
again. Around year 9, the economy has accumulated su�cient capital so that
it returns to region 1. Wages rise above A and start growing again in line
with further (slower) advances in automation and further capital accumulation.
This scenario illustrates the possibility that labor demand may collapse due to
rapid automation but recover later because of a long tail of tasks that cannot
be automated.

4 Extensions

4.1 Fixed Factors and the Return of Scarcity

If labor is dethroned as the most important factor of production, it becomes use-
ful to disentangle the remaining factors, which have traditionally been lumped
together into �capital� in the economic models of the Industrial Age. Let us
distinguish between factors that are in �xed supply and factors that are repro-
ducible and can therefore be accumulated. We continue to call all reproducible
factors �capital,� including compute, robots, power plants, and factories. By
contrast, factors in �xed supply include land, space, minerals, or solar radia-
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tion.6 It is di�cult to predict which scarce factors will matter the most in an
AGI-powered future � in the short term, it is likely that microchips and the semi-
conductor fabrication equipment (�fabs�) used for producing these chips will be
bottlenecks, but these are clearly reproducible. By contrast, the raw materials
going into the production of chips, for example certain rare earth minerals, are
irreproducible. In the longer-term, matter or, equivalently, energy (E = mc2)
may be the ultimately source of scarcity.

For the purposes of our analysis, we incorporate a �xed factor in our anal-
ysis that we label M for minerals or matter. We assume that the aggregate
production function is a Cobb-Douglas aggregator of the task composite and
M ,

Y = A

[∫

i

y(i)
σ−1
σ dΦ(i)

] σ
σ−1 ·α

M1−α (19)

where α ∈ [0, 1] is the share of the composite among total output. Then, a
version of Lemma 1 applies, separating two regimes:

Lemma 8. For given (K,L), the automation threshold Î is de�ned by (3) as in
the original lemma and is independent of M . It de�nes two regions:
Region 1: If I < Î, then labor is scarce compared to capital and employed only
for unautomated tasks. Output is given by

Y = F (K,L,M ; I) = A
[
K

σ−1
σ Φ(I)

1
σ + L

σ−1
σ (1− Φ(I))

1
σ

] σ
σ−1 ·α

M1−α (20)

Wages and the returns to M satisfy

w = αA
[
K

σ−1
σ Φ(I)

1
σ + L

σ−1
σ (1− Φ(I))

1
σ

] σ
σ−1 ·α−1

L− 1
σ (1− Φ(I))

1
σ M1−α > R

Q = (1− α)Y/M

Region 2: If I ≥ Î, then the relative scarcity of labor is relieved; if the inequality
is strict, labor and capital are perfect substitutes for the marginal task. Output
is given by

Y = F (K,L,M) = A(K + L)αM1−α (21)

Wages and the return to M satisfy

w = R = αA(K + L)α−1M1−α (22)

Q = (1− α)A(K + L)αM−α

Proof. The proof follows along the same lines as the proof of Lemma 1.

6During the Industrial Age, labor was considered in �xed supply at the relevant times
scale � raising humans took so long that their supply could be approximated as exogenous �
whereas human capital was a reproducible factor.
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The presence of the �xed factor M does not a�ect the key characteristics
of the production function described in Lemma 1 such as the threshold for the
automation index beyond which labor is no longer scarce compared to capital.
Similar results apply for the e�ects of automation on wages:

Lemma 9 (Automation and Wages with M). For given capital intensity K/L,
an increase in automation dΦ(I) always raises R for I < Î. The e�ects on
w is hump-shaped: there is a threshold I∗(K/L) with Φ(I∗(·)) ∈ (0, 1) such
that wages w rise in Φ(I) as long as I < I∗(K/L) but decline in Φ(I) for
I > I∗(K/L). The threshold I∗ with M is lower than in Lemma 4. In the limit
cases of Φ(I) = 0 and Φ(I) ≥ κ/(1 + κ), wages are given by (22). The limit is
reached for any K/L ratio if Φ(I) = 1.

Proof. The e�ect of automation on wages for a given K/L-ratio is similar to
Lemma 4:

d logw

dΦ(I)
=

(
σ

σ − 1
α− 1

)
1

σ

(
k

σ−1
σ − ℓ

σ−1
σ

)
(Y/A)

1−σ
σ − 1

σ

1

1− Φ(I)
(23)

The only di�erence is the multiplicative term σ
σ−1α − 1, which is smaller than

1
σ−1 for α < 1. Thus, the productivity e�ect is smaller with the �xed factor M ,
meaning that wages start to decline at lower levels of I.

Although the presence of a �xed factor preserves the key results on the
automation threshold and the wage e�ects of automation, the long-run dynamics
of the economy change�for the worse. In particular, we �nd that wages will
always decline to the return on capital as the economy will always enter region
2 in �nite time.

Proposition 10. If limΦ(I) = 1, then the economy enters region 2 in �nite
time, and wages equal the returns on capital w = R = ρ + δ. The labor share
equals αL/(K∗ + L), where K∗ is de�ned by

w = R = αA(K∗ + L)α−1M1−α = ρ+ δ

Proof. If the economy is in region 2 after some �nite time T , it will converge
towards a steady state in which (K∗+L) are pinned down by the Euler equation
(14), resulting in the expression above. We observe that K∗ is the maximum
capital level that an optimizing agent will accumulate in this economy since
FK < ρ + δ for any region 1 allocation, as can be seen from the economy's
factor price frontier. This implies that the economy will enter region 2 no later
than when the automation threshold reaches the scarcity of labor threshold Î
s.t. Φ(Î) = K∗/L/(1 +K∗/L), as de�ned in Lemma 1.

Intuitively, Proposition 10 tells us that if there is a �xed factor then automa-
tion eventually outpaces capital accumulation regardless of the distribution of
tasks. This contrasts with Proposition 7, which shows that wages may grow
inde�nitely if a su�cient amount of tasks is always left to labor.
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Figure 9: Factor shares with �xed factor M in traditional scenario

Figure 9 illustrates the implications under the assumption that the Cobb-
Douglas for M is (1−α) = .10 in the �traditional scenario,� in which a constant
fraction of tasks is automated every period. As can be seen, wages peak after
about 10 years, and the economy enters region 2 after 25 years, slowly converg-
ing to the steady-state level of capital K∗. In stark contrast to our simulation
results in Section 3, this illustrates that even though there is an in�nite tail of
unautomated tasks, the presence of a �xed factor bottlenecks capital accumu-
lation and implies that labor loses its scarcity status in �nite time.

4.2 Automating Technological Progress

Our analysis so far has focused on automation as the only form of technologi-
cal advancement and has taken as given the technology parameter A, which is
considered as the main driver of productivity gains in the neoclassical growth
model. This has allowed us to derive a number of powerful results on the e�ects
of automation in goods production on output and wages. However, there are
widespread predictions that advances in AI not only will make output produc-
tion more e�cient but also will speed up technological progress (Aghion et al.,
2019; Agrawal et al., 2023; Davidson, 2023).

At the most basic level, the production of R&D that drives technological
progress consists of atomistic computational tasks�like any other production
process described earlier in the paper. For example, Agrawal et al. (2023) sug-
gest that scienti�c hypothesis generation can be viewed as the making of predic-
tions over a vast combinatorial space. We denote the complexity distribution
of tasks involved in R&D by the distribution function �Gamma� Γ(i), which
may di�er from the complexity distribution of tasks Φ(i) involved in producing
output�perhaps R&D involves on average more complex computational tasks.
W.l.o.g., we assume that our ability to automate both R&D and production are
captured by the same automation index I.

Building on our earlier task production function and on the endogenous
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growth setup of Jones (1995), we assume that advances in the technology pa-
rameter A are driven by an ideas production function combining atomistic com-
putational tasks {x(i)} that involve computational complexity as re�ected in
the distribution function Γ(i),

log Ȧ = logAθ +

∫
log x(i)dΓ(i),

where the parameter θ captures the potential for knowledge spillovers or for
decreasing returns to knowledge accumulation. Similarly with the production
of �nal goods, we assume that automated tasks can be performed by either
capital or labor whereas unautomated tasks require labor,

x (i) =

{
kA (i) + ℓA (i) for i < I,

ℓA (i) for i ≥ I.

To keep our analysis tractable, we assume that there is an exogenous supply
of knowledge workers LA = 1 that can only work in ideas production in addition
to the unit supply of workers LY = 1 who are solely engaged in �nal output
production. Moreover, we assume unitary elasticity of substitution between
tasks in the output production function so σ = 1. Analogs of lemma 1 hold
for both production functions. As long as labor is scarce (region 1), we observe
that the production functions of �nal output and knowledge satisfy F (K,L) ≃
AK

Φ(I)
Y L

1−Φ(I)
Y and Ȧ ≃ AθK

Γ(I)
A L

1−Γ(I)
A where KY and KA are the aggregate

amounts of capital employed in �nal output or knowledge production.
Following the hypothesis of Aghion et al. (2019) and the proof of Trammell

and Korinek (2023), it can then be shown that once automation in the two pro-
duction functions has proceeded su�ciently, growth in the described economy
will experience what Aghion et al. (2019) term a �type II singularity.� The in-
tuition is that a rapidly growing capital stock generates an explosion in R&D
output and technological progress that feeds on itself, resulting in�nite output
in �nite time. The following proposition states this result formally under the
assumptions of a constant savings rate s ∈ (0, 1), a constant allocation of capital
across �nal output and ideas production, and no depreciation for tractability.

Proposition 11. The economy enters a path of super-exponential growth in
technology A and output Y that diverges to in�nity in �nite time once the au-
tomation index I reaches the level I♡such that

Γ
(
I♡

)

(1− Φ (I♡)) (1− θ)
> 1

The marginal product of labor in the production of �nal output diverges to in-
�nity alongside output.

Proof. Observe that once the described threshold has been passed, the produc-

tion functions F (K,L) ≃ AK
Φ(I♡)
Y L

1−Φ(I♡)
Y and Ȧ ≃ AθK

Γ(I♡)
A L

1−Γ(I♡)
A for
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Figure 10: Output and wage growth under technological progress

constant fractions of capital KY = cK and KA = (1 − c)K are lower bounds
for the actual production functions using the (still increasing) automation level
Φ(I) and Γ(I). The result is then a direct application of the proof in Trammell
and Korinek (2023) (Appendix B.2). Note that wt ≥ At no matter if output
production is in Region 1 or Region 2 as de�ned in Lemma 1. Therefore the
marginal product of labor in the production of �nal output also diverges to
in�nity.

The condition in the proposition depends on three parameters � su�cient au-
tomation in the production of ideas Γ(·), su�cient automation in the production
of �nal output Φ(·), and su�cient returns to the accumulation of knowledge.
Remarkably, as long as the production of �nal output has been su�ciently au-
tomated (su�ciently high Φ), the remaining two parameters can take on any
�nite levels. This highlights that su�cient automation in the production of �-
nal output and thus capital accumulation will always lead to an explosion in
growth.

Figure 10 illustrates the path of wages under a CES production function
for output and optimal savings, numerically illustrating the explosive path of
output growth and type-II singularity that we identi�ed in the proposition. The
convexity of the curve on a log-scale indicates that the growth rate of wages is
ever-increasing due to the acceleration of technological progress. (Note that the
log scale hides that the labor share of output is declining.) In the �gure, we
have cut o� the simulation at t = 10. The singularity occurs shortly thereafter.

In summary, even if automation induces wages to collapse to the returns to
capital at A, rapid technological progress from the automation of R&D allows
workers to bene�t from the advancement of AI once su�cient automation has
taken place.

More generally, the force described in this subsection is plausible, and su�-
cient progress in AI will likely indeed lead to rapid technological advances and
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increases in living standards. At the same time, it is also likely that both the pro-
duction of output and of ideas will eventually be bottlenecked by �xed factors,
as we emphasized in Section 4.1. A model that comprehensively incorporates
both e�ects is beyond the scope of this paper.

4.3 Nostalgic Jobs or Limits on Automation

Our baseline model assumed that the automation of work was driven solely by
technological factors, occurring as soon as the compute requirements of perform-
ing speci�c tasks were reached. However, even if it is technologically feasible to
perform certain tasks, our society may decide that it is preferably for those tasks
to remain exclusively human. For example, Korinek and Juelfs (2023) observe
that jobs such as priests, judges, or lawmakers may remain exclusively human
long after the time when they can be performed at equal or superior levels by
machines, labelling such jobs �nostalgic jobs.�

For the purposes of our analysis, we assume that there is a separate dis-
tribution function Ψ(I) that captures how far the automation index I must
advance for society to choose to automate task I � in addition to the distribu-
tion Φ (I) capturing the technological possibility of automation. The inequal-
ity Ψ(I) ≤ Φ(I) re�ects that society can only choose to automate tasks that
are feasible to automate. The inequality is strict if there are tasks that could
be automated from a technical perspective but aren't for societal reasons. If
limI→∞ Ψ(I) < Φ(I) ≤ 1, then this captures that there are tasks that humans
choose to never automate even though they could be.

The described setup can also capture situations in which tasks are delegated
to machines with a delay, i.e., for higher levels of the automation index I than
what is technologically feasible. Korinek and Juelfs (2023) describe two rea-
sons for why this may occur: First, as the capabilities of machines to perform
certain tasks become better and better than human abilities, it may become
increasingly untenable for the tasks to be left to humans. For example, if AI
systems demonstrably become much fairer judges with fewer biases and noise
than human judges, it may become untenable to leave many judicial deicisons
to error-prone humans. Second, with su�cient advances in robotics, it may
become more and more di�cult to distinguish humans and AI-powered robots
performing human services. They observe that a robot priest with greater emo-
tional intelligence than humans and a more comprehensive theory of human
minds than a human priest may be able to perform the tasks typically per-
formed by human priests quite perfectly, or intentionally somewhat imperfectly
so as to not give away that it is a robot. Both of these categories require that
the performance of AI systems is su�ciently above human levels, corresponding
to a su�ciently high level of the automation index I.

Maximizing Wage Growth Consider the problem of a government with
the objective to maximize wage growth by imposing limits on automation and
choosing an optimal path Ψ(I) ≤ Ψ(I). The following result characterizes the
optimal Ψ(I) among all Pareto distributions�given exponential advances in
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the automation index I, this amounts to the government choosing an optimal
constant rate of automation per time period.

Proposition 12 (Maximizing Wage Growth). Suppose Ψ is a Pareto distribu-
tion de�ned as Ψ(It) = 1 − I−λ

0 e−λgt where I0 is the initial automation index
and λg is the rate of task automation. Then the long-run growth rate of wages
is maximized for λg = (1− σ) · A−ρ−δ

η , assuming that Ψ(I) ≤ Ψ(I)∀I for this

distribution. As a result, wages grow at rate A−ρ−δ
η .

Proof. The proof follows from Proposition 7. The rate of automation is lowest
in case 3. And the wage growth rate is increasing in λg. Thus, the wage growth
rate increases until λg = (1 − σ) · A−ρ−δ

η . Once λg surpasses (1 − σ) · A−ρ−δ
η ,

the growth rate of wages decreases in λg until λg = A−ρ−δ
η at which the growth

rate equals zero. Therefore, the maxmum growth rate of wages is A−ρ−δ
η at

λg = (1 − σ) · A−ρ−δ
η . Figure 7 on page 22 provides a graphical illustration of

this �nding�the peak of the wage growth rate as a function of λg is A−ρ−δ
η .

Figure 11 shows what happens if we slow down progress in the �baseline AGI
scenario� from Section 3 so that wages growth is maximized. Up until period 14,
a wage-maximizing planner is constrained by the natural pace of automation and
sets Ψ(I) = Φ(I) over that stretch. After that point, the baseline AGI scenario
implies rapid declines in the labor share, but the planner sets Ψ(I) < Φ(I) to
slow down e�ective automation. The left panel of the �gure shows the paths of
output and wages, and the right panel depicts the two variables in relative terms
for the two scenarios. Up until period 14, the paths in the two scenarios roughly
coincide (with a minor gap opening since the AGI scenario triggers rapid capital
accumulation in advance of the economy achieving full automation). Thereafter,
the wage-maximizing planner obtains a path of exponentially growing wages,
as predicted by the proposition, whereas wages in the AGI scenario collapse.
Notably, the right-hand panel also illustrates the output cost of foregoing the
possibility of full automation. As can be seen, the output cost of holding back
automation is low at �rst, but eventually, almost 100% of the output potential
of the economy is lost by holding back automation.

Our �nding illustrates that slowing down automation may be a powerful
tool to increase wages, albeit it comes at the cost of reducing output growth.
The described policy is feasible under both of the AGI scenarios simulated in
the previous section and always results in exponentially growing wages instead
of the collapse wihin a matter of years that would otherwise occur when AGI
automates human tasks too quickly.

4.4 Heterogeneous Worker Skills

When labor is heterogeneous, individuals are hit by the e�ects of automation
at di�erent times, depending on the extent to which their skills are automated.
In practice, workers di�er along many di�erent dimensions, and each worker's
labor may be complemented or substituted for in di�erent ways by technological
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Figure 11: Comparison of output and wages under Φ and Ψ

advances. One of the classical ways of accounting for heterogeneity in the labor
market, going back to Katz and Murphy (1992), is to split workers into skilled
and unskilled based on a threshold level of educational attainment. An addi-
tional distinction, introduced by Autor et al. (2003), was to categorize workers
according to whether they hold cognitive or manual jobs performing routine
or non-routine activities. Under the described paradigm, we could capture the
distribution of tasks in compute space separately for each of the resulting buck-
ets (e.g., routine cognitive workers), and analyze how advances in computing
capabilities will a�ect that type of workers. Recent advances in AI have raised
the possibility that many cognitive tasks, including non-routing tasks, may be
automated relatively soon (e.g. Korinek, 2023). However, ongoing advances in
robotics make it likely that non-routine manual jobs will be similarly a�ected to
cognitive tasks by the recent wave of progress in foundation models (Ahn et al.,
2022).

For our purposes here, we found it useful to consider labor that di�ers in
uni-dimensional but continuous manner. We assume that workers di�er in an
exogenous parameter that we label skill J , which re�ects the maximum level of
task complexity that the worker can perform. Workers' skill levels are described
by the distribution function Υ(J). For analytical simplicity, we assume that
Φ(I) ≥ Υ(I).7

For a level of the automation index I, a fraction Υ(I) of workers are per-
fectly substitutable by machines and earn wage wj = A. A fraction 1 −
Υ(I) is not substitutable, but given that the remaining workers are su�ciently
skilled, they are all e�ective substitutes for each other and earn wage wj =
FL (K +Υ(I), 1−Υ(I)). In contrast to our baseline model, this captures the
concern that automation may make workers on the lower rungs of the skill dis-
tribution redundant, whereas workers who are able to perform at higher levels
of skill may bene�t from automation.

In the long run, assuming less than full automation (Φ(I) < 1 for any �-

7This assumption implies that for any level of automation I, there are su�ciently many
skilled workers at all unautomated complexity levels left so that we can treat unautomated
workers as perfect substitutes for each other.
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nite I), the share of workers who are gainfully employed will decline over time
and will asymptote to 1 − limJ→∞ Υ(J), i.e., only workers who can perform
unautomated tasks with arbitrary computational complexity will earn higher
returns than capital. If Υ(J) = 1 for �nite J , then the role of all human labor
will lose its scarcity value in the same manner as in the AGI scenarios in our
baseline model. Conversely, if Υ(J) asymptotes to 1, then there may be ever-
growing inequality among workers: an ever-declining fraction of workers at the
top may see incomes rise without bounds, whereas a fraction of the population
that asymptotes towards one will see wages collapse to the level that equates
the return on capital A.

Heterogeneity in both skill and productivity The described setup could
easily be extended to include heterogeneity in individual worker productivity in
addition to heterogeneity in skill. Assume that workers not only have di�erent
skill levels Jj but are also endowed with di�erent e�ciency units of labor Lj per
time period. This may capture, for example, that there may be two economists
who can both write papers up to complexity J , but one of them is twice as fast
at it than the other. This could explain the empirial observation that workers
in the same occupation sometimes earn signi�cantly di�erent wages.

Complementary human capital An alternative lens that may be relevant
in the current era of cognitive automation is that workers possess di�erent levels
of human capital that is a�ected by automation. To keep our discussion simple,
assume again that each worker j is characterized by a skill level Jj as well as
an exogenous amount of human capital Hj > 0, which enables them to supply
Lj = Hj e�ciency units of labor per time period. As the automation index
I surpasses a given worker with skill level Jj , the human capital that they
possessed is fully devalued. The loss is greater and more painful for workers
with more human capital.

4.5 Compute as Speci�c Capital

An important feature of the ongoing AI take-o� is the scarcity of compute. In
our baseline model, we followed the standard neoclassical practice of modeling
capital as uniform, capable of being deployed in the production of any task. As
illustrated in Figure 3, automation of new tasks then implies that the existing
capital stock can be smoothly allocated to a larger number of tasks, unlocking
immediate productivity gains.

In practice, however, many types of capital are speci�c to the task for which
they were created and di�cult or impossible to reallocate, corresponding to what
the literature has traditionally called putty-clay capital.8 In the current context,
the most salient type of speci�c capital on which AI systems rely is compute,
which is in very limited supply, slowing down the deployment of AI systems

8The notion was �rst introduced by Leif Johansen (1959) � once putty has been turned
into clay, it cannot be turned into another shape � and expanded by Solow (1962) and others.
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Figure 12: Speci�c capital and factor prices

for new tasks. Another example of speci�c capital is organizational capital,
including the capital derived from investments into developing new processes
for deploying new technologies in �rms.

We expand our framework by assuming that each unit of capital investment
is speci�c to a task i and can only be invested once the task is automated, i.e.,
once I ≥ i. This leaves the task production function (2) una�ected but modi�es
the capital accumulation constraint: instead of a single law of motion for capital
(13), the consumer needs to separately keep track of each type of capital k (i)
since capital that is deployed for one task cannot be redeployed later. In an
economy in which automation is proceeding slowly and steadily, the consumer
problem is unchanged as the resulting constraints on capital redeployment are
slack�every instant of time, a density ϕ(It) of new tasks is automated, and
su�cient capital for those tasks is instantaneously accumulated. By contrast,
if the economy experiences a bout of progress that leads to a discrete mass of
tasks suddenly being amenable to automation, the accumulation of the relevant
speci�c capital may lag behind. The rapid rise of LLMs at the time of writing
may be an example of such a bout.

To illustrate this analytically, assume that a discrete mass of tasks ∆t =
Φ(It) − Φ(It−) > 0 is automated at time t, and let us interpret the speci�c
capital k(It) required for these tasks as compute. At time t, no compute has
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been accumulated yet, k(It) = 0, so all type-It tasks are performed by humans at
wage w, even though they could technically be automated. Figure 12 illustrates
the factor returns as a function of the accumulation of compute k(It) while
holding the inputs of labor and other capital constant: at �rst, k(It) = 0, and
the economy starts out at the left side of the �gure where labor and compute
are, at the margin, perfect substitutes so the returns on the two are equated.
The rental rate on traditional capital is comparatively low.

Over time, compute capital k(It) is accumulated and progressively substi-
tutes for labor. As long as compute remains below the �rst threshold k(It) < k1,
illustrated by the �rst vertical line in the �gure, labor and compute remain per-
fect substitutes at the margin, but wages w decline with the addition of more
compute, whereas the return on traditional capital rises. Within this region, all
capital investment goes into compute. Once su�cient compute (k1) is accumu-
lated so that all humans are replaced from type-It tasks, all labor is allocated to
the remaining unautomated tasks with i > It, and the marginal product of com-
pute decouples from wages. All capital investment continues to be devoted to
compute; wages wt and the returns to traditional capital rise whereas the return
on compute k(It) declines sharply until it reaches the marginal product of all
other types of capital. This is the middle region between k1 and k2 where only
the return on compute, captured by the dotted curve, is decreasing. Once the
second threshold is passed, the marginal product of compute and other capital is
equated. Any additional capital investment is spread proportionately across all
types of speci�c capital k(i), i ≤ I, and leads to a decline in the return on capi-
tal. In summary, the race between automation and capital accumulation leads
to a non-monotonic response of wages, depicted by the blue curve marked with
dots, and the returns to traditional capital, depicted by the red curve marked
with squares.

The following proposition characterizes the thresholds for the amount of
speci�c capital and summarizes the non-monotonic response of factor prices to
the accumulation of this speci�c capital analytically.

Proposition 13 (Speci�c capital and factor returns). Suppose that the current
amount of the speci�c capital is given by k(It). There are threshold values k1 and
k2 > k1 such that (i) if k(It) < k1 then the wage decreases and the rental rate
of the traditional capital increases with k(It), (ii) if k1 ≤ k(It) < k2 then both
the wage and the rental rate of traditional capital increase with k(It), and (iii)
if k(It) ≥ k2 then speci�c capital k(It) is only accumulated alongside traditional
capital, and the wage increases with capital accumulation.

Proof. See appendix.

In summary, rapid advances in automation may lead to episodes in which
certain types of speci�c capital (like compute) may exhibit very high returns,
but since capital is reproducible, the resulting accumulation of speci�c capital
will ultimately dissipate the excess returns. The implication is that after an
adjustment period, speci�c capital for newly automated processes will be just
another form of capital earning the market rate of return.
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5 Conclusions

This paper models the economic impact of the transition torwards arti�cial
general intelligence on output and wages. We develop a compute-centric frame-
work that represents work as consisting of tasks that vary in their computational
complexity and study how exponential growth in computing power will a�ect
automation and the advent of arti�cial general intelligence (AGI).

The paper illuminates how di�erent plausible assumptions about the com-
plexity distribution of tasks across "compute space" translate into dramatically
di�erent scenarios for economic outcomes. If the task distribution has an in�nite
Pareto tail, re�ecting unlimited complexity of human work, then the we show
that wages can rise inde�nitely if the tail is su�ciently thick, as capital accumu-
lation automates ever more complex tasks but there always remains enough for
human labor. However, if the Pareto tail is too thin, then automation ultimately
outpaces capital accumulation and causes a collapse in wages.

Moreover, if the complexity of tasks humans can perform is bounded, mirror-
ing computational limits on human cognition, then we demonstrate that wages
would at �rst surge as machines displace more and more human labor, but would
eventually collapse, even before full AGI is reached.

Beyond these scenarios, the paper provides several powerful general insights.
Using the economy's factor price frontier, we show that the e�ects of automation
follow an inverse U-shape, �rst increasing wages by utilizing abundant capital
but eventually decreasing wages due to labor displacement. We show that suf-
�cient capital accumulation is essential to prevent automation from depressing
wages. Adding �xed factors like land causes wages to eventually decline. Yet
automating innovation itself can restart wage growth after an initial automation-
driven collapse.

The novel compute-centric approach opens up a new perspective for analyz-
ing the economic impact of arti�cial intelligence. Interesting next steps include
incorporating labor and capital adjustment costs, modeling endogenous inno-
vation, analyzing distributional impacts more fully, studying macroeconomic
dynamics and policies, and evaluating the possibility of an intelligence explo-
sion with AGI.

By presenting several rigorous scenarios for how the transition to AGI may
unfold, we hope that this paper will make an important contribution to enabling
economists, policymakers and the public to examine alternative futures and to
prepare for the technological transformations on the horizon.
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A Proofs and Additional Results

A.1 Proof of Proposition 7

To begin with, we show that the growth of capital stock is approximately ex-
ponential at some constant rate. If the economy is in region 1, the production
function is CES. After some algebra, the growth rate of capital is

K̇t

Kt
=

stA

(
K

σ−1
σ

t Φ
1
σ
t + L
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Note that the growth rate of capital stock depends on the behavior of Ωt ≡

Kt
σ−1
σ

(
Φt

1−Φt

) 1
σ

. In particular, Φt

1−Φt
grows approximately at an exponential

rate under the Pareto assumption because

Φt

1− Φt
=

1− I−λ
t

I−λ
t

Iλt − 1

= Iλ0 e
λgt − 1

≈ Iλ0 e
λgt

We consider three cases and see whether each case is consistent with derivation
above. First, suppose Ωt → ∞. Then capital stock must grow at a su�ciently
low rate at least for large t. That is, the long-run growth rate of capital gK
must satisfy

gK <
λg

1− σ

In this case, the growth rate of capital is

K̇t

Kt
→ sA

(
1 + 0

) σ
σ−1

· 1− δ

= s∞A− δ

where s∞ is the long-run savings rate de�ned in Lemma 6. Then we have
gK = s∞A − δ < λg

1−σ and thus the following upper bound on the long-run
savings rate

s∞ <
1

A

(
λg

1− σ
+ δ

)
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Secondly, consider the case where Ωt → 0. Then capital stock must grow at
a rate such that

gK >
λg

1− σ

In this case, the growth rate of capital converges to a negative value

K̇t

Kt
→ sA · 0 · 1− δ

= −δ

But this contradicts the lower bound on gK and puts an upper bound on the
growth rate of capital stock.

Lastly, suppose Ωt converges to a nonzero constant. Then it must be the
case that

gK =
λg

1− σ

which requires Ωt → Ω where Ω is some constant satisfying K̇t
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1−σ . In the three cases, capital stock grows asymptotically

at either s∞A− δ or λg/(1− σ).
To characterize the long-run labor income share, note that the labor share
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In the �rst case, Ωt → 1 and so LSt → 0. In the second case, Ωt → 0

and so LSt → 1. Lastly, in the third case, Ωt → K̄
σ−1
σ Ī

1
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If the economy starts in region 1 then the economy stays in region 1 as long
as

˙̂
It

Ît
≥ İt

It

That is, the threshold grows faster than the automation index. Under the Pareto
assumption, the inequality is equivalent to

K̇t

Kt
≥ 1 +Kt/L

Kt/L
· λg

where 1+Kt/L
Kt/L

converges to one from above. Thus, the above inequality delivers

a lower bound on the savings rate for the economy to asymptotically stay in
region 1:

s∞A− δ > λg (24)

The inequality ensures that capital accumulation is su�ciently fast compared
to automation. If it is violated then It crosses Ît eventually and wages collapse
to A.
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To further examine how capital accumulation and automation shape the
asymptotic behavior of wages, consider the growth rate of wages
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. The above equation shows that the growth rate consists of output growth and
the displacement e�ect of automation. Note that the growth rate of output is
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, omitting

time subscripts for notational simplicity. The �rst term is growth due to capital
accumulation and the second term is growth due to the productivity e�ect of
automation. The wage growth rate is then
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That is, wages rise as long as capital accumulation and the productivity e�ect
dominate the displacement e�ect. In fact, this is another version of (18), which
can be seen by setting ẇt = 0, and tells us what determines the growth rate of
wages. Under the Pareto assumption, we have
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where λg is the rate of automation adjusted by the decay rate of the fraction of
tasks for labor.

Notice that
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If λg > (1− σ)(s∞A− δ) (i.e. the �rst case in the beginning of the proof) then
SK → 1 since (∗) → ∞. Note that
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As t → ∞, the growth rate of wages converges as follows
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In the case where capital stock asymptotically grows at λg/(1 − σ), SK

converges to one. As a result, the growth rate of wages converges as follows
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If s∞A − δ ≤ λg then wages decline until the automation index crosses the
threshold and collapse to A, as (24) indicates.

A.2 Proof of Proposition 13

Proof of Proposition 13. The production function can be written as
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If FL < FK(It), then the speci�c capital and labor are perfectly substitutable.
That is,
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in which case, the production function can be written as

Yt = A

(
K

σ−1
σ

t Φ(It−)
1
σ + (K(It) + L)

σ−1
σ (1− Φ(It−))

1
σ

) σ
σ−1

If FK > FK(It), then the speci�c capital and the traditional capital are perfectly
substitutable. That is,
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