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o INTRODUCTION

This paper is concerned with the optimal intertemporal consumption

behavior of consumers who are restricted in their ability to borrow to fin-

ance consumption. The restriction is not a symmetric one. Nothing prevents

these consumers from saving and accumulating assets, and under some circum-

stances they will find it desirable to do so. Such models are worth pur-

suing if only because borrowing constraints seem to be a feature of reality,

both in poor and rich countries. Furthermore, at least some of the recent

econometric work on life-cycle rational expectations models of consumption

has discovered anomalies that can perhaps be attributed to consumers' in-

ability to borrow. For the United States, using both macroeconomic data,

Flavin (1981) and many subsequent authors, and microeconomic data from the

PSID, Hall and Mishkin (1982) and Zeldes (1989), there is evidence that

changes in consumption are positively related to predictable changes in

income. Although there is room for different interpretations of these re-

sults, the possibility of liquidity constraints has been widely canvassed.

Limited borrowing opportunities may also help to explain the observed

patterns of household wealth holdings as well as the fact that consumption

appears to track household income quite closely over the life-cycle. Most

versions of life-cycle models predict a dissociation of consumption from

income, and the existence of substantial asset accumulations at least at some

points in the life-cycle. In recent controversies starting with Kotlikoff

and Summers (1981) the validity of these predictions has been challenged.

In particular, it is clear that most households in the U.S. hold very few

assets. Different surveys give somewhat different estimates, but the SIPP,

the CES, and the SCF are in broad agreement that median household wealth,

excluding pension rights and housing, is around $1000. Indeed, the CES data
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show that iearly 30% of total Consumption is accounted for by households who

not only d not possess stocks or bonds, but who do not have either a check.

ing or say ngs account. Given these data, it is hard to believe that most

households 4ould be able to borrow much money to finance consumption, should

they indee wish to do so.

In t1is paper I consider the behavior of relatively impatient con-

sumers, wh prefer consumption now to consumption later, and who are un-

persuaded y the rewards of waiting. With no uncertainty, and no borrowing

constraints, such households would borrow or run down assets. What makes

their behaior interesting is that their incomes are uncertain. In common

with recent work by Barsky, Mankiw and Zeldes (1986), Skinner (1988), Zeldes

(1989b), ani Kimball (1989), I assume that consumers are "prudent" and have

a precauttcnary demand for saving. Precautionary motives interact with

Liquidity constraints because the inability to borrow when times are bad

provides an additional motive for accumulating assets when times are good,

even for iar,atjent consumers.

My general procedure is to start from a simple stochastic process for

labor income, and to derive, from that process, the appropriate policy rule

for consumption given that borrowing is not allowed, or at least cannot ex-

ceed some fixed limit. I then focus on the time-series behavior of con-

sumption, savings and asset accumulation in response to the forcing behavior

f income. I shall discuss whether it is possible to build a representative

agent model of a liquidity constrained consumer that could account for the

main features of the aggregate time-series data in the U.S. But my more

fundamental concern is to characterize the type of microeconomic behavior

that borrowing constraints might produce.
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The analysis shows that, in the presence of borrowing restrictions, the

behavior of saving and asset accumulation is extremely sensitive to what con-

sumers believe about the stochastic process generating their incomes. In the

simplest case, when incomes are stationary and independently and identically

distributed over time, as might be the case for a poor farmer in a developing

country, assets play the role of a buffer stock, and the consumer saves and

dissaves in order to smooth consumption in the face of income uncertainty.

I show that it is possible to make consumption very much smoother than income

without borrowing and without accumulating very many assets. The more pru-

dent are consumers, and the more uncertain is income, the greater is the

demand for these precautionary balances.

Positive serial correlation in the income process diminishes both the

desirability and the feasibility of using assets in this way. In the limit,

when income is a random walk, with or without drift, it turns out that those

who wish to borrow but cannot do so typically can do no better than consume

their incomes. This "rule-of-thumb" or simple Keynesian policy is not gener-

ally optimal in the presence of borrowing constraints, but the random walk

case is one of several income processes that produce the result. I also

investigate the consequences of borrowing restrictions in an environment in

which income growth is stationary, but where the growth rates mimic aggregate

data and are positively serially correlated. These models produce what may

appear to be the paradoxical result that, when consumers follow the optimal

consumption policy, savings is contracyciLcal, rising at the onset of the

slump, when incomes are falling, and falling at the onset of the boom, when

incomes are rising.
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In reality, microeconomic income processes are very different from

their macroeconomic aggregates, so that while individual consiiers share in

the general growth, the variance in their incomes is dominated by idiosync-

ratic components, some permanent, some transitory. The presence of sub-

stantial transitory income at the individual level is quite likely to gene-

rate negative serial correlation in individual income growth rates, and this

can generate buffering behavior as in the simple models with no growth. If

each agent's income process is independent of all others, such behavior will

not generate savings in the aggregate. However, some component of aggregate

fluctuations in income growth is common to all consumers, and even though

it accounts for only a very small fraction of individual income changes, its

existence can generate savings in the aggregate. I construct a simple model

in which individual income growth is negatively autocorrelated, aggregate

income growth is positively autocorrelated, and aggregate saving is pro-

cyclical.

For much of the analysis, I shall assume an infinite horizon. This is

mostly for technical convenience in that it allows me to derive relatively

simple stationary policy rules, but the contrast with finite life models is

more apparent than real. The existence of borrowing constraints effectively

shortens the horizon, and in many cases, the infinite horizon policy rule

will characterize much of the finite plan, in the same way that finite

horizon growth models possess turnpike growth paths that are themselves the

solutions to infinite horizon problems. In cases where this is not true, the

solutions are typically already covered in the literature, so that a fairly

complete treatment is possible.
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There are two main sections to the paper. In the first, I assume that

the process generating labor income is stationary, while the second deals

with the non-stationary case. The analysis differs markedly in the two

cases. Section 1.1 outlines the basic model, and 1.2 shows how to incorpor-

ate serial correlation within the stationary model. Section 2.1 is concerned

with the case in which income growth is independently and identically dis-

tributed over time. Section 2.2 allows for serial dependence in the growth

process, and is concerned with the behavior of liquidity constrained con-

sumers whose income process mimics that of U.S. aggregate data. Section 2.3

examines income processes that more closely mirror the microeconomic data and

considers the implication of individual behavior for the aggregate.

1 SAVING AND LIQUIDITY CONSTRAINTS WITH STATIONARY INCOME

1.1 The basic model

The framework is the standard one of intertemporal utility maximi-

zation. The consumer maximizes the utility function

u — Et((l+6ytu(ct)) (1)

where 6>0 is the rate of time preference, and u(c) is the instantaneous

(sub) utility function. The evolution of assets is given by

— (1+r)(A+y-c) (2)

where Yt is labor income, A. is real assets and r is the real interest rate.

The real interest rate is treated as fixed and known, and all the uncertainty

is focussed on labor income y. Labor is inelastically supplied, and Yt is

a stationary random variable with support (yo,yj], with Yo>O and YoYi$;
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income cannot fall below the positive floor
Yo• I take the simplest form

for the borrowing restriction

(3)

although it would be straightforward to allow for some fixed negative limit.

Since it will be used so much in what follows, I shall denote the in-

stantaneous marginal utility of money by A(c), i.e.

A(c)—u'(c). (4)

A(.) is a positive monotone decreasing function. I shall also follow the

recent literature in assuming that A(.) is strictly convex. A decrease in

consumption causes the "price" of consumption to rise by more than an in-

crease reduces it, so that increased uncertainty (and Jensen's inequality)

raises the expected price of future consumption relative to that of current

consumption.

Rather more attention has to be given to my next assumption, that 8>r.

For many people, particularly those close to subsistence in LDC's, the as-

sumption seems to me to be a natural one, and one that is worth following

through. However, much of the standard life-cycle literature is premised

on the supposition that 6—r. While the assumption is probably more favored

for its convenience than its inherent plausibility, there are undoubtedly

many individuals who are sufficiently patient to ensure that 6<r.

Take first the borderline case where 6—r. Schechtman (1975) has shown

that, if this is so, and with the income process independently and identic-

ally distributed over time, consumption will converge to the mean of income,

p, say. Such a result is possible in spite of the liquidity constraints,
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because the optimal policy results in A tending to infinity as t becomes

large. Bewley (1977) has shown that this version of the permanent income

hypothesis also holds if Schechtman's i.i.d. assumption is extended to

stationarity. In some ways this is an attractive model; consumption is

smooth, indeed completely so, and assets act as a buffer against fluctuations

in income. However, in reality, consumption does fluctuate with income, if

not one for one, and we do not observe consumers responding to liquidity

constraints by accumulating indefinitely large quantities of assets.

Consumers for whom 6<r will accumulate assets indefinitely, and in the

limit, the income stream becomes irrelevant as consumption comes to be f in-

anced increasingly out of capital income. Borrowing constraints are unlikely

to be of relevance for such consumers; saving, not borrowing, is their main

concern. Dynasties and central planners apart, such infinite horizon models

are not very relevant for individual consumers. More interesting results are

obtained by working with a finite horizon. With no uncertainty, and a con-

stant income stream, these patient consumers will accumulate early in life

and decuxnulate later, so that, once again, borrowing constraints are not an

issue, With uncertainty, and with convex marginal utility, more assets will

be accumulated early in life, consumption will begin from a lower level and

will grow more rapidly, so that, once again, borrowing constraints are un-

likely to be binding. The solutions to these problems (without liquidity

constraints) have been studied by Skinner (1988) and Zeldes (1989b); their

simulations show that there can be substantial precautionary accumulation if

future incomes are sufficiently uncertain. Again, we have the problem that,

unless income happens to match the desired consumption stream, the assumption

that S<r generates more accumulation than appears to be the case for many
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consumers. For example, in occupations with uncertain but relatively flat

income profiles, consumers should accumulate when they are young; in fact,

as in most occupations, consumption tracks income closely, see Carroll and

Summers (1989).

Consider then the case where consumers are impatient and 6>r. The case

where Yt is iid with distribution function F(.) has been analyzed by Schecht-

man and Escudero (1977) and this provides a convenient starting point and

model for further analysis, see also Foley and Hellwig (1975) for an earlier

analysis of a closely related problem. As Schechtman and Escudero point out,

the solution to (l)-(3) with no uncertainty would be to run down any initial

assets, and then to set consumption equal to income, so that the natural

analogy with uncertainty is for assets to follow a stationary renewal pro-

cess. Under certain further conditions, they show that such is indeed the

case.

Perhaps the simplest way to set up the problem is to start from the

modification of the usual Euler equations that is brought about by the pre-

sence of the borrowing constraint (3). Define x, "cash on hand," by

— 441t+Yt; (5)

x is the maximum that can be spent on consumption in period t. Consumption

in periods t and t+1 must satisfy

A(c) — max(A(x),$EA(c+1)) (6)

where —(l+r)/(l+), and 8<1 since r<6. If the consumer is constrained,

consumption can be no higher than x, and the marginal utility no lower than

A(x). The constraint will bind if marginal utility at x is higher than the
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discounted expected marginal utility next period, otherwise the two marginal

utilities are equated in the usual way. Note, however, that the expectation

itself takes account of the possibility of future constraints, a point empha-

sized by Zeldes (1989a).

Civen equation (2), the variable x evolves according to

— (l+r)(xt-ct)+yt+i. (7)

A natural way to proceed is to look for a stationary stochastic equilibrium

in which consumption is a function of the state variable x, c—f(x), say.

The marginal utility of money (price of consumption) p(xt), say, is then

defined by

p(Xt) — A(f(x)), or — f(x) — A'p(x). (8)

Hence, if there exists a stationary solution p(x), with associated f(x), it

must satisfy

p(x) — max[.\(x),fp((l+r)(x-A'p(x))+y)dF(y)) (9)

This equation is just a rewritten form of (6); the marginal utility today is

equated to the maximum value of marginal utility in the constrained situation

and the discounted expected value of tomorrow's marginal utility. If

equation (9) has a solution, we can use it to characterize the equilibrium

properties of the marginal utility of money, and thus the policy function

f(x).

The standard method of solving these problems is also useful for

thinking about the economics, and about how the infinite horizon solution
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relates the same problem with a finite horizon. Imagine a series of

functions p0(x), p1(x), . . . ,p(x), where p0(x)—A(x), and the updating rule is

p(x) — max(A(x),8fpi{(l+r)(x..x'p(x))+y)dF(y)] (10)

This recursion can be thought of as the backward solution to a finite life

stochastic dynamic program. In the final period, n—0 say, everything is

spent, and the marginal utility of money p0(x) is simply A(x) because

whatever x is, it will be spent. One period before, p1(x) is set by the

borrowing constraints or to equate marginal utilities, and so on back in

time. In this form, equation (10) is useful for calculating the functions

p(x) and thus for solving and simulating any finite period problem. Under

certain conditions, as we iterate backwards, the function may converge, in

which case we have a solution to (9) and to the infinite horizon problem.

If we define the mapping T by p1(x)—Tp(x), then the condition 5>r, so that

<l, together with the restrictions on the support of F(y) are sufficient for

the application of Blackwell's Theorem so that T is a contraction mapping.

In consequence, under the original assumptions, there exists unique functions

p(x) and c—f(x) that solve the original problem.

An alternative approach to the same solution is to work through the

value function, V(x) defined by the functional equation

V(x) — max(u(x-s)+(l+61'fv[(l÷r)s+y]dF(y)) (11)
Ocscx

where s is the amount of assets held over into the next period. The period

by period recursion corresponding to (10) is

V(x) — max(u(x-s)+(l+6Y'fV1[(l+r)s+y]dF(y)) (12)
O<aCx
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The solution to (11) exists under the same conditions as the solution to (9),

and are linked both by the envelope property p(x)—V' (x) and by the fact that

s(x), the argument that maximizes (11) satisfies c—f(x)—x-s(x). Since the

value function inherits the concavity of the original utility function u(x),

it is monotone increasing and concave, so that we have the useful property

that p(x) is decreasing, so that f(x)—A'p(x) is increasing. Deaton and

Laroque (1989, Appendix) show that the convexity of A(x) implies that p(x)

is convex. Without borrowing constraints, it is the convexity of A(x) that

controls the degree of precautionary saving. With borrowing constraints, the

same role is played by p(x), so the inherited convexity means that the same

arguments for prudence and precautionary savings go through when borrowing

is prohibited.

Deaton and Laroque also show that there exists a unique x" such that

p(x)—A(x) for x<x*, and p(x)>A(x) for x>x, so that we have

c — .f(x) — x, x < x"

c — f(x) < x, x > x. (13)

The consumption function therefore has the general shape shown in Figure 1,

shown there for Yt distributed as N(lOO,a), r-.0.05, 6—0.10, and A(c)—c;

these are "smoothed" versions of the piecewise linear consumption functions

derived in the certainty case by Heller and Starr (1979) and Helpman (1981).

The general rroperties of the solution are clear. Starting from some

initial level of assets, the household receives a draw of income. If the

total value of assets and income is below the critical level x", everything

is spent, and the household goes into the next period with no assets. If the

total is greater than x, something will be held over, and the new, positive
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level of assets will be carried forward to be added to the next period's

income. Note that there is no presumption that saving will be exactly zero;

consumption is a function of x, not of y, and f(x) can be greater than, less

than, or equal to y. Assets are not desired for their own sake, but to

buffer fluctuations in income. When income is low, there will be dissaving,

and when it is high, there will be saving.

Note too that the distribution of consumption will not be symmetric.

It is always possible for the consumer to prevent consumption from becoming

too high since additional resources can always be carried forward. But the

opposite is not true. If cash on hand is sufficiently low, it will be

optimal to spend everything; in spite of prudent preferences, money is worth

more now than it is expected to be in the future. But there is nothing to

stop there being a bad income draw in the next period, and without assets

carried forward, consumption cannot be higher than income. Optimal smoothing

cannot do much against a series of bad harvests.

The evolution of cash on hand is governed by the equation

x÷1 — (1+r){x-f(x))+y÷1 (14)

In consequence will be less than x f

(y1-)/(l÷r) < f(xt)-r(x+p/r)/(1-t-r), (15)

so that, x can only go on expanding if the income draw is large enough to

offset the vertical difference between f(x) and the line with slope r/(1+r)

in Figure 1. From the graph it would appear that x cannot become infinitely

large, but must eventually collapse. Schechtman and Escudero show that this

is true in general for -l<x-<O, and will be true for all r<6 provided ad-
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ditional restrictions are placed on the utility function. These restrictions

are not satisfied by negative exponential utility, see also Levhari, Mirman,

and Zilcha (1980), but are satisfied by many other utility functions, in-

cluding the isoelastic case. The evolution of the marginal utility of money

P(Xt) is also of interest. In the standard case, without borrowing rest-

riction, p(Xt) follows a martingale, whereas in the current case, it follows

a renewal process. As long as the consumer carries forward positive assets,

we have the martingale result that E(p(x+i) ) 'p(x), but as soon as assets

fall to zero, which they eventually must, the process "loses its memory" and

begins again; conditional on zero assets E(p(x+a))—E{p(y)), a constant.

Further results require a more intimate knowledge of the consumption

function f(x), and since there is little hope of recovering closed form

solutions, it is necessary to use the contraction mapping apparatus to

compute the functions over some suitable grid. Equation (10) is one pos-

sibility for doing so, but the presence of p(x) on both right and left hand

sides makes the computation extremely cumbersome. In practice, (10) seems

to work well when p(x) on the right hand side is replaced by p.1(x) and

p0(x) is set to A(x). Using Simpson's rule to evaluate the integral, and

with a grid of 100 points, the computations were easily done on a 386-series

PC, taking 5-20 minutes per calculation depending on the values of the para-

meters. I also repeated the calculations using the value function (12). In

this case, the calculations follow the equation directly, and the policy

function is recovered from the value of s(x) at the converged solution. For

the problems examined here, this procedure was no faster, and although the

same results were obtained, there are a number of computational disadvantages

to using the value function approach. Firstly, in order to maximize over s
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for different values of x, it is necessary to have grids for both magnitudes,

so that, to get adequate precision, very large matrices are required. Sec-

ondly, the utility function is typically not defined for all possible com-

binations of x and s, specifically those for which x-s is negative, and

while this problem is not difficult to deal with, the programming is further

complicated. Finally, the use of grids generates a policy function at the

final stage that is a step function, which has to be "smoothed" once con-

vergence is obtained. y contrast, the direct approach to the policy fun-

ction through the modified version of (10) is straightforward to program,

and seems to be robust in practice. The real virtue of (12) is that it can

be used in the finite-life case, something that is not true of (10).

Figure 2 shows a 200 period simulation of one of the cases displayed

in Figure 1. Income, consumption, and assets are drawn to the same scale.

Income is simply 200 random drawings from N(lOO,l0). Consumption is notably

smoother than income; its standard deviation is 4.9 as opposed to 10 for the

income process. It is asymmetric, and its downward spikes are much more

severe than any corresponding upward peaks. Assets show repeated reversions

to zero, although assets are more often held than not. Only along the

"flats" at zero is consumption equal to income, something that happens

relatively rarely. Note that the level of assets is typically quite low,

usually less than 10% or one standard deviation of income. It is an import-

ant finding that it is possible to smooth consumption to the extent shown

with so few assets. The desirability of doing so is determined by the

parameters of the problem, particularly p, which controls the degree of

prudence, and a, which controls the uncertainty of income. If the marginal

utility of money were less convex, or even linear as in the certainly equi-
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valence case, assets would still be held, but much less frequently, and there

would be less consumption smoothing. By contrast, if preferences are held

fixed, and income uncertainty is increased, for example by working with mix-

tures of normals (employment versus unemployment), it is possible to make

asset stockouts very rare events.

In Deaton (1989), I argue that this simple model is a useful way of

looking at the saving and consumption behavior of farmers in LDC's whose

income, in at least some cases, might be reasonably approximated as being lid

over time, and that its predictions match well with what we know about rural

savings behavior in developing countries. However, the lid assumption is not

necessarily appropriate even in those contexts; although weather fluctuations

may be genuinely independent over time, there are many behavioral and tech-

nical responses that are likely to generate serially correlated income pro-

cesses even where weather is the ultimate source of uncertainty. For ad-

vanced countries, lid income processes make even less sense. Even so, some

of the outcomes in Figure 2 look remarkably like the sort of behavior we

observe in the U.S. Assets are low. Consumption is serially correlated,

and smoother than income. Consumption regressed on income and its lags gives

a declining geometric pattern of coefficients, and the regression of con-

sumption on income and lagged consumption has coefficients that sum to close

to unity. Consumption is well predicted by income and starting assets, a

regression in whici. further lags of income do not appear. All these results

can be found in the American literature, at least prior to the modern

rational expectations treatment. What these simulations do not generate is

any correlation between the change in consumption and the lagged change in

income, the correlation found by both Flavin (1981) and Hall and Mishkin
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(1982). Of course, this does not cast doubt on the liquidity constraint

interpretation of their results, but rather on the realism of the Lid

assumption for income.

1.2 Stationary serially correlated income

The extension of the foregoing analysis to serially correlated income

processes is straightforward in theory, but is less easy to implement. To

fix ideas, suppose that income follows a first order AR process

(YtI) — 4(y--) + (16)

The modified Euler equation (6) holds as before, and the state variable x

evolves, as before, according to (7). However, it is no longer true that x

is the only state variable. When looking forward to predict the expected

marginal utility of consumption in period t+1, the information in both x and

Yt must be taken into account. The marginal utility of money function is

therefore p(x,y), and is defined by, compare (9),

p(x,y) — max[A(x),$fpf(l+r)(x-A'p(x,y))+y+E,y+E)dF(E) (17)

and the associated consumption function f(x,y) is given by A'(p(x,yfl. It

is possible to show that, if the autocorrelation parameter is positive,

p(x,y) is non-decreasing in y and strictly increasing when p(x,y) is greater

than A(x), and vice versa when is negative. In the former case, a good

draw of income indicates that more good draws are to be expected, so that

income can be expected to be higher in the future, and more can be spent out

of a given amount of cash on hand. With negative, as for a tree-crop
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farmer, part of the income from a good crop is really a loan from next year

and should be treated accordingly.

In principle, p(x,y) can be computed in exactly the same way as p(x)

in the previous subsection. In practice, the additional dimensionality poses

difficult computational problems. If an n-point grid is used for each vari-

able then an nxn grid is required, effectively squaring the computational

time. Rather than transfer to a supercomputer, I have chosen to replace the

continuous income process by a discrete approximation.

Suppose that the underlying distribution of in (16) is normal,

N(O,c). I first choose (rn-i) points a1, a2,..., a..1, such that, with a0—-

and a—-s-, the successive areas under the standard normal, •(aj)-(aj..j) are

each equal to 1/rn. I then take the m conditional means z1, z2, .. . ,z, within

each of the intervals as the m equiprobable values of a discrete process that

approximates N(O,1). The true AR(l) for income implies that Yt is distri-

buted as N(s,92) where 92_c2/(l2). This is replaced by a discrete first-

order Markov process in which income takes on the rn discrete values s+8z1,

with transition probabilities set to be identical to the transition

probabilities from interval to interval of the true underlying normal

autoregressive process Yt• From the properties of the normal distribution,

we have

— Pr(9a 2 YtM > 9aj119aj 2 Yt-i! > 9a)

— m ))dx (18)

9j(2,r) 81t_i
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For any given and , this integral is calculated directly. The marginal

utility of money function p(x,y) is then replaced by m functions p(x,i),

i—i,.. .m, each representing the marginal utility of x given that state i

occurs, i.e. that income takes on the value 9z+. The functions are

simultaneously defined by

p(x,i) — (19)

The computations are as before; I start from p0(x,i)—A(x) for all i, sub-

stitute into the right hand side of (19), and so on. I used nj—l0 in all the

calculations reported here and found that convergence was always straight-

forward. Indeed, the replacement of numerical integration by matrix multi-

plication appears to more than compensate for the need to compute 10 fun-

ctions instead of one.

One particular set of consumption functions are shown in Figure 3.

These are computed for the 10 point discrete Markov approximation with a

positive autocorrelation parameter of 0.7. The coefficient of relative risk

aversion is 2, the real interest rate 2%, the rate of time preference 5%, and

the white noise driving process is N(0,lO). I have also computed similar

sets of functions for —(-O.4, 0, 0.3, 0.5, 0.7 ,0.9); these are not shown,

but I will refer to the results in the text.

As was the case when income was iid, the consumption functions each

follow the 45-degree line, branching off at critical values of x that depend

on the level of income, or the "state." In this example, as in all others

with 0.0, the lowest consumption function corresponds to the lowest value of

income, and vice versa. When 4—0, the consumption functions collapse into
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one, as in Figure 1, (a useful check on the code!) while they move further

apart as the aucocorrelation increases.

A simulation corresponding to Figure 3 is shown in Figure 4. Careful

inspection of the income series shows that there are, indeed, only 10 values;

these are most noticeable when there are repeat values with associated

troughs or "mesas." Once again, consumption is smoother than income, with

standard deviations of 10.4 and 14 (13.3 in the sample) respectively.

Savings are pro-cyclical, and relatively large asset stocks are occasionally

accumulated, particularly after long booms. There are also quite long

periods when there are no, or close to no assets, and during which consump-

tion is equal to income. The asymmetric behavior of consumption is still

prominent; savings are a much more effective cushion against high consumption

than against low consumption.

The point to note here is that positive serial correlation in the

income process reduces the scope for income smoothing for liquidity con-

strained consumers. For the range of autocorrelation coefficients examined,

the standard deviations of income and consumption are shown in Table 1, For

the lid case, optimal smoothing can remove half of the standard deviation of

income, and for the negatively autocorrelated case, this figure rises to 57%.

By contrast, when incomes have an autocorrelation coefficient of 0.9, con-

Table 1

Standard deviations of consumption and income

-0.4 0.0 0.3 0.5 0.7 0.9

1. sd(y) 10.9 10.0 10.5 11.5 14.0 22.9
2. est sd(y) 10.8 10.2 10.0 11.4 13.3 27.5

3. est sd(c) 4.6 5.1 6.7 7.6 10.4 25.9
4. ratio 3/2 0.43 0.50 0.67 0.67 0.78 0.94
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sumption is essentially as noisy as income. I can think of several factors

that help explain these results. By assumption, these consumers have a rate

of time preference in excess of the interest rate, so that assets are costly

to hold. The precautionary demand is a powerful motive to hold assets, but

the smoothing of consumption over long autocorrelated swings requires more

assets, and more sacrifice of consumption, than is the case when income is

iid or negatively autocorrelated. Positive autocorrelation also restricts

the ability to smooth consumption. Once cash on hand falls below the minimum

of the points at which the consumption functions in Figure 3 depart from the

45-degree line, no assets will be held, even if the bad income shock that

produced the situation is a signal that further bad draws are to follow.

These (anticipated) bad times have to be ridden out without any assets to

cushion their impact.

In spite of the (important) differences that autocorrelation makes, the

basic insights of the original model carry forward. For impatient consumers

in a stationary environment, assets are expensive to hold, but can provide

a useful buffer between consumption and income. Such buffers are more ef-

fective and less costly the less positively autocorrelated is the income

stream. As is the nature of a buffer, savings can be negative as well as

positive, and will be pro-cyclical in the usual way. However, it is quite

possible that saving will be zero for finite periods of time, something, that

is more likely the more positively autocorrelated is income.

Many of these results seem to accord well both with intuition (at least

with mine) and with most of the stylized facts as we know them. But a

serious difficulty remains. Most consumers in developed and developing

economies can reasonably expect income to grow over time. As I shall show
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in the next section, if they do hold such expectations about their own in-

comes, the analysis will be very different. Of course, growth may not happen

that way, and each consumer may expect his or her own income stream to be

stationary, with growth taking place only from generation to generation. If

so, the analysis of this section goes forward, with aggregate asset growth

because the buffer stocks of the young will be larger than the buffer stocks

of the old. Standard life-cycle models emphasize low frequency "hump"

saving, and generate aggregate saving through aggregation effects when pop-

ulation and income are growing. The models examined here work with "high

frequency" saving, and the same sort of aggregation effects will give posi-

tive saving and asset accumulation in the aggregate. Of course, the magni-

tudes will be much smaller than in the traditional story, and that again

appears to be in accord with the data.

2 SAVING AND LIQUIDITY CONSTRAINTS WITh NON-STATIONARY INCOME

In this section, I examine the same model of savings with borrowing

constraints under the assumption that the logarithm of the income process is

stationary in first-differences. Without uncertainty, such an assumption

corresponds to steady growth. Here I shall be concerned with logarithmic

random walks with drift, a well as with processes whose first differences

are either first-order autoregressions or first-order moving averages. Such

models are capable of modelling actual aggregate household income in the

U.S., and are thus the relevant processes if aggregate consumption is to be

treated as that of a representative individual. The "correct" model of

individual income is less obvious, but it is nevertheless plausible that many
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consumers perceive their incomes as displaying stationary growth rates rather

than levels.

2.1. Independent and identically distributed growth

In the stationary version of the model, consumers were divided accord-

ing to whether or not the rate of time-preference 6 did or did not exceed the

real rate of interest r. For those with 6<r, liquidity constraints were

unlikely to ever bind, and their behavior could be analyzed in a standard

finite life framework. Those with 6>r faced liquidity constraints, and their

behavior was described in the previous section. With income growth, the

distinction is different, and individuals are more likely to be liquidity

constrained. Suppose that preferences are isoelastic, with relative risk

aversion parameter p. If there is no uncertainty, consumption will grow at

rate p1(r-6), so that if income grows at rate g, and the household has no

initial assets, borrowing will be required if consumption begins at a higher

level than income, i.e. if p'(r-ö)<g, or if 6>r-pg, a requirement that is

substantially weaker than 6>r. Indeed, there has always been somewhat of a

puzzle in the consumption literature as to why individuals who anticipate

substantial income growth (e.g. students) and who have a preference for

smooth consumption (high p) do not borrow large sums in early life. While

there are a number of possible answers, particularly at the aggregate level,

the existence of borrowing limitations has always been a likely explanation.

Arguably then, liquidity constraints are likely to be more of an issue in a

growing than in a stationary economy.

The model of section 1 has to be substantially recast in order to yield

useful results. It is immediately clear that non-stationary income is going
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to result in non-stationary processes for consumption and assets, so that it

is not useful to try to define a policy function over these variables. In-

stead, I work with various ratios of variables. To do so, it is necessary

to restrict the analysis to the isoelastic utility function c'/(l-p). Write

the income process in the form

— Yt÷i/Yt (20)

and I start from the case where z is Lid over time, i.e. where the logarithm

of income follows a random walk with or without drift. The modified Euler

equation (6) takes the form

— max(x,flEc1} (21)

Divide equation (20) by Yt' and define

— Ct/Yt 't — 'tJYt — (At+y)/y (22)

so that (21) becomes

A(9) —max(A(w),$Ez1A(9+1)) (23)

where, to emphasize the continuity with the previous section, I have reverted

to A(x) for K-p. The cash in hand to income ratio w evolves according to

— l+(l+r)(w-9)z1. (24)

We are now in a position to write down a policy function relating the

consumption to income ratio O to the cash on hand ratio w, 9(w), say, and

the associated marginal utility or price function p(w)—A(9(w)). If this

exists it satisfies
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p(w) — max[A(w),,5fzp(l+(l+r)Z'(WA'P(W)))dF(z)] (25)

The question of existence is approached in exactly the same way as before.

A finite life analog is constructed, and the backward iteration is set up and

used to define a mapping from the policy in period n to that in the previous

period n+l. If this mapping is a contraction mapping, the finite life prob-

lem will converge to the infinite period solution given sufficient time.

Otherwise, the infinite horizon problem has no solution and the finite life

problem must be analyzed directly from the associated value function, exactly

as done by Barsky, Mankiw and Zeldes (1986), Skinner (1988), and Zeldes

(1989). The usual Blackwell apparatus shows that a sufficient condition for

p(w) to exist is that

$E(z) — (l+r)E(z°)/(l+6) < 1 (26)

If z is lognormally distributed, so that lny is W(g,a2), and we make the

usual approximation that ln(l+r)-ln(l+6)—r-5, then (26) becomes

< g (27)

Condition (26) and its specialization (27) are the conditions that ensure

that borrowing is part of the unconstrained plan, so that, with the const-

raints, the borrowing restrictions will bind. For the rest of the analysis,

I assume that (26) holds, so that a unique p(w) exists.

The function p(w), defined by (25), and the associated consumption

ratio function 8(w) have the same general shape as the consumption functions

in Figure 1 although with an origin of (1,1) not (0,0). As before, there
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exists some critical level of w, w* say, such that, for w<w, p(w)—A(w) and

9(w)—w. The ratio w evolves according to the process

— l+zi(l+r)(wA''p(w)) (28)

so that as soon as w falls below w w1 is 1. But p(l)—l, because l<w*,

or directly from substitution in (25) and using (26), so that once 't is 1,

it remains 1 thereafter, no matter what are the future values of income. A

value of w, of unity implies that assets are zero, so that once assets fall

to zero, they remain zero. It is not clear to me that there could not exist

a distribution F(z) which would generate a p(w) in (28) that would keep w

permanently above w. However, in all the simulations that I have run, and

from many different starting values, w < w after only a few periods, and

I conjecture that this happens in general. If this is the case, the complete

solution to the consumer's problem is that, if there are any opening assets,

they will decline to zero in finite time, and thereafter consumption will be

equal to income. In the case where the logarithm of income is a random walk,

with or without drift, and provided (26) holds, then we get the often cited

(but not generally valid) effect of liquidity constraints, that consumption

equals income.

When income is a random walk, we have the limiting case of the auto-

regressive stationary model in the previous subsection, and the presence of

binding borrowing constraints makes it undesirable to undertake any smooth-

ing. To see what is going on, suppose that the consumer has no assets, but

that income growth is well above average. At first thought, this seems like

a good situation to save. But, by assumption, the consumer is already

liquidity constrained and the additional income merely provides an oppor-
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tunity to get closer to the ideal consumption path that would have been

realized had there been no borrowing constraints. So good draws in the

income growth process are spent, and assets remain at zero. Saving is also

typically desirable when income is expected to be lower in the future, see

particularly Campbell (1987). However, with a random walk, while a bad draw

does indeed imply that income thereafter can be expected to be permanently

lower, the expected growth rate of income is unchanged, and nothing can

signal a future trough in income over which it would be desirable to maintain

consumption by accumulating assets now. There is never any rational expect-

ation that income will be lower than it is now. In consequence, the combin-

ation of the persistence of the random walk and the binding liquidity con-

straints precludes the accumulation of assets.

2.2 Autocorrelated growth and the cycle

Although a random walk with drift appears to be a reasonable approx-

imation to real income in the long run, the growth of aggregate household

income is better approximated by a positively autocorrelated AR(l), at least

on post-war U.S. quarterly data. For both real GDP and income, growth shocks

are persistent, with positive shocks more likely to be followed by positive

shocks, and vice versa. I examine two different models designed to match

these features of aggregate income, and show that both are capable of gene-

rating some savings, even in the presence of liquidity constraints, but that

the savings generated do not behave in the same way as actual aggregate

saving.

The first model I examine is that suggested by Hamilton (1989), in

which income growth is a two state Markov process with noise. The two state
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specification is particularly useful here since it keeps the computations

simple while yielding a model that appears to fit the data quite well. The

specification I use is as follows. There are two states, indexed by s—l,2.

When s—l, the "boom", Alny—g1+€, while when s—2, the "slump," lnyg2+E,

where g2<0<g1, and is white noise drawn from the same distribution N(0,c2)

whatever the state. Independently of Et, the growth process switches ran-

domly between the two states with constant transition probabilities

pr(s—lIs—l) and 2 — pr(s—2Is1—2). Since both states show persistence,

both transition probabilities are greater than 0.5, and since the economy

shows positive growth on average, 1>w2.

The price function p(w) in (25) is replaced by two functions p(w,s),

one for each state s, defined by

p(w,l) — max(X(w),$(r1I11+(l-ir1)I21]} (29)

p(w,2) — max(A(w),8[ir2I22÷(l-w2)I12}),

and I —

and these can be computed exactly for the normal distribution. A pair of the

corresponding consumption ratio functions is shown in Figure 5, together with

the parameters that generated them. These parameters are not those estimated

by Hamilton. When I used his estimates, together with reasonable figures for

r, 6, and p, both consumption functions started from the point (1,1), so

that, as was the case for the random walk with drift, the model will result

in consumption being equal to income, at least once initial assets have been

run down. The parameters used to generate the Figures are "exaggerated"
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versions of Hamilton's. The income growth noise has a larger variance, the

positive growth is more positive and the negative growth more negative.

The transition probabilities are close to those estimated by Hamilton, so

that the autoregressive properties of the income growth process are similar

to those found in the data.

The important results are in Figure 6, which shows a 200 period simu-

lation of the saving ratio, the ratio of assets to income, and an indicator

of whether the process is in the good or bad state. What happens here, and

must happen given Figure 5, is that as soon as the bad state is announced,

for example at period 29 in the Figure, savings switches from zero to posi-

tive and the consumer begins to accumulate assets. As the slump continues,

the savings ratio stops rising, and eventually falls below zero if the slump

continues long enough. Assets go on rising for a while after the savings

ratio has started falling, but eventually reach a ceiling above which they

cannot go. At this point of the slump, the negative savings ratio, supported

by asset income, helps protect consumption against the effects of income

which has negative expected growth throughout the slump. Eventually the

slump ends (period 40), and the boom takes over. As soon as this happens,

the consumer uses all of the accumulated assets to finance a spending boom,

and then sits out the boom with consumption equal to income and no assets.

The saving ratio therefore falls sharply at the onset of the boom, rises

equally sharply at the start of a slump, and is zero during a well-estab-

fished boom.

This behavior seems bizarre and is the precise opposite of the standard

story in which procyclical savings helps smooth consumption. But the be-

havior is perfectly rational given the constraints and preferences of the
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individual. During the boom, when income is expected to rise more rapidly

than its unconditional average growth rate, consumers have no motive to save.

Indeed, because they would prefer consumption to grow less rapidly than

income, they would like to dissave and are only prevented from doing so by

the borrowing constraints. Instead they save only to ride out the slumps.

Because growth rates exhibit persistence, the onset of the slump tells con-

sumers that income can be expected to fall over the immediate future so

that to moderate the fall in consumption, there is a motive to accumulate

assets now when income is still high, and to use them to ameliorate the

effects of the slump. The fact that the actual data do not look like this

tells us that the aggregate data cannot be modelled as the behavior of a

liquidity constrained representative consumer.

Some qualifications are in order. Within the Hamilton model, negative

expected growth in the slump state is necessary to generate any saving, but

it is not sufficient. In particular, define r by

exp(-p1) — ir1exp(-pg1)+(l-it1)exp(-pg2) (30)

which is a measure of expected growth conditional on being in state 1, and

the corresponding for state 2. If both growth rates and 72 are greater

than p1(r-6)+pa2/2, then (29) implies that p(w,l)—p(w,2)—l. If so, then as

was the case when income was a random walk, once w—l, it will remain 1

thereafter, and there will be no savings and no assets no matter what the

state. Secondly, note that I have assumed that consumers know the state, and

that as soon as there is a switch, it is immediately apparent. Even if the

Hamilton process were indeed the true one, the presence of the noise in the

income growth process means that it is not possible immediately to recognize
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any change in state. Given enough time, consumers would learn the state, but

since learning takes time, behavior would not be as I have described it.

Even so, the cyclical behavior of savings in this model is not a con-

sequences of these peculiarities. As an alternative, I computed a ten state

Markov approximation to an AR(l) in logarithmic first differences. The

policy function is easily derived by applying the principles of Section 1.2

to the non-stationary model. Figure 7 shows a typical simulation for a case

where the growth process in income has an autoregressive parameter of 0.4,

as does the U.S. quarterly data. Exactly the same cyclical patterns reoccur

as in the Hamilton model in Figure 6. Saving is positive when income is

falling at the beginning of the slump, is negative when income is rising at

the beginning of the boom, and is zero during normal good times.

2.3 Individual behavior, noisy incomes, and aggregate behavior

The failure of the representative agent model does not imply that

liquidity constraints are unimportant, or that agents who are liquidity

constrained do not behave as described here. One possibility is that con-

susners who are liquidity constrained, although responsible for a large share

of consumption, are responsible for only a small share of savings, and that

the aggregate saving behavior is accounted for by unconstrained consumers,

who can either borrow as much as they wish, or whose preferences do not cause

them to wish to borrow. But it is unlikely that income processes at the

micro level exactly mirror the time-series behavior of aggregate income, so

that an alternative approach is to work from the bottom up, starting not from

the aggregate time-series process, but from those observed in the micro data.

The final model that I examine represents an attempt to do so.
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At the micro level, individual incomes are a good deal less persistent

than is the case for the aggregate. Year to year changes show significant

negative autocorrelation, either because there is substantial transitory

income in each year, or because there is considerable measurement error in

the data. The process I shall examine here is one in which, at the micro

level, the first difference of logarithms has a moving average represent-

ation, i.e.

— (31)

where is a white noise process and l>*>O is the moving average parameter.

MaCurdy (1982) uses the PSID to estimate a model of this form for individual

earnings, and although it is not his preferred model which is an MA(2), it

fits the data almost as well. The representation (31) is equivalent to (log)

income being the sum of white noise, (multiplicative) transitory income, and

a random walk with drift, permanent income. In this interpretation, the

parameter is 1÷(O..J(82+49))/2 where 8 is the ratio of the variance of the

permanent component to the transitory component. MaCurdy's estimate of 0.44

corresponds to value of 9 of 0.85, so that the permanent component accounts

for just less than half the total variance in income.

Again, I assume a normal distribution for c, and again use an rn-point

approximation to simplify the computations. If the m states are labelled

i—l,..,m, there are m price functions p(w,i) defined by the functional

equations,

p(w,i) — (32)
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where -y — exp(-p-€+Ej) and w is the probability that occurs, equal to

1/rn here. I calculated (32) using MaCurdy's estimate of -.0.444, growth

rates of 0 and 2% per annum, and with r2%, 6—5%, and p—2. MaCurdy estimates

a, the standard deviation of to be 0.235, an enormous figure that would

give a standard deviation for MnY of 0.25. If this estimate were correct,

borrowing constraints would be unlikely to be a problem for most American

earners. With earnings so uncertain, precautionary motives would tend to

increase the desired growth rate of consumption and generate a great deal of

saving early in the life-cycle. Liquidity constraints are not required in

this sort of situation to prevent people from borrowing; severe uncertainty

and prudent preferences produce behavior that can look similar to that pro-

duced by liquidity constraints, see the excellent discussion in Zeldes

(1986)

My presumption is that MaCurdy's estimate is too high because of the

presence of substantial measurement error in recorded income, and I have

experimented instead with values of a of 0.10 and 0.15, themselves repre-

senting very substantial uncertainty in the income growth process. Logic-

ally, a reduction in a should be accompanied by a decrease in S, in order to

accommodate the larger role of the permanent component. But the latter is

already accounting for half of the variance in individual incomes, and a

larger figure seems implausible.

The results are a hybrid between those where income is Lid stationary

and those where the growth process is positively autoregressive. The con-

sumption functions have the usual general shape, but the low values of the

innovations e correspond to the high branches of the consumption function.

A high innovation now implies low income growth next period (because there
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is transitory noise in the income level), and so there will be a lower

consumption ratio at the same cash on hand ratio when transitory income is

high. This is the standard traditional explanation of procyclical savings

out of transitory income. At the same time, high levels of current income

growth reduce the cash on hand ratio, and also tend to reduce consumption.

The net result is that, for example, with c—0.l5 and income growing at 2%,

the regression of the consumption ratio on income growth has a coefficient

around -0.2, so that the savings rate is procyclical. As a consequence,

consumption is again smoother than income, with the standard deviation of

consumption growth 0.13 as opposed to 0.17 for income growth. The liquidity

constraints also generate a negative correlation between the consumption

growth and lagged income growth. Such a correlation was found in the PSID

data by Hall and Mishkin (1982), and was attributed 1y them to the presence

of a fraction of liquidity constrained consumers spending their incomes. The

explanation here runs somewhat differently, but the underlying cause is the

same.

Consider now the transition from the individual consumers to the aggre-

gate. If each income process were independent, then there would be no vari-

ation in aggregate income growth rates, and the saving and dissaving acti-

vities of individuals would cancel out in the aggregate. Instead of this,

consider a simple model in which each consumer receives the aggregate shock

together with idiosyncratic components. For each consumer, the growth rate

of income is given by the following:

tlny-g — + zzt + z3 (33)

— Ejt + Eit..i, Z2t — E2t, Z3t — E3t -
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The first growth component, z1, together with the growth rate g, is common

to all consumers, and is assumed to be an MA(l) with positive parameter .

Since both other components are taken to be idiosyncratic and independent

over individuals, aggregate income growth will be z1÷g. (I assume for con-

venience that all income shares are the same, so average growth rates can

be computed by simple averaging.) It would be more in accord with the aggre-

gate data for the first component to be an AR(l) rather than an MA(l), but

the former would much complicate the calculations to follow. The component

z2 is the innovation in an idiosyncratic random walk. Some such term must

be present in order to match the large permanent component in individual

income shocks, a role which cannot be played by the common shock because

aggregate income growth is not sufficiently variable. The third component

z3 is the first difference of transitory income. Total income for each

individual is the sum of a common IMA(l,l), an idiosyncratic random walk, and

transitory white noise.

The individual has no way of separating the three components, and ob-

serves only their sum, which is itself an IMA(l,l) satisfying (31). Match-

ing (33) to the aggregate data and to the micro data (33) ties down the para-

meters. From my interpretation of the micro data I take —O.444 and c—O.l5

as above. For the macro data, I take g—O.O2 and a1, the standard deviation

of in (33), to be 0.10. A value of of 0.5 generates an autocorrelation

coefficient of 0.4 in the growth rates of income, in accord with the actually

estimated AR(l). Matching the other variances and covariances gives

— (l)2a2 - (l+fl)2c (34)

— +
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Note that because the innovation variance in the microeconomic growth pro-

cess, a2, is so much larger than that in the aggregate, a, the two idio-

syncratic processes have to account for nearly all of the variance in indi-

vidual income growth, something that matches the evidence that aggregate

shocks have little explanatory power in individual earnings regressions.

Given that the parameters have been appropriately set, I can use the

individual consumption functions previously calculated, simulate histories

for a number of individuals, and do the aggregation explicitly. A simulated

aggregate process z1-s-g is generated first, and then this is added to indi-

vidual independent z2 and z3 processes for H consumers. The sum is then used

to calculate consumption ratios according to the consumption functions in

(32), and the process iterated forward. There is one minor complication in

that the consumption functions A'(p(w,i)} from (32') are indexed on i, which

is the element of the discrete approximation corresponding to the current

innovation in the combined process, an innovation that bears no simple re-

lationship to any of the innovations in (33). However, the moving average

process (31) is invertible, and so its innovation can be recovered from the

sum i(t1nyjg)
Of course, this calculation will not yield a value that

is one of the 10 points for which consumption functions have been calculated.

For the moment, I have adopted the crude device of using the element of the

approximation that is closest to the calculated innovation. Interpolation

would be better, but since I am averaging over many consumers, it is hard

to believe that the approximation errors are important in the aggregate.

Since individual income growth is negatively correlated, and aggregate

income growth positively correlated, it is necessary to aggregate over a

large number of households to eliminate the negative effects. In practice,
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1000 cases seemed to be adequate, and yielded, over 200 periods, an aggregate

income change with a sample mean of 0.0192 and standard deviation of 0.0125,

compared with the theoretical magnitudes for infinite H of 0.02 and 0.0125

respectively. The sample autocorrelation coefficient of lny is 0.262, well

below the theoretical value of 0.40. The aggregate consumption ratio (i.e.

the simple average of the 1000 individual ratios) responds to income growth

with a coefficient of -0.17, so that, while savings ratios are procyclical,

the effects are small. It would take a 2.4 standard deviation increase in

the income growth rate to shift the saving rate up by half a percentage

point. As a result, while consumption is smoother than income, with a stand-

ard deviation of 1nc of 0.0114 as opposed to 0.0125 for income growth, the

smoothing effect is very small. Assets are now always positive, although for

each individual, assets are frequently zero. As a consequence, capital

income allows the consumption ratio to average a little more than unity,

1.0015 in the simulations reported here. The growth rate of aggregate

consumption has a positive regression coefficient (0.42) on lagged aggregate

income growth, as opposed to the negative coefficient in the micro data. The

model therefore provides a means of reconciling the actual orthogonality

condition failures in the micro data (Hall and Mishkin) with those in the

macro data (Flavin), which also display the negative/positive pattern.

These results show that the model of this section is capable of pro-

viding a coherent account of a number of disparate phenomena in both micro-

economic and macroeconomic data. However, it is important to note that the

story is still incomplete in a number of important respects. While I believe

that understanding the behavior of liquidity constrained consumers is import-

ant, I would not wish to claim that all consumers are in this position.
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There are relatively patient individuals as well as impatient ones, and the

former are likely to accumulate considerable amounts of wealth in the stand-

ard life-cycle manner. I suspect that such people are in the minority, al-

though they account for a disproportionate share of aggregate saving and

wealth accumulation. Finally, while it is true that most Americans accu-

mulate very few financial assets, they do accumulate housing wealth and

pension rights. Some of this saving is involuntary, but a fuller account

would integrate the existence of these other assets into the models developed

in this paper.
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