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Macroeconomists have traditionally viewed movemeénts in aggregate cutput as repre-
genting tempofary fluctuations about a déterministic trend. According to thiﬁ view,
innovations to real gross national produet (GNP) should have no impact on long-run
forecasts of aggregate output. Increasingly, however, this view of aggregate fluctua-
tions has been challenged.r Following the important work of Nelseon ;nd Ploaser (1982),
numerous economists have argued that real GNP is best cﬁaraéterized as a stochastic
proceﬁs that does not revert to a deterministic trend path. Under these circum-
stances, innovatlons to real GNP should affect outpu£ forecasts Into the indefinite
future. In pursuing this interpretation of the data, varlous researchers have tried
to measure the long-run response of real GNP to a shoek. Estimates of this response
are often referred to aQ the persgtatence of shocks to real GNP.

Not surprisingly, tﬁe 1iteratu§e on persistence has become intertwiﬁed with
recent controversies over the empirical plausibillity of two important classea of sté;
tistical univarinte time series models: trend stationary and difference st#tlonary
models. Ultimately, proponents of the view that shocks to real GNP are persistent
must build their case on the empirical plausibility of the hypethesis that real GNP is
difference rather than trend statlonary or, in other uords; that real GNP has a unit
root. - -

To us, the possibility of providing atcdmpelling cage fhat real GNP is either
trend or difference stationary seems extremely small, certainly on the basis of post-
war data. This is because there 1ls only one difference between these two types of
processes and that difference is cempletely summarized by the answer to the question,
How much should an innovation to real GNP affeet the_optimal faorecast of real GNP into
the infinite future? If the answer ls zero, then real GNP I3 trend stationary. If
the answer is not zero, then real CNP is difference stationary. The competing hypoth-
eses have no other testable differences. Once we pose the question in this way, it
geems olear thatb economists 6ught to be extremely skeptieal of any argument thaﬁ pur-
ports to support one view or the othér. Simply put, it's hard to believe that a mere

40 years of data contain any evidence on the only experiment that is relevant.
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Nobwlthst_a.nding these obvious difficulties, over the past decade there has been
an exploslion of empirical research on whether macroeconomic time series are best
viewed as trend or difference stationary. Even more surprising are l:'he'stron'g conciu-
sions that seem to mark this literature. For example, Schwert {1987, p. 99) writes
that "following Nelson and Plosser, many authors have found that many aggregate ocutput
series . , ., aggregate pbice level series . . ., and other aggregate nominal series

. econtain a unit root." Blanchard and Quah (1988, p. 1) simply begin their analy-
sis by ébating that "in response to an innavation in GNP of 1%, one should revise
one's forecast by more than 1% over long harizons. This fact is documented by
Campbell and Ha:;kiu (1987a), buildingr on earller work by Nelson and Plosser (1982)."
And Campbell and Mankiw (1987b, p. 111} write that "much disagreement remains over
exactly how persistent are shocks to output. Nonetheless, among investigators using
postwar quarterly data, there {3 almost unanimity that there 1s a substantial per-
manent effect."

The first part of this paper argues that the new consensus about the presence and
size of the unit root in real GNP {s not supported by an analysis of postwar U.S. GNP
data. The data simply de not discriminate between the trend stationary and the
difference stationary views of U.5. real GNP. Given the nature of the diFference
between these two types of stochastic processes, any argument in favor of one or the
other necessarily relies on strong identifying restrictions. Unfortunately, inference
turns out to be extremely'sensitive to exact'ly which identifying restrictions are
made. Moreover, the relevant sets of identifying restrietions ‘are not the sort which
economic theory has anything to say about,

The paper argues this point in two ways. [Initially, we investigate the problem
using the parametric approach proposed by Campbell and Mankiw (1987a). The basie
strategy is to estimate the long-run response of real GNP to an innovation uéing a
particular parametrie, autoregressive moving average (ARMA) representation of the

grawth rate of real GNP. For the postwar U,S5. data, the relative plausibility of the
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trend and the difference stationary hypotheses depends critically on the precise order
of the ARMA repregentation chosen. Campbéll and Mankiw (1987a) emphasize an ARMA(2,2)
representation of postwar U.5. real GNP. Indeed, erone eonditions on that precise
representation of the data, then real GNP is plausibly argued to be difference sta-
ticnary. Unfortunately, very small perturbations in the order of the ARMA representa-
tion turn cut toc have a very large impaet on this inference. For example, if one
conditiohs on an ARMA{3,3) representation of the data, then real GNP appears to be
trend stationary. Neither the data nor_economic thecry can convineingly discriminate'
between these competing representations of real GNP.

Since inference is very sensitive to particular parametrie assumpticna, we aiso
examine the problem using the nonparametric methods developed by Cochrane (1988a). We
show that, when applied to postwar data, these methods are completely uninfbrmabive
about the relative plausibility of the trend and the difference statlonary hypoth-
e3eg, How much should one's forecast of real GNP over long horizons be revised in
response to a 1 percent innovation? Taken together, our results lead us to answer, We
don't ¥know. Indeed, we argue that this is the right answer even if by long horizons
wel mean periods as short as five years. Taking any other position simply seems
unwarranted by the available evidence.

The second part of this paper investigates the consequences of not kmowing. Here
we ask the question, Do we care if real GNP has a unit root? Our answer is, Maybe
not, Some authors have argued that we should care because the degree of persiatence
in real GNP can be used to infer what the prineipal impulses driving business cycles
are {for example, Long and Plosser, 1983; De Long and Summers, 1988). This line of
reascning presumes that If real GNP is highly persistent, then the shocks must be
principally to technology, whereas if there is little persistence, then the shocks
must be principally to aggregate demand, such as innovatlons to monetary and fiscal
policy. Campbell and Mankiw {1987a}, Cochrane (1988a}, and West {1988b} argue persua-
sively against thisrvleu by pointing out that in a variety of plausible models these

presumptions are wrong.
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A more plausible reason for caring revolves around the possibility that the
implications of dymamic economic models depend sensitively on the presence or aﬁsence
of a unit root in the forcing variables to agents'-environments. Cur reaults suggest
that the degfee of sensitivity is minimal. What economic agenté care about is the
relative importance of temporary versus permanent shocks to their environments—-and
this is, at best, only loosely related to the unit root issue.

We reach this conclusion by considering two examples which have been used to
argue for the importance of unit roota, These¢ are Deaton's (1986) and Hansen's (1985)
analyses of the permanent income hypothesis {PIH) and real business cycle ({RBC)
models. Both authors argue that the dynamic properties of their respective models are
extremely sensitive to the presence or absence of unit roets in income. Indeed,
Deaton and Hansen argue that the degree of sensitivity is large encugh to affect
inference about the overall plausibility of the models.

Taken at face value, these examples do create a presumption that we should care
about the unit root issue, However, this presumption turns out to depend on a key

"maintained assumption of both analyses, namely, that the forcing variables of econcern
to agents are driven by a single shock, This assumption implies a sharp dichotomy
betweén trend and difference stationary specifications which is not tied in any log-
ical way to the unit root issue. With only one shock to agents' environments, a trend
stationary specification implies that all shocks have purely temporary effects,
whereas difference staticnary speeifications necessarily incorporate the opposite
extreme; all shocks have purely permanent effecta, But without this assumption,
difference stationarity does not Imply the absence of temporary shocks to agents'
environments.

To se¢ why, suppose we actually knew that a particular random variable was
difference stationary. Indeed, assume that we actually knew the univariate, differ-
ence stationary, Wold representation of the random variable. For each such represen-

tation, the variable can be deccmposed intc permanent and temporary companents in an
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infinite number of ways (Quah, 1988). While each decomposition implies precisely the
same univariate time serles representation, each decompositien embodies different
assumptions about the relative importance of permanent and temporary shocks to the
variable. Simply knowing the univarlate time serles representation of a random vari-
able provides no information about which of the infinite decompositions agents may be
observing and responding to. At the same time, which decompesition is chosen ia crit-
ical since agents' actions differ depending on whether they are responding to a perma-
nent or a temporary shock, Consequently, the properties of dynamic medels will in
general depend sensitively on the relative importance of permanent and temporary
shocks. Agreeing on the presence of a unit roct in the law of motion for some vari-
able, or even the variable's univariate time series representation, imposes almost no
restrictions on one's view of this issue since there always exists a decomposition
which makes the permanent comnonent arbitrarily small.

Allowing for the presence of é temporary component in the difference stationary
representation of the Fforelng varlables to agents' environments breaks the sharp
dtchotamyrlmplicit in the analyses of Deaton and Hansen. Quah {1989) shows this quite
dramatically in his discussion of Deaton's results. When agents see only the uni-
variate, difference stationary representation for labor incomé, consumption is pre-
dicted to be about 1.8 times as volatile as income; when the trend stationary specifi-
cation is adopted, consumption is predicted to be 0.2 times as volabile as income.
Deapite these sharp differences, Quah i3 able to display a temporary/permanentrdécom-
poﬁibion of Deaton's diffe}ence stationary model of labor income which has the follow-
ing property: If agents observe both components separately, then the predicted rela-
tive volatility of consumption coincides with the predictiens of the trend stationary
model of labor income. This is true despite thé fact that the univariate iime series
representation implied by Quah's components medel is precisely the same as that
implied by Deaton's difference stationary model.

In the second part of this paper, we 1llustrate Quah's results in the context of

RBC models. In particular, we show that the implications of an unobserved components,
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difference stationary version of Hansen's R8C model closely resemble those of a trend
stationary specification. Our tentative conclusion is that once we admit the possi-
bility that agents are responding to both temporary and permanent shocks, the unit
root question loses much of its importance. '

Qur paper is organized as follows. First we discuss the concepta of trend and
difference stationarity and two statistical procedures which have been used to distin-
guish between them empirically. In the next two sections, we argue that, using post-
war data, one cannot determine the long-run effect of an innovation to real GNP based
on two leading statistical procedures, the AAMA method of Campbell and Mankjw
(1987a,b} and the nonparametric method of Cochrane (1988a). Then we address the issue
of whether unit rootg matter from an economic perspective. In the last section, we

make some concluding remarks.

A SELECTIVE OVERVIEW OF THE LITERATURE

Recent research aimed at analyzing the persistence of shocks to real GNP has been
conducted almost exclusively within the confines of atheoretical time series models.
Much of the debate has centered om efforts to support or refute the traditional view
that fluctuations in real GNP reflect temporary deviations from a deterministie trend
path. At issue ls the relative plausibility of two impertant classes of statistical
univariate time series models: trend stationary and difference stationary medels, We
begin by reviewing these models.

Consider the time seriés variable Yio which we assume is meaﬁured in loga-
rithms. Acecording to the trend stationary model, ¥ 13 covariance stationary about a
deterministic trend. If the growth raﬁe of y. is a stationary stochastic process, the
deterministic trend component must be linear. The following univariate time serles

reprasentation for ¥e refleets these assumptions:

Y = ¥t + a(L)et. . {1}
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Here a{l) = 1 + a,L + aZL2 + ... is a polynomial in the lag operator L, y is a scalar
constant, t denotes time, and e is the zero mean, serially uncorrelated time t inne-
vation to y.. We denote the variance of g, by af. Since y, is covariance sta-
tionary, Zai and ui are both Finite. For convenience, we assume that £|aJ] is finite,

'According to the difference stationary model, the first difference of Yy is a

" covariance stationary process which we write as
ﬁyt zou o+ b(l.)ut.- - ()

Here 4 denotes the First-différence uperatdr, B{L) = 1 + byl + sz2 + ... is a poly-
‘nomial in the lag operator L, u is a scalar cohstant, E|bJ] ¢ =, and u, is the zero
mean, gerially uncorrelated innovation to Yt; We denote the variance of u, by oi. In
addition, we lmpose the requirement that b(1) = ibjfk 0. TWithout this requirement,
there 1s no difference bet-een trend stationary and difference stationary processes,
This follows from the fact that any trend stationary proceas, (1); can be represented

in the form of (2). To see this, simply first-difference both sides of {1) to obtain
ay, = 1+ A(L)sb (3)

where A(L)} = (1-L)afL). 'This process satisfies all of the cbnditlons imposed by the
difference statlonary model except for onme. The sum of coefficients on current and
lagged e.'s In (3) ls given by A(1). Under our assumptions, A{1) = 0. But this vio-
lates the condition that the sum of the moving average coefficients in (2) is not
equal to zero. Evidently, the condition that b{1} # 0 13 all that distinguishes trend
and difference statlonary processes. ’

Two widespread interpretations of b{1) revolve around its role in determining the
degree of'persistence in yt; One measure of persisténce centers on the résponse to up
of the optimal forecast of y, into the 1nf1ﬁibe future. Let E denote the time t
expectations operator conditioned on the information set ([u,,uy_;,...}. Beveridge and

Nelson {1981) show that
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= b(1u,. (4)

Lim {Eey ) = B tVew
-0

k
It follows that b{1) completely characterizes the revision in-the long-run outlook for
¥y induced by a time t unit innovation to Y- If y, is difference stationary, then
B{1) #= 0, so that an innovation at time ¢ ocught to affect our forecast of ¥p into the
infinite future. However, if yy s trend stationary--gay, as given by {3)--then
4(1) = 0. Consequently, an innovation to ¥ should have no impact on our forecast of
¥y into the infinite future. This simply reflects the fact that eventually a trend
stationary process always returns to its deterministic trend path.

The other cammon measure of persistence revolves arcund the fact that the long-
run foreeast of a difference stationary process 15 always changing. According to (4),
the time t revision to the long-run forecast of ¥y 1s the random varlable b(1)u.. 4
natural wmeasure of the amount of variation in this variable is its variance,
[b{1)]2n§; If y. ls trend statiomary, then fluetuations in up Induce only transitory
movements in ¥yi that is, the long-run outloock is deterministie. Consequently, the
variance of the revigion to the long-run forecast of a trend stationary random vari-
able, [A(1)]2u§, is zero.

Under the first interpretation of b(1), the issue of trend versus difference
stationarity reduces to the gquestion, How much should an innovation to the stochagtic
process y, at time t affeet our forecast of Y¢ into the infinite future? Under the
second interpretation of b(1), the issue of trend versus differance stationarity
reduces to the question, How variable is the optimal foreecast of ¥¢ In the infinite
future? Posed In these terms, neither question is answerable on the basis of any
finite data set. There simply are no observations on the experiment. The relevant
issues then become, What identifying restricticns have been made in the literature to
ansWwer questicns about persistence? And how sensitive are the answers to different
identifying assumptions?

To review the literature from this perspective, we adopt the following generic

representation for ay,



8y, = o+ lf:{I..)nt (5)

where n. 1s the white noige innovation to y., with variance aﬁ. -When C(1} = 0, (5} is
a trend stationary representation. Otherwise, it is difference stationary. The
literature on the persistence of U.S. real GNP can be roughly divided into two cate-
gories., One category focuses simply on the question of whether c;r not C{1} = O, that
is, whether real GNP is trend or dlfference stationary. Two strategies are 'taken
here, with one adopting C(1) = 0 as the null hypothesis and the eother adopting c{1) =+
0. For example, Campbell and Mankiw (1987a) use the first strategy; Nelson and
Plosser (1982), the gecond. This type of analysis only addresses the narrowly defined
question, Are output fluctuations temporary or permanent?

The other category of research ailms to quantlfy the persistence.of ¥e by focusing
on the two measures discussed above. Wakson (1988), Campbell and Manklw (1987a,b),
Clark (1987), and Campbell and Deaton (1988) estimate C{1) using postwar U.5. real GNP
data, Campbell and Mankiw (1987a,b) and Campbell and Deaton (1988) alsc measure
[C(1)]Zaﬁ using an estimator proposed by Cochrane (1988a), who {mplements his proce-
dure on per capita real GNP data covering the pre- and postwar period.

How can these authors make inferences about elther C{1) or [C(1)|2ui using a
finite amount of data? As Cochrane {1988a) emphasizes, inferences about the persis-
tence of y. are made possible oniy by Imposing identifying restrictions on C{L) and
. The point of these restrictions is to allow the econometrician to make inferences
about the long-run dynamies of y,--say, as measured by C{1)--from 1its short-run
dynamica. The different types of identifying assumptions in the literature fall inte
two categories which are closely linked to different strategies for actually estimat-
ing objects like C(1). One strategy amounts to fitting parsimoniously parameterized
ARMA models for Ay, and then drawing inferences about persiatence from the resulting
parameter estimates. The other strategy 1s less parametric In nature.

tonsider first the more parametric strategy. Here, two different approaches for

achleving parsimony have been pursued. Authors like Campbell and Mankiw (1987a}
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achieve parsimeny by limiting the orders of the autoregressive -and moving average
components of the ARMA representation of the data. In particular, C{L) is assumed to

be of the form

B(L) : :
ey = BN (6)

where 8{L} and #(L) are polynomials in the lag operator af order q and p, respec-
tively, This implies an &RMA(p,q} representation for Ay,. No additionai réstricbions
are imposed on the modgl. To Lest the nuli hypothesis that ¥y is trend stationary
[that 13, C(1} = 0], Campbell and Mankiw obtain bﬁth an unconstrained estimate of C(L)
and an eatimate of C(L} subject to the constraint that C(l) = 0. Given some metric
for Jjudging the emplrical plausibility of the constraint, they ‘calculate c{1) =
8(1)/4(1) using the preferred model.

A4 second strategy for achieving parsimony is to work within the eonfines of an
uncbserved components mo&el. Here the idea is to model ¥¢ a8 the sum of permanent and
temporary components: Yy = Zy + C¢, where z, and e, are difference and trend sta-
tionary stochastic processes, respectively. An important advantage of this approach
1s that parsimonious representations for 2y and ¢ will imply ARMA representations for
4y, with high autoregressive and moving average components. For example, Watscn
(1986) assumes that z_ is a pure random Qalk and c, has a second-order auteregressive
representabion. In addition, he assumes that Zy and ¢, are orthogonal precesses,
Under these assumptions, his model gemerates an ARMA(2,2) representation for ay, that
13 complataly desoribed by four parameters: ;he variances of the innovations to 2y
and c; and the autoregressive parameters of Cp. )

We think of unobserved components models of 4y, as simply devices for achieving
parameter parsimony in ARMA models. From this perspective, the particular decomposi-
ticn adopted need not be structural in anyllnteresting economlc sense. Indeed, this
approach for achieving parsimony may be quite useful for Forecasting purposes even if

the reatrictions are false. However, as a device for obtaining the true cyclical
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component of the data, this approach is more problemat;c. This 1is because there
exists an uncountable number of decompositicons for ¥p. even if we impose the assump-
tion that 2, and c, are orthogonal processes (Quah, 1983). Each decomposition implies
preclsely the same univariate time series representation for ¥¢. Obviously, strong
restrictions are required to identify Z, and e, .- Unfortunately, the economie motiva-
tions behind the decompositions used in the uncbserved components literature are often
left unspecified and are at best problematic when viewed from the perspective of eco-~
nomic theory. 7

For example, the Beveridge and Melson {198%) decomposition assumes chat the inno-
vations to 2z, and ¢, are perfectly correlated. This 1s clearly incompatible with real
business cycle models- in which there is more than one shock (such as in Christiane and
Eichenbaum, 1988b; Braun, 198¢; or 'McGratten, 1989). At the other extreme, the
assumption that zp and ¢, cre orthogonal processes is also incompatible with these
models. HBC models often do lead to unchserved components representaticns for Y {as
in King, Plosser, Stock, and Watson, 1987}, However, nothing inhereént in the models
underlying these representations implies that ¥y ought to be difference staticnary (as
opposed to trend statiomary) or, if so, that z, ought to be a random walk, Finally,
and most importantly, when agents' environments have more than one shock, 2y and c,
will be imperfectly correlated., But these are precisely the elreumstances under which
unocbserved components models are not identified {(Watson, 1986).

The set of restrietlons imposed on C(L} by a particular uncbserved components
model clearly influences inference about C(1). One way to see this 1s to compare
Campbell and Mankiw's (1987a) resuits with those of Watson (1986). Working with an
unconstrained ARMA(2,2) model for Ay,, Campbell and Mankiw estimate C{1) to be 1.52.
But Watson's unchserved components, constralned ARMA(2,2) model generates a quite
different estimate: 0.57. Aside from a minor discrepancy in sample period, the only
difference between the twe procedures is the constraints imposed by the unobserved

components model. The point of this comparison 1s not to evaluate the relative plau-
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3ibility of these two parametric procedures for estimating C{1). Instead, we only
want to emphasize--as Watsen (1986) does--that inference about C(1} can be very sensi-
tive to different identifying assumptions about C(L}.

In contrast to the parametric approaches discussed above, Cochrane (1988a) pro-

poses the following statistic to measure persistence:

var(y, -y, ) k=1
VkE_._t__t.':k_=1,.zzup_ (m
ko® =1 ko
AY -
2 2
Here °Ay = var(y, - Yeo1ls Ay = QOV(Ayt'AYt—j)/oay' and k = 2, 3, .... [8ee Cochrane,

1988a, for a proof of the equality iIn (7).] For a given value of k, Campbell and
Mankiw (1987a) estimate V¥ by replacing the peopulation moments in (7) with thelr
sample analogs. (For an alternative estimator, see Cochrane, 1988a.) We denote the
sample estimator of vk by Gk.

To motlvate the usefulness of vk as a meagure of persistence, we use the fact

that

V= lim v¥

2
Lim z de(T)/oA . (8)

Y

Here SAY(1) is the spectral demsity of Ay, evaluated at frequency zera. Llet z = glw

for w e [0,2n]. If ¥, has the law of motion given by (5), then

_ -1, 2
SAy(Z) = C(z)c(z )u“. (3
Congequently,
22,2
¥ = (c(1)] g (10}

Combining (B) and {10}, we see that the issue of whether a time series is trend sta-
ticnary [that iz, C(1) = O] or difference statiamary [C(1) = 0] is equivalent to ask=-
ing whether the value of its spectral density at Ffrequency zero (z = 1) is zero or

nonzere, respectively.
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To implement this estimator, one must choose a value of k. Consequently, the
crucial identifying assumption underlylng thié measure of persistence is the assump-
tion that whatever value of k i3 chosen, the higher autocorrelations are of negligible
importance. Cochrane (1988a) argue=s that for real GNP a good value for k is in the
reglion of 20-30 years, The key point 1s that, unlike parametric ARMA approaches,
Cochrane's procedure does not exploit information about the short-run dynamics of Yi

to measure long-run dynamics.

UNIT ROOTS IN REAL GNP: DQ WE KNOW?

Parametric Measures of Persistence

In this section,' we analyze the peralstence of US real GNP usiﬂg the parametric
methods discussed above. We begin by estimating a variety of paréimdniously parame-
terized ARMA models for the . first difference of the log of gquarterly real GNP using
data from 1948:1 to 1685:4. To estimate the models, we used Ansley's (1979) exact
maximum likelihood procedure. As Campbell and Mankiw (1987a) do, we restrict our-
selves toc ARMA(p,q)} meodels with p = 0, 1, 2, 3 and q = 0, 1, 2, 3, but do not consider
the case in which both p and q equal =zere. In addition to estimating the uncon-
gtrained ARMA models, we estimated the models (those for which q@ 2 1) subject to the
constraint of trend stationarity (8{1) = C(1) = 0].

Our estimation results are In Table 1. There We report twice the difference of
the log ilkelihood values associated with the unconstrained and constrained versionsz
of each ARMA model. The corresponding number in parentheses is tt}e probabillty value
of the assoclated likelihood ratio statistic implied by the chi-squar-e distribution
with one degree of freedom. These probablility values are inecluded as a convenient
benchmark only. Standard Justifications for interpreting the likelihood ratio sta-
tistic as a realization from an asymptotic chi-square distribution rule out unit mov-
ing average roots under the null hypothesis. (See Kohn, 1979, and Plogser and
Schwert, 1977.) Each estimated ARMA model generates an estimate of C(1), which we

denote by C(1). The sample estimator of C(1) is simply 8(1)/4(1). Since C(1) = 0 by
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construction for the constrained models, Table 1 reports the value of C(1) correspond-
ing to only the unconstrained models.

We want to emphasize four key features of our results:

1. Generally, imposing the congtraint C(1) = 0 causes a greater deterioration in
the likelihood function of the more parsimoniously parameterized models. For
example, the drop is very dramatic in the p = 0 models, where the likelihood
ratic statistie exceeds 150. The smallest drop oceurs in the models with
P2 1and q = 3, where the deterioration in the likelihood function is triv-
ial. Indeed, using conventional sampling theory, we cannot reject the nuil

nypothesis that C{1} = 0 at the 30 percent significance level.

2, An important exception to the general pattern that mere pargimony implies a
smaller likelihood ratio statistic is the ARMA{Z,2) model. In the class of
models with p 2 2, this is the only model in which, using conventional sampl-
ing theery, we can reject the null hypothesis that C(1} = 0 at the § percent

significance level.

3. With the exception of the ARMA(3,3) model, all of the estimated values of
C{1) are substantially greater than 1. At the same time, for most of the
models, the likelihood ratic statistic suggests a great deal of uncertainty

about the true value of C(1).

4. In the ARMA(3,3) model, the only speeification for which the global maximum
of the likelihoed function oeccurs at C(1} = 0, one of the autoregressive

roots equals 0.9489, so that there is near parameter redundancy.

4n alternative way te represent our results is to display the graph of the maxi-
mized value of the likelihood surface of the diffsrent ARMA models as a function of
c{1). This representation makes even clearer the first three features discussed

above. For a fixed value of C(1) equal to k, the parameters of the ARMA model must



- 15 -

satiafy the restriction 8(1} - k¢{1) = 0. To generate the desired likelihood surface,
.we computed the maximized value of the likelihood function for ail the ARMA(p,q)
models with p 2 1, q 2 0, subject to thig reatriction. In so doing, we chose values
of Kk belonging to the grid defined by the boundaries zero and 2 and fixed grid size
0.01,

The resulting likelihood surfaces for the ARHA(O.q). ARMA{1,q), ARHA(Q,q), and
ARMA(3,q) models are displayed in Figures la-1d, respectively. The lowest, middle,
and higheat curves in each figure correspond te q = 1, 2, and 3, respectively.
According to these figures, all of the iikellhood surfaces have a local maximum ét a
large value of C{1). Moreover, all of the surfaces correspending to models with a
nontrivial moving average component flatten out ag C(1) goes to zero. This ig a mani-
festatlon of the well-known fact that the slope of the exact likelihood function is
zero on the unit clrcle.l

To see our first result, compare the global maximum of the likelihood function
with 1ts value at C{1) = 0. Generally, the distance between these two values is
smaller for the more profligately parameterized models. For example, whenever p 2 1
and q = 3, thé global maximum of the likelihood function is very close to its alterna-
tive values. Consistent with our second result, the ARMA{2,2) model stands out as an
excepﬁion to this pattern.r More typical are the ARMA(1,1) and ARMA(2,3} models, in
which the global maximum is extremely close to the value of the likelihood funetion at
c{1) = 0. Finally, consistent with findings in Plosser and Schwert (1977), the graphs
in' Figures 1a-1d indicate that conventional estimatea of the standard error of 6(1)
are likely to overstat.e the precision with which C(1) is estimated. This Is because
conventional methods Ffor computing standard errors are based on the local curvature of
the likelihood (unction at 6(1). For most of our modela, there is substantial curva-
ture around 6(1) but little 4difference between the value of the likellhood function
at 6(1) and C(1} = 0. Intereatingly, conventional methods for computing standard

errors do not give misleading results for the ARMA(1,3) and ARMA(3,3) models. 1In both
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cases, the likelihood functlon is basically constant over Ethe whole range cof values
for C(1) which we considered.

Overall, the results in Table 1 and Figures la-id show that inference about C(7)
is extremely sensitive to the cholee of ARMA model, that is, the choice of p and q.
Some of the ARMA models support the difference stationary perspective since they indi-
cate that C(1} is large and precisely estimated. Models in thals category inelude the

ARMA(1,1), ARMA(2,2), and ARMA{O,q) specifications, q = 1, 2, 3. But other ARMA
models are consistent with the trend statlonary perspective because they indicate that
either Cf1) = ¢ or little can be said about 1ts value. Models in this category
include the ARMA(2,1}, ARMA(3,1), and ARMA(p,3) models, p = 1, 2, 3. The key question
1%, Which perspective is best able to account for these apparently conflicting
results?

To answer this gquestion, we adopt the following approach. First, we ask whether
an empirically plausible trend statiomary data-generating mechanism exists that can
explain those results in Table 1 which appear to suppert the difference stationary
perspective. Then we ask the analog question for difference atationary data-
generating mechanisms.

This general strategy for selecting between competing explanations of apparently

‘ contradictory statistical results was described and implemented in Christiang and
Ljungqvist (1988).7 To apply this strategy, each explanation must be formalized as
one or more fully specified data-generating mechanisms. To represent the trend sta-
tionary perapective, we chose two models, The flrst is our estimated ARMA(3,3)
model. In addition, we considered an ARMA(1,3) model in order to ensere that any
reauits based on the ARMA(3,3} model are not sensitive to the fact that it has a rela-
tively large number of parameters. Although our eatimated ARMA(1,3} model implies a
large value For C(1), the likelihood function hardly deteriorates when we impose the
constraint that C(1) = 0 {Figure 1¢). Indeed, when Campbell and Mankiw (1987a) esti-

mate the ARMA(1,3) model using a slightly different data set and a-slightly different
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estimation metheod, the global maximum actually occurs at 6(1) = 0.3 Consequently, we
chose as cur second t;end Stationary mechanism the Campbell-Mankiw ARMA(1,3) modelf"

To represent the difference stationary perspective, we chose our estimated
4RMA(2,2) model. The choice of only one model reflects our need to economize on com-
putational costs. This parﬁicular model was chosen because we think it has the best
chance of acecunting for the evidence in Table 1 that C(1) = 0 or is imprecisely esti-
mabed. In addition, fncﬁsing on the ARMA(Z,2) model has the important advantage of
makinglour results direetly comparable to those of Campbell and Mankiw (1987a).

We analyze the relative plausibility of the trend and difference stationary per-
specfives using two questions: Can the ARMA(3,3) and the trend statlonary ARMA(T,3)
gpecifications account for the high likelihood ratio statistic and the high value
of &(1) obtained using the ARMA(2,2} model? And can the ARMA{2,2) model account Ffor
the low likelihéod ratio statistlies and the value of 6(1) obtained using the ARMA(1,3)

and the ARMA(3,3) modela?

Evaluating the Trend Stationary Perspective

To assess the plausibility of the trend -stationary perspective, we conducted the
following Monte Carlo experiments. We generated 2,000 data sets, each 151 observa-
tions long, using oﬁr estimated ARMA(3,3) model and the Campbell-Mankiw ARMA(1,3)
model.® For each realization of 151 observations, we estimated both constrained and
unconstrained ARMA(2,2) models and then computed a likelihood ratle statistic to test
the null hypethesis that C(1) = 0. The freguency distributions of these likellhood
ratio statisties, as well as the distribution of the chi-square statistic with one
degree of freedom, are displayed in Figure 2a.

In Table 1, we reported that -the ARMA(2,2) model produced a likelihood ratio
statistie of 4,356 when we tested the null hypothesis that C{1) = 0. Our Monte Carlo
evidence reveals that if the true data-generating mechanism was our ARMA(3,3) model,
then a 1lkelihood ratlo statistic greater than or equal to 4.356 would actually occur

74 percent of the time, If the true data-generating mechanism was Cémpbéll and
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Mankiw'a (1987a) ARMA(1,3) model, then this would occur 38 percent of the time. Obvi-
ously, these numbers are much larger than the Frequency of 4 percent predicted by the
conventionhal chi—s;quare distribution. Indeed, Figure 23 reveals that the likellhood
ratio gtatistic of U4.356 1s clese to the central tendeney of that statistic for
ARMA(1,3) and ARMA(3,3) models. Evidently, both of these trend stationary models can
easlly account for the high likelihood ratio statistle associated with testing the
null hypothesis of trend stationarity obtained with the ARMA(2,2) model.

By-products of the preceding Monte Carlo studies are simulated frequeney distri-
butlions for the values of E(l) obtained using the ARMA(2,2) model in data generated by
the ARMA(3,3) and ARMA(1,3) models. These frequency dlistributions are plotted in
Figure 2b. The maln characteristics of the two distributions are very similar. Both
are bimodal. The larger made is centered about a value of C(1) substantially greater
than 1, while the smaller mode ls centered about zero. The unconditional means of
6(1) are 1.43 and 1.23 when the data are generated by the ARMA{3,3) and ARMA(1,3)
models, respectively. The corresponding standard errors are 0.39 and 0.57. Comparing
these walues with the value of 6(1) produced by the ARMA({2,2) medel (1.53), we con-
clude that both the ARMA(3,3) and the ARMA{1,3) models can easily account for the
estimate of C(1) obtained with the ARMA{2,2) model.

Campbell and Mankiw report that, with the ARMA{Z2,2) model, 6(1} = 1.52, with a
standard error of 0.16. While our reported standard errors are larger, this may
partly refleet the tendency of standard errors based on the loecal curvature of the
likelihood function to overatate the precision with which C{1} is estimated. We con-
Jecture that standard errors based on local curvature of the likelihood funetion will
on average correspond to the standard deviation of E(?) conditional en being in the
larger mode of the bimodal frequency distribution. Some support for this conjecture
is provided by the fact that the standard errors of 6(1) conditional on being in the
larger mode of Figure 2b are 0.20 and 0.23 when data are generated by the ARMA(3,3)
and ARMA(1,3) models, respectively. [fhe corresponding mean wvalues of 6(1) are 1.51

and 1.46.]
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Specification Epror and Near Parameter Redundancy. So far, we have egtablished

that the ARMA(2,2) results ecan easily be accounted for by both of our trend gtationary
models. At first glance, this may seem surprising, for at least two reasons. Firat,
in both data-generating mechanisms, C{1) = 0 by construction; yet the estimated value
of C(1) is typically quite large. Seecond, it i{s well known that, when a moving aver-
age root is near the unit eircle, maximum llkelihood parameter estimates have positive
mass on the unit cirele (Sargan -and Bhargava, 1983). This is referred to as the
pileup phenomenon. Our data-generating mechanisms have an exact unit moving average
root,- As Campbell and Mankiw (1987a) emphasize, the pileup phenomencn suggests that),
other things equal, conventional sampling theory substantially understates the evi-
dence against the null hypotheals that C(1) = 0. In sharp contrast, our Monte Carlo
experiments reveal that the conventional probability value of 4 pereent assoclated
with the likelihood ratlo test of C{1) = 0 substantially overstates the evidence
againat the null hypothesais of trend statlonarity.

Now we show that two key factors aeccount for the results in Figures 2a and 2b:
{1} the specification error arising from the faet that the ARMA(2,2) model is mis-
specified from the perspective of either the -ARMA{1,3) or the ARMA(3,3) model and (2)
the near parameter redundancy problem which arises from the fact that both trend sta-
tionary models have an autoregressive rcot near the unit cirele. We begin by provid-
ing the underlying intuition using large-sample arguments. Then we present the
results of a sultably chosen Monte Carlo experiment.

Cur large-sample argument 13 based, in part, on the probability limit {plim} of
the ARMA(2,2) model when we assume that the true data-generating process corresponds
to the estimated ARMA(3,3) model. This plim was calculated by first simulating a
realization of 20,000 observations from the estimated ARMA(3,3) model and then esti- -
mating an ARMA(2,2) model on the synthetic data set. The resulting ARMA{2,2) model is

given by

(1 - 0.6289L + 0.4618L%)ay, = (1 - 0.3143L + 0.5934%)n, . ()
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The model summarized by (11) implies that C(1) = 1.53, a value very different from
zero, the true value of C{1) in the data-generating process. Evidently, the impact of
specification error is to substantially bias the estimate of C(1) away from zero,

A striking feature of the previous result is that the plim of 6(1) actually
corresponds {up to three decimai places) to the value of 6(1) obtained from the
ARMA(2,2) model estimated with the actual U.5. data (Tahle 1). To understand thig
result, recall the near redundancy of the parameters deseribing the ARMA(3,3) model.
As reported in Table 1, the autoregressive and moving average roots of that model are
(0,299 : 0.5651, 0.%49) and (0.133 : 0.747i, 1), respectively. Since 0.949 is close
to 1, the ARMA(2,2)} model definad by stripping away both these roots has roughly the
same covariance structure as the estimated ARMA(3,3) model., Equation (11) reveals
that this 13 indeed what the probabllity limit of the misspecified ARMA(2,2) model
amounts to. Thiz is because the autoregressive and moving average roots In (11) are
{0.312 ¢ 0.6031) and (0.157 : 0.754i), respectively. These are very close to the
corresponding roots of the ARMA(Z2,2) model estimated using the postwar U.S, data:
(0.293 + 0.614i) and (0.139 = 0.7T6i). Since C(1} is determined entirely by these two
roots, the two ARMA(2,2) models generate eésentially identical values.

The previous reasoning takes as given that a maximum likelihood eatimator of the
migspecified ARMA(2,2) model wants to ignore the maximal autoregresaive and moving
average roots of the ARMA(3,3) model, even though this has the effect of converting
the model into one with a large value of C{1). Why should this be so? HWith a large
améunt of data, maximum likelihood selects a theoretical spectral density that matches
as closely as possible the true spectral density of the data. When the model to be
estimated i3 correctly specified, the estimated spectral dengity will, in population,
coincide with the true spectral density matrix. Houwever, since the ARMA{2,2)} model ia
misspecified, the eatimated spectral density cannot match the true speetral density
matrix at all frequencies. From this perspective, the relevant question is, Which

frequencies will bear the brunt of the specification error?
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An implication of results in Christiano and Eichenbaum (1987) and Cochrane
(1988a) is that maxzimum likelihodd seeks to minimize the average percentage error of
the discrepancy between the theoretical spectral density matrix of the misapecified
medel and the true spectral density matrix. Let SAy(e‘i“’) denote the spectral density
of the true model at freguency w € [0,2x]. The speetral density of the estimated
model is C(e‘i”;o,B)C(ei“’;d:,s)ui, Here we have modified our notation slightly in
order to explicitly refleet the dependence of C on the autoregressive parameters, ¢;

the moving average parameters, 0; and the innovation variance, ui. Inh population, the

maximm likelihood estimator of ¢ and o minimizes®
o SAy(e-iu)/[C(e'iun,B)C(em;¢,a)] du. (12)

Notice, first, that when the true’ data-generating process is trend stationary,
C{1) = 0. Thls implles that sAy = 0 at frequency zero [equation (9}]. By econtinu-
ity, SAy will be small in a neighborhood around frequeney zero. Consequently, other
things equal, the method of maximum likelihood will sacrifice accuracy in a neigh-
borhood of [frequeney zero in order to achieve a better fit over intervals of higher
frequeneies. This suggests the possibility that the impact of speeification error
will fall heavily on the object of interest, C(!). Second, notice that errors over
any small band of frequencies do not contribute in an important way to the criterion
function which maximum likelihood 13 minimizing.

To understand the combined impact of these considerations, examine Figure 3a,
which displays the spectra of ay, implied by the estimated ARMA(3,3) model and the
ARMA(2,2) model of equation (11). Two features of the first spectral density are
worth noting: (1) There are two regions iln which the level of the speotral density
undergoes substantial change--the area around frequency zero and the area around the
seasonal frequeney, 1.5. (2) The first region 1s smaller than the second because of

the very steep slope of the spectrum near zero. This reflects the near parameter

redundancy of the ARMA{3,3) model.
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Figure 3a shows that the misspecified ARMA(2,2) ﬁodel described by (11} succeeds
in closely ﬁimicking the high-frequency properties of the ABMA{3,3) spectrum. Indeed,
the two spectra are virtually identical for values of w exceeding 1, that is, time
beriods less than 6.3 quarters., The brunt of specification error is heavily borne by
the low frequencies.

To better understand Lhe nature of the trade-offs invelved in fikting the mis-
specified ARMA(2,2) model, consider the following experiment. Suppose that we forced
the ARMA(2,2) to match the low-freguency behavior of the ARMA(3,3) model. What would
the cost be? To answer this question, we computed the piim of the ARMA{Z2,2} model
subject to the constraint that C{1) = 0.7 The resuliting spectrum is shown in Figure
3b, where that of the ARMA(3,3) is repeated, from Figure 3a. A3 can be seen, the
constrained ARMA(2,2) model succeeds in capturling the behavior of the ARMA(3,3) model
in the neighborhood of w = ¢. However, to accomplish this, it must set one of the
autoregressive roots cloge to 1, This root and the unit moving average root have a
negligible effect on the spectrum at higher frequencies because they cancel each other
out at those frequencies. Consequently, the ARMA(2,2) model has only two parameters
left to maten the relatively complicated seasonal and high~frequency dynamies of the
ARMA(3,3) model. The best that the constrained ARMA(2,2) model can do is to ignore
the seasonal dip and draw a smeothed version of the ARMA{3,3) spectrum at the higher
frequencies. The misspecifiedVARHA(2,2) model simply does not have encugh flexibility
to capture the dynamics of the ARMA(3,3) spectrum at both the zero and the seasonal
frequencies. Qur analysis indicates that when forced to choose which dynamics to
mimie, the uneonstrained ARMA(2,2) simply gives up on the long-run dynamics.

Specification error will not always result in a biased estimate of C{1}. The
fact that the ARMA(2,2) model generates a large value of 6(1) depends eritiecally on
the near parameter redundancy in the ARMA{(3,3) model. A simple way to see this is to
repeat our previous experiment but assume a trend stationary ARMA{3,3) model in which

the problem of near parameter redundancy is less severe, Figure 3c displays the spee-
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trum of the ARMA(3,3) model obtained by replaciné the largest autoregressive root,
0.949, in our estimated ARMA(3,3) model with 0.500. Comparing Figures 3a and 3c, we
see that the primary effect of reducing the maximal autoregressive root is to expand
the band about frequency 2ero in whieh the level of the spectrum undergoes substantial
change. This suggests that maximum likelihood will give greater weigh‘t to matehing
the low-frequency dynamics of the modified ARMA(3,3) model. Ind-eed, the plim of thé
ARMA(2,2) model fit to data generated by the modifled ARMA(3,3) medel turns out tﬁ
imply a value of 6(1) precisely equal to zero. E‘iguie 3c also displays the spectrum
of this ARMA(2,2) model. Notice that- the spectrum exactly coincides with that of the
modified ARMA(3,3) model at w = 0 and matches its 10Q-rrequency beﬁavlor quite
¢losely. At the same time, it does qulte poorly with respect to the high-fz:equénéy
behavior. As bef‘oré, the misspecified ARMA(2,2) model does not héve enough E'lexi.-;
bility to capture the dynamics of the ﬂRMA(3,3) spectrum at both the zero': and i:he
seasonal frequencies. But now, when forced to choose uhich)djnamics to mimie, the
ARMA(2,2) model chooses to mimic the long-run dynamies. By reducing ‘the Vseverity bf
the near parameter redundancy'problem, we have 1ncEeased the cost of ignoring the A
long-run dynamies.

The previous large-sal-nple considerations suggest that, without near parameter
redundancy, the trend sta‘t_iunary perapective could not havé aceounted for the rlarge
value of 6(1) associated with the ARMA(2,2) madel. To show that this is lndeéd true,l
we repeated the Monte Carlo study of Figure 2a using the modified ARMA(3,3) model
which has a maximal autoregressive root of 0.5. When we did this, we found that only
3 percent of the simulated likelihood ratio statisties exceed the value reported in
Table 1, 4.356. This stands in sharp contrast to Figure 2a, where T4 percent of the
similated likelihood ratio statistics exceed that value. Taken together, these
results establish that both specification error and the near parameter redundancy
problem allow the trend stat'fonary models to account for the high and abparently pre-

cise estimate of C(1) obtained using the ARMA(2,2) model.’
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To summarize, from the trend statlonary perspective, the high value of 6(1) asso-
ciated with the ARMA(2,2} model refleets the choice of maximum likelihood to model the
area arcund the seasonal dip in the spectrum of the daba; This dip may reflect the
effects of the procedure used by tﬁe U.5. Department of Commerce to seasonally adjust
the data (Granger and Newbold, 1977, p. 66). This, in turn, raises the possibility
that measures of persistence generated from low-order ARMA models could be very sensi-
tive to different seasonal adjustment procedures. Jaeger and Kunst (1989) obtain
precisely this result. OQur analysis pruvides‘a possible explanation for their result.

Reconeiling Our Results With Campbell and Mankiw's. Our results contrast gharply

with Lhose of Campbell and Mankiw (1987a). Using Monte Carlo methods, they reach the
conclusion that trend stationary models eannot account for the results obtained with
the ARMA(2,2) wodel. The reason For the difference is that Campbell and Mankiw's
(1987a) Monte Carlc study assumes that the ARMA(2,2) model ia ecorrectly specified. In
particular, pheir data-generating mechanism is the model esbimated- by Blanchard
(1981), aecording to which ¥y 1s a second-order autoregression about a linear trend,
with autoregressive rools equal to 0.5 and O.BY. This impiies an ARMA(2,1) represen-
tation for Ay, with a moving average root of 1,

Taking as given the estimated Blanchard model, Campbell and Mankiw generated 20
data sets, each 151 observations long. Then, using the ARMA(Z,2) model, they ¢omputed
a 1ikelihood ratio test of the null hypothesis that C{1) = 0 for each data set. Their
calcuiations lead to the dramatic result that the likelihood ratlo statistic does not
exceed 4.356 in any of the 20 artificial data sets. Obviously, under their main-
tained assumptionz, the likelihood ratio test is net biased toward rejecting the null
hypothesis that C{1} = 0. Indeed, the test rejects the null hypothesis considerably
less often than it should. Based on this evidence, Campbell and Hankiﬁ infer that
Blanchard's model cannot account for the ARMA(2,2) results,

Camphell and Mankiw {1987a, p. 871) summarize their findings this way: “We con-

clude from our literature review and our small Monte Carlo gtudy that while there are
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some statistical difficulties with our eatimator, there is no reason to think that
these bias us toward rejecting stationarity.” This c-onclusiori seems warranted if the
ARMA(2,2) model is correctly specified, However, both gur results and theirs ‘point. to
other empirically plausible trend éhatlonary medels relative to which the ARMA(2,2)
model is misspecified, hecording to these models, there is reason to think that tests

based on the ARMA(2,2) model are Severely biased toward rejecting stationarity.

Evaluating the Unit Root Perspective

Now we consider whether the ARMA(2,2) quel can aegcount for tne key features of
Campbell and Mankiw's estimated ARMA{1,3) model as well as our estimated ARMA{3,3)
model. The salient characteristic of both of these models is that, according to the
likelihood ratio statistic, there is very little evidence agalnst the hypothesls that
€{1) = 0. Suppose, in fact, that the true data-generating mechanism is given by our
estimated ARMA(2,2) model. what should we expect if we estimate an ARMA(1,3} or an
ARMA{3,3) model? Campbell ‘and Mankiw (1987a) conjecture that the high' likelihood
value associated with'the test that C{1) = 0 reflects thé plleup phenomenaon.

To investigate that'conjecturé, we performed the following Monte Carlo experi-
ment. Using our estimated ARMA(Z,?) niodel, We generated 2,000 data setg, each 151
observations long. For each data set,r we estimated constrained and unconstrained
versions of the ARMA(1,3) and ARMA(3,3) models, thus generating 2,000 likelihood ratio
statistics f‘or testing the null hypothesis that €(1) = Q0. Congistent with Campbell
and Mankiw's con Jecture, we found that, for the ARMA(1,3) and ARMA(3,3) models, 37 an& ’
47 percent, respectively, of the likelihood ratio statistics are identically zera,
Figure 4 displays the frequeney distributions of the estimated values of C(1) rorre—
sponding to the ARMA(1,3) and ARMA(3,3) models. In both cases, the estimated C(1)'s
pile up at zero. This, in turn, corresponds o a pileup of likelihood rakio sta-.
tistics at zero. ‘

Among the estimated C(1)'s that exceed zero, the vast majority are greater than

1. This suggests that the tybical likelihood surface in the Monte Carlo study
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resembles the surfaces depicted in Figures 1b-1d in two respeets. First, there is a
local maximum in the region of large values of €(1). Second, the likelihcod surface
is increasing as C(1) declines toward zerc. These results are consistent with the
notion that, across synthetic data sets, the likelihood surface tilts back and forth,
with the global maximum shifting hetween extreﬁe values at €(1) = 0 and C{1} > 1.
Overall, the empirical values of 6(1) implied by the ARMA(1,3) and ARMA(3,3)
models are clearly consistent with the bilmodal distribution for the simulated 6(1)'3
when the data-gengrabing mechanism is the ARMA(2,2) model. We conclude that the
ARMA(é,z) model can account for the salient characteristics of the estimated ARMA{1,3)

and ARMA(3,3) models.

Summary .

We have argued that the parametric methods of Campbell and Mankiw {1987a) do not
provide a basis for taking a sirong position on whether shocks to real GNP are best
characterized as having temporary or permanent effects. Perhaps the best way to con-
clude this section is to consider Figure 5, which displays the impulse response func-
tions of real CNP implied by a subset of the ARMA models that we estimated. Included
are the impulse response functions implied by the Blanchard ARMA(2,1) model estimated
uaing his data up to 1980 (old Bianchard), the updated verslon of that model estimated
using our larger data set¢ (pew Blanchard), as well as our estimated ARMA(2,2) and
ARMA(3,3) models.'® HNotiee that all of the Impulse response functions have very simi-
lar shapes for the first 5-10 quarters. Only after this ig the impulse respense funec-
tion of the difference stationary ARMA(2,2)} model radically different in shape from
that of the trend stationary models. To sharply differentiate among these models
would require réasnnably precise information about the higher-order autocorrela-
tions. Needless to say, these are not estimated very preclsely with postwar U.5. real
GNP data.

Campbell and Mankiw concluded that a 1 percent innovation in real GNP cught to

induce a revisioﬁ in the long-run forecast of real CONP of more than 1 percent.
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Suppose by the long run we mean anything more than four years. Figure 5 indicates
that this conclusion 1s supported oniy by the ARMA(2,2) model. None of the trend
stationary models support it, and -one of these models, the ARMA(3,3), is at least as
plausible as the ARMA(2,2).

Figure 5 also reveals that all of the ARMA models we investigated have impulse
responge functions above the old Blanchard model. Suppose we accept Blanchard's
(1981, p. 150} assertion that this model summarizes macroeconomists' views in 7980
about the nature of the dynamies 1In real GNP. - On this premigse, lt seems fair to con-
clude that macroeconomists must now revise upward their point estimate of the half-
life of an innovation in réal GMP. This is true regardless of whether they take a
trend or a difference staéionary perspective. Less obvious is the idea that the
inereased point estimate has any economic significance. We know of no interesting
case in which the differences in persistence among the three trend stationary models
in Figure 5 are important.ll Later we will discuss whether tﬁere are interesting eco-

nomic i1ssues at stake in adopting a unit root perspective.

Nonparametric Measureg of Persistence

fbove we argued that one cannot distinguish between the competing null hypctheses
that postwar U.S. real GNP is trend stationary or difference stationary using the
parametric methods of Campbell and Mankiw {1957a). A natural response t¢ this problem
Is to examine the peraistence of real GNP using the nonparametric methods of Cochrane
(1988a).

Table 2 reports Cochrane's variance ratio statistie vk for the values of k used
by Campbell and Mankiw (1987a). The numbers in parentheses are asymptotic standard
errors computed using the formula of Priestly (1982, p. 1463): g.e. (Gk) =
Vk[{3/ﬂ)[T/(k+1)]}1/2. To make our results comparable with those above, we alsa
report nonparametric estimates of C{?), obtained from ﬁk, using a transformation dis-
cussed in Campbell and Mankiw (1987a). Let RZ = 1 - ai/uiy. Then (8) can be written

as
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et = (w-e3))12. (13)

Here RZ is the fraction of the variance in Ay, that is predictable using all lagged
values of 4y,. Let p denate the first-order autocorrelation of Ay.. Campbell and

Mankiw's {1987a} nonparametric estimator of C(1}, &(1)kr is defined by
c(n¥ = (V¥ 01092 (%)

where ; iz the sample estimate of the first-order autocorrelation of A¥¢ .

In practice, to galculate Cochrane's variance ratio statiatic, we must choose a
value of k. As we stressed earlier, the key identifying assumption underlying this
measure of persistence iz the assumption that, whatever value ?F k i3 chosen, the
higher autocorrelations are of negligible importance. This suggests that k should not
be chosen toc small. To see this, notice that G‘ = 1+ 0y, As long as 8y, is posi-
tively autocorrelated, G1 will exceed 1 even if the process ls tFend stationary. But
when k = T - 1, Gk = ¢ by construction. Clearly, k should not be chosen too large
relative to the sample aize, T. Table 2 reports the values of Gk and &{1)k for a
variety of values of k. Comparing Tables ! and 2, we see that, roughly, the non-
parametric estimates of C(1) are lower than the parametric estimates of C{1). But the
reported standard errors, calculated using the Priestly formula, are all quite large
relative to the point estimates.

Aceording to fable 2, distinguishing between the classes of trend staticnary and
difference staticnary models using Cochrane's nonparametric measufe of persistence 1g
difficult. Unfortunately, we cannct formally test the null hypothesis of trend sta-
tionarity since, under that null hypothesis, Priestly's formula for the standard error
of Gk equals zero for all k. We can, however, ask whether the representative models
discussed in the last secticn are cnﬁsistent with the computed ak's.

To investigate this question, we performed the following Monte Carle experi-

ment . We considered three data-generating mechanisms: the Campbell and Mankiw

ARMA(1,3) model and our estimated ARMA(2,2) and ARMA(3,3} models. For each of thase,
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we generated 2,000 data sets, each with 151 observations., We then salculated Gk For
k=1 2, ..., 75 using each of the data sets. The results of our experiment are
reported in Table 2. To understand these numbers, consider a particular column, say,
the one labeled ARMA(1,3). Any given row in that column corresponds to a particular
value of k. The corresponding entry in the row is the fraction of times {out of
2,000) that the k-lag variance ratio statistie caleculated from the simulated ARMA(1,3})
data exceeds the corresponding empirical value of \:'k reported in column {(3). The

numbers in the columns labeled ARMA{2,2) and ARMA{3,3) are constructed In an analaogous

way. Notice that the probability values in columns {4#)-(&) lle between 0.18 and 0.73,
50 that the empirical Gk's in column {3) can be accounted for by each of our three
ARMA modely., We conclude that, even from this limited perspective, the Gk's do not_
let us discriminate between trend and difference stationary representations of the
data,

Examining the same empirical variance ratig gtatistics, Campbell and Mankiw
(1987a, p. B75) conclude that "the nonparametric estimates thus confirm cur finding
that postwar quarterly real GNP appears to be more perzlstent than a random walk."
The reason Campbell and Mankiw give for reaching this conclusion is that "Gk for ﬁhe
real GNP data are consistently . . . larger than one would expect te find for a random
walk in a sample of this size” (pp. 874-75}. This can be seen in Figure &, which

Kig implied by the random walk model, together with

plots the mean values of the ﬁ
the ﬁk‘s calculated using the data. What Campbell and Mankiw's reasoning ignores is
that a large class of trend stationary models, including these which they consider,
imply mean values for the Gk‘s uhichlclosely-mimic their empirical couﬁterparts. Thig
also can be seen in Figure 6, which displays the mean values of Gk implied by our
estimated ARMA(3,3) model.

A different way to state cur objection to Campbell and Mankiw's argument is that

it implicitly assumes that the direction and magnitude of the bias in Vk i3 relatively

insensitive to the underlying data-generating mechanism. Unfortunately, this assump-
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tion is not true. Suppose that the underlying data-generating preocess is a random
waik. Campbeil and Ménkiu {1987a), among others, stress that, in this case, the vari-
ance ratio statistic is severely downward blased. In dontrast, suppose the true
generating mechanism is our estimated ARMA(3,3) proceés, so that V - 0. According to
Figure 6, the Gk's are consistently much larger than zero, even for k = 75. We infer
that, at least for this data-generating mechanism, the varianﬁe ratio statistiec is
very-suﬁstant{ally upward biased.

- We conclude that, given the sample siie of our data set on real ONP, the variance
ratiu'statistie gives us almest no reliable information, Our ncnparametric estimates
of V and C{1) are na doubt consistent with the view that postwar U.5. real GNP is more
péfsistent than a réndumlualk. Buf they are at least as consistent with the view that
postwar U.S. real GNP 1s less persistent than a random walk. Which view is btrue? We

ean't tell.

UNIT RCOTS IN REAL GNP: DO WE CARE?

Suppose we knew the answer to the questlon, How much should one revise a long-run
forecast of aggregate oubtput in response to an innovation In U.S. real CNP? Would we
care? At one level, the answer is ehvicus: unit roots per se cannot be very impor-
tant. The existence of a unit root means only that C{1) * 0; that does net preclude a
value of C(1) arbitrarily close to zero. We do not know of any model in which agenta’
deeigion rules are diseontinuous in £{1). Therefore, it seems likely that for any
trend stationary specification of the forcing variables in agents' environments, some
difference stationary specification will imply arbitrarily similar dynamic behavior.

In practice, however, this is not the perspective of coneern to economists.
Typically, the analyst's problem is not one of selecting between different specifica-
tions with arbitrarily similar values for C{1). Usually, the decision to medel a time
series as difference or trend staticnary leads the analyst to adopt specifications
with very different implleatiens for C{1}. For example, in Deaton’s (1986) analysis

of the PIH, the difference and trend stationary specifications for measured laber
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income imply values of C(1) near 1.5 and Zero, respectively. Similarly, in Hansen's
(1989) analysis of &ac models, the difference and trend stationary Specifications for
technology shocks imply values of (1) equal to 1 and Zera, respectively. In both
cases, the dynamic properties of the endogenous varlables behave very differently
depending on which specification is chosen.

Here we argue that the dramatic results obtained by Deaton and Hansen de_ not
reflect model 3ensitivity to unit rootg per se or even the value of univariate mea-
sures of persistence like C(1). Rather, they reflect the assumption that the foreing
variables of coneern to agents are driven by a single shock. Under these cireum-
stances, the assumption of difference statlonarity implies that all of the shocks to
agents' environments have purely permanent effacta, Once the unit root issue ig
decoupled from the temporary/permanent issue, the unit root issue loses much of its

quantitative significance.

Unit Roots and the Permanent [ncome Hypothesis

Because of ita simplicity, the PIH is a convenlent vehicle for 11lustrating both
Why unit roots seem to matter and why they may not matter after all. We use the PIY
for 111u§trative purposes only. Unobserved component models of lasor income will not
remedy the empirical shortcomings of the PIY (West, 198Ba). More generally, this type
of modification to the basie model cannot account for the fact that the orthogonality
conditions implied by the PIH are vielated by the data (Flavin, 1981; Campbell and
Deaton, 1988; Campbell ang Mankiw, 1989; and Christiang, E{chenbaum, and Marshall,
1989),

According to the PIH, the level of consumption depends on both agset and labor
income, However, given a constant real interest rate, the only thing that induces
households to set date ¢t consumption, Cey B0 a value different from ¢,_1 19 news about
current or expected future labor income, y:. When such news arrives, households
adjust consumption by the annuity value of the resulting revision to expectations

about y:+s for 5 =0, 1, ..., This annuity value, computed using the constant inter-
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ast rate r, is the change in consumption that can feasibly be malntained indefinitely
in an- expected value sense, Formally, the PIH posits that

1

hey = 7.7 li- o[m} E¥ea: - BpoVeei)” (15)

Hall (1978) describes a partial equilibrium consumer optimization problem with a solu=
tion which implies (15), while Christiano {1987}, Hansen (1987), Sargent (1587}, and
Christiano,’ Eichenbaum,  and Marshall (1980) discuss general equilibrium environments
whieh rationalize relation (15}.

We now consider the case that has been made for the view that unit roots
matter. Suppose that agents only 3ee yt and that its univariate time series represen-
cation 1is AY: = C(L)et. Here e, 13 the innovation in yt; that is, e yt - Ep_
1yt. To see how sensitive dey 15 to c{L}, suppose that y:-is a first-order auto-
regression about a trend with autoregressive parameter 4, so that C(L) = (1-L)/(1-
L), When & = 1, yt is simply a random walk [c{L) = 1]. DNotice that (1) drops dis-
continuously to zero for values of ¢ less than 1. With this general specification of

c(L), equation {15} implies that

e ) = —E——
pey = Clogley = 7o o3 v (16)

One way of measuring the gensitivity of the mpdel's implications to different
apecifleations of ¢ is to examine the relative volatility of consumption, VAC. Deaton
{1986} and others define V as the ratioc of the sbandard deviation of changes in
cansumption, [E(Ac ) ]1/2, ke the standard deviation of the univariate innovation
in y:, a. For simplieity, suppose r = 0. 01. Then, according to (16), V,. = 1 when
¢ = 1. However, V,, = 0.5 when & = 0.99. Obviously, the impact on consumption vola-
Eility of a change in ¢ 1is ve;y large for values of ¢ in a neighborhood of 1. This
sensitivity reflects the fact that huusehulds place substantial weight on expected
ineome in the distant future. énd this is precisely where small differences in ¢ in a

nexghborhoud of 1 have large effects.
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At First glance, then,.this example seems to provide pawerful motivation for the
view that economists should care about unit roots, anever, we think the example is
misieading., To demonstrate why, we use an argument in Quah (1989) which draws out the
implications of the well-known faet that there exists an infinite number of orthogonal
decompositions of difference Stationary processes into persistent and transient com-
ponents. Let ¥ip and ¥gy denote the time t valueg of two orthogonal differance and
trend stationary stochastic processes, respectively, which constitute such a decom-

position, so that

v - Yie * Yo an
Assume that the time serles representations of ¥y and Yo are given by

8y = C1(L)e't (18)

8y, = (I-L)CO(L)EOt (19)

where €i¢ Is the white nolse innovation to Yig for i = 0, 1, Also, €ge and £y are
orthogonal at all leads and lags. Consistent with its definition as the trend sta-
tionary component of y;, the sum of the coefficients in the moving average representa-
tlen for AyOt is zero.

For illustrative purposes, consider the random walk case, Ay: S One c;ass of

orthogonal decompositions of this process is given by

C1(L) = 1 « gL {20)
CO(L) A | {21)
2 2 -22

051 3 Es1t = {1+p) a’ (22}
a® : Ee2, - VB2 (23}

ot 1t
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ror all 0 < ¢ £ 1. To preve that {20}-(23) is a valid decomposition of y;, we need
only verify that E(Ayt) = ai and E(ﬁytnyt_s) =0 for 52 1.
Under the assumpticn that nhouseholds ohserve ¥ and yOt'Separately, relation

(15) impliea that Acy evalves according te

- 1 _r e (=
te, = Clmglee Y T T cylaarivoe: (2}

Thus, the time t change in consumption equals the annuity value of the inncvation to
the permanent component of labor income, Eqp. plus the annuity value of the innovation

to the temporary component, eqp- Subgtituting (20)-{23) inte (24) we obtain

r
te, = (1+ W{‘l-t-r))aw + 35 F ot (25)

Therefore, the relative volatility of consumption is given by

2 z 1/2
y - 1+ w/1er) N r/{1+r) " ) (26)
Ac 1+ ¥ 1+ 9

This expression is minimized for ¥ = 1, in whlch case V, = 0.995. The assumption
that agents'react to this partieular orthogonal decomposition of yt results in only a
trivial reduction in consumption yolatility relative to the case in which agents only
cbszerve yt. Specifications of CO(L) and C1(L) that reduce V, tc the empirically
plausible value of 0.5 are described belew and by Quanh (1989). However, all the intu-
{tion for understanding how Quah's exampleg work is contained in our example.

There are at least two ways to understand why V. is less than 1 when ¢ exceeds
zero. First, note from (20}-(23) that, as ¥ increases, the varlance af innovations Eto
the permanent component falls relative to the variance of the innovations to the tem-
porary compcnent, S0 that, loosely speaking, an increasing proporticn gf news i3 aboub
the stationary component of labor income. This is important for determining the rela-
tive volatility of consumption because the response of consumption to an innovation in
the temperary cemponent of yt 13 much smaller than the corresponding response ta an

jnnovation in the permanent component.
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Second, congider the reapense of y to a one standard deviation increase in E1pr
that is, o /(1+w} The dynamic response of Ayt+s to such an impulse is given by
aE/(1+m), maE/(1+w) for s = 0, 1, respectively, and zero for s > 1. The cerrespanding
response of y:¢s is ae/(1+w) for s = 0 and L for 3 > 0. Notige that, irrespective of
the value of ¢, the long-run response of y: to a one standard deviation impulse in the
permanent component is C(1}az, which equals a, in our example.ls Wnile the eventual
impact of a typieal permanent shock is invariant to ¥, the path by which one gets
there is not. With ¥ = 0 {the ho-component case), the response of y§+s is equal te
9 for all s » 0, s¢ that the long-run impact on labor income of a typical innovation
is realized immediately. In contrast, with ¢ > 0, the long-run impact ¢n y: is not
realized until one period later. Since r » 0, the present vaiue of a permanent stan-
dardized innovation to Y1t 1s decreasing in . Therefore, the response of consumption
to such an innovation is also decreasing in y, Consistent with this intoition, Vnc is
invariant to y when r = 0.

To pursue this line of reasoning, we consider the following elass of decomposi-

tions for y::
¢ (L) = (1 oLy~ (27)

ford =1, 2, 3. In additien, we set p = 0.98 ang o = 1. The remaining elements of
the decomposition——a 1, UEO' and CO(L)--are determined by the requirement that Yipg +
yOt ig a random walk with Innovation variance 02 The scalar aE1 is determined by the
requirement that the long-run impact of an innevation in ¥q¢ of magnitude o, must
equal o . This condition requires that 051 equal (1—p)dua. Sinee |o| < 1, o, ¢ is a
decreasing function of d. This in turn suggests that V ought to be decreaslng in
d. The remaining elements of the unobserved components model are obtained using the

methods described by Quah (1989), These are given by

d = 1: CO(L) = 1/(1=pL) (28)

o2 = paz (29)
E

o
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d=2: Cylly = (1-aL)/(1-sL)? (30}
= 9202/21 {31}
eo E

where a satlsfies a —ya+ 1, laj €1, and ¥ = 2[14—(1-;)2,’9], and
. 1 . a3

d = 3: CO(L) = (1—aWL)(T—32L)/(1 pl} (32)
2 = pieP/laa,) (33)
£q € 172

14
where Ial| <1 fori=1, 2.

_Figure T plots the First 500 ccefficients in the polynomial in L, gslIC](L)/’U—L)
for d = 1, 2, 3. ‘Each curve represents the impulz: response of yt to a one standard
deviation innovation in T Cansi'stent with our previcus example, the iong-run
response of a typicai sheck is invariant to d. This can be seen in Figure 7 by noting
that all of the impulse response functions converge to 1, the long-run impact of a
standardized innovation in the no-component version ofF the model {d = 0}. At the same
time, the value to households of a one standard deviation shock to eq. 15 not invari-
ant to d. This is because forward-locking agents care about the intermediate-term
impact of permanent shocks. Since those are a decreasing functien of d, the annuity
value of a standardized innovation in ey 18 decreasing in d. This anouity value
equals 1, 0.82,70.145, and ¢.31 In the d = ©, 1, 2, and 3 decompegitions, respectively.

These arguments do not imply that vue necessarily falls as d increases. This is
because consumption also adjusts in response ko g4 - Not surprisingly, as d increases
and permanent shocks become less important, Gtemporary shooks become more important.
The annulty value of a standardized innovation in eqc 1s 0, 0.330, 0.422, and 0.478 in
the d = 0, 1, 2, and 3 decompo3itions, respectively. However, the inereasing contri-
bution of temporary shoeks to UAc is smaller than the reduced impact of permanent

shoeks. We derive the relative volatility of ponsumption, V from these annuity

se’

values by squaring them and taking the sguare root of the resulting sum. Doing so0, we

find that VM equals 1, 0.88, 0.62, and 0.57 in the d =0, 1, 2, and 3 decompoai-
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tions. Interestingly, when a4 - 3, Vnc is very close to the empirically plausible
value of 0.5,

To summarize our Findinga, consider three of the models presented above: the ¢ =
1, no-components model; the ¢ = 1, components model with d = 3; and the ¢ = 0.99, no-
components model. The implications of the first model for the behavior of consumption
are very different from those of the other two models. At the same time, the implica-
tions of those ather models for consumption dynamics are very similar. The key fea-
ture that distinguishes the first medel from the others is the absence of temparary
shocks.

This suggests that what is important for the dynamics of consumption ig not the
value of 4 per se, Rather, it is the relative importance of temporary and permanent
shocks. A tight link between ¢ and the dynamics of consumption exists only under the
strong assumption that agents do not see and respond te different components of labor
income. Without this assumption, the assertion that the excgenous driving variables
faced by agents eentain a unit root--or that C(‘!)uc has a particular value--does not
have important implications for the dynamies of eonsumption.

A key feature of the two-gcomponent model of labor income is that agents' informa-
tion setz are larger than the econometrician's. We can build on this fact to reina
foree the intuition about the driving force underlying our results,'® Consider the
extreme example where economic agents actually know the entire Ffuture path of their
labor income. The econometrician does not. Frem the perspective of agents, the inno-
vation varlance of labor income equals zero, so that the change in econsumption always
equals zero. This would be true even if there were a large innovation variance ang a
unit reot in the univariate laber income process. The examples we have discussed

above can be viewed as less extreme 11lustrations of this point,

Unit Roots and the Real Buainess Cycle Model

Now we use the results above to analyze a second example which, according to

Hansen (1989), suggests that model dynamies appear to be senslitive to unit rogts, The
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model he congiders is one in which a representative agent chooses consumption oy,
capital kt+1,,and hours worked n, to maximize Zt:o[ln(ct) + 7 ln(T-nt)} subject to the

resource constraint c, + Ky 4 = (1-8)ky = ¥- Here y., time & gross output, is pro-

duced according to the Cobb-Douglas production Function, ¥, = (ztnt}(I_B)kg. The
-¢myom variable zp is & technology shack that satisfies
slog{z } = & + Cll)s, l (34

where C{L) = (1-L)/(1-¢L}.

Hansen's resuits indicate that the yolatility of hours worked, ng, relative to
produetivity, yt/nt,,is very senaitive o values of & near 1. The basic intuition
behind this result can be described as foliows. Given our production functien, the
marginal productivity of labor ig propertional to average productivity, y./n;- Other
things equal, both are an inecreasing function of z.. Wnen 4 is positive and lesg than
1, a positive inncvation in 2y is assoclated with a smaller upward revision in the
cutlook for zp 4. Under these circumstances, the returns from working at Eime bt are
unusually high, thus triggering a strong intertemporal substitutlion.effect on ng.
When & = 1, the outlook faor future 2z, moves one-for-one with innovations in z, since

E for all i, t » 0. Not surprisingly, here agents have less incentive to

5Zg41 = %t
intertemporally substitute labor over time.

In analyzing this example, we congider two measures of the volatility in hours
worked, a- One measure is the standard deviation of Alog(nt), while the cother is the
standard deviation of log(nt), after the Hodrick and Prescott filter has been applied
(Prescott, 1986). Similarly, we have two measures of the volatility of productivity,
uy/n' One is the standard deviation of Alog(yt/nt); the other, the gtandard deviation
af 1og(yt/nt}, after the Hodriek-Prescott filter has been applied.

All model parameter values--aside from these pertaining to Alog(zé)——coincide

with those used in Christianc and Eichenbaum (1983!:).ls The method used to approxi-

mate the solution to the model is also described there. An important feature of the
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solution is that it implies a linear bivariate time series representation for log(n,)
and log(yt/nb). In addition, beth log(n,) and log(y,/n.) depend partly on the present
discounted value of expected future values of log(zt). This allows us to use the
intuition developed earlier.

Table 3 reports results based on the first-difference filter.'’ Comparing
columns (1) and (2), we see that "nfuy/n rises more than 40 percent when ¢ drops from
1 te 0.99, Clearly, this is due primarily to an increase in the volatility of n,. As
¢ dropg below 1, fluctuatiens In z, g0 from being 100 percent permanent to being 100
percent temporary. As indicated above, employment responds more to temporary than ;o
permanent shocks because agents Intertemporally subgtitute hours worked Coward perjiods
in which the returns to working are relatively high.

The sharp difference between these models reflects the msintaiped agsumption that
there i3 only one source of shoeks to agents' environments. The analysils above sug-
gests that if we abandon this assumption and agdopt the d = 3 components representation
of z, given by (32)-{33), then the volatility of employment should rise toward the
value implied by the trend statlonary model (¢ = 0.99). This is because a substénblal
component of the shocks to the agents' eqvironments will then be transitory. And
these are the types of ghoeks that induce large changes in labor supply.

The results of this experiment are reported in column (3} of Table 3. Hotice
that the relative volatility of hours is now roughly equal to the value which emerges
from the ¢ = 0.99 model. Alge, the other moments of the unobserved components model
match the corresponding moments of the ¢ - 0.99 model reasonably well. Table 4
reports results for the same three model economies but for which the Hodrick-Prescott
filter has been used to induce stationarity. The same general pattern observed in
Table 3 emerges in Table 4.

Thesas calculations roughly confirm the findings in our analysis of the PIH.
However, there are at least two respects in which a more complete analysis is required

bafore firm conclusions can be reached. Firgt, we have only studied a small subset of
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the second-moment propertles of the model. The ¢ = 0.99 and the difference stationary
components models may differ substantially in other dimensions. Second, we wonder
whether a components representation of 2, can mimic a trend stationary RBC model with

substantially iouer values of ¢.

CONCLUSION

In this paper, we have argued that macroeconomists should not take strong posi-
tions on whether postwar U.S. real GNP is trend cor difference stationary. As we
emphasized in the introduction, there are strong a priori reasons for being suspicious
of claims in Favor of difference or trend stationary representations of real GNP. A
simple way to.see this is to consider parametric ARMA repregentations of the Ffirst-
differenced data. Blough {1988} and Cochrane {(1988b) have pointed out that every
trend statlonary ARMA model has a difference stationary ARMA model leccal to i%, and
vics versa., Distinguishing between these on the basis of a finite data set is surely
an impassible task, . This a prierl line of reasoning ean be used to dismlss Campbell
and Mankiw's (1987a) rejection of the hypothesis of trend stationarity in faver of the
difference stationary ARMA(2,2) model. To do 3¢, one need only congider a trend
stationary ARMA(3,3) model with autoregressive and moving average roots identical to
thoge of their ARMA(2,2) model plus an autcregressive root of 1 - e and a moving
average root of 1. For g > 0 but suffleiently small, it must be true that there is no
detgctable difference between the competing models,

A similar line of a priori reasocning could be used to dismiss almest any argument
in faver of a given difference stationary model of real GNP. One need only select a
trend stationary model that is arbitrarily close to it. But suppose this were the
only way to salvage the trend stationary perspective. A4t best, this would be a
Pyrrhie victory for that perspective since, fer all practical purposes, the selected
trend stationary model would coincide with the given difference stationary madel.
This 19 because the two models' impulse-response functions would be virtually iden-

tical at all hut infinite horizons. An analogous set of observatlons applies to argu-
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ments in favor of a given trend stationary model of real GNP. In this paper, we go
beyond the a priori line of reasoning by showing that one cannot distinguish between
difference and trend stationary models with impulse response functions which are sub-
Stantially different at horizons even as short as three Years. On this issue, the a
priori line of reasoning summarized above is moot.

It 1s useful te contrast our results with those in the literature on the power
properties of stationarity tests. A variety of authors have concluded that existing
tests of whether time series are difference stationary or trend staticnary have ex-
tremely‘poor power properties (for example, Delong, Nankervis, Savin, and Whiteman,
1988). Power issues are of interest in the context of tests of the unit root null
hypothesis because this hypothesis is typlecally not rejected for postwar U.S. real GNP
data. However, power issues are obvlously of less interest when the null hypothesis
is rejected. This is precisely the relevant case in the context of testing the trend
stationary null hypothesis. The major result in the literature (s the strong rejec-
tion of trend stationarity for postwar U.$. real GNP {Campbell and Mankiw, 1987a}.

The principal focus of the first part of our paper is on this rejection. From
this perspective, the issue of interest is the size of Campbell and Mankiw's {1987a)
test, that is, the probability of rejecting the null hypothesis if the data-generating
mechanism 13 in fact trend stationary. The size characteristics of thelr test are
excellent if the analyst specifies the correct ARMA representation of the data. Howe
ever, we show that thelr tests give extremely misleading results 1f that ARMA repre-
sentation is misspecified in seemingly innocuous ways. This result complements those
of Dedong, Nankervis, Savin, and Whiteman {1988}, who show that specification error in
the form of unmodeled residual correlation can lead to excessive rejection of the
trend stationary null hypothesis.

Viewed as a whole, the results here are consistent with the view that one zannot
discriminate, on the basis of postwar data, between the null hypotheses of trend and

difference stationarity for U.S. real GNP. At the same time, economic theory offers
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no guidance on this questien. As Sims (1988) has emphasized, in llnear models, the
trend behavior of endogenous variables is almost always determined by the analyst's
assumptiong about the trend behavior of the unobservable forcing variables in agents'
environments. It does not emerge from somedprinciple of econcmic theory., True, one
pan construct endogenous growth models in which the predietion of difference sta-
tiemarity emerges from the produsticn of human capital. (See, for example, King,
Plosser, and Rebelo, 1988; King and Rebelo, 1986; and Christianc and Eichenbaum,
1988a.) Unfortunately, though, these implications depend very sensitively on par-
tioular functional form assumptions about which economic theory has little to say.
Should we despair at not knﬁwing? We think not. Our results suggest that the
implications ¢f a broad class of dynamie models are reasonably robust to whether the
forelng variables 1In agengs' environments are modeled as trend er difference sta-
tionary. Existing examplés which purpert to document extreme sensitivity actuélly
demonstrate sénsitivity te the extreme agsumptions that all shocks are either tem-
parary or permanent, We think macroeconomists ahould care very much abﬁub the rela-
tive importanée of permanent and temporary shoéka to agents' environments. But con-
ventional atheoretical measures of persistence convey little information about this
question., fnd structural inferences based on such measures ought to be viewed with
extreme skepticlsm, Convineing inference requires the use of economic theory in con-

junetion with the data.



- 43 .

NOTES

'Ta see this, suppose that the model being estimated is an ARMA(p,2) with
p > 0. Denote the moving average roots by iy and Ay. For simplieity, assume these
are real. Let ¢ denote the parameters of the pth-order autoregressive component, It
is well kmown that the exact likelihood functlon obtained after concentrating out the
innovation variance, L(¢,A1,x2), has the property that L(@,x1,12} = L(¢.11,1/12).
Therefore, L3(¢,x',1) = 0, where L3 denotes the partial derivative of [ with respeot
to its third argument. We ean express L as a function of C(1} = k by substituting out
for 1y in terms of k: L[@,x1,1—k¢(1)/(1—i1)]. Then the partial derivative of [ with
respect to k is —L3[¢.11,!-ko(1)/(1—&1)10(1)/(1—11), which equals zero for k = 0. Lat
£(k) = L{é,l1,1—k¢(1}/(1-kj)i, after maximizing out 4 and Ai{- A& simple envelope argu-
ment establishes that the derivative of £ with respect to k 13 alsao zero,

2Essentially, the Christiano-Ljungqvist method is a model selection strategy.
Alternative strategies are the sequential likelihood ratio teats and Akaike (1974) or
Schuwartz (1978) criteria. These model selection procedures may be quite useful for
choosing among forecasting models when there is a clear gain to parameter pargimony.
However, they may not be appropriate for our purposes, The Chrlstiano-L Jungqvist
procedure is closely related to methods for testing nonnested models, the encompassing
Principle discussed by Mizon and Richard (1986), as well as the selection criterion
used by Sargent (1976) and Christiano and Eichenbaum (1987).

3In their analysis, Campbell and Mankiw (1987a) include daca From 1947 and esti-
mate their models using a Kalman-filtering algorithm.

*The log likelihoed value associated with these parameter values 1a only 0.015
below the global maximum,

5All shocks were drawn from a normal distribution with mean zero and standard
deviation 0.0100847.

E'I'his formula can be obtained as Follows. First replace the Gaussian likelihood
funetion by its frequency domain approximation [for example, egquation (45) in
Christlano and Eichenbaum, 1987]. Then replace the periodogram in that formula by the
spectral density of the true model. The formula in the text 13 obtained by concen-
trating out the innovation variance from the latter and by driving the number of
observations to infinity. Christiano and Eichenbaum (1987) use the unconcentrated,
multivariate version of this formula to analyze the large-sample consequences of maxi-
mum likeliheood estimation of a misspecified model. The formula in the text is also an
implication of equation (A4) in Cochrane (1988a). Both our derivation and Cochrane's
assume that C(1) + 0. The following computational experiment makes us somewhat con-
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fident that the formula also holds when C(1} = 0. We computed the plim of the mis-
specified ARMA(2,2) model ln two ways. One corresponds to the method deseribed in the
text. The other is a discrete analog of the formula in the text which employs 1,000
equispaced points around the unit circle. Both methods yleld virtually identieal

results.
"This model is (1 - 1.5075L + 0.5296L2)ay, = (1 - 1.1930L + 0.1930L)ny.

fe repeated all the experiments diseussed in this section with the Campbell-
Mankiw ARMA(1,3) model as the data-generating process. With respect to the asymptotie
arguments, our results were virtually identical. The results of redoing the last
Monte Carlo discussed in the text were similar, though less dramatic. The effect of
reducing the autoregressive parameter from 0.95 to 0.5 is to reduce the percentage of
1ikelihood ratio statlstics exceeding U4.356 from 38 to 22.

’In fact, 14 of the 20 likellhood ratio astatistics are exactly equal to zero,
while the largest only equals 1.7T.

%o obtalned the following point estimates for the ARMA(2,1) model with
c(1) = o1 '
sy, = 1.35Tay - 0.3938y, , + M - N _y-
&7 (oot = (olorsy B e
Numbers in parentheses are standard errors obtained by taking minug the inverse of the
second derivative of the log likelihood function.

once parameter uncertainty is taken Into account, these differences may not
even be statistically significant. For example, consider the old and new Blanchard
models. Point estimates and assoclated standard errors for the latter are reported in
note 10. They show that the lag 1 and 2 coefficlents in the old Blanchard model are
0.22 and 0.36 standard errors, respectively, away from the corresponding coefficienta
in the new Blanchard model.

Ygor example, in {15), with a quarterly interest rate of 1 percent, changes in
anticipated income even 40 years in the future receive a nonnegligible - weight of
1.01'160 - 0.2. See Christianc (1987) for an extended discussion of the view that
unit roots may matter in the conteit of the PIH.

13’I‘his iz a general property of temporary/permanent decompositions, not just
orthogonal decompositions. For a proof, see Cochrane (1988a, p. 904).

'“For the case d = 3, a; also satisfies (a;}? - xja; + 1 =0 for 1 = 1, 2. Here
xq and xy are the solutions to © - {eq+l)x + {eg+2e+lt) = 0, vhere oy = 3(1-p)%/n and

o - c3/3. Wnen o = 0.98, a, = 0.97 + 0.0067i and ap = 0.97 - 0.0067i, where & =
1 :
(=117,
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"*We thank Ken West for this argument.

Y1 particular, the parametric values are those reported in the "Divisible
Labor™ column of thelr Table 1.

17
The second-moment properties reported in Tables 3 and 4 were obtained by apply-
ing the appropriate inverse Fourier transform to the spectral density of the filtered
bivariate system. (For example, see Sargent, 1987, chap. 11, sec. 6.}
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Table 1
Results Based on Parametric Models of Persistence

Roots
Likelihood
Model Ratio Statistie®* . . Maving
p,aq* (p-value) c{1) Autoregressive Average
0,1 568.719 -- 1.275 -.275
) ~ {.00) ‘ . '
0,2 275.825 1.577 - -.153+.498i
(.00) h .
0,3 170.775 - - 1.838 -~ -.392,
' (.00) : .025+.6081
1,0 - 1.602 .376 e '
1,1 23.684 1.746 .524 168
, { .00}
1,2 11.274 1.772 .260 -.034:.4911
1,3 .110 1.816 -.089 .012¢.6221,
A S : -, U451
2,0 . 1.830 554 ,-.542 -
2,1 80 -1.798 .508,-.542  -.365
{.36)
2,2 h.356 1,530 .293+.6104 139+, 7761
(.ol)
2,3 .990 1,605 .168¢,6681 .108+ 8481,
- (.32) -.206
3,0 - 1.604 . 432:.2971, --
. - ~-.518
3,1 .569 1.365  .631:.340i, L514
(.U45) -7
3,2 3.020 1.657 .2lg, .10Bt.B6Ti
{.08) L149 £.7201
3.3 .000 . 000 .299+.5651, L 133+ THTH,
{1.00) .49 1.000

%p.q = autoregressive and moving average order, respectively, of ARMA
fit to ay,.

®ETuice the difference between log likelihood wvalues obtalned when
€(1) = 0 is and is not imposed. (The p-value is obtained using the
chi-square distribution with 1 degree of freedom.)



Table 2

Nonparametric Estimates of Persistence

Model

Kk ek vk ARMA(3,3)  ARMA(1,3)  ARMA(2,2)

) (2 (3) ) (5) (6)

10 - 1.41 1.71 .29 .34 .46
(5.49)

20 1.24 1.32 .37 A1 .63
(3.07) |

30 1.14 1.12 .34 .37 .65

' (2.14)

40 1.00 .86 .38 A0 ) .68
(1.43)

50 .86 .64 m m .73
(.95)

60 .88 .67 .31 .32 .62
(.91)

75 .90 .70 .18 .20 .48
(.85)

Notes:
Columns (2) and (3): (‘:'.(1)k is def‘inéd'in equation (34); {;k, in (7).

Columns (4)-(6): Frequency, in artificial data generated by the
indicated ARMA model, that the simulated ‘J exceeds the corresponding
empirical value reported in column (3). The ARMA(3,3) and ARMA(2,2)
models are those we estimated and reported in Table 1. The ARMA(1,3)
model is the trend stationary model reported in Campbell and Mankiw
(1987a}.



Table 3
Results Based on First-Difference Filter

Components
Madel
No-Components Model
¢ =1
$ = 1 $ = -99 P = -98
{1 (2) (3)
g /a .68 .97 .96
n y/n
% ’ : L0065 .0086 .0085
a .0096 .0089 .0089
¥/n
cov(n,n_1) -.026 -.026 -.026
cov(y/n,y/n_1) .060 .073 .084
cov(n,y/n_,) : -.072 -.074 -.072
cov(y/n,n_1) .023 .031 .032
Table 4
Results Based on Hodrick-Prescott Filter
Components
Model
No-Components Model
¢ =1
¢ = 1 ¢ = .99 ’ p = .98
() (2) {3)
anlaj/n 7 _ .67 .94 y .94
% .008Y4 0N 0N
Gy/n | 013 .012 .012
cov(n,n_1) .11 .M .M
cov(y/n,y/n_1)r .74 .75 .75
cov(n,y/n_1) .59 .87 .87

cov(y/n,n_1) =15 .75 .75
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Figures 2a-2b

Accounting for the ARMA{2,2) Results
From the Trend Statlonary Perspective

Frequency

Frequancy '

Figure 2a Frequency Distribution of the Likelihood Ratio Statistic

for Testing C{1} =0
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