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1 Introduction

Difference-in-differences (DiD) designs are commonly used to estimate treatment effects
with observational data. In canonical form, with two periods and two groups (of which
one is treated), and under no anticipation and parallel trends assumptions, the DiD
comparison is an unbiased estimator of the average treatment effect on the treated (ATT).
In this basic two-periods/two-groups setting, conventional two-way fixed-effects (TWFE)
or first-difference regression can be used to implement the DiD method.

However, a recent literature has shown that conventional TWFE implementations
can be biased in more general multi-period settings, where the dates of treatment can
differ across groups (staggered treatment) and treatment effects can be dynamic and
heterogeneous. In this setting, the conventional TWFE implementation has been shown to
estimate a weighted average of group-specific effects where the weights may be negative,
leading to potentially severe bias. Because of this ‘negative weighting’ bias, the TWFE
estimate could even lie outside of the range of group-specific treatment effects. This
problem has led to the search for, and a proliferation of, several alternative estimators.1

In this paper we propose a framework for DiD estimation that exploits an important
link to local projections (LPs), a statistical technique introduced in a time-series context
in Jordà (2005). By its very design, and as used in applied macroeconomics, the LP
approach was set up to estimate dynamic average effects. As we show in this paper,
an under-appreciated feature of the LP framework is that it is straightforward to limit
the set of permissible comparisons based on a desired criterion, such as past treatment
history. Leveraging this feature, we further develop the LP framework to derive a simple
to implement, general and flexible regression-based framework for DiD.

Our LP-DiD approach employs LPs to estimate dynamic effects alongside a flexible
‘clean control’ condition in the spirit of Cengiz et al. (2019) to avoid the negative weighting
bias of conventional fixed-effects estimators. Intuitively, negative weighting arises because
previously treated units, which might still be experiencing lagged time-varying and
heterogeneous treatment effects, are implicitly used as controls for newly treated ones.
The LP-DiD clean control condition avoids this bias by restricting the estimation sample
so that ‘unclean’ observations, whose outcome dynamics are still potentially influenced
by previous changes in treatment status, are not in the control group.

Under the usual DiD assumptions, LP-DiD provides an unbiased estimate of a convex

1See for example Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon (2021), Sun and Abraham
(2020), Callaway and Sant’Anna (2020), Borusyak, Jaravel, and Spiess (2024), Chaisemartin, D’Haultfœuille,
et al. (2022), Gardner et al. (2024), Baker, Larcker, and Wang (2022), and Wooldridge (2021). Surveys of this
‘new DiD’ literature are provided by Roth et al. (2023) and Chaisemartin and D’Haultfœuille (2022)
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weighted average of cohort-specific effects. We explicitly characterize the weights assigned
to each cohort-specific effect, and show that they are always positive and depend on
treatment variance and subsample size. As we will explain, however, it is easy to
implement different weighting schemes to obtain alternative estimands – including the
equally-weighted ATT. It is also easy to obtain a ‘pooled’ estimate, averaged over the full
post-treatment window.

We then extend the LP-DiD approach to settings with covariates or non-absorbing
treatment. Under conditional parallel trends, a regression-adjustment LP-DiD specifica-
tion yields an unbiased estimate of the ATT. We also clarify the additional assumptions
under which covariates can be added directly to an OLS LP-DiD specification. To illustrate
how our framework can accommodate non-absorbing treatment, we derive (i) a LP-DiD
estimator for the effect of first-time treatment entry, and (ii) a LP-DiD estimator for the
average effect of a treatment event under an additional effect stabilization assumption.

Importantly, several recent DiD estimators can be reproduced as specific sub-cases
of our general approach based on either weights assigned to treatment events, or the
choice of a base period for constructing LPs. In a baseline variance-weighted version,
the LP-DiD estimate is numerically equivalent to the estimate from a stacked regression
approach as implemented in Cengiz et al. (2019). The re-weighted LP-DiD regression that
recovers an equally-weighted ATT is numerically equivalent to the estimator proposed
by Callaway and Sant’Anna (2020). Yet another version of LP-DiD, reweighted and with
an alternative pre-treatment base period, is very close to the Borusyak, Jaravel, and
Spiess (2024) imputation estimator. However, the LP-DiD implementation is simpler and
computationally faster, and can be more easily generalized for non-absorbing treatment.

Moreover, all the estimators proposed in this paper allow for standard statistical
inference using well understood techniques, already incorporated in common statistical
software. For this reason, we don’t discuss statistical inference here.

Evidence from a Monte Carlo simulation suggests that LP-DiD performs well in
staggered DiD settings, also in comparison with other recent estimators. We consider a
binary staggered treatment with dynamic and heterogeneous effects, where the parallel
trends assumption holds but conventional TWFE performs poorly because of negative
weighting bias. We show that LP-DiD performs similarly to the Sun and Abraham (2020),
Callaway and Sant’Anna (2020) and Borusyak, Jaravel, and Spiess (2024) estimators, while
being computationally faster.

We employ LP-DiD to estimate the impact of banking deregulation on the labor
share (replicating and extending Leblebicioğlu and Weinberger 2020) and the effect of
democratization on economic growth (replicating and extending Acemoglu et al. 2019),
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two important empirical applications where conventional TWFE estimates are potentially
subject to negative weighting bias. These applications demonstrate the applicability
and simplicity of implementation of the LP-DiD approach both under absorbing and
under non-absorbing treatment, and both when the parallel trends assumption holds
unconditionally, and when it holds only conditional on pre-determined covariates –
including, when appropriate, pre-treatment outcomes.

Our proposed LP-DiD estimator is, in our view, a useful addition to the growing toolkit
of DiD techniques available to researchers. First, the LP-DiD framework is especially
simple and computationally fast to implement. Its regression-based formulation allows
estimation and inference using well-understood standard methods. Second, the clean
control condition employed by LP-DiD defines the appropriate set of treated and control
observations in a way that is transparent and therefore easy to understand, communicate,
and evaluate. Third, the LP-DiD framework is especially flexible: it is easy to flexibly adapt
the clean control condition to specific empirical settings; to implement different weighting
schemes; to employ alternative pre-treatment base periods; and to pool estimates over
a desired pre- or post-treatment horizon. Moreover, in estimating pre-treatment trends,
LP-DiD does not suffer from the potential difficulties of interpretation highlighted in
Roth (2024), since pre- and post-treatment coefficients are estimated symmetrically.

The rest of this paper is organized as follows. In sections 2 to 4 we draw a connection
between DiD designs and LPs estimators, and present our proposed LP-DiD specification.
In Section 5 we use a simulation to assess the performance of our LP-DiD approach, with
comparisons to other methods in the recent literature. In Section 6 we apply the LP-DiD
estimator in two empirical applications. Section 7 concludes.

2 Local Projections and Difference-in-Differences

In this section we clarify the connection between difference-in-differences (DiD) designs
and the local projections (LPs) method. While we start from simpler settings (Sections 2.2
to 2.3), the core of this section is the discussion of the case of binary staggered treatment
with dynamic and heterogeneous treatment effects (Section 2.4). In this setting, negative
weighting bias analogous to that incurred by conventional two-way fixed effects regression
would apply to a naive LP implementation. Section 3 will then show how a properly
specified LP approach (which we call LP-DiD) successfully addresses these problems and
yields a simple to implement, general and flexible regression-based framework for DiD.
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2.1 General setup and notation

Assume that an outcome yit is observed for i = 1, ..., N units over t = 1, ..., T periods. Units
can receive a binary treatment, denoted by Dit ∈ {0, 1}. For now, treatment is permanent
(or absorbing), that is, Dis ≤ Dit for s < t. We let pi denote the period in which unit i
enters treatment, with the convention pi = ∞ if unit i is never treated during the observed
sample.

Define groups (or treatment cohorts) g ∈ {0, 1, . . . , G} as exhaustive, mutually exclu-
sive sets of units. Groups are defined so that all units within a group enter treatment at
the same time, and two units belonging to different groups enter treatment at different
times. Group g = 0 is the never-treated group (i.e., the set of units with pi = ∞). We
denote the time period in which group g enters treatment as pg.

Using the potential outcomes framework (Rubin, 1974), we let yit(0) denote the
potential outcome that unit i would experience at time t if it were to remain untreated
throughout the whole sample period (that is, if pi = ∞). We let yit(p) denote the outcome
for unit i at time t, if unit i were to enter treatment at time p ̸= ∞. Observed outcomes can
then be written as yit = yit(0) + ∑T

p=1

(
yit(p) – yit(0)

)
× 1{pi = p}. The treatment effect at

time t for unit i which enters treatment at time pi ̸= ∞ is defined as τit ≡ E[yit(pi) – yit(0)].
We are interested in estimating some convex average of treatment effects across treated

units. To this end, we define the group-specific ATT at time horizon h for group g ̸= 0 as
τ

g
h ≡ E

[
yi,pg+h(pg) – yi,pg+h(0)|pi = pg

]
. In other words, τ

g
h represents the average dynamic

effect, h periods after entering treatment, across all units that enter treatment at time pg.2

Given our focus on DiD designs, we adopt a model-based framework, where causal
identification hinges on adoption of a model for untreated potential outcomes. In
particular, we will make use of the assumptions of parallel trends and no anticipation,
the two essential assumptions that underpin the DiD approach.

Assumption 1. No anticipation

E
[
yit(p) – yit(0)

]
= 0, for all p and t such that t < p .

This ensures that units do not respond now in anticipation of a future treatment.

Assumption 2. Parallel trends

E
[
yit(0) – yi1(0)|pi = p

]
= E

[
yit(0) – yi1(0)

]
, for all t ∈ {2, ..., T} and all p ∈ {1, ..., T, ∞} .

2Similar notation is used, for example, in Callaway and Sant’Anna (2020) and Sun and Abraham (2020).
The τ

g
h object is analogous to the cohort-specific ATT (CATT) defined in Sun and Abraham (2020).
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This assumption ensures that, had treated units been left counterfactually untreated, they
would have evolved over time in the same manner as the control units have. See Ghanem,
Sant’Anna, and Wüthrich (2024) and Marx, Tamer, and Tang (2024) for discussions of the
underlying selection mechanisms that are compatible with Assumption 2.

It is convenient for the exposition of our methods to be more specific and assume a
simple data-generating process (DGP) for untreated potential outcomes which respects
the parallel trends assumption. Specifically, we assume

E[yit(0)|i, t] = αi + δt , (1)

where αi is a unit-specific fixed effect, and δt is a time-specific effect common to all units.
Finally, let us define the following three regression specifications of interest.

Specification 1. Static two-way fixed-effects regression (static TWFE)

yit = αSTWFE
i + δSTWFE

t + βSTWFEDit + eSTWFE
it , (2)

where the α are unit-specific intercepts and the δ are common time-specific intercepts,
and we denote with e the error term.

Specification 2. Dynamic two-way fixed-effects regression (dynamic TWFE)

yit = αETWFE
i + δETWFE

t +
H
∑

h=–Q
γETWFE

h Di,t–h + eETWFE
it ; Q, H ≥ 0 , (3)

where βETWFE
h = ∑h

j=0
γETWFE

j provides the dynamic TWFE estimate for the effect at

horizon h after treatment (0 ≤ h ≤ H), and βETWFE
–h = – ∑–1

j=–h γETWFE
j is likewise an

estimate of possible pre-trends at horizon h before treatment (–Q ≤ h ≤ –1).3

Specification 3. Local Projections regression (LP)

yi,t+h – yi,t–1
= δh

t + βLP
h ∆Dit + eh

it ; for h = –Q, ..., 0, ..., H; Q, H ≥ 0; h ̸= –1 . (4)

3An equivalent specification of the dynamic TWFE regression uses the first difference of the treatment
indicator ∆D instead of its level D, except for the H–th lag, which is taken in level. Yet another specification
of dynamic TWFE, often used in applications, uses the first difference of the treatment indicator ∆D and
normalizes estimates by subtracting the coefficient on the first lead.
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As a result of the differencing, the LP specification does not include unit fixed effects.
Moreover, a separate regression is estimated for each time horizon h.

In all specifications the β terms are population regression coefficients, while the OLS
estimates of these coefficients will be denoted by β̂.

2.2 Basic DiD setting with two groups

In a basic 2-groups/2-periods (2x2) setting, which in terms of our notation implies G = 1

and T = 2, the link between LP and DiD is trivial. In this setting, the LP specification of
Equation 4 at horizon h = 0 is equivalent to a first-difference regression or a static TWFE
regression, both widely-used DiD implementations, and it unbiasedly estimates the ATT
under Assumptions 1 and 2. Similarly, in a setting with two groups and multiple time
periods (G = 1, T ≥ 2), in which all treated units enter treatment in the same time period,
it is straightforward to show that the LP regression in Equation 4 is a way to implement
the DiD method and recover the dynamic ATT. We don’t delve into these points in the
main text because they are straightforward and well known, but a detailed discussion is
provided in Online Appendix A.

2.3 Staggered treatment adoption with homogeneous treatment effects

Now consider multiple treated groups which enter treatment at different points in time
(treatment is staggered). Further assume that the average treatment effect trajectory does
not differ across treatment cohorts (i.e., treatment effects are homogeneous). In terms of
our general setup and notation, we now have G > 1 and τ

g
h = τh for all g > 0.

In this setting, we still have that a LP specification, if augmented with an adequate
number of lags and leads of the treatment indicator, is able to consistently estimate the
average treatment effect path under Assumptions 1 and 2. Specifically, the dynamic ATT
τh is consistently estimated by the βLP

h coefficient in the following LP regression,

yi,t+h – yi,t–1
= δh

t + βLP
h ∆Dit +

∞

∑
j=–h
j ̸=0

θh
j ∆Di,t–j + eh

it . (5)

A detailed formal discussion supporting this statement is in Online Appendix A.
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2.4 Staggered treatment adoption with heterogeneous treatment effects

We now abandon the assumption of homogeneity of the treatment effect path, and allow

for heterogeneous treatment effects across different cohorts. Formally, we have τ
g
h ̸= τ

g′

h
for at least some time-horizon h and some pair of groups g′ ̸= g.

It is now well understood that in this setting conventional (static or dynamic) TWFE
specifications can be biased (Roth et al., 2023; Chaisemartin and D’Haultfœuille, 2022).

To understand the relation between LP and DiD in this setting, we can start by noting
that here E[yi,t+h|i, t, h] is determined as follows,

E[yi,t+h|i, t, h] = E[yi,t+h(0)] + ∑T
p=1

[(
E(yi,t+h(p) – yi,t+h(0)

)
× 1{pi = p}

]
= αi + δt+h + ∑G

g=1

[
τ

g
h × ∆Di,t × 1{t = pg}

]
+ ∑G

g=1

[
∑∞

j=1

(
τ

g
h+j × ∆Dt–j × 1{t = pg + j}

)]
+ ∑G

g=1

[
∑h

j=1

(
τ

g
h–j × ∆Dt+j × 1{t = pg – j}

)]
.

Subtracting E[yi,t–1
|i, t] from both sides and defining δh

t = δt+h – δt–1, we have

E[yi,t+h – yi,t–1
|i, t, h] = δh

t + ∑G
g=1

[
τ

g
h × ∆Di,t × 1{t = pg}

]
+ ∑G

g=1

[
∑∞

j=1

(
(τg

h+j – τ
g
j–1

) × ∆Di,t–j × 1{t = pg + j}
)]

+ ∑G
g=1

[
∑h

j=1

(
τ

g
h–j × ∆Di,t+j × 1{t = pg – j}

)]
.

(6)
Without appropriate adjustment to take into account the last two sums on the right-

hand side of Equation 6, the LP regression of Equation 4 would be mis-specified in this
setting. The easiest way to see this and understand the sources of bias is to consider the
special case where δh

t = δh for all t. In this special case, we have

E[β̂LP
h ] = E[yi,t+h – yi,t–1

|∆Dit = 1] – E[yi,t+h – yi,t–1
|∆Dit = 0]

= E
[
∑G

g (τg
h × 1{t = pg})|∆Dit = 1

]
– E

[
∑G

g=1

[
∑∞

j=1

(
(τg

h+j – τ
g
j–1

) × ∆Di,t–j × 1{t = pg + j}
)]

|∆Dit = 0

]
– E

[
∑G

g=1

[
∑h

j=1

(
τ

g
h–j × ∆Di,t+j × 1{t = pg – j}

)]
|∆Dit = 0

]
.

(7)

Equation 7 shows that, without appropriate adjustment, the LP regression of Equation 4
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suffers from two sources of bias.4

The first source of bias is the presence of previously treated units in the control group,
i.e., observations such that ∆Dit = 0 but ∆Di,t–j ̸= 0 for some j ≥ 1. These previously
treated units contribute to the estimated counterfactual for units entering treatment at
time t, as if they were untreated, although they might in fact be experiencing dynamic
treatment effects. This bias exists as long as, for some treatment cohort g at some time-
horizon h + j, we have τ

g
h+j ̸= τ

g
j–1

, meaning that treatment effects evolve gradually over
time. Any dynamic changes in treatment effects that these previously treated units might
be experiencing enter Equation 7 with a negative sign. This is a manifestation of the
negative weighting bias discussed in the recent literature on DiD.

Moreover, in the LP setting, a second potential source of bias is the presence in the
control group of units that are treated between t + 1 and t + h, i.e., observations such that
∆Dit = 0 but ∆Di,t+j ̸= 0 for some j in 1 ≤ j ≤ h.5

To summarize: with staggered treatment, a naive LP regression might suffer from
the ‘negative weights’ problem highlighted by recent studies, arising from unclean
comparisons using previously treated units as controls.

3 LP-DiD estimator

This section presents our main contribution: a properly specified LP regression, which we
call LP-DiD, consistently estimates a convex weighted average treatment effect without
incurring in the negative weighting problem. The key is to restrict comparisons to ‘clean’
treated and control units. After presenting the LP-DiD specification (Section 3.1), we
explicitly characterize the weights assigned to each cohort-specific effect, and show that
they are non-negative and proportional to group size and treatment variance (Section
3.2). We then show how a simple re-weighted LP regression yield an unbiased estimate
of the equally-weighted ATT (Section 3.3). Moreover, we show how to employ alternative

4Chaisemartin and D’Haultfœuille (2024, pp. 33-34) present similar negative results about a naive
application of LP with panel data, although they consider a LP specification in levels, with yi,t+h (rather
than yi,t+h – yi,t–1

) as the dependent variable and with Dit (rather than ∆Dit) on the right-hand side. The
LP specification in levels studied by Chaisemartin and D’Haultfœuille (2024) has sometimes been used in
applied work and suffers from additional problems, which they analyse in detail.

5As Equation 6 suggests, one solution would be a LP regression that estimates separately the effect
for each group by interacting group indicators with ∆Dit, while controlling for interaction terms between
group indicators and the leads and lags of ∆Dit. One could then obtain the ATT as an average of the
estimated group-specific effects. This solution could be fruitful in some settings and is similar to the
Sun and Abraham (2020) estimator. However, it involves estimating a potentially very large number of
interaction terms, which coefficients are of no economic interest. Our aim in this paper is to show that it is
possible to directly estimate a convex combination of cohort-specific effects, without having to first estimate
them separately and then aggregate.
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pre-treatment base periods (Section 3.4), pool estimates over a post-treatment horizon
(Section 3.4), and avoid composition effects (Section 3.6). Finally, we lay out the relation
with other recent DiD estimators (3.7).

We consider the setup, notation and identification assumptions introduced in the
previous section, and in particular in Section 2.4: treatment is binary, staggered and
absorbing; the no anticipation and parallel trends assumptions hold unconditionally; and
treatment effects can be dynamic and heterogeneous.6

3.1 LP-DiD specification

LP-DiD consists, in essential form, of estimating the LP specification of Equation 4 in a
restricted sample that only includes newly treated observations (∆Dit = 1) and not-yet
treated ones (∆Di,t–j = 0 for –h ≤ j ≤ ∞). Under the assumption of absorbing binary
treatment, the restriction imposed on the control group (∆Di,t–j = 0 for –h ≤ j ≤ ∞)
simplifies to Di,t+h = 0. Intuitively, as recent literature has made clear and as Equation 6

and Equation 7 illustrate, negative weighting bias comes from unclean comparisons in
which previously treated units are used as controls for newly-treated units. Excluding
these ‘unclean’ (or ‘forbidden’, in the terminology of Roth et al., 2023) observations from
the control group eliminates the bias.

Formally, consider the following specification of an LP-DiD regression,

LP-DiD regression Estimate the regression

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit treatment indicator
+ δh

t time effects
+ eh

it for h = –Q, . . . , 0, . . . , H ,

restricting the estimation sample to observations that are eithernewly treated: ∆Dit = 1 ,

or clean control: Di,t+h = 0 .
(8)

6The LP-DiD approach presented in this Section can be valuable also in settings in which treatment
effects are assumed to be homogeneous. As discussed above (Section 2.3), under homogeneous effects,
simple LP or dynamic TWFE specifications are sufficient to obtain an unbiased estimate, provided that a
sufficient number of lags of the treatment indicator is included. However, there are two reasons for still
using LP-DiD (with a clean control condition) also in that setting. First, and most obviously, LP-DiD is
robust to possible failure of the homogeneous effects assumption. Second, even if homogeneity holds,
LP-DiD relieves the researcher from the problem of selecting the appropriate number of lags.
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The clean control condition in Equation 8 ensures that the estimate is obtained from
a set of clean comparisons between units entering treatment at t and units that are not
yet treated at t + h. As a result, the βLP–DiD

h coefficient consistently estimates a convex
combination of all group-specific effects τ

g
h . Before analysing the general case (in Section

3.2 below), it is instructive to consider again the special case with δh
t = δh. In this special

case, we have

E[β̂LP–DiD
h ] = E(yi,t+h – yi,t–1

|∆Dit = 1) – E(yi,t+h – yi,t–1
|∆Dit = 0, Di,t+h = 0)

= E
[
∑G

g

(
τ

g
h × 1{t = pg}

)
|∆Dit = 1

]
= E

[
yi,pi+h(pi) – yi,pi+h(0)|pi ̸= ∞

]
.

3.2 Weights of the LP-DiD estimator

We can explicitly characterize the weights assigned to each cohort-specific effect τ
g
h when

the LP-DiD specification is estimated with OLS in the general case with unrestricted
common time effects. The key result is that, under parallel trends and no-anticipation
(Assumptions 1 and 2), LP-DiD consistently estimates a weighted average of all cohort-
specific treatment effects, with weights that are always positive and depend on treatment
variance and subsample size. Here we present this result. A formal derivation based on
the Frisch-Waugh-Lovell theorem is provided in Online Appendix B.

To illustrate the result, we need to introduce further definitions. Recall that the time
period in which group g enters treatment is pg. For each treatment group g > 0, define
the clean control sample for group g at time horizon h (denoted as CCSg,h) as the set of
observations for time t = pg that satisfy the sample restriction in Equation 8. Therefore
CCSg,h includes the observations at time pg for all units that either enter treatment at pg

or are still untreated at pg+h. In other words, CCSg,h includes observations at pg for group
g and its clean controls.

Under parallel trends and no anticipation (Assumptions 1 and 2), the LP-DiD estimator
βLP–DiD

h consistently estimates the following weighted average effect,

E(β̂LP–DiD
h ) = ∑

g ̸=0

ωLP–DiD
g,h τ

g
h . (9)

The weight assigned to each group-specific effect is given by

ωLP–DiD
g,h =

NCCSg,h
ng,h(1 – ng,h)

∑g ̸=0
NCCSg,h

ng,h(1 – ng,h)
, (10)

where NCCSg,h
is the number of observations in CCSg,h, and ng,h ≡ Ng/NCCSg,h

is the
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share of treated units in CCSg,h.7

In short, the LP-DiD estimator βLP–DiD
h recovers a variance-weighted ATT (VWATT in

the terminology of Goodman-Bacon, 2021).

3.3 Obtaining an equally-weighted average effect

If a researcher is instead interested in an equally-weighted ATT, there are two equivalent
ways to obtain it within an LP-DiD framework. The first is to employ a re-weighted
regression. The second is to use regression adjustment.

Equations 9-10 imply that estimation of the LP-DiD specification through weighted
least squares, assigning to an observation belonging to CCSg,h a weight equal to 1/(ωLP–DiD

g,h /Ng),
yields unbiased estimation of the equally-weighted ATT.

In practical applications, the weight (ωLP–DiD
g,h /Ng) can be obtained by computing

subsamples sizes and shares of treated units and using Equation 10, or through an
auxiliary regression. Specifically, consider an auxiliary regression of ∆D on time indicators
in the estimation sample defined by Equation 8. Define ∆D̃g,pg as the residual at time pg

for a unit belonging to group g. (Of course, ∆D̃g,pg will be identical for all units belonging
to the same group.) The Frisch-Waugh-Lovell theorem implies that

(ωLP–DiD
g,h /Ng) =

∆D̃g,pg

∑g ̸=0
Ng∆D̃g,pg

.

(Further discussion can be found in Online Appendix B.)
Another equivalent way to estimate the equally-weighted ATT is to estimate the LP-

DiD specification through regression adjustment (RA). Here, RA uses clean control units
to estimate a counterfactual outcome change for each treated unit, and then computes an
average estimated effect assigning equal weight to each treated unit, thus estimating the
equally-weighted ATT.

In practice, a RA LP-DiD specification can be implemented as follows. Regress
yi,t+h – yi,t–1

on time indicators using only clean control observations (i.e., observations
with Di,t+h = 0). Use the estimated coefficients to get a predicted value in absence of
treatment Ê

(
yi,t+h – yi,t–1

| Di,t+h = 0

)
for each treated unit. The ATT is then estimated by

β̂LP–DiD,RA
h = N–1

TR ∑
{i,t}∈TR

[
(yi,t+h – yi,t–1

) – Ê
(
yi,t+h – yi,t–1

| Di,t+h = 0

)]
,

7The weights in Equation 10 are equivalent to those of the stacked DiD estimator (Gardner et al., 2024,
Appendix E).
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where TR is the set of newly treated observations (i.e., the set of observations with
∆Di,t = 1).8 This RA implementation of LP-DiD constitutes an imputation estimator, in
the same sense as in Borusyak, Jaravel, and Spiess (2024).

There is, in general, a bias-variance tradeoff between variance-weighting and equal
weighting: reweighted LP-DiD applies equal weights and is therefore unbiased, while the
variance-weighted version has some bias but also lower variance. This tradeoff will be
further discussed and illustrated in the context of the simulation in Section 5.

3.4 Alternative pre-treatment base periods

In some settings, there can be efficiency gains from adopting an alternative LP-DiD
specification, one in which the long difference of the outcome variable is taken relative
to its average value over some interval before t, instead of relative to just its first lag.
Formally, this alternative specification uses yi,t+h – 1

k ∑t–1

τ=t–k yi,τ instead of yi,t+h – yi,t–1
as

the dependent variable.
The reason for considering such an alternative specification is a possible efficiency-

related concern with the LP-DiD specification of Section 3.1. Typically, a LP uses the
long difference yi,t+h – yi,t–1

as the dependent variable. Period t – 1 is thus used as the
pre-treatment base period: for a treatment event occurring at time s, the expected value
of the outcome in the pre-treatment period in the treated group and its clean controls
are estimated from yi,s–1

. However, the number of time periods available for estimating
the expected value of the outcome in the pre-treatment period is larger than just s – 1:
observations for all time periods t < s can potentially be used. For this reason, using a
single pre-treatment period as the baseline may be inefficient.

This concern can be accommodated by using the following ‘pre-mean-differenced’
(PMD hereafter) specification of LP-DiD.

PMD LP-DiD regression

yi,t+h –
1

k

t–1

∑
τ=t–k

yi,τ = βPMD LP–DiD
h ∆Dit + δh

t + eh
it for h = –Q, . . . , 0, . . . , H ,

8It is easy to implement this method for recovering the equally-weighted ATT using standard statistical
software. The following is an example in STATA syntax:
teffects ra (Dhy i.time) (dtreat) if D.treat==1 | Fh.treat==0, atet vce(cluster unit)

where y is the outcome variable; h is the time-horizon of the estimate; Dhy = yi,t+h – yi,t–1
; dtreat= D.treat

is the first difference of the binary treatment indicator; time is a variable indexing time periods; unit is a
variable indexing units, and we are clustering standard errors at the level of units.
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again restricting the estimation sample to observations that are either newly treated
(∆Dit = 1) or clean controls (Di,t+h = 0). By setting k = t – 1, one can use all available
observations for estimating the expected value of the outcome in the pre-treatment period.

The results presented earlier in this Section and in Online Appendix B imply that
βPMD LP–DiD

h recovers a convex weighted average of cohort-specific effects, with the same
weights ωLP–DiD discussed in Section 3.2. Also in this case, weighted regression or
regression adjustment can be employed to obtain an equally-weighted ATT (Section 3.3).

The potential advantages and risks of differencing with respect to the pre-treatment
average (‘pre-mean differencing’) relative to differencing over a single lag (‘first-lag
differencing’) have been discussed in the recent literature (a review of these discussions is
provided in Chaisemartin and D’Haultfœuille 2022, pp. 18–19). The potential advantage
of pre-mean differencing is the efficiency gain discussed above. This advantage is greater
the lower the autocorrelation in untreated potential outcomes (Borusyak, Jaravel, and
Spiess, 2024; Harmon, 2022). Indeed, Borusyak, Jaravel, and Spiess (2024) prove that in
the extreme case of no autocorrelation, differencing with respect to the pre-treatment
average is more efficient than differencing over the last pre-treatment lag. However,
Harmon (2022) finds that in the opposite polar case where errors follow a random walk
(very high autocorrelation), this efficiency ranking reverses, with differencing over the
last pre-treatment period being more efficient.

A potential risk is that, under some deviations from the parallel trends assumption,
pre-mean differencing can amplify the bias relative to first-lag differencing. If parallel
trends holds between periods s and s + h (s being the time of treatment), but not in
earlier pre-treatment periods, first-lag differencing will still be unbiased, while pre-mean
differencing will be biased. In this sense, first-lag differencing relies on a weaker parallel
trends assumption than pre-mean differencing (Marcus and Sant’Anna, 2021). Moreover,
if parallel trends does not fully hold at any time period, and the gap in average untreated
potential outcomes between treated and controls increases over time, then pre-mean
differencing will be more biased than first-lag differencing.

The ability of LP-DiD to allow researchers to flexibly choose the appropriate pre-
treatment base period, and to easily test robustness to alternative choices, is an addi-
tional advantage of LP-DiD. Other available DiD estimators (for example Callaway and
Sant’Anna, 2020, Sun and Abraham, 2020 and Borusyak, Jaravel, and Spiess, 2024) are
less flexible in this respect. Of course, as with all specification choices, researchers should
commit to a preferred choice of pre-treatment base period ex-ante, based on the features
of their application and independent of estimation results, to avoid introducing bias.
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3.5 Pooling over post-treatment periods

Instead (or in addition to) an impulse response tracing the average dynamic effect path,
we may wish to estimate an overall DiD estimate, averaged over the full post-treatment
window, h ∈ 0, ..., H. This can be easily obtained by estimating a single LP-DiD regression
where the dependent variable is a post-treatment period mean of long differenced
outcomes: 1

H+1
∑H

h=0
yi,t+h – yi,t–1

. The resulting coefficient estimates an average effect over
the post-treatment window.

More generally, any linear combination of βLP–DiD
h coefficients can be estimated and

tested by appropriately redefining the dependent variable in the LP-DiD regression. This
includes testing for differences in treatment effects across event times, or estimating a
cumulative response of treatment summing over event time. One could also combine
pooling over post-treatment periods with pre-mean differencing for additional power
by using the outcome: 1

H+1
∑H

h=0
yi,t+h – 1

k ∑t–1

τ=t–k yi,τ. In some applications, researchers
might want to simply use ∑H

h=0
yi,t+h – yi,t–1

as the dependent variable (without dividing
by H + 1), to cumulate effects over the time horizon.

Of course, another simple way to test joint hypotheses about a combination of βLP–DiD
h

coefficients is to jointly estimate the individual LP regressions for the different H horizons
as a system. In applications, this can be done for example by stacking the data. Ready-
made packages to perform joint hypotheses from separate regressions are available
in commonly used statistical software (e.g., the ‘suest’ command in STATA, which is
equivalent to stacking the data).

3.6 Composition effects

In finite samples, the LP-DiD specification of Section 3.1 might suffer from composition
effects because the set of treated and clean control units can change across different
time horizons h. A composition effect from a changing set of treated units is also
present in other available DiD techniques, including conventional TWFE estimators, while
composition effects from a changing control set are a result of the way the clean control
condition is specified in Equation 8.

It is straightforward to rule out composition effects, but at a cost, since it requires a
reduction in the number of observations which can reduce statistical power. To keep the
control set constant across time horizons, one can modify the clean control condition,
defining clean controls at all horizons as units such that Di,t+H = 0, where H is the
maximum horizon considered in estimation. Moreover, to keep the set of treated units
constant across time horizons, one can exclude from the estimation sample treatment

14



events which occur after time period T – H (i.e., exclude treatment cohorts with pg > T – H).

3.7 Relation to other DiD estimators

Some recently proposed DiD estimators can be obtained as special cases of the LP-DiD
approach, using specific weighting schemes or choosing particular base periods for
constructing the local projection.

First, in the baseline variance-weighted version, the LP-DiD estimator βLP–DiD
h is

numerically equivalent to the estimate from a stacked regression approach as implemented
in Cengiz et al. (2019) (see Online Appendix B).

Moreover, the re-weighted version of LP-DiD (discussed in Section 3.3) is numerically
equivalent to the estimator proposed by Callaway and Sant’Anna (2020). In terms of
our notation, the Callaway and Sant’Anna (2020) estimator of τh

g is equal to E[yi,pg+h –
yi,pg–1

|∆Di,pg = 1] – E[yi,pg+h – yi,pg–1
|Di,pg+h = 0]. An ATT is then estimated by taking

a equally-weighted average across all treated units. With absorbing treatment and no
control variables, re-weighted LP-DiD equals the same difference in means.

Futhermore, the PMD version of the LP-DiD estimator (Section 3.4) is analogous to
the estimator proposed by Borusyak, Jaravel, and Spiess (2024) (BJS thereafter), which
also implicitly uses pre-mean differencing. In fact, in the special case of one single treated
group, it is easy to see that PMD LP-DiD with k = t – 1 is numerically equivalent to the
BJS estimator.9 With more than one treated group, the BJS estimator does not have a
closed form expression, and it is therefore not straightforward to assess with precision its
relation to our PMD LP-DiD estimator. However, the pre-period mean differencing means
that the two estimators use similar information, and indeed our Monte Carlo simulations
(presented in Section 5 below) show that with more than one treated group, when using
reweighting to obtain an equally-weighted ATT, the two estimators produce very similar
(although not identical) point estimates.

Some additional considerations about the relation between PMD LP-DiD and BJS are
in order. Although very similar, PMD LP-DiD might offer practitioners some advantages
over the BJS estimator. First, it is easy to provide an analytical expression for PMD

9 With one single treated group g that enters treatment in period pg, the BJS estimator has a closed form
(Chaisemartin and D’Haultfœuille, 2022, pp.18-19). In terms of our notation, it is equal to

N–1

g ∑
i∈g

[
yi,pg+h –

1

pg – 1

pg–1

∑
k=1

yi,k

]
– Nc,g,h ∑

i ̸=g,i∈CCSg,h

[
yi,pg+h –

1

pg – 1

pg–1

∑
k=1

yi,k

]
.

In this one-group setting, this is exactly equal to the βPMD LP–DiD
h estimator.
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LP-DiD even in the case of more than one treated group, unlike for the BJS estimator.10

Movever, unlike the BJS estimator, PMD LP-DiD can be implemented using simple OLS
(or weighted least squares) regression, employing commonly used and well understood
methods for statistical inference.

That said, BJS prove the efficiency of their estimator of the equally weighted ATT
under the Gauss-Markov assumptions; this implies that the PMD LP-DiD cannot be more
efficient than BJS under these specialized conditions.

However, we note that in our simulations below, the point estimates from the
reweighted PMD LP-DiD and BJS estimators are typically very close in most cases.
Therefore, any efficiency advantage of the BJS estimator over PMD LP-DiD is likely to
be small. Indeed, in our simulation (Section 5) the root mean squared errors of the two
estimators are very similar.

It also bears noting that efficiency of the BJS estimator is only guaranteed under the
Gauss-Markov assumptions. These require, among other things, no auto-correlation in
untreated potential outcomes, a polar assumption that might be seen as implausible in
most panel data applications (Harmon, 2022; Chaisemartin and D’Haultfœuille, 2022, p.
18). Moreover, if there is limited heterogeneity in treatment effects between treatment
cohorts, variance-weighting (as done by LP-DiD or PMD LP-DiD without reweighting)
can be more efficient than equal weights, as the simulation in Section 5 will illustrate.

In general, the LP-DiD implementation is simpler and computationally faster than
the alternatives. Relative to Cengiz et al. (2019) it is also less prone to errors in practical
applications, given that it does not require the reshaping of the dataset in a stacked
format. Moreover, as we discuss below, the LP-DiD specification is especially easy to
generalize to more complicated settings.

4 Extensions

In this section we extend the LP-DiD approach to include covariates (Section 4.1) and to
accommodate non-absorbing treatment (4.2). We then briefly discuss the link between
LP-DiD and the impulse responses used in macroeconomics (4.3).

10With one single treated group, the PMD LP-DiD estimator (like the BJS estimator) is equal to the
expression in foonote 9. With more than one treated group, the PMD LP-DiD estimator is equal to a
weighted average of the expression in footnote 9 across all treated groups, with weights given by ωLP–DiD

g,h
in Equation 10. The reweighted PMD LP-DiD estimator is equal to a simple average of the expression in
footnote 9 across all treated units.
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4.1 Inclusion of covariates

The LP-DiD framework can be extended to include covariates. To do so, we consider a
setting with staggered treatment adoption, dynamic and heterogeneous treatment effects,
and in which parallel trends holds only conditional on a vector of covariates xi.

11

Using the notation introduced in Section 2.1, we make the following assumptions:

Assumption 3. Conditional no anticipation

E
[
yit(p) – yit(0)|xi

]
= 0, for all p and t such that t < p.

Assumption 4. Conditional parallel trends

E
[
yi,t+h(0) – yi,t–1

(0)|xi; pi = p
]

= E
[
yi,t+h(0) – yi,t–1

(0)|xi
]

,

for all t ∈ {2, ..., T}, all h ∈ {0, ..., T – 1}, and all p ∈ {1, ..., T, ∞}.

Assumption 5. Linear conditional expectation function

E
[
yi,t+h(0) – yi,t–1

(0)|xi
]

= δh
t + γhxi

Importantly, these assumptions do not restrict how the treatment effect might vary
depending on the value of the covariates x.

We can define the dynamic ATT at time-horizon h conditional on x as

ATTh(x) ≡ E
[
yi,pi+h(pi) – yi,pi+h(0)|pi ̸= ∞, x = xi

]
,

and the unconditional (equally-weighted) dynamic ATT as

ATTh ≡ N–1

TR ∑g ̸=0
Ngτ

g
h = E

[
yi,pi+h(pi) – yi,pi+h(0)|pi ̸= ∞

]
= E

{
E
[
yi,pi+h(pi) – yi,pi+h(0)|pi ̸= ∞, x = xi

]
|pi ̸= ∞

}
,

where again TR denotes the set of observations entering treatment (i.e., the set of observa-
tions with ∆Di,t = 1), and the second line follows from the law of iterated expectations.

11Although the covariates are only indexed by unit i in the following discussion, one could always define
xi as being a time-varying covariate (or its difference) observed at some time period. In this respect, an
important advantage of the LP-DiD framework is that (unlike dynamic TWFE), if xi includes the lagged
value of a time-varying covariate, this is measured pre-treatment.
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4.1.1 Regression adjustment LP-DiD specification with covariates

In this setting, a regression-adjustment LP-DiD specification with covariates recovers the
equally-weighted ATT.12 The estimator can be written as follows:

β̂LP–DiD,RA
h,x = N–1

TR ∑
{i,t}∈TR

[
(yi,t+h – yi,t–1

) – Ê
(
yi,t+h – yi,t–1

|Di,t+h = 0, xi
)]

=

= N–1

TR ∑
{i,t}∈TR

[
(yi,t+h – yi,t–1

) – γ̂hxi – δ̂h
t

]
,

where Ê[yi,t+h – yi,t–1
|Di,t+h = 0, xi] denotes the estimated conditional expectation function,

estimated in the subsample of clean control observations (ie, the subsample with Di,t+h=0
)

but evaluated at xi for treated unit i; γ̂h and δ̂h are estimated coefficients from the
following regression model, estimated in the sample of clean control observations:

yi,t+h – yi,t–1
= δh

t + γhxi + ui.

Under the assumptions above, β̂LP–DiD,RA
h,x is an unbiased estimator of ATTh. This can

be shown as follows:

E(β̂LP–DiD,RA
h,x ) = E

(
N–1

TR ∑{i,t}∈TR
[
(yi,t+h – yi,t–1

) – Ê
(
yi,t+h – yi,t–1

|Di,t+h = 0, xi
)])

= E
[
E
(
yi,t+h – yi,t–1

|∆Di,t = 1, xi
)

– E
(
yi,t+h – yi,t–1

|Di,t+h = 0, xi
)
|∆Di,t = 1

]
= E

[
E
[
yi,pi+h(1) – yi,pi–1

(0)|pi ̸= ∞, xi

]
– E

[
yi,t+h(0) – yi,t–1

(0)|pi = ∞, xi
]
|pi ̸= ∞

]
= E

{
E
[
yi,pi+h(pi) – yi,pi+h(0)|pi ̸= ∞, x = xi

]
|pi ̸= ∞

}
= ATTh,

(11)
where the second equality follows from the assumption that the conditional expectation
function is correctly specified in the first-step regression and the fourth equality follows
from conditional parallel trends and no anticipation.

Although we assumed linearity here for ease of exposition (Assumption 5), this ap-
proach can also accommodate non-linear models for the conditional expectation function.
Researchers can allow for non-linearities by obtaining the estimated conditional expecta-
tion Ê[yi,t+h – yi,t–1

|Di,t+h = 0, xi] from a flexible non-parametric or semi-parametric model.
Indeed, equation 11 continues to hold under non-linearity, as long as the conditional
expectation function is correctly specified in the first-step regression.

12It is well known that a similar result holds in the canonical 2x2 setting (Roth et al., 2023, pp.2230-2231).
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4.1.2 Controlling for covariates when treatment effects do not vary with covariates

Under more restrictive assumptions, namely that treatment effects do not vary based
on the value of the covariates, estimation of a simple LP-DiD specification with control
variables yields a convex variance-weighted effect.

In addition to assumptions 3 and 4 and 5, we now add:

Assumption 6. Treatment effects are independent of covariates

yi,t+h – yi,t–1
= δh

t + γhxi + τi,t+hDi,t+h – τi,t–1
Di,t–1

+ eh
i,t .

Online Appendix B.2 shows that under these assumptions, simply augmenting the LP-
DiD specification of equation 8 with the covariates vector xi (as in Appendix Equation B.8)
yields a convex weighted average effect, with the weights of equation 10. If Assumption 6

fails, however, the weights are hard to characterize and might even be negative.
Given that the RA specification presented in Section 4.1.1 requires weaker assumptions,

it appears generally preferable in applications.

4.2 Non-absorbing treatment

In many applications, treatment is not absorbing: units can enter and exit treatment.
Through appropriate modification of the ‘clean control’ sample restriction of Equation 8,
the LP-DiD framework can accommodate non-absorbing treatment settings.

4.2.1 Setup and notation with non-absorbing treatment

To discuss non-absorbing treatment, we extend the framework of Section 2.1 and allow
potential outcomes to be a function of the treatment path, as in Robins (1986).13 Treatment
is still binary (Dit ∈ {0, 1}), but we remove the assumption Dis ≤ Dit for s < t. Let
Di = (Di1, . . . , DiT) denote the vector containing the time series of the treatment variable
D over the sample period for unit i. The observed outcome can then be written as
yit = yit(Di). Let yit(d1, . . . , dT) denote the potential outcome for unit i at time t, if its
treatments over the sample period were equal to (Di1, ..., DiT) = (d1, . . . , dT).

13Recent articles discussing panel estimation with non-absorbing treatment are for example Chaisemartin
and D’Haultfœuille (2024), Bojinov, Rambachan, and Shephard (2021), and Viviano and Bradic (2023).
Our setup here is similar to Design 2 in Chaisemartin and D’Haultfœuille (2024), and the estimator of
the effect of entering treatment for the first time proposed in Section 4.2.2 below constitutes a regression-
based method to perform and aggregate the same clean comparisons considered in that article. Unlike
Chaisemartin and D’Haultfœuille (2024), however, we also consider an ‘effect stabilization’ assumption that
allows using treatment events subsequent to the first one in estimation.
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Given an estimation sample selected by the researcher, which might coincide with the
full sample of N units and T periods or be a subset of it, groups g ∈ {–k, . . . , 1, . . . , G},
with k ≥ –1, are now defined so that all units within the same group experience the same
treatment path over the estimation sample. We let Dg = (Dg1, . . . , DgT) denote the time
series of the treatment variable for group g in the given estimation sample, in which Dg,t

is a missing value if units in group g are excluded from the estimation sample at time t.
Groups –k to 0 denote k + 1 possible groups such that ∆Dgt ̸= 1 for all t in the estimation
sample. We let pn

g denote the time period in which group g enters treatment for the n-th
time in the estimation sample, with pn

g = ∞ if the group enters treatment less than n times
in the estimation sample.

The no-anticipation and parallel trends assumptions are rewritten as follows:

Assumption 7. No anticipation (non-absorbing treatment version)

yit(d1, ..., dT) = yit(d1, ..., dt) for all i and t.

Assumption 8. Parallel trends (non-absorbing treatment version)

E
[
yit(0) – yi1(0)|Di = D

]
= E

[
yit(0) – yi1(0)

]
, for all t ∈ {2, ..., T} and all D.

4.2.2 Estimating the effect of entering treatment for the first time

We first discuss the problem of estimating the effect of entering treatment for the first
time and staying treated, relative to a counterfactual of remaining untreated.

Consider an estimation sample that includes observations that are either treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for j ≥ 1) ,

Di,t–j = 0 for j ≥ –h .
(12)

.
We let τ

′g
h denote the h-periods horizon effect of entering treatment for the first time

and staying treated for group g, which enters treatment for the first time at p1

g and then
remains treated until at least period p1

g + h. Given the estimation sample defined by
Equation 12 and the corresponding set of groups, this can be written as

τ
′g
h = E

[
yi,p1

g+h (Di) – yi,p1

g+h (0) |i ∈ g, p1

g ̸= ∞
]

A variance-weighted average effect ∑G
g=1

ωLP–DiD′
gh τ

′g
h , with strictly positive weights
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ωLP–DiD′
gh =

(
NCCSgh

[ngh(1 – ngh)]
)

/
(

∑G
g=1

NCCSgh
[ngh(1 – ngh)]

)
, can be recovered by esti-

mating the LP specification of equation 4 in the estimation sample defined by Equation 12,
where NCCSgh

and ngh are defined as in Section 3.2. The derivation of this result is the

same as for the case of absorbing treatment in Online Appendix B, with τ
′g
h substituted

for τ
g
h and the clean control condition of equation 12 substituted for the one of equation 8.

Estimating the same specification using either a weighted regression or regression
adjustment (as discussed in Section 3.3) recovers the equally-weighted effect.

4.2.3 Estimating average treatment effects under an ‘effect stabilization’ assumption

In numerous settings of practical importance, the estimand τ
′g
h introduced above and the

resulting ‘clean control condition’ of Equation 12 might not be feasible or appropriate.
Consider, for example, the problem of estimating the effect of minimum wage (MW)
increases in a panel of regions. For most MW increase events, there will be very few
clean control regions that have never experienced any MW increase until period t + h.
This case can be dealt with in a simple way in the LP-DiD framework, by focusing on
the average effect of treatment events and under the additional assumption that dynamic
effects stabilize after a finite number of periods.

Let us first define treatment events.14 Group g has a treatment event at time j if
∆Dg,j = 1. We let NT

g denote the number of treatment events experienced by group g in
the estimation sample.

We then introduce the vectors of counterfactual treatment series Di,j,0 and Di,j,1. We
let Di,j,0 denote a (1×T) vector which is equal to Di up to column j – 1, while its columns j
to T are all equal to 0. Similarly, Di,j,1 is equal to Di up to column j – 1, but its columns j to
T are all equal to 1. We thus have Di,j,0 ≡ (Di1, . . . , Di,j–1

, 0) and Di,j,1 ≡ (Di1, . . . , Di,j–1
, 1).

The average dynamic effect of the n-th treatment event experienced by group g is
denoted by τ

g,n
h and defined as follows:

τ
g,n
h ≡ E

[
yi,pn

g+h

(
Di,pn

g ,1

)
– yi,pn

g+h

(
Di,pn

g ,0

)
| i ∈ g, pn

g ̸= ∞
]

Furthermore, we introduce the following assumption:

Assumption 9. Dynamic effects stabilize after L periods:

τ
g,n
L = τ

g,n
L+l for some L < T , for all l ≥ 0 , and for all treatment events (g,n).

14‘Exit’ events could be defined, and their effect estimated, in an analogous way.
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Under assumptions 7, 8 and 9, a convex variance-weighted effect ∑G
g=1 ∑

NT
g

n=1
ωLP–DiD′′

gnh τ
g,n
h

is consistently estimated by the LP-DiD specification of Equation 4 with the following
modified sample restriction: treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for 1 ≤ j ≤ L) ,

∆Di,t–j = 0 for – h ≤ j ≤ L .
(13)

The (non-negative) weight assigned to a treatment event is

ωLP–DiD′′
gnh =

n̄gnhNCCSgnh
[n̂gnh(1 – n̂gnh)]

∑G
g=1 ∑

NT
g

n=1
n̄gnhNCCSgnh

[n̂gnh(1 – n̂gnh)]
.

In this formula, CCSgnh is the set of units that satisfy the sample restriction in equation
13 at time t = pn

g ; NCCSgnh
is the number of units in CCSgnh; n̂gnh is the share of newly

treated units in CCSgnh; n̄gnh is the share of units belonging to group g among all newly
treated units in CCSgnh. See Online Appendix C for proof and further discussion.

Intuitively, units that have experienced no change in treatment status in the time-
window between t – L and t + h constitute ‘clean controls’ for units entering treatment
at time t, because their outcome dynamics in this time-window are not influenced by
previous treatment events by virtue of Assumption 9. Moreover, only units that enter
treatment at t and experience no other change in treatment status between t – L and t + h
constitute ‘clean treated units’ to be used in estimation: this restriction ensures that their
outcome dynamics are only influenced by the treatment event at time t and not others.15

Also in this case, weighted regression or regression adjustment can be used to estimate
an equally-weighted ATT instead of a variance-weighted one, as described in Section 3.3.

Repeated ‘one-off’ treatments So far, we have assumed that, following a treatment
event, treatment status persists (i.e., Dit = 1) until a potential exit or reversal. An
important alternative scenario involves ‘one-off’ treatments—cases in which treatment is
by definition confined to a single period, even though its effects may be dynamic and
persistent over time. Natural disasters provide a canonical example: Dit = 1 if unit i is

15In their empirical application, Callaway and Sant’Anna, 2020 study the impact of minimum wage
increases during 2001–2007, and use as controls all states that did not raise their minimum wage during
this period. However, all states (including the control states) were affected by the federal minimum wage
increases in 1996–1997, and there were no truly untreated states during the 2001–2007 period. Therefore,
there is an assumption in Callaway and Sant’Anna, 2020 that L is no greater than 4 years, although this
assumption is not made explicit.
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hit by a hurricane at time t, and Dit = 0 in all other periods (although effects may be
long-lasting). Depending on the modeling approach, minimum wage increases can also
be analyzed within this framework.

When units can experience repeated one-off treatments, average treatment effects can
be estimated using a modified version of the sample restriction in equation 13. Specifically,
‘clean’ treated observations are now defined by Dit = 1 and Di,t–j = 0 for –h ≤ j ≤ L, with
j ̸= 0, while the definition of clean controls remains as specified in equation 13.

In this subsection we have provided empirically relevant illustrations of what one
can do with the LP-DiD framework in settings with non-absorbing treatment. Of course,
one could consider alternative target estimands and assumptions. A comprehensive
discussion of non-absorbing treatment would indeed require a whole article in itself. Our
point is that the LP-DiD framework and its clean control condition can be flexibly adapted
to accommodate non-absorbing treatment settings. For an application with non-absorbing
treatment, see Dube and Lindner, 2024 who use the LP-DiD framework to estimate the
impact of state-level U.S. minimum wage laws.

4.3 Identification and relation to impulse responses

Circling back to our initial motivation, we end this discussion by briefly outlining the
differences and commonalities between the LP-DiD methods that we propose in this
paper and the now-typical estimation of impulse responses by LPs in macroeconomics.

Perhaps the key difference is in the definition of the counterfactual experiment. In a
traditional macro impulse response, treatment (the ‘shock’ in macro parlance) typically
generates a series of later changes in the policy variable itself (i.e., subsequent treatments)
as well as changes in the outcome. In a sense, the experiment is akin to a treatment plan
rather than a one-off treatment, as is traditional in applied micro.

Note that in the specification of the LP-DiD estimator, we condition on future values of
treatment (between t + 1 and t + h). This removes the effect of subsequent treatment effects
on future values of the outcome. Of course, one could recover the impulse response by
the convolution of the treatment plan with the single-treatment effect measured with
the LP-DiD estimator. That is, our estimator computes the treatment effect of a one-off
intervention. If the intervention itself then generates subsequent interventions, the overall
effect—the impulse response—is the result of combining one-off treatment effects with
the treatment plan itself.

Is one approach more correct than the other? As Alloza, Gonzalo, and Sanz (2019)
show, not really. The impulse response captures the effect of an intervention on an
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outcome that is the most likely to be seen directly in the data, allowing for the path of
future treatments. The researcher is less interested in the sequence of individual treatment
effects on the outcome generated by the treatment plan. Rather the goal is to understand
the overall effect on the outcome over time. In the applied-micro setting for which our
LP-DiD estimator is constructed, we are instead careful to parse out the one-off effect.
This object is of equal value, as it would permit the researcher to craft an alternative
treatment plan than that usually observed (though in that case, deviations from the usual
treatment plan can run afoul of the Lucas critique if they are ‘too different’).

There are two important caveats to these statements. First, conditioning on future
treatments is not innocuous if treatment assignment is endogenous. Second, even if
treatments are exogenous (perhaps conditional on observables), the extent to which
the results can be interpreted as measures of one-off treatments when treatment is not
absorbing greatly depends on how agents form expectations about future treatments.
A one-off treatment will likely be a significant departure from previously observed
treatment plans and thus lead forward-looking agents to respond differently.

5 Monte Carlo simulation

We present a Monte Carlo simulation to evaluate the performance of the LP-DiD estimator
in a setting with binary staggered treatment and heterogeneous treatment effects.

5.1 Setting

We calibrate the simulation based on the empirical application that will be presented in
Section 6.1, which estimates the effect of banking deregulation on the wage share.

We simulate yearly observations on the wage share for 46 states over 1970-1996. The
potential outcome without treatment equals yit(0) = λiγteit, with eit = (1 – ρ)ϵit + ρei,t–1

,
where ϵ is a white noise random shock. We set ρ = 0.63 based on the corresponding
estimated coefficient using wage share data from the Leblebicioğlu and Weinberger (2020)
dataset; λi, γt and ϵit follow a beta distribution with parameters estimated empirically
using the Leblebicioğlu and Weinberger (2020) dataset.

The treatment follows the same time profile as banking deregulation reforms in US
states. The treatment effect is negative and grows over time for four years, after which it
stabilizes, and is stronger for early adopters. Specifically, define ϕit = t – pi + 1 and µi =

pi–1970

min{p1,...,pN}–1970
. The treatment effect is βit = α0

(
1

ϕit

)
1/4

[
α1

(
1

ϕit

) 1

3µi + (1 – α1)
(

1

ϕit

) 1

3

]
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for 0 ≤ t – pi ≤ 3; βit = βi,t–1
for t – pi > 3; and βit = 1 for t < pi. We set α0 = 0.995 and

α1 = 0.75.
The observed outcome is yit = yit(0) × βit . Given the multiplicative structure of the

DGP, we take a log transformation of the outcome ln(y) in estimation.

5.2 Estimators

We perform 200 replications and evaluate five estimators: (i) dynamic TWFE; (ii) LP-DiD,
using both variance weights and equal weights, and applying both first-lag differencing
and pre-mean differencing; (iii) Sun and Abraham (2020) – SA hereafter; (iv) Callaway and
Sant’Anna (2020) – CS hereafter; (v) Borusyak, Jaravel, and Spiess (2024) – BJS hereafter.

5.3 Results

Results are presented in Figures 1 and 2 and Table 1. Figure 1 displays the estimated
effect path in comparison with the true (equally-weighted) average effect path and the
full range of cohort-specific effects. Figure 2 plots the full distribution of estimates at
time-horizons h = 0, 2, 5 and –2. Table 1 reports the root mean squared error (RMSE) of
each estimator at time horizons h = –5 to +5.

Figure 1: Simulation results: True effect path and estimates

LP-DiD
-.8

-.6

-.4

-.2

0

-5 0 5

Reweighted LP-DiD
-.8

-.6

-.4

-.2

0

-5 0 5

PMD LP-DiD
-.8

-.6

-.4

-.2

0

-5 0 5

Reweighted PMD LP-DiD
-.8

-.6

-.4

-.2

0

-5 0 5

Dynamic TWFE
-.8

-.6

-.4

-.2

0

-5 0 5

Callaway-Sant'Anna
-.8

-.6

-.4

-.2

0

-5 0 5

Sun-Abraham
-.8

-.6

-.4

-.2

0

-5 0 5

Borusyak-Jaravel-Spiess
-.8

-.6

-.4

-.2

0

-5 0 5

Tr
ea

tm
en

t E
ffe

ct

Event Time

Full range of true treatment effects True equally-weighted ATE
Average estimate 5th and 95th pct of estimate

Notes: Average estimates and 95% and 5% percentiles from 200 replications.

25



Figure 2: Simulation results: Distribution of estimates
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weighted) average treatment effect on the treated. The Callaway and Sant’Anna, 2020 estimator is not
included, because in this setting it is numerically equivalent to Reweighted LP-DiD.

Conventional dynamic TWFE does a poor job in this setting, due to the heterogeneity
of treatment effects. It finds a spurious, increasing, pre-trend and grossly underestimates
the magnitude of the effect. Due to negative weighting, point estimates lie outside the
full range of true cohort-specific effects.

The LP-DiD estimator, in contrast, tracks the true average dynamic effect well. This
is true for both the simple (variance-weighted) LP-DiD and the re-weighted LP-DiD,
and with both pre-mean differencing (PMD) and first-lag differencing. When comparing
LP-DiD with the SA, CS and BJS estimators, performance is broadly similar.

The simulation also provides some insights into the possible differences between
estimators in this setting. First, the results are suggestive of a bias-variance trade-off be-
tween equal-weighting and variance-weighting: reweighted LP-DiD (which applies equal
weights) yields an unbiased estimate of the ATT, while the simple (variance-weighted)
LP-DiD has a small bias but also lower variance. The bias from variance-weighting tends
to become more relevant at longer time-horizons, because in our simulation the true
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Table 1: Simulation results: Root mean squared error (RMSE), multipied by 100

Event
time

Dynamic
TWFE

LP-
DiD

Rw LP-
DiD

PMD
LP-
DiD

Rw
PMD
LP-
DiD

SA CS BJS

-5 16.34 1.43 1.44 0.99 1.01 4.06 1.44 1.19

-4 12.38 1.31 1.37 0.98 1.02 3.53 1.37 1.52

-3 8.30 1.23 1.25 0.99 0.98 2.81 1.25 1.83

-2 3.85 0.94 0.97 0.96 0.96 1.71 0.97 2.04

0 3.84 0.89 0.94 1.23 1.27 1.56 0.94 1.27

1 7.17 1.36 1.40 1.64 1.67 2.60 1.40 1.65

2 10.67 2.08 1.99 2.32 2.20 3.71 1.99 2.16

3 14.16 2.96 2.65 3.04 2.69 4.63 2.65 2.61

4 17.94 3.59 3.20 3.60 3.11 5.24 3.20 2.99

5 21.33 4.61 4.32 4.44 3.96 5.80 4.32 3.76

Notes: RMSE from 200 replications. Dynamic TWFE = dynamic two-way fixed-effects; Rw = reweighted;
PMD = pre-mean-differenced; CS = Callaway and Sant’Anna, 2020; SA = Sun and Abraham, 2020; BJS =
Borusyak, Jaravel, and Spiess, 2024.

treatment effect variance increases in time after treatment. As a result, variance-weighting
produces lower RMSE than equal weighting at short time-horizons (h = 0 and 1), but the
opposite is true at longer time horizons (Table 1).

Moreover, due to high autocorrelation in untreated potential outcomes, estimators
using pre-mean differencing (BJS and PMD LP-DiD) do not systematically outperform
those using first-lag differencing, consistent with the theoretical results in Harmon (2022).

Given the variance-bias trade-off discussed above and the advantages of first-lag
differencing under high autocorrelation, at shorter time-horizons (h = 0 and 1) variance-
weighted LP-DiD produces the lowest RMSE across all estimators considered (Table 1).

5.4 Computational speed

To quantify computational speed, we recorded the computation time required for es-
timating the treatment effect path in one replication of our simulation. To assess how
computation time changes with sample size, we also record computation times in another
simulated dataset with the same DGP but double the number of units, time periods
and treatment events. For these exercises, the estimations were conducted using STATA
software on a laptop with Apple M2 Chip processor and 8 GB of RAM.

Table 2, which reports recorded computation times, shows that LP-DiD provides a
significant computational advantage relative to other recently proposed estimators. The
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Table 2: Computational speed (seconds)

Panel size Dynamic
TWFE

LP-
DiD

PMD
LP-
DiD

Rw
LP-
DiD

Rw
PMD
LP-
DiD

CS SA BJS

N=46; T=27; 13 events .24 .12 .13 .20 .19 4.46 1.09 .24

N=184; T=54; 26 events .22 .16 .19 .26 .29 137.5 105.5 .54

Notes: Computation times in a single repetition of the simulated datasets described in Section 5, measured
in seconds. Recorded on a laptop with M2 Apple Chip processor and 8 GB of RAM, using the STATA
software. Rw = reweighted (see Sec 3.3); PMD = pre-mean-differenced (see Sec 3.4); CS = Callaway and
Sant’Anna, 2020; SA = Sun and Abraham, 2020; BJS = Borusyak, Jaravel, and Spiess (2024).

computational advantage relative to CS and SA is substantial, especially in the second
larger dataset, while the advantage relative to BJS is more limited.

There is already some early evidence, from recent empirical studies, for the empirical
relevance of the computational advantage of LP-DiD. For example Gilbert, Hoen, and
Gagarin (2024) employ LP-DiD in a large dataset of US workers to estimate the labor
market impact of wind energy projects and state that the computational advantage of the
method is “a crucial benefit in our case” (Gilbert, Hoen, and Gagarin, 2024, p. 278).

6 Empirical Applications

We present two empirical applications to illustrate the use of the LP-DiD estimator.

6.1 Credit and the labor share

In our first empirical study, we estimate the effect of banking deregulation laws on the
labor share in US States, replicating Leblebicioğlu and Weinberger (2020), LW hereafter.

From the late 1970s up to the 1990s, U.S. states lifted restrictions on the ability of
out-of-state banks to operate in-state (interstate banking deregulation) and on the ability
of in-state banks to open new branches (intra-state branching deregulation). LW estimate
the effects of both interstate banking and intra-state branching deregulation laws on the
labor share of value added.

The dataset covers the 1970–1996 period. (In 1997, inter-state banking deregulation
was imposed in all states by federal law.) Online Appendix Figure E.3, which reproduces
Figure 1 in LW, displays the share of US states with a liberalized banking sector.

Using static and dynamic TWFE specifications, LW find that inter-state banking
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deregulation had a sizable negative effect on the labor share, but find no effect of intra-
state branching deregulation. Online Appendix E presents replication results using the
same TWFE specifications employed in LW. Like the original LW study, these results
suggest that the liberalization of interstate banking has a sizable negative effect on the
labor share, although they also show a small pre-treatment trend. Instead, the estimated
effects of intra-state branching deregulation on the labor share are positive, small and
very imprecise.

Given the staggered rollout of banking deregulation laws, the TWFE specifications
employed in LW might by influenced by unclean comparisons: earlier liberalizers are
implicitly used as controls for states that liberalize later on, potentially introducing
negative weighting bias. Using the Goodman-Bacon (2021) decomposition diagnostic,
we find that a conventional static TWFE estimator for the effect of inter-state banking
deregulation assigns a 36% weight to unclean comparisons. For the estimates of the
effect of intrastate branching deregulations, the problem is much more severe: unclean
comparisons account for as much as 70% of the estimate (details in Online Appendix E).
The greater potential bias in the case of intrastate branching—whose adoption is spread
over a much longer horizon than interstate banking—is a stark demonstration of the
negative weighting problem that arises with staggered treatment.

We revisit the effect of banking deregulation using the following LP-DiD specification:

LSs,t+h – LSs,t–1 = δh
t + βLP–DiD

h ∆Policys,t +
M
∑

m=1

ηh
mXs,t–m + eh

s,t , (14)

where s indexes states, t indexes years, LS is the labor share, X is a vector of control
variables, and Policyst is a binary indicator equal to one if a state has adopted the
policy (intrastate branching or interstate banking deregulation). The estimation sample is
restricted to observations that are either newly treated (∆Policys,t = 1) or clean controls
(Policys,t+h = 0).

Results are displayed in Figure 3. The negative effect of inter-state banking deregulation
is confirmed, including when controlling for pre-treatment outcome dynamics.

However, estimates of the effect of intra-state branching deregulation, change dramat-
ically once we correct for negative weighting: while the original TWFE estimates had
found no effect, we find a sizable negative impact. After addressing the bias of the TWFE
estimator by excluding ‘unclean’ comparisons, the estimated effect of inter-state branch-
ing deregulation on the labor share is negative and of similar size as that of inter-state
banking deregulation. Both types of deregulation are now found to make a difference.
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Figure 3: Effect of banking deregulation on the labor share: LP-DiD estimates
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Notes: Estimates for the effect of banking deregulation on the labor share, using data from LW and the
LP-DiD specification of equation 14. Following LW, the additional controls are four lags of real State GDP,
average corporate tax rate, and union membership rates.

6.2 Democracy and economic growth

Our second empirical application estimates the effect of democratization on GDP per
capita, replicating the analysis in Acemoglu et al. (2019), ANRR hereafter.

The ANRR dataset covers 175 countries from 1960 to 2010. The treatment indicator is
a binary measure of democracy. The outcome of interest is the log of GDP per capita.

Three features make this application a relevant testing ground for the LP-DiD approach.
First, there is potential for negative weighting: fixed-effects regression would implicitly
use older democracies as controls for new democracies. Second, treatment is non-
absorbing: democracies can slide back into autocracy. Third, controlling for pre-treatment
outcome dynamics is crucial, since there is evidence of selection: ANRR show that
democratisation tends to be preceded by a dip in GDP per capita.

First, to clarify the assumptions under which LP-DiD can provide unbiased estimates
of the ATT in this setting, Online Appendix D presents a simulation calibrated on this
empirical application, where the treatment status is endogenous and responds to past
outcome shocks, treatment is non-absorbing, and treatment effects are heterogeneous.
The simulation shows that our LP-DiD estimator with controls for lagged outcomes
provides reliable estimates, with reasonably small RMSE and centered around the ATT
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when used with reweighting.16

The baseline results in ANRR are obtained from the following dynamic fixed effects
specification:

yct = βDct +
p

∑
j=1

γjyc,t–j + αc + δt + ϵct , (15)

where c indexes countries, t indexes years, y is the log of GDP per capita and D is the
binary measure of democracy. Lags of GDP per capita are included to address selection
bias, and in particular the pre-democratization decline in GDP per capita. Estimated
coefficients from Equation 15 are used to build an impulse response function (IRF) for
the dynamic effect on GDP, as well as the cumulative long-run effect of a permanent
transition to democracy, estimated as β̂(1 – ∑

p
j=1

γ̂j)
–1.

Online Appendix Figure F.6 displays the IRF from the estimation of the dynamic panel
model of Equation 15. This reproduces the baseline results in ANRR. The implied long-
run effect of democracy on growth is 21 percent with a standard error of 7 percent. This
dynamic fixed effects specification, however, might suffer from the negative weighting
bias discussed in Section 2.

We consider the following LP-DiD specification:

yc,t+h – yc,t–1 = βLP DiD
h ∆Dct + δh

t +
p

∑
j=1

γh
j yc,t–j + ϵh

ct , (16)

restricting the estimation sample to democratizations (Dit = 1; Di,t–j = 0 for 1 ≤ j ≤ L) and
clean controls (Di,t–j = 0 for 0 ≤ j ≤ L). In words, in each year t treated units are countries
that democratize at t and have experienced no other change in treatment status in the
previous L years; clean controls are countries that have been non-democracies continually
for at least L years.

This is an example of how the LP-DiD framework can be applied in a setting in which
treatment is not absorbing, and the clean control condition can (and should) be tailored
to the specific application. For example, this specification does not condition inclusion in
the estimation sample on treatment status between time t + 1 and t + h. This is to take into
account the concern that, under endogenous selection into treatment, constraining future

16The DGP in the simulation in Online Appendix D is such that the parallel trends assumption does not
hold unconditionally, but does hold conditional on the lagged outcome change. As already mentioned,
some more general and complex dynamic selection settings can be incompatible with (conditional) parallel
trends assumptions, and therefore not suitable for a DiD approach. The reader can refer to Ghanem,
Sant’Anna, and Wüthrich, 2024 and Marx, Tamer, and Tang, 2024 for comprehensive discussions of the
relation between dynamic selection and parallel trends, and to Viviano and Bradic, 2023 for estimators
suitable for more general dynamic selection settings in which (conditional) parallel trends does not hold.
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treatment status might introduce bias (as argued by ANRR, pp. 54–55). Moreover, similar
to ANRR, only non-democracies are included in the control group, although in principle
under Assumption 9 also countries that are continually democracies from t – L to t could
be included. This reflects the concern that established democracies might not be a good
comparison for new democracies, therefore a control group composed only of continuing
autocracies is more likely to satisfy the parallel trends assumption.

In a section of their analysis, ANRR employ a semiparametric LP specification that can
be seen as a special version of the LP-DiD estimator. Specifically, they estimate Equation
16 with L = 1, which implies a time-window for defining clean controls of just 1 year.

Seeing ANRR’s semiparametric specification as a version of LP-DiD provides a useful
and novel perspective on their analysis and suggests possible deviations from their
specification. Our formal analysis in Section 4 makes clear that their choice relies on an
implicit (and unintended) assumption that treatment effects stabilize after 1 year, which
is clearly too strong in this setting.17

We thus estimate the LP-DiD specification of Equation 16 with a time-window of
20 years (L = 20) for defining clean controls, thus excluding observations that have
experienced some transition in the previous 20 years.

We also test robustness to excluding countries that democratize between t + 1 and t + h
from the control group. To do this, we adopt a second version of the clean control condi-
tion, with the same definition of treated units but where clean controls are observations
with Di,t–j = 0 for –h ≤ j ≤ L. This test, however, should be interpreted with caution: as
argued by ANRR, in this setting conditioning on future treatments might introduce bias.

Figure 4 displays results from four LP-DiD specifications. The first (top left panel)
follows ANRR and sets a time-window of just one year for defining clean controls (L = 1).
The second (top right) uses a time-window of 20 years (L = 20). The third (bottom left)
adds the additional requirement that control units remain non-democracies between t + 1

and t + h. The fourth (bottom right) estimates the LP-DiD specification using regression
adjustment (RA) to obtain an equally-weighted (rather than a variance-weighted) ATT, as
discussed in Section 3.3.

Overall, the result of a positive and large effect of democracy on GDP per capita
appears robust to stricter definitions of the control group. The partial exception is
the specification that excludes countries that democratize between t + 1 and t + h from

17For example, Argentina democratized in 1973 and became a dictatorship again in 1976. In the
ANRR approach, Argentina contributes to the counterfactual for estimating the effect of Spain’s 1978

democratization. It seems natural to consider an alternative specification that excludes Argentina from the
counterfactual for countries that (like Spain) democratize shortly after 1973–76, reflecting the concern that
the country might have experienced prolonged dynamic effects from its 1973–76 transitions.
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the control group, which finds similar positive short- and medium-term effects, but
much smaller and very imprecise long-term effects. However, that specification is to be
interpreted with caution for the reasons discussed previously.

Figure 4: Effect of democracy on growth: LP-DiD estimates
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Notes: LP-DiD estimates for the effect of democracy on GDP per capita, using the specification of Equation
16. Top left panel (‘ANRR (2019) LP specification’) replicates results in Section IV of ANRR, which set
L = 1 year in the clean control condition. The other three panels set L = 20 years. CCC 1 is a clean control
condition that defines treated units as countries that democratize in year t and experienced no transition
between t – 20 and t – 1, and clean controls as countries that are continually non-democracies between t – 20

and t. CCC 2 defines treated units in the same way, but clean controls are continually non-democracies
between t – 20 and t + h. Right bottom panel uses reweighting to obtain an equally-weighted effect, using
CCC 1. See main text for more details.

7 Conclusion

We propose a simple-to-implement, transparent, and computationally fast technique for
difference-in-differences estimation with dynamic heterogeneous treatment effects. Our
proposed LP-DiD estimator, while based on a simple OLS regression, does not suffer
from the negative weighting problem highlighted by recent studies. LP-DiD provides
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an encompassing framework which can be flexibly adapted to implement different
weighting and normalization schemes and target estimands, and can be extended to
settings with non-absorbing treatment and covariates. The LP-DiD framework could be
further extended in future work to a wider variety of settings, including, for example,
continuous treatment variables.
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Jordà, Òscar (2005). “Estimation and Inference of Impulse Responses by Local Projections”.
In: American Economic Review 95.1, pp. 161–182.
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Online Appendix

A Derivation and further discussion of the results in Sec-

tions 2.2 and 2.3

A.1 Two groups and two time periods

The link between LP and DiD is easiest to see in a basic 2-groups/2-periods setting. In the
2x2 setting, an LP regression at horizon h = 0 is equivalent to a first-difference regression
or a static TWFE regression, both widely used DiD implementations.

Assume two groups of units and two time periods. In the first period (pre-treatment)
no unit is treated. In the second period (post-treatment) one group of units is treated
while the other remains untreated. In terms of the general setup and notation introduced
in the main text, we are setting T = 2, and therefore t ∈ {1, 2}. Moreover, we have
g ∈ {0, 1}, where group 0 is the control group and group 1 the treatment group. For units
in the treatment group pi = p1 = 2. For units in the control group pi = p0 = ∞.

Our interest is in estimating the ATT in period t = 2, defined as E[yi2(2) – yi2(0)|pi = 2].
Given the no-anticipation and parallel trends assumptions (Assumptions 1 and 2 in the
main text), the ATT in this setting can be rewritten as follows,

ATT ≡ E[yi2(2) – yi2(0)|pi = 2]
= E[(yi2(2) – yi1(0)) – (yi2(0) – yi1(0))|pi = 2]
= E[yi2(2) – yi1(0)|pi = 2] – E[yi2(0) – yi1(0))|pi = ∞]
= E[∆yi2|pi = 2] – E[∆yi2|pi = ∞] ≡ β2x2 ,

where β2x2 is the well-known 2x2 DiD estimand (Angrist and Pischke, 2009, pp. 227–233).
Now consider an LP regression (Equation 4 in the main text) with time horizon h = 0.

In this 2x2 setting, this boils down to a simple first-difference regression

∆yit ≡ yi2 – yi1 = δ + βLP
0

∆Di2 + ei2 .

Since ∆Di2 = Di2 in this simple case, we therefore have that

βLP
0

= E[∆yi2|Di2 = 1] – E[∆yi2|Di2 = 0] = β2x2 = ATT .

Thus, in the 2x2 setting, the LP regression at horizon h = 0 is equivalent to a first-
difference regression, and its population coefficient corresponds to the 2x2 DiD estimand
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β2x2, which (given no-anticipation and parallel trends) equals the ATT. As is well known,
in this setting also the estimand βTWFE from a static TWFE regression (Equation 2

in the main text) is equivalent to the coefficient from a first-difference regression and
corresponds to β2x2 (Angrist and Pischke, 2009, pp. 233–236). We thus have βLP

0
=

βSTWFE = β2x2 = ATT.

A.2 Two groups and multiple time periods

We now consider a slightly extended setting, with two groups (treated and control),
multiple time periods T > 2, and where all treated units enter treatment in the same time
period. Also in this setting, we show that an LP regression is a way to implement the
DiD method and recover the (dynamic) ATT.

Specifically, assume that all units in the treatment group enter treatment at time s,
with 1 < s < T, and remain treated thereafter, while control units are never treated over
the sample period. In terms of our general setup and notation, we are setting g ∈ {0, 1},
where group 0 is the control group and group 1 the treatment group. For all units in the
treatment group, pi = p1 = s. For all units in the control group, pi = p0 = ∞. With only
one treated cohort, the group-specific dynamic ATT does not need the treatment group
indicator, and becomes simply τh = E[yi,s+h(s) – yi,s+h(0)|pi = s].

Again, via no-anticipation and parallel trends assumptions (Assumptions 1 and 2 in
main text),

τh ≡ E[yi,s+h(s) – yi,s+h(0)|pi = s]
= E[(yi,s+h(s) – yi,s–1

(0)) – (yi,s+h(0) – yi,s–1
(0))|pi = s]

= E[yi,s+h(s) – yi,s–1
(0)|pi = s] – E[yi,s+h(0) – yi,s–1

(0)|pi = ∞]
= E[yi,s+h – yi,s–1

|pi = s] – E[yi,s+h – yi,s–1
|pi = ∞] ≡ βDiD

h ,

where βDiD
h is the DiD estimand for the dynamic ATT h periods after treatment.

The population coefficient βLP
h from a simple LP regression (as defined in Equation 4

in the main text) corresponds exactly to this estimand. To see this, note that in this setting
the LP regression is equivalent to the following cross-sectional regression, estimated on a
subsample including all units, but only for the time period t = s,

yi,s+h – yi,s–1
= δh + βLP

h ∆Di,s + eh
i,s .
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Therefore we have

βLP
h = E[yi,s+h – yi,s–1

|∆Di,s = 1] – E[yi,s+h – yi,s–1
|∆Di,s = 0] = βDiD

h = τh .

This equivalence holds because when t ̸= s there is no variation in the regressor ∆Dit.
Hence, observations with t ̸= s do not contribute to the estimated coefficient βLP

h , and the
coefficient βLP

h is only identified using observations for time t = s.
From results in the recent literature on DiD (for example Chaisemartin and D’Haultfœuille

2020; Gardner et al. 2024; Sun and Abraham 2020; Goodman-Bacon 2021), we know that
in this setting, with only one treated cohort, and under no anticipation and parallel trends
assumptions, the coefficients in the dynamic TWFE regression (Equation 3 in main text)
correspond to the τh estimands.18 Moreover, the βSTWFE estimand from the static TWFE
regression (Equation 2 in main text) equals the ATT, defined as E[τit|Dit = 1].19

A.3 Staggered treatment adoption with dynamic but homogeneous

treatment effects

We now allow for multiple treated groups which enter treatment at different points
in time (treatment is staggered). For now, we assume that the average treatment effect
trajectory (or path) does not differ across treatment cohorts (i.e., we assume that treatment
effects are homogeneous). In terms of our general setup and notation, we now have G > 1,
meaning that we have more than one treatment group, and τ

g
h = τh for all g > 0.

In this setting with staggered treatment and dynamic but homogeneous treatment
effects, we still have that a LP regression similar to Equation 4 in main text but augmented
with an adequate number of lags and leads of the treatment indicator is able to recover the
average treatment effect path under the parallel trends and no-anticipation assumptions
introduced earlier.

Here is how we arrive at this result. Under Assumptions 1 and 2 in the main text and
assuming that treatment effects are homogeneous, mean observed outcomes at time t + h

18This can be seen using the decomposition of the dynamic TWFE coefficients (βETWFE
h in our notation)

provided by Sun and Abraham (2020). This shows that βETWFE
h is equal to τh plus a bias term that can arise

if the ATE is heterogeneous across cohorts. With only one treatment cohort, obviously, heterogeneity across
cohorts cannot arise, and βETWFE

h = τh.
19One way to see this is to use the decomposition of the static TWFE into a weighted average of treatment-

cohort specific ATTs (Chaisemartin and D’Haultfœuille 2020, p. 2970; Gardner et al. 2024, p. 7). This
decomposition implies that, when there is only one treatment cohort and the panel is balanced, βSTWFE

corresponds to an equally-weighted average of all the cell-specific ATTs.
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are given by

E[yi,t+h] = E[yi,t+h(0)] + ∑T
p=1

[(
E(yi,t+h(p) – yi,t+h(0)

)
× 1{pi = p}

]
= E[yi,t+h(0)] + ∑∞

j=–h τh+j × 1{pi = t – j}
= αi + δt+h + τh ∆Di,t + ∑∞

j=–h
h ̸=0

τh+j ∆Di,t–j .
(A.1)

Hence, by now subtracting E[yi,t–1
] from both sides of the previous expression and

defining δh
t = δt+h – δt–1, we obtain,20

E[yi,t+h – yi,t–1
] = δh

t + τh ∆Di,t +
h
∑
j=1

τh–j ∆Di,t+j +
∞

∑
j=1

[τh+j – τj–1
] ∆Di,t–j .

Therefore the dynamic ATT τh corresponds to the βLP
h population coefficient in the

following LP regression,

yi,t+h – yi,t–1
= δh

t + βLP
h ∆Dit +

∞

∑
j=–h
j ̸=0

θh
j ∆Di,t–j + eh

it . (A.2)

This LP regression includes lags of the differenced treatment indicator, but also its leads
up to period t + h. Leads are necessary to account for the possibility that a unit might
enter treatment between period t + 1 and period t + h.

What do static and dynamic TWFE specifications (Equations 2 and 3 in the main text)
identify in this setting with staggered treatment and dynamic but homogeneous effects?

Results from the recent DiD literature show that a static TWFE regression can suffer
from bias if treatment effects are dynamic (in the sense that τh ̸= τh+1

for some h), even
under parallel trends, no-anticipation, and homogeneity across treatment cohorts.

Intuitively, the bias comes from the fact that previously treated units are effectively
used as controls for newly treated units. Since previously treated units might still be
experiencing a delayed dynamic response to treatment, these treatment effect dynamics
are effectively subtracted from the static TWFE treatment effect estimate (Goodman-Bacon,
2021). That is, delayed dynamic responses to treatment can enter the static TWFE estimate
(Equation 2 in main text) with a negative weight (Chaisemartin and D’Haultfœuille, 2020).

Under the assumption of homogeneous treatment effects, however, dynamic TWFE
regression does not suffer from this bias and, like the LP regression with lags and leads

20Note that E[yi,t–1
] = αi + δt–1 + ∑∞

j=1
τj–1

∆Di,t–j.
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of treatment discussed above, unbiasedly estimates the average treatment effect path
under parallel trends and no anticipation, as long as a sufficient number of lags of the
treatment indicator is included (see Proposition 4 and Eq. 19 in Sun and Abraham, 2020).
Intuitively, the lagged treatment indicators control for lagged dynamic effects of previous
treatments, which in this setting are the same in expectation for all units.

The difference between Equation 3 in the main text and Equation A.2 above arises
from how they handle unit fixed effects. The former (TWFE) removes unit fixed effects
with mean differencing using the full sample, while the latter (LP) does so by differencing
around the treatment times. The latter could be advantageous in reducing bias if the unit
effects are not fully fixed (i.e., there are violations in the parallel trends assumption). For
an example of this, see Cengiz et al. (2019).
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B Weights of the LP-DiD estimator

This appendix derives the weights assigned to each cohort-specific ATT by the LP-DiD
estimator, first in a baseline OLS version without control variables and then in OLS
specifications with control variables.

B.1 Baseline OLS specification without control variables

Assumptions about the DGP

Consider the general setup and notation introduced in Section 2.1 in the main text.
Treatment is binary, staggered and absorbing; parallel trends and no anticipation hold
unconditionally (Assumptions 1 and 2 in main text); potential outcomes without treatment
are determined according to the fixed-effects model in Equation 1 in the main text. As in
Section 2.4, treatment effects are unrestricted, and can be dynamic and heterogeneous
across treatment cohorts.

We can write the observed long-difference yi,t+h – yi,t–1
as follows,

yi,t+h – yi,t–1
= δh

t + τi,t+hDi,t+h – τi,t–1
Di,t–1

+ eh
i,t , (B.1)

where δh
t = δt+h – δt–1 and eh

it = ei,t+h – ei,t–1
.

LP-DiD specification

Consider the following LP-DiD specification with clean controls:

yi,t+h – yi,t–1
= δh

t + βLP–DiD
h ∆Dit + ϵh

it , (B.2)

restricting the sample to observations that are either newly treated

or clean control

∆Dit = 1 ,

Di,t+h = 0 .
(B.3)

β̂LP–DiD
h is the LP-DiD estimate of the dynamic weighted ATT, h periods after entering

treatment.
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Derivation of the weights

First, we need to define a clean control sample (CCS) for each treatment group. Consider
a treatment group (or cohort) g > 0, as defined in Section 2.1 in the main text. Define the
clean control sample (CCS) for group g at time horizon h (denoted as CCSg,h) as the set
of observations for time t = pg that satisfy condition B.3. Therefore CCSg,h includes the
observations at time pg for all units that either enter treatment at pg or are still untreated
at pg + h. Formally,

CCSg,h =
{

i, t |
[
∆Di,pg = 1 ∨ Di,pg+h = 0

]
∧ t = pg

}
.

In other words, CCSg,h includes observations at time t = pg for group g and its clean
controls.

By definition of groups and CCSs, each observation that satisfies condition B.3 enters
into one and only one CCS. Therefore, the unbalanced panel dataset defined by the
clean control condition in B.3 can always be reordered as a ‘stacked’ dataset, in which
observations are grouped into consecutive and non-overlapping CCSs. The equivalence
between the estimation sample defined by the clean control condition of Equation B.3
and the stacked dataset we just described implies that, in this baseline setting, LP-DiD is
equivalent to the stacked approach of Cengiz et al., 2019.

Moreover, for any observation {i, t} ∈ CCSg,h, we have ∆Di,t = ∆Di,pg = Di,pg . This
follows from the fact that for any {i, t} ∈ CCSg,h, we have Di,t–1

= Di,pg–1
= 0 by virtue of

the clean control condition.
Define event indicators as a set of G binary variables that identify the CCS that an

observation belongs to. For each treatment group g > 0, the corresponding event indicator
is equal to 1 if {i, t} ∈ CCSg,h and 0 otherwise. By definition of treatment groups and
CCCs, these event indicators are fully collinear with time indicators.

By the Frisch-Waugh-Lovell theorem,

E
(

β̂LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(

yi,pj+h – yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

∆D̃2

i,pj

, (B.4)

where ∆D̃i,pg is the residual from a regression of ∆D on time indicators in the sample
defined by condition B.3.
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This residualized treatment dummy for unit i at time pg is equal to

∆D̃i,pg = ∆Di,pg –
∑i∈CCSg,h

∆Di,pg

NCCSg,h

= Di,pg –
∑i∈CCSg,h

Di,pg

NCCSg,h

= Di,pg –
Ng

NCCSg,h

, (B.5)

where NCCSg,h
is the number of observations belonging to CCSg,h, and Ng is the number

of observations belonging to group g. For all observations belonging to the same group
g > 0, we have ∆D̃i,pg = ∆D̃g,pg = 1 –

Ng
NCCSg,h

The first equality in Equation B.5 follows from the full collinearity between time
indicators and event indicators (defined as above); the second and third equalities follow
from the definitions of groups and CCCs.

Given Assumptions 1 and 2 in main text, we have

E
(

β̂LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(

yi,pj+h–yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

= ∑G
j=1

∑i∈CCSj,h

∆D̃i,pj

∑G
j=1

∑i∈CCSj,h
∆D̃

2

i,pj

E
(

τi,pj+hDi,pj

)

= ∑G
j=1

∑i∈j
∆D̃i,pj

∑G
j=1

∑i∈j ∆D̃
2

i,pj

τi,pj+h

= ∑g ̸=0

Ng∆D̃g,pg

∑g ̸=0
Ng∆D̃

2

g,pg
τg,pg+h

= ∑g ̸=0
ωLP–DiD

g,h τ
g
h ,
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where the weights are given by

ωLP–DiD
g,h =

Ng∆D̃g,pg

∑g ̸=0
Ng∆D̃2

g,pg

=
Ng

(
1 –

Ng
NCCSg,h

)
∑g ̸=0

Ng

(
1 –

Ng
NCCSg,h

) =
NCCSg,h

[ngh(nc,g,h)]

∑g ̸=0
NCCSg,h

[ng,h(nc,g,h)]
, (B.6)

where ng,h = Ng/NCCSg,h
is the share of treated units in the CCSg,h subsample; and nc,g,h =

Nc,g,h/NCCSg,h
is the share of control units in the CCSg,h subsample. Recall that τ

g
h was defined

in the main text as the dynamic ATET for group g at time-horizon h.
Note that by definition of CCSg,h, we have nc,g,h = 1 – ng,h. Therefore the weight can

be rewritten as
NCCSg,h

[ngh(1–ngh)]

∑g ̸=0
NCCSg,h

[ng,h(1–ng,h)] , as we do in the main text.

B.2 Weights with control variables

What are the weights of the LP-DiD estimator in a OLS specification that includes control
variables? If covariates have a linear and homogenous effect on the outcome, and parallel
trends holds conditional on covariates, it is possible to show that the weights assigned
to each group-specific effect by the LP-DiD estimator are unchanged by the inclusion
of covariates. In more general settings, however, the weights are proportional to the
residuals of a regression of the treatment indicator on time effects and the covariates,
and it is not possible to ensure that they are always positive. (In these settings, using
the regression-adjustment specification with covariates presented in the main text, which
unbiasedly estimates an equally-weighted ATT, is preferable.)

To explore the role of covariates, we now assume that no anticipation and parallel
trends hold after conditioning on a set of covariates (Assumptions 3 and 4 in the main
text).

B.2.1 Covariates with linear and homogeneous effects

The DGP Assume that covariates have a linear and homogeneous effect on the outcome.
Specifically, assume the following DGP,

yi,t+h – yi,t–1
= δh

t + γhxi + τi,t+hDi,t+h – τi,t–1
Di,t–1

+ ϵh
i,t , (B.7)
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LP-DiD specification with covariates The LP-DiD estimating equation with clean
controls and control variables is

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit treatment indicator
+ γhxi covariates
+ δh

t time effects
+ eh

it; for h = 0, . . . , H ,

(B.8)

restricting the sample to observations that respect condition B.3.

Weights derivation All the definitions of clean control subsamples and indicators, and
the results related to those, that have been described in Section B.1 above, still hold.

The LP-DiD specification of Equation B.8 can be rewritten as

yi,t+h – yi,t–1
– γhxi = βLP–DiD

h ∆Dit + δh
t + eh

it .

Therefore, by the Frisch-Waugh-Lovell theorem, we have

E
(

β̂ LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(
yi,t+h – yi,t–1

– γ̂hxi
)]

∑G
j=1

∑i∈CCSj,h
∆D̃2

i,pj

, (B.9)

where ∆D̃i,pg is the residual from a regression of ∆D on time indicators in the sample
defined by condition B.3.

The equivalence of Equation B.5 above still holds; therefore, for all observations
belonging to the same group g > 0, we have ∆D̃i,pg = ∆D̃g,pg = 1 – Ng/NCCSg,h

Given the assumptions about the DGP, we have

E
(

β LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E(yi,t+h–yi,t–1
–γ̂hxi)

]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

.

This is the same expression as in the case of unconditional parallel trends and no covariates
analyzed above, and it therefore leads to the same result,

E
(

β LP–DiD
h

)
= ∑g ̸=0

ωLP–DiD
g,h τg(h) .
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where the weights are given by Equation B.6 above.

B.2.2 More general setting

Now consider a more general setting, in which Assumptions 4 and 5 in the main text
hold, but we do not restrict the effect of covariates to be linear or homogeneous. In this
more general setting, the Frisch-Waugh-Lovell theorem implies

E
(

βLP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃c

i,pj
E
(

yi,pj+h – yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

(
∆D̃c

i,pj

)
2

, (B.10)

where ∆D̃c
i,pg = ∆D̃c

g,pg is the residual from a regression of ∆D on time indicators and the
control variables xit in the sample defined by condition B.3.

The weights are thus given by

ωc LP–DiD
g,h =

Ng∆D̃c
g,pg

∑g ̸=0
Ng

(
∆D̃c

g,pg

)
2

. (B.11)

As noted in the main text (Section 4.1.1), it is always possible to avoid negative weights
using a regression adjustment (RA) specification of LP-DiD.
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C Derivation and further discussion of the results in Sec-

tion 4.2.3 in the main text

This Appendix provides further formal discussion and derivations regarding the LP-
DiD estimator for the average effect of a treatment event under an effect stabilization
assumption in a setting with non-absorbing treatment, presented in the main text in
Section 4.2.3.

In addition to the treatment events defined in main text, let us now define exit events.
Group g experiences an exit event at time j if and only if ∆Dg,j = –1.

We let qn
g denote the time period in which group g exits treatment for the n-th time in

the estimation sample, with qn
g = ∞ if group g exits treatment less than n times. We let

NE
g denote the number of exit events experienced by group g in the estimation sample.

The average dynamic effect of the n-th exit event experienced by group g, denoted by
η

g,n
h , is defined as follows:

η
g,n
h = E

[
yi,qn

g+h(Di,qn
g ,1) – yi,qn

g+h(Di,qn
g ,0) | i ∈ g, qn

g ̸= ∞
]

Assumption 9 in main text applies also to exit events: namely, η
g,n
L = η

g,n
L+l for some L <

T , for all l ≥ 0 , and for all exit events {g,n} .
Assumption 9 in main text implies that, for any group g, any time horizon h, any event n,
and any j ≥ L + 1, we have τ

g,n
h+j = τ

g,n
j–1

(or, in the case of exit events η
g,n
h+j = η

g,n
j–1

).
Therefore, in this setting and under assumptions 7, 8 and 9 in main text, in an

estimation sample equal to the whole NxT sample we would have

E[yt+h – yt–1] = E
[
yi,t+h(0)

]
– E

[
yi,t–1

(0)
]

+ E
[
yi,t+h(Di) – yi,t+h(0)

]
– E

[
yi,t–1

(Di) – yi,t–1
(0)

]
= δh

t +
[

∑G
g=1 ∑

NT
g

n=1

(
τ

g,n
h × 1{t = pn

g} × 1{Di = Dg}
)]

× 1{∆Di,t = +1}

+
[

∑G
g=–k ∑

NE
g

n=1

(
η

g,n
h × 1{t = qn

g} × 1{Di = Dg}
)]

× 1{∆Di,t = –1}

+ ∑L
j=1

[
∑G

g=1 ∑
NT

g
n=1

((
τ

g,n
h+j – τ

g,n
j–1

)
× 1{t = pn

g + j} × 1{Di = Dg}
)]

× 1{∆Di,t–j = +1}

+ ∑L
j=1

[
∑G

g=–k ∑
NE

g
n=1

((
η

g,n
h+j – η

g,n
j–1

)
× 1{t = qn

g + j} × 1{Di = Dg}
)]

× 1{∆Di,t–j = –1}

+ ∑h
j=1

[
∑G

g=1 ∑
NT

g
n=1

(
τ

g,n
h–j × 1{t = pn

g – j} × 1{Di = Dg}
)]

× 1{∆Di,t+j = +1}

+ ∑h
j=1

[
∑G

g=–k ∑
NE

g
n=1

(
η

g,n
h–j × 1{t = qn

g – j} × 1{Di = Dg}
)]

× 1{∆Di,t+j = –1}
(C.1)
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where δh
t = δt+h – δt–1 as in the previous sections.

Equation C.1 differs from its absorbing treatment counterpart (Equation 6 in main
text) in two main ways: first, the same group can be under the influence of multiple
previous treatment and exit events; second (because of Assumption 9), only events that
occur between periods t – L and t + h affect the expected value of the long difference
yt+h – yt–1.

Equation C.1 thus motivates and justifies the modified clean control condition of
equation 13 in Section 4.2.3.

C.1 Derivation of the weight ωLP–DiD′′
g,n,h assigned to each treatment event

In what follows we derive the weights that this estimator assigns to treatment events. As
in the main text, ωLP–DiD′′

g,n,h will denote the weight assigned to τ
g,n
h , the h–horizon effect of

the n-th treatment event experienced by group g.
In addition to the definitions and notation introduced in the main text, denote the

set of time periods in which there is some treatment event as tτ. This is the set of time
periods such that ∆Di,t = 1 for at least some unit i. Formally,

tτ = {t | ∆Dit = 1 for some i} .

Moreover, we denote the h-horizon effect of a treatment event experienced by unit i at
time t as τi,t

h . Using the notation introduced in Section 4.2 in the main text, this is defined
as follows

τi,t
h = E

[
yi,t+h(Di,t,1) – yi,t+h(Di,t,0) | ∆Di,t = 1

]
For each time period t ∈ tτ, define the clean control sample CCSt,h as the set of

observations for time t that satisfy the modified clean control condition in Equation 13 in
the main text at time horizon h. Formally,

CCSt,h =
{

i |
[
(Di,t+j = 1 for 0 ≤ j ≤ h) ∧ (Di,t–j = 0 for 1 ≤ j ≤ L)

]
∨
[
∆Di,t–j = 0 for – h ≤ j ≤ L

]}
.

Moreover, it is also convenient to define CCSg,n,h = CCSpn
g ,h. In words, CCSg,n,h is the set

of units that satisfy the clean control condition of equation 13 at time t = pn
g . Note that

CCSg,n,h might include not only clean control units and units of group g, but also units of
other groups that enter treatment at time pn

g .
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We let n̂g,n,h denote the share of newly treated units in CCSpn
g ,h. Formally,

n̂g,n,h =
∑i∈CCSpn

g ,h
∆Di,pn

g

NCCSpn
g ,h

We let n̄g,n,h denote the share of units belonging to group g among all newly treated
units in CCSpn

g ,h. Formally,

n̄g,n,h =
∑i∈CCSpn

g ,h
∆Di,pn

g
× 1{i ∈ g}

∑i∈CCSpn
g ,h

∆Di,pn
g

Finally, let β̂LP–DiD′′
denote the estimated coefficient from a LP regression (equation 4)

in the ‘clean control’ estimation sample defined by the condition in Equation 13 in main
text

By the Frisch-Waugh-Lovell theorem,

E
(

β̂ LP–DiD′′
h

)
=

∑t∈tτ ∑i∈CCSt,h

[
∆D̃i,tE

(
yi,t+h – yi,t–1

)]
∑t∈tτ ∑i∈CCSt,h

∆D̃2

i,t
,

where ∆D̃i,t is the residual from a regression of ∆D on time indicators in the estimation
sample defined by Equation 13 in main text.

Given assumptions 7, 8 and 9 in the main text, we have

A14



E
(

β̂ LP–DiD′′
h

)
=

∑t∈tτ ∑i∈CCSt,h

[
∆D̃i,tE(yi,t+h–yi,t–1)

]
∑t∈tτ ∑i∈CCSt,h

∆D̃
2

i,t

=
∑t∈tτ ∑i∈CCSt,h

[
∆D̃i,tE

(
τi,t

h ∆Di,t

)]
∑t∈tτ ∑i∈CCSt,h

∆D̃
2

i,t

=
∑G

g=1 ∑
NT

g
n=1 ∑i∈CCSpn

g ,h

(
∆D̃i,pn

g
E
(

τ
i,pn

g
h ∆Di,pn

g

))
∑G

g=1 ∑
NT

g
n=1 ∑i∈CCSpn

g ,h
∆D̃

2

i,pn
g

= ∑G
g=1 ∑

NT
g

n=1 ∑i∈g
∆D̃i,pn

g

∑G
g=1 ∑

NT
g

n=1 ∑i∈g ∆D̃
2

i,pn
g

τ
i,pn

g
h

= ∑G
g=1 ∑

NT
g

n=1

Ng∆D̃g,pn
g

∑G
g=1 ∑

NT
g

n=1
Ng∆D̃

2

g,pn
g

τ
g,n
h

= ∑G
g=1 ∑

NT
g

n=1
ωLP–DiD′′

g,n,h τ
g,n
h ,

where the weights are given by

ωLP–DiD′′
g,n,h =

Ng∆D̃g,pn
g

∑G
g=1 ∑

NT
g

n=1
Ng∆D̃

2

g,pn
g

=

Ng

1–
∑i∈CCSgnh∆Di,pn

g
NCCSg,n,h


∑G

g=1 ∑
NT

g
n=1

Ng

1–
∑i∈CCSgnh∆Di,pn

g
NCCSg,n,h



=
n̄g,n,hNCCSg,n,h

[n̂g,n,h(1–n̂g,n,h)]

∑G
g=1 ∑

NT
g

n=1
n̄g,n,hNCCSg,n,h

[n̂g,n,h(1–n̂g,n,h)]
.
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D Additional simulation (dynamic selection into treatment)

In this appendix we test the performance of the LP-DiD estimator in a Monte Carlo simu-
lation which features a simple form of dynamic selection and non-absorbing treatment.
Specifically, we assume that the probability of receiving treatment, and of experiencing
a treatment reversal, depend on outcome dynamics. This setting matches the empirical
application presented in Section 6.2 in main text. In this simulation, the parallel trends
assumption does not hold unconditionally but holds conditional on the lagged outcome
change.

This simulation thus provides a simple example of a possible DGP featuring dynamic
selection and non-absorbing treatment that is consistent with conditional parallel trends
and therefore can be addressed within a LP-DiD framework by properly conditioning on
lagged outcome changes. Of course, as well documented in the literature, more general
and complex dynamic selection settings can be incompatible with (conditional) parallel
trends (Ghanem, Sant’Anna, and Wüthrich, 2024; Marx, Tamer, and Tang, 2024; Viviano
and Bradic, 2023). In those settings, a Difference-in-Differences approach is not suitable,
and researchers should use methods based on sequential ignorability assumptions (rather
than parallel trends), like those proposed in Viviano and Bradic (2023).

All results presented in this Appendix are virtually unchanged if ruling out treatment
reversals.

D.1 Setting

We calibrate our simulated datasets on the empirical application presented in Section
6.2 in the main text, which estimates the effect of democratization on economic growth,
replicating the analysis in Acemoglu et al. (2019).

Our simulated datasets include 184 countries observed over 51 periods (years).
Potential outcomes (log of GDP per capita) without treatment are given by yit(0) =
λi + γt + ϵit + ρϵi,t–1

, where ϵ is a white noise random shock. We set ρ = 0.98 based on the
corresponding estimated autoregressive coefficient in the Acemoglu et al. (2019) dataset.
λi, γt and ϵit are normally distributed with mean and standard deviation estimated
empirically using the Acemoglu et al. (2019) dataset.

Unit i enters treatment in the first period that satisfies that following condition:

ψ∆yi,t–1
+ (1 – ψ)ui ≤ θ and 11 ≤ t ≤ 40, (D.1)

where u is a white noise term with the same variance as ϵ. We set ψ = 0.5 and θ =
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–σ∆yit(0). The probability of entering treatment is therefore higher for untreated units
that experience a large negative change in the outcome variable, similar to the pre-
democratization dip in GDP per capita documented in Acemoglu et al. (2019).

We allow for treatment reversals. Specifically, a unit exits treatment in the first post-
treatment period that satisfies condition D.1, provided that at least 5 periods have passed
since entering treatment. For simplicity, we do not allow for re-entry after a reversal.21

The treatment effect is positive and grows in time, stabilizing 9 years after treatment.
Moreover, earlier treated cohorts experience larger treatment effects. Specificaly, define
ϕ = t – pi + 1 and µi = pi–1960

min{p1,...,pN}–1960
. The treatment effect βit is given by

βit =


0

αϕ2 + (1 – α)
(

ϕ
µ

)
2

βi,t–1

if t – pi < 0

if 0 ≤ t – pi ≤ 8

if t – pi > 8 ,

where pi is the period in which unit i enters treatment as in the previous sections. We
set α = 0.5. After a treatment reversal, βit gradually falls, until it stabilizes at 0 after 9

periods.
Observed outcomes yit are given by

yit = yit(0) + βit

D.2 Estimators

We estimate effects using (a) simple (variance-weighted) LP-DiD; (b) Re-weighted LP-
DiD; (c) PMD LP-DiD and (d) Re-weighted PMD LP-DiD. Given that treatment is non-
absorbing, we employ the estimator of the average effect of a treatment event developed
in Section 4.3.2 in the main text, under the assumption that treatment effects stabilize
after 9 periods. The PMD versions set k = 9 given the non-absorbing treatment setting
and the assumption that effects stabilize after 9 periods. We include ∆yi,t–1

as a control
variable in all specifications.

D.3 Results

Results are presented in Figures D.1 and D.2 and Table D.1. Figure D.1 displays the
estimated effect path in comparison with the true (equally-weighted) average effect path

21Multiple treatment and exit events in the same country are rare in the Acemoglu et al., 2019 dataset.
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and the full range of heterogeneous group-specific effects. Figure D.2 plots the full
distribution of the estimates at time horizons h = 0, 2, 5 and –3. Table D.1 reports the root
mean squared error (RMSE) at time horizons h = –10 to +10.

Overall, the LP-DiD estimator tracks well the true dynamic effect also in this second
simulation. This demonstrates that LP-DiD specifications controlling for lagged outcome
dynamics can address at least some simple types of dynamic selection into treatment.
Although theoretically re-weighted versions of LP-DiD are preferable when there are
control variables (as discussed in Section 4.1), in this simulation there are no material dif-
ferences in performance between variance-weighted and equally-weighted specifications,
notwithstanding significant heterogeneity in treatment effects across cohorts (Table D.1).

Note that this specification, including the lagged outcome variable, might suffer from
Nickell (1981) bias, due to the presence of yi,t–1

both in a regressor and in the error term.
However, two simultaneous conditions must be met for this bias to be problematic. First,
the autoregressive coefficient on the lagged outcome variable must be high. Second, the
time dimension of the dataset must be relatively small. If either of these two conditions
fails, the bias is negligible as Álvarez and Arellano (2003) show. In this simulation the
autoregressive coefficient is high, but the time dimension of the dataset is long, which is
why Nickell bias is not a major concern here. In applications in which Nickell bias is a
major concern, the researcher can correct for it by using a simple split-sample correction,
following Chen, Chernozhukov, and Fernández-Val (2019) and Mei, Sheng, and Shi
(2023).
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Table D.1: Simulation with endogenous treatment timing: Root Mean Squared Error
(RMSE)

Event time LP-DiD Rw LP-DiD PMD LP-DiD Rw PMD
LP-DiD

-10 1.05 1.04 0.85 0.85

-9 1.06 1.06 0.75 0.75

-8 1.10 1.10 0.71 0.71

-7 1.03 1.04 0.64 0.65

-6 1.00 1.00 0.68 0.68

-5 1.01 1.01 0.66 0.66

-4 1.01 1.00 0.67 0.67

-3 0.73 0.73 0.70 0.71

-2 0.88 0.88

0 0.81 0.81 1.22 1.21

1 1.37 1.37 1.75 1.74

2 1.20 1.20 1.48 1.47

3 1.35 1.35 1.73 1.72

4 1.41 1.40 1.80 1.77

5 1.54 1.51 1.89 1.85

6 1.39 1.36 1.70 1.66

7 1.45 1.41 1.73 1.67

8 1.41 1.36 1.64 1.57

9 1.43 1.38 1.64 1.57

10 1.49 1.44 1.72 1.65

Notes: RMSE from 200 replications. Rw = reweighted; PMD = pre-mean-differenced.

A19



Figure D.1: Simulation with endogenous treatment timing: true effect path and estimates
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Figure D.2: Simulation with endogenous treatment timing: Distribution of estimates
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E Credit and the labor share: Additional statistics and

results

This Appendix presents additional descriptive statistics and results concerning our first
empirical application (Section 6.1 in the main text), which estimates the effect of banking
deregulation on the labor share, replicating Leblebicioğlu and Weinberger (2020), LW
hereafter.

E.1 Staggered rollout of banking deregulation reforms

Figure E.3 displays the share of US States which have adopted interstate banking and
intrastate branching deregulation (similar to Figure 1 in LW).

Figure E.3: Banking deregulation in US States
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Notes: Data from Leblebicioğlu and Weinberger (2020).

E.2 Results from conventional TWFE specifications

We estimate the following static TWFE specification for the effect of banking deregulation
laws, which replicates LW’s baseline specification:

LSst = βBankBankst + βBranchBranchst + ηXst + αs + αt + ϵst , (E.1)
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where s indexes states, t indexes years, and LS is the labor share. Branchst and Bankst are
binary indicators equal to one if a state has adopted intrastate branching or interstate
banking deregulation.

To assess possible pre-trends and lagged effects, LW also estimate the following
dynamic TWFE specification:22

LSst =
9

∑
q=–9

βBank,t+q∆Banks,t+q +
9

∑
q=–9

βBranch,t+q∆Branchs,t+q + ηXst + αs + αt + ϵst . (E.2)

Figure E.4 displays results from the static and dynamic TWFE specifications of Equa-
tions E.1 and E.2. These replicate the estimates reported in Table 2 and Figure 2 of LW.
They suggest that the liberalization of inter-state banking has a sizable negative effect
on the labor share, although they also show a small pre-treatment trend. Instead, the
estimated effects of intra-state branching deregulation on the labor share are positive,
small and very imprecise.

E.3 Goodman-Bacon (2021) decomposition diagnostic

Given the staggered rollout of banking deregulation laws across US states, the TWFE
specifications of Equations E.1 and E.2 might suffer from the negative weights bias
highlighted by recent studies. Earlier liberalizers are implicitly used as controls for states
that liberalize later on. Specifically, the specifications in Equations E.1 and E.2 produce
a weighted average of two types of 2x2 comparisons: (1) ‘clean’ comparisons of newly
treated states vs. not-yet treated states and (2) ‘unclean’ comparisons of newly treated
states vs. earlier-treated states (Goodman-Bacon, 2021).

We employ the Goodman-Bacon (2021) diagnostic to decompose the static TWFE
estimate into these two types of comparisons. Specifically, the Goodman-Bacon (2021)
diagnostic is applied to a basic static TWFE specification that only includes two-way fixed
effects and the treatment indicator for the policy under consideration. This corresponds
to the first specification (‘only FEs’) reported in the top panel of Figure E.4.

We find that the static TWFE estimator of the effect of interstate banking deregulations

22The dynamic TWFE specification employed by LW is not completely standard, since it includes only
leads and lags of the differenced treatment indicators but not a last lag in levels. Therefore it is not
completely equivalent to the standard dynamic TWFE estimator as obtained by estimating equation 3 in
the main text. This non-standard specification, however, does not influence results: applying a standard
dynamic TWFE specification (as in Equation 3 in the main text) yields very similar results as those obtained
by LW. This reassures us that any differences between the dynamic TWFE results of LW and our results
from applying LP-DiD are due to the negative weights bias of TWFE, not to the non-standard specification
of the dynamic TWFE model used by LW.
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Figure E.4: Effect of banking deregulation on the labor share: TWFE estimates
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assigns a 36% weight to unclean comparisons. For the estimates of the effect of intrastate
branching deregulations, the problem is much more severe: unclean comparisons account
for as much as 70% of the estimate.

Figure E.5 displays the results of the Goodman-Bacon, 2021 decomposition diagnostic.
The figure plots each constituent 2x2 comparison that contributes to the static TWFE
estimates, with its weight on the horizontal axis and its estimate on the vertical axis. The
graph suggests that the estimates of the effects of branching deregulations are driven
by a few ‘unclean’ comparisons – those involving states that deregulated before 1970 –
that receive a very large weight. Notably, for both types of policies, clean comparisons
produce overwhelmingly negative coefficients, while the unclean ones tend to bias the
coefficients upwards.

Figure E.5: Goodman-Bacon, 2021 decomposition diagnostic for the static TWFE specifi-
cation
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F Democracy and growth: Additional statistics and results

This Appendix presents additional descriptive statistics and results concerning our second
empirical application, which estimates the effect of democratization on economic growth,
replicating Acemoglu et al., 2019 (Section 6.2 in main text).

Figure F.6 displays the impulse-response function (IRF) from the estimation of the
dynamic panel model of Equation 15 in the main text, reproducing the baseline results in
Acemoglu et al., 2019.

Figure F.6: Effect of democracy on growth: dynamic panel estimates
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Notes: Extrapolated impulse response function for the effect of democracy on GDP per capita, using the
dataset of Acemoglu et al., 2019 and the dynamic fixed effects specification of Equation 15 in the main text.
This graph replicates the baseline results from Acemoglu et al., 2019.

References

Acemoglu, Daron, Suresh Naidu, Pascual Restrepo, and James A. Robinson (2019).
“Democracy Does Cause Growth”. In: Journal of Political Economy 127.1, pp. 47–100.
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Gardner, John, Neil Thakral, Linh T Tô, and Luther Yap (May 2024). “Two-stage differences
in differences”. https://jrgcmu.github.io/2sdd_gtty.pdf.

Ghanem, Dalia, Pedro H. C. Sant’Anna, and Kaspar Wüthrich (2024). Selection and parallel
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