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1 Introduction

When a market failure is identified, such as the existence of a positive spillover from
innovation, a government intervention such as a subsidy to the innovating firms might
raise the social welfare. Whether the intervention is warranted in the end depends on
the relative importance of any government failure versus the market failure. While this
principle is well understood in theory, the sign and the size of the net effect of the two
forces in practice are subject to intense debates (see an extensive survey in Harrison and
Rodriguez-Clare| (2010)).

In this paper, we study the consequence of a relatively mild form of government failure
- bureaucrats simply being average and not omniscient - on the success or failure of an
industrial policy. For example, when a firm applying for a subsidy presents a set of recent
patents as proof of its innovation ability to a government committee that reviews the
application, the bureaucrats in the committee can count the patents but may not be able
to differentiate their quality. The bureaucrats may not be less competent or more corrupt
than their private-sector counterparts in this case as it is genuinely hard to differentiate
the quality of a new innovation[] We show how this seemingly mild “deficiency” has
an important effect on the efficiency consequence of a pro-innovation industrial policy.
Precisely because this “deficiency” is mild and does not require the bureaucrats to be
either more corrupt or less competent than other people, it is potentially more pervasive.

We study these questions in the context of China’s largest pro-innovation industrial
policy. The program is known as InnoCom and offers a large subsidy - a 10 percentage
points reduction in the corporate income tax rate to successful applicant firms. A major
policy change in 2008 expanded the scale of the program greatly, raising the fraction of
eligible firms that can receive a subsidy from a negligible level to over 60%. Furthermore,

it introduced a strong linkage between the success of a subsidy application and the number

I'Drawing on a parallel from the empirical finance field which distinguishes among strong form, semi-
strong form, and weak form of market efficiency, we distinguish among strong, semi-strong, and mild
forms of government failure. A strong form of government failure is corruption by government officials or
lobbying by powerful interest groups that cause government officials to deviate from maximizing social
welfare (Rose-Ackerman/ (1975)); [Shleifer and Vishny| (1993)); [ Mauro| (1995, [Fisman and Wei| (2004)), and
among others), which could compromise the efficiency of the industrial policy. A semi-strong form of
government failure is the lower average competence of public sector employees than their private sector
counterparts possibly due to lower relative public sector pay (Lazear| (2000))). In comparison, a mild
government failure refers to public sector decision-makers being just “average.”



of recently granted patents that a firm owns.ﬂ There are several reasons to study this
program. First, given the international attention paid to China’s innovation efforts, it is
useful to understand the role of the country’s industrial policy. Second, as many more
countries are interested in promoting innovation using industrial policy, it is useful to
have a framework to assess the relative importance of government failure versus market
failure. The data from China’s program provides a good angle to examine the issue.

The InnoCom program has some notable features (beyond its size). First, owning six
new patents appears very important for applicant ﬁrmsﬁ We will utilize this feature to
identify some key model parameters. Second, externally purchased patents are counted in
the same way as in-house innovations.ﬁ The existing literature on patent trade emphasizes
its welfare-improving effects (see Serrano| (2010) and |Akcigit et al.| (2016)). However, with
distortions in the subsidy program, we show that patent trade can augment the welfare
loss.

We develop four sets of salient empirical facts. First, we study how bureaucrats review
subsidy applications. This uses a unique data set on the scores assigned by a government
committee to the successful applicants for subsidy in a large Chinese city during 2008-
2011 (the first four years of the new subsidy policy). We verify that the bureaucrats can
count - they give a higher score to an applicant firm when its patent count goes up - but
do not differentiate quality. In other words, we show that the mild form of government
failure is present in our case rather than having to assume its existence. In addition,
we detect that owning six new patents is especially important for applicant firms. Those
firms with fewer than six new patents are less likely to receive a subsidy, but going beyond
six does not materially raise the probability of success. We also verify that bureaucrats
do not assign higher scores to firms with more in-house patents.

Second, we study the growth of patents following the 2008 policy shock. While the
growth in the number of patents accelerated, the quality of patents declined significantly.
We measure patent quality by patent renewal decisions by firms, forward citation count,

and an estimated marginal contribution of a patent to firm productivity. All three proxies

2We use “patents” as a shorthand for “patents and other significant intellectual property rights (IPRs)
such as sophisticated software that are registered with the National Software Bureau.”

3“New patents” in the InnoCom program are defined as those granted within the previous three years.

4Allowing purchased patents to be used in subsidy applications is not unique to China. For example,
a patent box policy common in Europe and Canada also has this feature.



reveal a notable decline in patent quality.

Third, we examine the behavior of the firms. In particular, the 2008 policy shock
has induced the initially less innovative firms - those with fewer than six patents - in the
targeted industries to rush to achieve the desired level of patents for subsidy applications.
In addition, a rising share of the new patents owned by them appears to be of low quality.
In comparison, other subsidy-eligible firms that start with six or more patents do not
exhibit the same rate of patent growth.

Fourth, we study how the patent trade has changed following the 2008 policy shock.
In particular, the share of patents sold to initially less innovative firms in the targeted
industries exhibits the fastest growth after 2008. This is especially true for patents sold
by either the firms outside the targeted industries, which are not eligible for a subsidy
anyway, or by the firms in the targeted industries that already had more than six patents
before the policy shock and hence do not need more to compete for a subsidy.

Inspired by these facts, we build a structural model to quantify the welfare impact
of the subsidy program. The program affects welfare in several ways. On the plus
side, an increase in high-quality patents can raise the productivity of all firms in the
targeted industry through a positive spillover effect. However, it could also reduce the
welfare through several channels. The first is direct resource waste from subsidy-competing
enterprises (the SCEs) producing low-quality patents that may improve their chance
of receiving a subsidy but otherwise do not raise productivity. The second is indirect
resource waste from those firms not eligible for a subsidy but still engage in producing
low-quality patents and selling them to the SCEs. The third is a new form of misallocation
as high-value users of a patent that are not eligible for a subsidy may sell the patent to
low-value users that are eligible for a subsidy. Last but not the least, because public
funding is financed through distortionary taxation, it costs the society more than 1 RMB
to fund 1 RMB worth of subsidy.

After calibrating the model to the data, we find that although the subsidy leads to an
increase in the patent count by 33%, 98% of the increase is of low quality. This implies
a notable decline in the average quality of the new patents. Since the program fails to
induce a surge in high-quality patents, the positive gain from the additional productivity
spillover is quite small.

On the other hand, as a low-quality patent is not too expensive to produce, the



aggregate expenditure on low-quality patents is limited. In comparison, the social cost
of public funding plays a large role in the ultimate welfare effect of the subsidy program.
By comparing the welfare levels in the model with and without the subsidy program, we
estimate the net social return to the subsidy to be -19.7%. That is, the society would be
better off without this subsidy program.

In understanding the explosion of low-quality patents, we find that patent trade plays
an important role. Without patent trade, the subsidy program would induce subsidy-
eligible firms to produce low-quality patents. With patent trade, the program also inspires
many firms not otherwise eligible for a subsidy, including those outside the targeted
industry, to engage in the production of low-quality patents with the hope of selling
them to subsidy-eligible firms. We show that a reduction in the frictions in patent trade
by half would generate a further decline in the return to the subsidy program from -19.7%
to -24%. This confirms a new “dark side” of patent trade.

We perform a number of counterfactual thought experiments. In particular, we can
remove the mild government failure by allowing the bureaucrats to tell the quality of the
patents and apply differential subsidy rules to high- and low-quality patents. In this case,
the optimal policy would not subsidize low-quality patents. The return to the subsidy
program would be 7.8%. Of course, removing the mild government failure is not feasible
in practice. So the thought experiment serves to confirm that the presence of even a mild
government failure could convert an otherwise well-justified industrial policy from success
to failure. As another experiment, if the bureaucrats disallow the externally purchased
patents in the subsidy applications, and adjust the subsidy on in-house patents optimally,
the return to the subsidy program would have been 0.2%. This counterfactual may not
be realistic either. If purchased patents were disallowed in subsidy applications, a market
for “pre-patents” may emerge in parallel to a market for patents. That is, low-quality
but patentable blueprints may be developed and sold by those firms not eligible for a
subsidy to the subsidy-applying firms.

While we focus on mild government failure here, we certainly do not rule out strong
or semi-strong forms of government failure in practice. If corruption, lobbying, or incom-
petence is incorporated into our model, the return to the subsidy program would have
been even lower (i.e., more negative).

Our paper makes three contributions. First, we contribute to the literature on indus-



trial policy (see the survey by Harrison and Rodriguez-Clare (2010))) by proposing the
concept of a mild government failure. A key insight is that even a mild form of gov-
ernment failure could turn a theoretically sound industrial policy (i.e., one that corrects
a well-identified market failure) into a government misadventure with a negative social
return. This seems to be the first paper that demonstrates the existence of a mild gov-
ernment failure and documents its impact on the success or failure of a pro-innovation
industrial policy.

Second, we contribute to the literature on patent trade by highlighting a new “dark
side” of the trade. Most existing literature emphasizes that patent trade improves welfare
(|Shapiro (2010)) and Lemley and Shapiro (2005))E] In comparison, we show that patent
trade can also augment distortions through its interaction with mild government failure.
In our case, lower frictions in patent trade reduce welfare. Our story is consistent with
the “theory of the second best” (Lipsey and Lancaster (1956)). Our contribution is to
demonstrate that this theoretical possibility has a practical bite in a large pro-innovation
subsidy program.

Third, we contribute to the literature on China’s innovation policy by highlighting
important new channels of welfare losses from subsidy programs. Hu and Jefferson| (2009)
document a rapid rise of patents (and other innovations) in China. [Wei et al.| (2017)) em-
phasize potential misallocation of innovation resources across firm ownership types. (Chen
et al. (2021) document the resource waste by firms re-labeling non-innovation expendi-
tures as R&D expenditure. Konig et al.| (2020) study input market frictions and how
subsidy could induce some firms that should focus on imitation to sub-optimally switch
to pursue innovation. (Cao et al. (2022) document that China’s subsidy programs seem
to have induced a quantity-quality trade-off in the R&D investment (and they cited an
earlier version of our paper on the evidence of a decline in patent quality). We point out
several new channels that can reduce the efficiency of the subsidy program. They include
the central role of a mild government failure. In addition, patent trade can amplify the
loss. We also show in an extension that combining the distortion we study and the dis-
tortion associated with relabeling R&D expenditures would reduce further the return to
the program.

The paper is organized as follows: In Section 2, we introduce the institutional back-

®An exception is research about “patent trolls” (Abrams et al. (2019)).



ground of the subsidy program and the data sets used in the paper. In Section 3, we
document four sets of prominent data features. These data patterns motivate the setup
of our model that is laid out in Section 4. Section 5 performs a number of counterfactual

analyses. Finally, Section 6 concludes.

2 Background and Data

2.1 The Pro-Innovation Industrial Policy in China

China has several subsidy programs aiming at promoting innovation, and the largest such
program is called InnoCom. According to the China Science and Technology Yearbook
2015, there are 16 pro-innovation programs administered by the Chinese central govern-
ment, with a combined budgetary outlay of 154 billion RMBs. InnoCom is the largest
program on the list. With an annual budget of 100 billion RMBs, it is much bigger than
the sum of the other 15 programs[

The InnoCom program aims to encourage innovation in what the Chinese government
considers the “industries of the future”. While the program started in the 1990s, a
substantial change in the design in 2008 represents a major policy shock. First, the
subsidy budget has grown substantially, raising the number of subsidized firms from a
negligible share of the total number of firms that satisfy some basic conditions to over
60%. Second, the new approval process for the subsidy introduces an explicit linkage
between the number of new innovations already owned by an applicant firm and the
chance of obtaining a subsidy.

The program targets eight industries in advanced manufacturing and modern ser-
vices[] Firms in the targeted industries have to first meet some threshold on R&D
intensity (above 3%) and then have to show that they own a certain number of patents.
Importantly, these patents can be acquired through patent trade and do not have to be
developed in-house. This may be motivated by a desire by the architect of the program

to broaden the set of firms that may be inspired to innovate. In other words, it may be

6For comparison, the US CHIPS and Science Act of 2022 allocates $52.7 billion of subsidy to US firms
over 5 years, equivalent to about 72 billion RMBs a year using the exchange rate of 7 RMBs per dollar.
This means that the annual expenditure of InnoCom in 2015 is bigger than the US program in 2022.

"They are pharmaceuticals (CSIC 27), special equipment manufacturing (CSIC 36), transportation
equipment (CSIC 37), communication equipment and computers (CSIC 40), precision instruments (CSIC
41), computer service (CSIC 61), software service (CSIC 62), and environmental protection (CSIC 80).



considered desirable to be able to promote innovation by firms not applying for a subsidy,
as long as these innovations are relevant to the targeted industries.

This feature is not unique to the Chinese pro-innovation industrial policy. The patent
box policy - a pro-innovation subsidy program in the European Union, Australia, Britain,
Canada, and other countries - also permits patents acquired by subsidy-eligible firms
through patent trade to be used in qualifying for a subsidy. |Gaessler et al.| (2021) report
that in two-thirds of their 15-country sample, patents acquired through patent trade are
equally eligible for a patent box subsidy. Bosenberg and Egger| (2017)). |Ciaramella| (2017))
find that a 1% increase in the tax subsidy in the patent box induces a 10% increase in
patent trade. We have not found any study in the literature that suggests a distortionary
consequence of this feature.

Unlike a patent box, InnoCom does not peg the subsidy to a portion of the profit that
is self-reported by the firm to be linked to some patents. This may be motivated by a
concern for potential arbitrariness in how a firm’s profit is partitioned. E] The InnoCom’s
requirement that only patents granted within the previous three years will be counted in
the subsidy application review may be designed to encourage new innovation and avoid
potential zombie patents that could be present in a patent box program.

In determining which firms will receive a subsidy, a government committee consisting
of civil servants from the local tax bureau and the bureau of science and technology
evaluates applicant firms by assigning numerical scores based on a count of patents, an
ability to manage R&D, an ability to commercialize science and technology innovations,
and growth potential. While the last three categories are subjectively assessed, the patent
count appears objective. For the scoring purpose, one invention patent is considered
equivalent to 6 utility or design patents. When the patents count increases, the applicant’s
score will increase as well until the patent count reaches six. Any higher count would not
materially improve its chance of receiving the subsidy. A patent used in the application
needs to be relatively new; the committee only counts those granted within the previous
three years. On average, the program each year provides a subsidy to more than 4,600
firms in our sample city. At the end of 2010, 11,568 firms receive the subsidy, which is
about 67% of all SCEs, or 20% of all firms in the eight targeted industries.

8 As pointed out by (Griffith et al. (2014), partitioning a firm profit into a patent-related and a non-
patent-related portions is subject to manipulation. Bloom et al.| (2019) does not regard the patent box
as a socially efficient tool to incentivize innovations.



We conjecture that the bureaucrats reviewing the applications for a subsidy can count
the number of patents but are not able to tell their quality. Using our data on bureaucrats’
scores on applicant firms in a city, we will confirm a lack of a positive association between
the patent quality and the scores assigned by the bureaucrats. We will also confirm that

bureaucrats do not value in-house patents more than externally purchased ones.

2.2 Data

While InnoCom is a national program, its implementation is carried out by local govern-
ments. For one large city, we have gained access to the scores assigned by the InnoCom
committee to the successful applicant firms in the first 4 years of the program (2008-
2011). This allows us to empirically check the roles of the patent count, patent quality,
and patent origin (in-house development versus purchases from the patent market) in a
firm’s success in obtaining a subsidy.

To document the salient features of the data and calibrate the model, We utilize two
additional data sets: administrative data about the firms from their tax records, and
patent (and software) assignment data. The first data records firm-year level financial
information (such as sales, employees, assets and etc.) and the industrial classification of
the firms. The second data record the ownership of the innovations and any transfer of
the ownership through trade. Using this information, we construct the patent portfolio
for each firm each year.

For each patent, we know when it is first granted, whether it is renewed or not in each
subsequent year when its ownership is changed, and who the buyer and the seller are. We
compute its forward citation count. Unfortunately, we are not able to find information
on ownership changes for software. But we will show that the broad picture of the count
and quality of the innovations is driven by patents.

We use firm names to link up firm-level records in different data sets. We condense
the firm names via the following steps. First, we keep only Chinese characters, letters,
and numbers, and discard special symbols and punctuation marks. Second, we remove
designations for corporate forms such as “limited corporation” or “subsidiary.” Third,
we convert all lowercase letters to upper cases. Two firm names in two data sets are
considered the same if their names match after the above filters.

By this procedure, 94% of the firms that received an InnoCom subsidy in 2008 can be



found in the patent assignment data too. This ratio seems satisfactory and is comparable
toHu and Jefferson| (2009). In our sample, 90,539 patent (and software copyright) holders
are found from 2005 to 2012. Financial information on firms is available from 2007 to
2011. We then separate the patents holders into two broad groups: subsidy-competing-
enterprises (SCEs), which satisfy the basic eligibility of the InnoCom program, and non-
competing-entities (NCEs), which are firms, individual innovators, or other institutions
that are not eligible for the program. Each broad group can be further divided into two

sub-groups as illustrated in Figure [I}

3 Salient Empirical Patterns

We document four salient data patterns related to the subsidy program, which will guide
our subsequent structural model construction. Since InnoCom treats an invention patent
as equivalent to six other patents, we convert every invention patent to six other patents

in our analysis.

3.1 Bureaucrats can count but do not differentiate quality

Taking advantage of unique proprietary data on the evaluation scores made by the com-
mittee on all successful applicant firms that have received a subsidy in a large city in
2008, we study a number of questions.ﬂ First, can the bureaucrats tell the quality of
patents? Second, do they care whether the patents are developed in-house by the ap-
plicant firms or purchased from other firms? Third, how much do they care about the
number of patents?

We use two different proxies for patent quality: the renewal rate three years after
the patent approval - which reflects the firms’ own assessment of the usefulness of the
patents, and the forward citation count three years after patent approval - which reflects
the assessment by other inventors. As neither information is available to the bureaucrats
at the time of a firm’s subsidy application, we are examining if the bureaucrats have
the ability to look for and analyze any soft information in the application process that
helps them to forecast the quality of the patents. If they are able to do that, we would

expect their scores on the applicants to be positively correlated with either the subsequent

9Unluckily, we only have this information for firms which were subsidized in 2008.



citation count or the renewable rate.

We regress the committee’s points assigned to an applicant firm on a proxy for the
quality of the patents portfolio, controlling for the firm’s observed characteristics (sales,
labor productivity, ownership, and industry) and its patent countH In the first three
regressions reported in Table (1 the dependent variable is the points that an applicant
firm receives from the subsidy review committee. The first six regressors are dummies for
patent count equaling one or two, three, four, five, six, and seven and above, respectively.
The next regressor is a proxy for average quality of the patents owned by the applicant
firm. The last regressor is the share of the patents that are developed in-house (as opposed
to purchased through patent trade).

In column 1, we see that the firm’s score tends to rise with more patents. The
increases are big going from 4 or fewer to 5 patents, and from 5 to 6 patents. However,
once the patent count reaches six, additional patents do not significantly raise the score.
After controlling for the patent count, we see that the effect of higher patent quality
in terms of the average subsequent citation count is statistically indifferent from zero.
In column 2, we measure the patent quality by the renewal rates three years after the
patent approval and find similar results. That is, bureaucrats do not systematically assign
a higher score to those patents with a higher subsequent renewal rate. Since both forward
citation count and patent renewal rate use future information, we are not saying that the
bureaucrats should know them. Instead, the bureaucrats may have used all the soft and
hard information available at the time of their decisions to try to gauge the innovation
ability of the applicant firms. Our results confirm that they are not able to successfully
differentiate the quality of the patents owned by the applicant firms. Again, since it
is genuinely hard for anyone to tell the quality of patents ex ante, the bureaucrats are
simply being average, and not omniscient.

In both columns 1 and 2, we also see that the share of in-house patents in total patents
is not statistically significant. In other words, the bureaucrats do not assign more points
to in-house patents than to those purchased from other firms. In column 3, we restrict the
sample to those firms that do not use software in their applications. While this reduces

the sample size to only 681 firms, all the results from the previous regressions stay the

10Collected by the Municipal Science & Technology Commission of a large city, the data includes the
grading information of the four categories, as well as other firm characteristics.
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same. In particular, once reaching six patents, additional patents do not significantly help
with the scores. Holding the patent count constant, improvement in patent quality does
not make a difference. Finally, there is no difference between purchased and internally
developed patents.

In columns 4 to 6, we extend our sample to all SCEs and run a Probit equation

Pr(Subsidy;, =1) = Z Bn1(patent count, , = n) + yavg patent quality, ,

+X;:+ Year FE + ¢, (1)

where Subsidy;, is a dummy variable that takes the value of one if applicant firm 4 in
year ¢ receives a subsidy, X;; are observed characteristics of firm ¢ in year ¢, including its
industry classification, log sale and log TFP['| 3, and v are the parameters of interested.

Again, we see no evidence of the bureaucrats’ ability to tell patent quality as an
applicant with higher quality patents receives no additional points. In turn, it will be
reasonable for applicant firms to infer that the patent quality would not affect their chance
of obtaining a subsidy.

Another interesting regressor is in-house patents as a share of an applicant firm’s total
patent counts. As the share of purchased patents is never significant, the bureaucrats
do not seem to distinguish between in-house and externally purchased patents. This
validates our interpretation that the subsidy program counts the number of patents that
a firm owns, regardless of where they come from. When we restrict the sample to the

firms that use only patents in their applications, we obtain the same results.

3.2 The patent quantity grows but the average quality declines

The growth of patents in China can be seen in the left graph of Figure [2| which plots
the number of new patents including sophisticated software (blue-circle) and patents
excluding software (red-square) per SCE by year. Compared to a linear trend using
the data from 2004-2007 (depicted by the dashed lines), the growth accelerates after
2008. The acceleration is driven mostly by the patent growth since there is no divergence

between the two lines.

UThey are inferred from the firm’s administrative tax data. Unfortunately, we do not observe the
share of college workers and R&D workers for firms that do not receive a subsidy.
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We gauge the patent quality in several ways. Our first measure is the fraction of
the patents granted in a given year that are renewed three years later. Since renewing
a patent requires an annual fee, the decision to renew reflects the owner’s judgment on
whether the patent is sufficiently valuable or notB. The blue-circle line in the right
graph of figure [2| plots the 3-years-out renewal rates of patents granted between 2004 to
2011. Before 2008, 87% of the patents are renewed three years after the initial patent
approval. However, the renewal rate declines precipitously by 10 percentage points in
2008 and stays below a pre-2008 trend afterward.

Our second measure of patent quality is the average citation count three years after
patent approval. The red-square line in the right graph of Figure [2| plots the average
3-years-out citation count as a function of the year in which the patents are granted.
Similar to the renewal rate, we find that the forward citation count exhibits a sharp
decline after 2008.

As a third measure of patent quality, we estimate the marginal contribution of an
additional patent to a firm’s productivity by regressing firm-level labor productivity (sales
per employee) in a year on the number of newly obtained patents in the previous year,
controlling for both industry and year fixed effects as well as firm location and ownership.
To distinguish between the elasticity before and after 2008, we use a post-2008 dummy
(inclusive) and interact it with the number of newly obtained patents. The result is
reported in column 1 of table 2 We see a statistically significant decline in the marginal
contribution of the new patents to firm productivity after 2008. Based on the point
estimates in column 1, the labor productivity increases by 4.1% following an additional
patent before 2007 but becomes negative (-6.0% + 4.1% =-1.9%) after 2008.

In column 2, we control for both firm fixed effects (which subsume the industry,
location, and ownership dummies) and year fixed effects, and still find a similar result.
In this case, while the marginal contribution of the patent ownership to firm productivity
is no longer negative after 2008, it is still significantly smaller than before 2008. To
summarize, while the patent quantity has grown tremendously after 2008, the quality
has declined.

One can distinguish between inventions and non-invention patents. In column 3, we

12Using patent renewal as a proxy for patent quality is explored by [Pakes (1986). A large literature
follows this idea (such as|Cornelli and Schankerman| (1999), |Lanjouw]| (1998), and Bessen| (2008]))
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consider whether the drop in quality differs in these two groups of patents. The coefficient
before the new invention is greater than the coefficient for non-invention patents. This
suggests that the quality decline takes place for both invention and non-invention patents

but the effect is more pronounced for non-inventions.

3.3 Less innovative SCEs simultaneously show a faster growth

in the patent count and a larger decline in patent quality

As shown earlier, a prominent feature of the InnoCom program after 2008 is that the
likelihood for a firm with six patents to receive a subsidy is much higher than those
with fewer patents, but the average quality of the patents does not seem to matter
much. Hence the policy shock may encourage less innovative firms - those initially with
fewer than six patents - to dash for six patents. Figure [3| confirms this conjecture by
presenting the density graphs of the patents owned by the SCEs in 2007 on the left and
in 2008 on the right, respectively. In 2007, the year before the policy change, the density
function is relatively smooth. The number of firms that own various number of patents
decline monotonically with the number of patents. Importantly, there is nothing special
about owning 6 patents. In contrast, as the InnoCom program was implemented at the
beginning of 2008, the density of function suddenly exhibits a spike at 6 patents. This
means that the firms clearly understand the importance of owning 6 patents. There is an
unusually large number of firms that own exactly 6 patents, relative to those that own
either 5 or 7 patents.

Inspired by the above figure, we examine the differences in behavior between the two
groups of the SCEs with initially 6 or more patents versus with initially fewer than 6. We
will label them as “initially more (or less) innovative SCEs”, respectively. To compare

the quantity of patents owned by them, we estimate the following equation

Yi = oy X D(patenty 1 < 6) + X1 + i + pe + €3t (2)

where Y}; is the patent count of SCE ¢ in year t. X;;_; = 1 if firm ¢ has obtained a subsidy
within the previous 3 years, and 0 otherwise; p; and p, are firm and year fixed effects,
which capture time-invariant firm heterogeneity and the aggregate trend, respectively. €;

is an independent and identically distributed random error. «; is the key parameter of
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interest, which measures the “excess” innovation count by the SCEs with initially fewer
than six patents relative to those with initially six or more patents. For comparison, we
do the same regression for the NCEs. Since these firms are not eligible to apply for an
InnoCom subsidy, this can be regarded as a placebo.

The line of the blue circles in the left graph of Figure [ traces out a; from the SCE
regression, representing the excess number of new patents by year by the initially less
innovative SCEs over the more innovative SCEs. The capped spikes represent 90% con-
fidence intervalsH The “excess” patent count is basically zero before 2008, implying
no difference between them. However, a; becomes significantly positive after 2008, sug-
gesting that the initially less innovative SCEs dashed for more patents after the policy
shock[™]

As a placebo, the red squares in Figure [f] trace out the excess new patents by the less
innovative NCEs over their more innovative counterparts. The difference between them
is essentially zero for all years both before and after 2008. This suggests that the relative
dash for more patents is a phenomenon especially prominent in the InnoCom-targeted
industries.

We now check the evolution of relative patent quality. Let V;; = 1 be an indicator
variable which equals to one if and only if SCE i chooses to renew patent k in year t. Let

s;r denote the year in which firm ¢ obtains patent k. We consider the following regression:

Vike = Z Bs X D(patentis_y < 6) + Xiy—1 + Xy + i + fie + €ige (3)
s<t

where D(patent;s_; < 6) is a dummy for firm i whose year s-1 patent count is strictly
fewer than six. The summation means that for every year t, we consider all patents
obtained before t. [, is the key parameter of interest, representing the difference in the
renewal probability by the initially less innovative SCEs relative to the more innovative
ones. If the additional patents are acquired for the purpose of competing for a subsidy,
rather than for their intrinsic productivity-enhancing value, then the new patents are

likely to be of low quality and would not be worth the renewal cost once the InnoCom

13 As we need the previous year’s patent count to define the dummy D(patent;;_1 < 6), o starts from
2005.

14 The difference between the two firm types becomes even stronger in 2011 possibly because it takes
some time for all such firms to fully react to the policy shock.
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review process is over. This would imply S; < 0. On the other hand, if the firms acquire
the patents for their true scientific value, then should not be a relative decline in the
quality of the patents. In that case, S5 = 0.

Other controls are defined as follows. X;_; = 1 if firm ¢ has obtained a subsidy
within the previous 3 years, and 0 otherwise. Xy, is a vector of observed characteristics
of patent k, including the patient’s age, industry classification, and type (invention, utility
or design). u; and pu; are firm and year fixed effects, respectively.

In the right graph of Figure [d we plot s by patent vintage year owned by the SCEs
(blue circles). We can see a clear relative decline in the patent quality after 2008 for the
initially less innovative SCEs. This relative decline is not driven by any pre-trend. If
anything, the average patent quality for the initially less innovative SCEs was higher in
2007 (the year before the policy shock). In the placebo test (red circles), the initially less
innovative NCEs do not exhibit a relative decline in their patent quality relative to their

initially more innovative counterparts.

3.4 Patent purchase by initially less innovative SCEs is the
fastest growing type of patent trade

Since the InnoCom program accepts externally purchased patents when an SCE applies
for a subsidy, it may be interesting to check if the initially less innovative SCEs show a
disproportionately strong interest in purchasing patents than other firms after 2008. In
Figure [5] we plot the shares of external patents in percent of all patents by the initially
less innovative SCEs (with the solid blue circles), the initially more innovative SCEs (the
red squares), and the NCEs (the light blue diamonds), respectively. For the initially less
innovative SCEs, 2008 represents a structural break. Their share of purchased patents
is doubled after 2008. In comparison, the initially more innovative SCEs only raise their
share of purchased patents slightly after 2008, whereas the NCEs show no change around
2008.

There are interesting differences in the relative growth of patent trade for different
seller-buyer combinations. In the left graph in Figure [0 we report the shares of traded
patents sold to the SCEs with fewer than 6 initial patents from three other types of firms.
The red-squre (the top line), blue-circle (the middle line), and green-diamond (the bottom

line) represent the NCEs, the initially more innovative SCEs, and other less innovative
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SCEs as sellers, respectively. The trade shares are stable before 2008. After the policy
shock in 2008, the patent sales from both the NCEs and the more innovative SCEs to
the less innovative SCEs jump up in percent of the total patent trade. In comparison,
the patent sales from less innovative SCEs to other firms in the same category decline in
relative importance. These patterns are entirely consistent with the incentive created by
the 2008 policy shock.

The right graph in Figure [0] plots the shares of traded patents sold to either the
initially more innovative SCEs or the NCEs from the initially less innovative SCEs (blue-
circle line) and from the initially more innovative SCEs and the NCEs (red-square line).
We see that both the trade among the initially more innovative SCEs and that within the
NCEs decline sharply. In sum, the initially less innovative SCEs become major patent
buyers following the 2008 policy shock, whereas other types of firms have raised their

relative sales to the less innovative SCEs.

4 Model

We model the market equilibria with and without a subsidy program by incorporating
the salient data patterns documented in the previous section. The subsidy program -
in the style of the 2008 policy shock - counts the number of patents by applicant firms
but does not adjust for patent quality, and does not distinguish between in-house versus
purchased patents. We study how the program affects aggregate welfare by altering the
firms’ choices on patent production and trade. We consider a static model with three

stages, denoted by t € {1,2,3}, respectively.

4.1 Environment

There are two industries (the targeted industry and the non-targeted industry). A sub-
set of the firms in the targeted industry satisfy the basic program requirement on the
minimum share of R&D expenditure and are eligible to compete for a subsidy. They are
referred to as Subsidy-Competing Enterprises (SCEs for short). There are two types of
Non-subsidy Competing Entities (NCEs): those firms that are in the targeted industry
but do not satisfy the minimum R&D requirement, plus those in the non-targeted indus-

try. We use i € {5, N1, No} to denote the SCEs and the two types of NCEs, respectively.
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Firms differ in their initial patent count.

Patents are heterogeneous in their quality, denoted by x. For simplicity, we assume x
is binomial with gy > z; = 0. Low-quality patents (z = x1) have no intrinsic value and
do not enhance the value of the firm (in the absence of a subsidy). As will be clear later,
without a government subsidy, all patents in equilibrium are of high quality (xp).

A firm can hold multiple patents. Let ng,; and ny; denote the numbers of high- and
low-quality patents that a firm holds in stage ¢, respectively. Since the bureaucrats do
not distinguish patent quality, the subsidy decision depends only on the total number of
patents in Stage 3, ng = ng 3+ nr 3 but not on their composition. Denote the probability
of receiving a subsidy for a firm of type i with ns patents by p (i,n3). While it is a policy
choice variable, it is taken as given by the firms. As in the actual InnoCom program,
that probability for the SECs, p(S,n3), is increasing in ng until it reaches n3 = 6. On
the other hand, as the NCEs are ineligible for a subsidy, p (N1,n3) = p (N2,n3) = 0.

After the subsidy decisions have been made and the production has taken place, each
firm has to decide whether to renew the patents it owns at the cost of ¢ per renewed
patent. If a patent is renewed, it will bring a continuation value of mxe, where 7 is a
component of the profit that is determined by firm-specific productivity z. € represents
an obsolescence shock, i.e., the possibility that the patent may become useless in the
future due to some other technological advances. We assume that € = 0 with probability
Q., and € = 1 otherwise. Hence the additional value of holding a patent of quality x
before the production is ma + E.[rxe — ¢|*, where [.]T equals 0 if the value inside the
bracket is negative. The last term captures the firm’s renewal decision. Since a given
subsidy is good for one model period (or three years in the data), a patent’s continuation
value (and a firm’s decision on patent renewal) does not depend on the subsidy.

We assume no complementarity among the patents. The expected value to the firm
for holding ng 3 patents is 7 + n¢ 3(7ry + E[rwrge — ¢]7). The marginal benefit of
holding a high-quality patent is assumed to be decreasing in the number of such patents,
i.e., @ < 1. As a result, the firm will only hold a finite number of patents. As low-quality
patents generate no intrinsic benefit, they will be discarded once the subsidy decisions
are made. Note that if ng s = 0, the firm’s profit is just 7. Hence 7 is the “autonomous
profit” in the absence of a high-quality patent.

The autonomous profit of a firm with productivity z in the targeted industry (S
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or Ni) is m = Az, where A is the industry-wide aggregate productivity. We assume
A = Ap+wAgK", where Ay is the initial aggregate productivity, and K is the total number
of high-quality patents in the targeted industry which will be determined endogenously
in equilibrium. 7 > 0 and w are parameters governing the knowledge spillover. Because
A is taken as given by individual firms, the embedded spillover represents a well-defined
market failure.

The autonomous profit of a firm in the non-targeted industry (NNy) is assumed to follow
m = z, where the industry-wide productivity is normalized to 1. Those NCEs outside the
targeted industry do not benefit from any knowledge spillover from the targeted industry.
(This assumption is supported by the empirical findings in Table )E

Firms also differ in their ability to produce high-quality patents, which is captured
by a firm-type specific component of the innovation cost v. A firm’s initial status can
be summarized by its type i € {S, N1, No}, productivity z, innovation cost v, and the
initial patent portfolio (ng1,nr1). We use g (i, 2,v,nm1,nr1) to denote the measure of
the firms with initial status (¢, z,v,ng1,n11).

In the first stage, a firm attempts to develop #y number of high-quality innovations
and #;, number of low-quality ones[/’| As it will be cleared later, in the absence of a subsidy,
a low-quality idea does not generate any positive benefit and will not be patented by the
firm. The innovation cost is denoted by C (0, 0r;v) which is increasing and convex in
both 6y and 0 LE In the second stage, a market in patent trade opens. A firm can choose
to buy, sell or keep its patents. The price for a patent of quality z, p (z), is determined
competitively. In the last stage, an SCE with n3 patents will receive a subsidy in the
amount of T'm with probability p(S,n3). The subsidy is modeled as proportional to a
firm’s gross profit because the subsidy in the InnoCom program takes such a form. All

firms then decide whether to renew each of their patents at a cost of c.

15For an individual inventor or a research institute, 7 can be interpreted as the utility of holding a
patent.

16Note that ny and nj, are a stock concept, referring to the numbers of high and low-quality patents,
respectively, that a firm owns. In comparison, 8y and 67, are a flow concept, referring to the numbers of
high and low-quality patents that a firm develops, respectively, in a given period.

1"We allow the aggregate knowledge capital K to affect aggregate productivity but not the unit inno-
vation cost. This is consistent with the usual assumption in the growth literature that the ratio of the
R&D expenditures to GDP is not related to aggregate knowledge capital (Klette and Kortum| (2004]))) or
at least does not decline in K (Akcigit et al| (2016)).
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4.1.1 Production

We perform backward induction starting from the last stage. The value of a firm holding

ns3 = nyg + nr s number patents at the beginning of this stage is
Vi (i,2,np3,np3) =7 +ngar(2) +p(i,n3) T

where 1 (2) = nxy + E. [rrye — T is the additional value from holding a patent with
quality . This implies a cutoff point for the patent renewal decision: if the continuation
value is bad enough, the firm will not renew the patent and the additional benefit from

the patent is 0.

4.1.2 Patent Trade

A firm with ng s and ng o number of high- and low-quality patents, respectively, before
the trade can purchase or sell patents to maximize the gain from trade. Let my and mp,

be the net purchases of high- and low-quality patents traded, respectively.

Vo (i,2,npga,np2) = max Vi(i,2,nme+mg,npe +mr)
mmp,mr

+p(i,ng2+mu +npo+mp) Tn —pagmp — prmy,

st. mpg > —npo and mp > —np o

Note that a negative value of either my or my indicates selling the patent. The two
restrictions mean that the firm cannot sell more patents than what it owns.

A low-quality patent will have no buyers without the subsidy program. That is, if
p =0, p(ry) = 0. Once the subsidy program is in place, then those SCEs with a low
initial patent count may wish to purchase some. (Other SCEs with a high initial patent
count would find no value in buying low-quality patents.) We can also see that the
marginal befit to purchase patents is higher for large firms. Hence they will buy more
patents and are more likely to be subsidized.

To allow for friction in market participation, we assume that a firm can participate in
the patent trade with an exogenous probability o. Hence the firm’s value at the beginning
of the second stage is (1 — o) V3 (4, 2, nm 2, nr2) +0Va (i, 2,np 2, 0y 2), where the first term

uses the fact that ng o = ngs and np o = ng g if the firm does not trade any patents.
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4.1.3 Innovation stage

A firm with initial status (4, z,v,ng 1,1 1) chooses the numbers of high- and low-quality

innovations, g and 6y, respectively, to maximize its expected value V; (i, z, v, ng1,n LJ)E:

Vi (4, Z,UynH,hnLg) = ) golaex>o (1—0)Vs(i, 2, nga1+0g,np1 + 0r) +
HZY, VL~
oVa (i, 2,np1 + 0u,np1 +61) — C(0n,0L;v) (4)

We impose a functional form on the innovation cost as

)

C (O, 00;0) = —— 04+ U _gitey G

914—401-‘:-(
1+¢ 14+¢ L rH ()

where the first and second terms are the R&D expenditures associated with the high and
low-quality innovations, respectively. If ¢ is positive, then the marginal cost of producing
a high-quality innovation rises when more low-quality innovations are produced. (When
we later calibrate the model parameters to match the moments in the data, v turns out
to be a small positive number.)

We allow the cost parameter for producing high-quality innovation, v, to depend on
both the firm type (whether it is an SCE, an NCE in the targeted industry, or an NCE
outside the targeted industry) and whether the firm initially has any patent. These
imply six separate parameters for the cost of producing high-quality patents, denoted by
v(SCE,n > 0), v(SCE,n = 0), v(NCE1l,n > 0), v(NCE1l,n = 0), v(NCE2,n > 0),
and v(NCE1,n = 0), respectively. In addition, two other cost parameters v and v, are
related to low-quality innovations, which are the same across all firms. In total, there are
eight separate parameters describing the costs of innovations.

Without the subsidy program, since low-quality patents have no value, all firms would
choose 6, = 0. This implies that before the subsidy program is in place, ny; = 0 as well.
Since no firm pursues low-quality patents, we cannot identify v and ¢ using only pre-

InnoCom information. With the subsidy program in place, low-quality patents become

18In appendix we reformulate the model so that the representative firm chooses the number of
projects x and the probability to convert a project to a high-quality patent ¢, instead of choosing the
numbers of high- and low-quality patents directly. This means that the numbers of high-quality and low-
quality patents are random variables. We show that our benchmark model is a first-order approximation
of this model.
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useful. Since the incentive to alter its innovation effort differs by firm type, the differential
changes in patent renewal rates across different firm types will help identity v and .
Following the literature, we define aggregate knowledge capital as the sum of all R&D

expenditure associated with high-quality innovationsﬂ

K= Z /1 +€«91+Cg i, z,v,ng1,np1) dzdvdng dnyg (6)

’LE{S Ny NQ}
4.1.4 Welfare

We define the welfare level as the sum of all firm values net of the social cost of the

subsidy, which can be written as follows:

Wel fare = Z Vi(i,z,v,ng1,npq) g (i, 2,0,ng1,np1) dzdvdng idng 1 —(1+7) TS
iE{S7N17N2}
(7)

where T'S is the total subsidy. 7 > 0 denotes the marginal cost of collecting a dollar of
tax. 7 would be zero if there are neither distortions in the tax collection nor resource
costs in administrating the subsidy program, In general, however, it costs society more
than one dollar for every dollar of subsidy reaching a recipient firm.

The welfare effect of the subsidy program is the increase in the total firm profits
minus the social cost of the subsidy. The social return to the subsidy is the change in
the welfare due to the subsidy program in the percentage of the subsidy amount. The
subsidy program may alter aggregate welfare in multiple ways. On the positive side,
raising the number of high-quality innovations might generate a positive spillover to the
productivity of all firms in the targeted industry. On the other hand, it could also reduce
economic efficiency. First, those SCEs with a low initial patent count are incentivized to
spend resources on low-quality innovations. Second, even firms not eligible for a subsidy
may also spend resources on low-quality innovations with the hope to sell them to a
subsidy-eligible SCE. Third, a high-quality patent may be sold by a higher-value user

that is not eligible for a subsidy to a lower-value user that is eligible for a subsidy.

19The empirical work on the topic including |[Bloom et al.| (2002) and Bloom et al.|(2019) typically uses
the total R&D expenditure to estimate the spillover from innovation. The endogenous growth literature
(Akcigit et al. (2016)) also assumes that the spillover depends on the total R&D expenditure.
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4.1.5 Characterizing the equilibrium

To characterize the equilibrium, we first ignore the integer constraint of the patent count.

If the firm can trade, from the optimality conditions, we have
ar (2) n‘}}}l +p' (ngs+nps)Tr =py and ny 3 = (p'T'm — pL)Jr (8)

where p’ is the marginal change in the probability of receiving a subsidy in response to a
change in ng 3 +nr 3. Hence for the NCEs, ny 3 = 0. The SCEs, on the other hand, have
the incentive to hold ny 3 > 0 only if ngs < 6. Meanwhile, in equilibrium, p'Tr < pr;
otherwise, the firm will increase ny, 3 until it reaches 6 and p’ = 0 in this case.

In the first stage, the optimality condition for 6y yields

(1= ) (ar (2) (s + 0)* " + p (g + O + 0) T7) + opy — (v + @9;“) 6, =0
(9)
where the first two terms on the left-hand side mean that when a given patent is not
sold, the marginal increase in the firm value is ar (2) (ngy + 0g)* " + p'Tw. The third
term is the marginal increase in the firm value when the patent is sold. The last term is
the marginal cost of producing a high-quality patent.
Similarly, the optimality condition for 6, yields

(1 — (7) ,0/ (TlH71 + QH + 9L> T+ opr — <1_) + @G}IJFC) 9% =0 (10)

where we use g%j = pr. The SCEs have a stronger incentive than NCEs to produce 6,

since SCEs’ p’ > 0. For any firm type, the incentive to produce low-quality patents also
depends on v.

In the case of no subsidy (i.e., "= 0), we have 0, = np 3 =0 and

(1—0)ar(2) (ng +0r)* " + opy = v85 (11)

s = (‘“" ("’))11‘” (12)

b
The two sides of equation [11] are the marginal benefit and marginal cost of generating

a new patent, respectively. By Equation [I2] when the firm has a chance to trade, it
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always adjusts the number of patents it owns so that the marginal benefit of a patent is
PH-

We summarize the welfare effect of the subsidy as follows. Once the subsidy program is
in place, low-quality patents become valuable in the equilibrium, p;, > 0. From equation
@, firms in the innovation stage waste some resources to produce low-quality patents that
do not generate any positive spillover. This would push up the marginal cost of producing
high-quality patents and hence potentially reduce the amount of positive spillover. On
the other hand, the subsidy program also increases the benefit of high-quality patents.
These two opposing forces jointly determine the net change in the knowledge spillover.

With the possibility of engaging in patent trade, a firm would always choose the
number of patents in such a way that the marginal value of a patent equals its price in
the patent market (as in equation ) As long as p' > 0, the subsidy creates a wedge
between the marginal production value of a patent and its market price, which can induce
misallocation (i.e., a patent is bought by a firm eligible for a subsidy from another firm
that would have been its highest-value user. In the production stage, the subsidy will

involve an opportunity cost 7.

4.2 Calibration

We calibrate the model to match some key moments in the data. Since each subsidy
approval is good for three years, we set one period in the model to be equal to three years
in the data. We treat the period of 2005-2007 as a period with no subsidy ( p =T =0)
@ Once the subsidy program is introduced in the model economy, we match p(i,n), the
probability to receive a subsidy conditional on both the firm type and the patent count,
to be exactly those estimated in Column 5 of Table 1. We set 7" = 0.1 to capture the form
of the InnoCom subsidy (a reduction in the corporate income tax by 10 percentage points
for three years). We normalize the targeted industry’s pre-shock aggregate productivity,
Ap, to be 1. Its value after the policy shock will be determined endogenously. We use a
firm’s actual patent count at the end of 2004 to represent a firm’s initial patent count in

the model in the absence of the subsidy program.

20Very few firms received a subsidy during 2005-2007. In any case, the limited amount of subsidy was
not tied to an applicant firm’s patent count or other innovation outcomes.
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4.2.1 Parameters set with prior information

A firm’s productivity conditional on its type ¢ is assumed to follow a log-normal distri-
bution, with mean u; and standard deviation €);, respectively, where subscript ¢ denotes
whether a firm is an SCE, an NCE in the targeted industry, or an NCE outside the
targeted industry. We estimate these six parameters from the actual distribution of the
firms’ profits for each firm type. Interestingly, we find that, on average, the SCEs are more
productive than the NCEs in the targeted industry (u(N1) = 0.83u(S)), which in turn
are more productive than the NCEs outside the targeted industry (u(N2) = 0.62u(S)).
We find that the €2’s are approximately the same across the firm types.

To pin down the value of a high-quality patent, xy, we recognize that, without the
subsidy program, no low-quality patents are produced. Since the increase in a firm’s
profit (before 2008) due to a patent is mxy, we use the average profit increase due to a
new patent to infer xy, which we estimate to be 3.4%@

The knowledge spillover parameter, 7, is important for determining the gains from
the subsidy program. It is estimated by Bloom et al. (2002)) to range from 0 to 0.2. To
err on the side of giving a more favorable interpretation of the subsidy program, we set
17 = 0.2 in the baseline case. We will later perform robustness checks for different values
of the parameter. In Appendix B, we also report an estimate based on our data (which
turns out to be smaller than 0.2).

The shadow value of the public funds 7 is estimated by |Chen et al.| (2021) and [Ming
(2009) to be between 0.2 and 0.4. We set 7 = 0.2, the lower bound of their estimate in
the baseline case. This would also give the most favorable interpretation of the subsidy
program.

For the scaling parameter in the innovation cost function, ¢, we follow |Peters| (2020))
and set it to be one. For parameter a that governs the diminishing return to firms holding

more patents, we follow the “span of control” literature (Lucas 1978) and set a = 0.7.

2In the data, denote 7; as the profit of a firm in year ¢ before 2008, and n; is the number of new
patents obtained in ¢ (either in-house or external patents). Since a model period is 3 years, we have that

3AIn7w, __
-~ =TH-
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4.2.2 Parameters jointly calibrated to data moments

There are 12 additional parameters in the model. First, there are 8 parameters describ-
ing the costs of innovation, including 6 with regard to producing high-quality innovations
(v(SCE;n=0),v(SCE,n>0),v(NCEl,n=0), v(NCE1l,n>0), v(NCE2,n=0),
and v (NCE2,n > 0)), one with regard to producing low-quality patents, ¢, and a remain-
ing one with regard to the interaction between producing high- and low-quality patents,
v. Second, 2 parameters affect patent renewal decision: the probability of an obsolescence
shock, €., and per-period cost of renewing a patent, c. Third, o the probability that a
firm can participate in patent trade reflects the friction in the patent market. Fourth, w
is a scaling parameter converting high-quality knowledge to industry-level productivity.

These 12 parameters are jointly calibrated by minimizing the sum of the distances
between a set of model moments and the corresponding data moments. In particular, We
target the following 12 moments in the data: the average new patent count per each firm
type during 2005-2007 conditional on whether there is any patents in 2004, the share of
externally purchased patents traded before 2008, the targeted industry profit growth rate
before the subsidy, the 3-years-out renewal rate of the patents granted before 2008 by
firms with labor productivity below and above the median, respectively, and the relative
differences in the patent count and renewal rate, respectively, between the SCEs with
and without 6 initial patents before and after 2008. These targeted data moments and
their values are listed in Table 4.

Although all parameters are calibrated together, it may be useful to discuss intuitively
which variations in the data may play an important role in identifying which parameters
in the model. Note that before the policy shock, all patents can be regarded as of high
quality. Consider first 2. and c¢. Since a firm will renew a patent if Txye > ¢, the
observed renewal decision on an in-house patent by a firm conditional on its productivity
helps to identify ). and c¢. The observed share of the external patent helps to identify
o. Finally, the six parameters associated with the cost of producing high-quality patents
by firm type are identified based on the number of innovations by firm type before the
subsidy program.

For the two parameters associated with producing low-quality patents, v and v, we use
a difference-in-differences regression. We allow for possible coincidental changes in factors

other than the subsidy program and assume that such changes affect the intrinsically more
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and less innovative SCEs (those with six or more initial patents and those without) in
the same way. We interpret the result from the double differences (between the more or
less intrinsically innovative firms and before and after the policy shock) as reflecting the
effect of the subsidy program. We then simulate the model one more time by imposing
p(i,n3) and T' = 0.1 after the policy shock, while keeping other parameters unchanged.
Since those intrinsically less innovative SCEs (with fewer than 6 initial patents) have
a stronger incentive to produce low-quality patents, the double differencing result can

identify v and 0.

4.2.3 Parameter values and model fitness

We summarize all parameter values in Table [3| and report the model fitness in Table
[ It is unsurprising that, for the 12 targeted moments reported in the top panel, the
model moments match the data well. Meanwhile, we check four important but untargeted
“double relative” moments reported in the lower part of the table, including the patent
count, external patent share, and renewal rate. All of them are the differences in the
changes between SCEs and NCEs before and after the policy shock. The model fitness
appears reasonably good as well.

Figure [§] plots the density of patents held by the SCEs after trade with and without
the subsidy. Consistent with the data pattern in Figure [3] we can see that most SCEs
in the model hold just 6 patents. As a unit of value in the model is calibrated to be 1
million RMBs, the renewal cost, ¢ = 0.01, implies that the renewal cost per patent per
year is about 3,000 RMB (0.01mil/3). This cost includes not only what is paid to the
patent registration office (about 1,000 RMB), but also legal fees and administrative costs
to cover activities needed to safeguard against infringement.

It is interesting to observe that the estimated innovation cost of high-quality patents,
v, is smaller for those firms with initial patents than those firms without. This cost
differential is consistent with the interpretation that those with initial patents have a
stronger intrinsic ability to innovate. It is also interesting to note that the cost differential
is smaller for the SCEs than for the NCEs. This is not surprising since only firms with a
high enough R&D expenditure can become SCEs. With v = 0.003, the cost to produce a
low-quality patent is low (about 3,000 RMB). On the other hand, with © = 0.01%, more

low-quality patents raise the unit production cost of a high-quality patent.
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Since the model only targets the difference in the changes in patent counts between
the SCEs with low and high patent counts, we use the difference in the changes in the
shares of external patents between these two types of SCEs as a validation test of our
model. In the data, the difference in the share of purchased patents between the two
types of SCEs rises by 13%. In the model, this difference rises by 7%, which goes in
the same direction. Meanwhile, we also use the difference between patent renewal rates,
the count of newly invented patents, as well as external shares between NCEs with six
and more initial patents and below six initial patents as another untargeted moment. In
the data, all these differences between the two types of NCEs only change a little, which
is similar to the model prediction. Overall, the model does a reasonably good job at

matching these untargeted moments as well as the targeted ones.

5 Assessing the Subsidy Program

The Quantity and Quality of Patents

To understand the effect of the subsidy program, we compare the quantity and quality
of patents by firm types with and without the subsidy and report the results in Table [5]
We separate the firms into four types: the SCEs with initial patents below 6, the SCEs
with initial patents above 6, the NCEs in targeted industries, and other NCEs. In the
first column, we report the patent count (in thousands) held by each firm type before the
subsidy. Because there are more SCEs with a low initial patent count than those with a
high count, the former group collectively owns more patents.

In columns 2 to 4, we report the patent count by firm type in a laissez-faire economy
(i.e., no subsidy or 7" = 0). Not surprisingly, no firm wants to produce or own low-quality
patents in this economy. Column 2 reports the number of patents owned before the trade,
which is equal to the initial patent count (column 1) plus the number of newly developed
patents. We see that those SCEs with a high initial patent count invent more because
they have a lower invention cost.

The net purchase of patents by firm type is reported in Column 4. A negative number
means that a particular firm type is a net seller. Note that the sum of net purchases across
all firm types is zero. The SCEs, especially those with a high initial patent count, are

net sellers, whereas the NCEs are net buyers. This suggests that, in the absence of
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the subsidy program, the SCEs have a comparative advantage in producing high-quality
patents.

What happens to patent production and trade in an economy with the subsidy pro-
gram (i.e., T = 0.1) is described in the next three columns. Those SCEs with a low
initial patent count now buy a lot of patents. Interestingly, as reported in Column 7,
they buy substantially more low-quality patents (about 11,700) than they do high-quality
ones (only 1,200). Because low-quality patents do not enhance productivity, the purchase
of low-quality patents is motivated by a desire to exploit the mild government failure -
that bureaucrats count patents but do not differential quality - for a chance to receive a
subsidy.

All other types of firms are net sellers of low-quality patents. This is very telling: as
none of them has any intrinsic use for low-quality patents, these firms produce them only
with the hope to sell them to those SCEs who need them to apply for a subsidy. Given
the friction in the patent trade market, many of the producers of low-quality patents do
not succeed in selling all of them.

In the last column, we characterize the subsidy economy in terms of its differences from
the laissez-faire economy. While high-quality patents go up slightly (by 0.9 thousand),
low-quality patents increase by a substantially greater amount (by 48.2 thousand). In
other words, 98.1% of the increased quantity of the patents due to the subsidy program

is of the low-quality variety.

The Social Return to the Subsidy Program

We infer the social return to the subsidy program by computing the percentage change
in the welfare level (the sum of all firms’ profits net of the social cost of the subsidy) from
the laissez-faire economy to the subsidy economy. The details are reported in Table [6]
In particular, we calibrate the model twice, reporting the outcomes for each firm type in
the laissez-faire and subsidy economies in Columns A and B, respectively. The monetary
unit is a billion RMBs.

In Panel (1), we report R&D expenditures on high- and low-quality patents in the
first stage. In terms of the expenditure on high-quality patents, we see that those SCEs
with a low initial patent count are the only type of firms that have been induced by the

subsidy program to spend more on high-quality patents. This is understandable since

28



other types of firms do not need to do more than what they already find optimal under
laissez-faire.

In comparison, in the subsidy regime, every type of firm finds it optimal to start to
produce low-quality patents (also see column (5) in the previous table). While those SCEs
with a low initial patent count hope to use the low-quality patents to raise their chance
of receiving a subsidy, other types of firms produce low-quality patents with the hope of
selling them to the former group. Note that the overall increase in the R&D expenditure
stimulated by the subsidy program is not too high because the low-quality patents are
not too expensive to produce. (In an appendix, we will show a bigger increase in the
reported R&D expenditures due to mislabeling of some of the non-R&D expenditures.)

In Panel (2), we report the net purchase expenditures from patent trade for each firm
type. Going from laissez-faire to the subsidy regime, we see that those SCEs with a low
initial patent count have switched their stats from net sellers of patents to net buyers. In
comparison, all other firm types have either increased their net sales (in the case of those
SCEs with a high initial patent count) or reduced their net buys (in the case of the two
types of NCEs). These patterns in terms of monetary values are of course consistent with
net purchase quantities in the previous table. It is also interesting to note that the price
of a low-quality patent has increased dramatically from zero under laissez-faire to 3000
RMBs under the subsidy regime. In comparison, the price of a high-quality patent has
increased by only slightly (i.e., less than 1/3 of a 1% from 350 to 351 thousand RMBs).

In Panel (3), we report the revenues from production and the subsidy. Because all
firms in the targeted industry benefit from a spillover due to a (modest) increase in the
number of high-quality patents, the revenues of both the SCEs and those NCEs in the
targeted industry also go up (by a modest amount). The revenue for the NCEs outside
the targeted industry declines slightly because the high-quality patents they buy have
become slightly more expensive.

Given the sums of the firm profits under laissez-faire and the subsidy regime, respec-
tively (reported in Row 4), the increase in the economy-wide firm profits per period for
our sample city before subtracting the social cost of the subsidy is 8.68 billion RMBs
(Row 5). Recall that the subsidy probabilities differ by firm type and are calibrated

based on the actual data from our sample city. The corresponding total social cost of the
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subsidy is 10.38 billion RMBs per period (Row 6) @ This means that the social return
to the pro-innovation subsidy program is -19.7% (Row 7). In other words, this industrial
policy is not a success in spite of a modest increase in the spillover from high-quality
patents.

In summary, this is a setting with a well-identified market failure - the existence of a
positive spillover to the industry-wide productivity from firm-level innovation. However,
our structural model shows that the subsidy program has mostly inspired the production
of more low-quality patents that do not have a positive productivity effect and very few
additional high-quality patents. Given the social cost of the subsidy, this industrial policy

produces a negative return.

Correspondence to the Main Data Patterns

It may be useful to comment on how the model setup and the predictions are related to
the four salient data patterns documented in the previous section. Recall that the first
empirical pattern in Section 3 is that the bureaucrats who review the firm applications
count the number of patents but do not differentiate their quality. This is directly built
into the subsidy rule in the model. In particular, for an SCE with a given number of
patents in the model, the probability that it may receive a subsidy is directly matched
to the probability estimated in column 5 in Table

The second set of data patterns is that the subsidy program appears to have generated
simultaneously an increase in the quantity of patents but a decline in their average quality.
The model generates this pair of results as described in Tablep] In particular, going from
laissez-faire to the subsidy regime, the new patent count has increased by 33% (from
150,700 to 199,800 reported in the second to the last row). However, out of the newly
increased patents, 98.1% are of low-quality variety. This implies a large decline in the
average quality of the new patents produced.

The third set of data patterns is that the less innovative SCEs simultaneously show
faster growth in the patent count but a larger decline in patent quality than their more
innovative counterparts. The model incorporates this pattern as a targeted moment as

reported in Table[dl In particular, from the last two targeted moments, we see that after

22Recall this uses the lower bound estimate of the social cost of public funding in China - 1.20 RMB to
the society for every 1 RMB of the subsidy received by the firms. If one were to use a median estimate,
the social return to the subsidy would be lower.
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the subsidy, those SCEs with fewer than six initial patterns increase their low-quality
patents much more than the other SCEs with more initial patents. The same patterns
can be discerned in Tables 5 and 6 as well.

A comparison between more or less innovative NCEs (which do not directly compete
for a subsidy) is akin to a placebo test since their relative incentive to produce patents
should not be altered as much by the subsidy program. In our model, from the first
two un-targeted moments, the difference in the change in the patent count following the
subsidy program between those NCEs with fewer than six initial patents and those with
more than six patents is not significantly different from each other. This replicates the
empirical pattern in Figure [4

The fourth set of data patterns is that less innovative SCEs become the major patent
buyers of patents after the subsidy program (Figures 5 and 6). Our model also produces
these patterns, as can be seen from the last two un-targeted moments in Table 4. (The
same conclusion can be drawn from Tables 5 and 6 as well.) In particular, the SCEs with
fewer initial patents in the model purchase significantly more patents than other SCEs
following the subsidy program. In contrast, the gap in the patent purchase behavior
between the less and more innovative NCEs is not affected much by the subsidy program.
In sum, our structural model appears to have captured the essence of all the data patterns

that are documented in Section 3.

Sensitivity Checks

We perform two types of robustness checks. We start by examining the sensitivity of
both the model parameters and the return to the subsidy to small perturbations in the
data moments. In panel A of Table [7] the first column lists all the data moments used
to generate the parameters in the model. In each row, we increase a given moment
in the data by 5% and then report the percentage change in each internally calibrated
parameter relative to the initial level in Table [6] The first six data moments are the
counts of the new patents invented over 2005-2007 by each firm type with and without
any initial patent in 2004. They help to identify the six corresponding cost parameters
in the model for producing high-quality patents.

For example, the first data moment is the number of patents invented over 2005-2007

by those SCEs without any patent in 2004. It is the key data moment that helps to
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identify the cost of producing high-quality patents in the model for that type of firm. If
this data moment is raised by 5%, our calibration would reduce the cost parameter, v(S,
n=0), of producing high-quality patents by that type of firm by 9.9%. Since all model
parameters are calibrated jointly, it is not surprising that some other parameters also
change, albeit by a much smaller magnitude. Similarly, when each other data moment
(new patent count during 2005-2007) for a particular firm type is raised by 5%, we can
see that the cost parameter in the model for that corresponding firm type also declines
by close to 10%. It is important to note that a small increase in any of these six data
moments, in the end, leads to no significant change in the estimated return to the subsidy
program (as reported in the last column). This suggests that our conclusion regarding the
efficiency consequence of the subsidy program is not sensitive to possible measurement
errors in these data moments.

The 7th and 8th data moments in the first column are the two average patent renewal
rates by all firms and the firms with their intrinsic productivity component z above the
median, respectively, during 2005-2007. They are the key data that help to identify the
cost of renewing a patent, ¢, and the probability of an obsolescence shock, €2.. Unsurpris-
ingly, the renewal cost ¢ in the model declines when the observed renewal rate in the data
goes up by 5%. For the highly productive firms - those with z greater than the median
value, their patent renewal decision depends only on 2.. A higher observed renewal rate
in the data implies a lower likelihood of an obsolescence shock. Most importantly, from
the results reported in the last column, we see that the estimated return to the subsidy
program is not sensitive to a small change in these two data moments either.

The 9th data moment - the average share of the patents held by all firms during
2005-2007 that were purchased from the patent trade - is the key data point that helps to
quantify the friction in the patent trade market. An increase in this data moment by 5%
implies a higher probability of patent trade in the model, o, by 1.8% (which means less
friction to patent trade). Such a change in the data would reduce the ultimate estimate
of the return to the subsidy program by a tiny bit (from -19.7% to -19.8%).

Finally, the last two data moments are the changes in the patent renewal rate and
new patent counts, respectively, by the less innovative SCEs (those with fewer than 6 ini-
tial patents) due to the subsidy program relative to those by the more innovative SCEs.

As each is essentially a double-differenced outcome, we assign a “relative-relative” label
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to them. These data moments are used to identify the cost parameters associated with
producing low-quality patents. When the relative-relative renewal rate in the data is in-
creased by 5%, ¥ in the model rises by 1.8%. The direction of the change is not surprising:
A relative-relative renewable rate in the data means that even the less innovative SCEs
must face a reduced incentive to produce low-quality patents, and a slightly higher cost
of producing low-quality patents in the model can produce such a result. From the last
column, we see that the estimated return to the subsidy program is barely changed.

An increase by 5% in the observed relative growth in patent count by the less inno-
vative SCEs after the subsidy program translates into a reduction in ¥ and ¢ by 32.7%
and 11.4%, respectively. The sign of these changes is also intuitive. If the less innovative
SCEs could manage to increase their relative patent count by a greater amount, it must
imply that the cost of producing low-quality patents is even lower than before. This leads
to a very small deterioration in the estimated return to the subsidy program.

To take stock, we note that the estimated return to the subsidy after each perturbation
to the data moments is always very close to the benchmark case, i.e., between -19.1%
and 20.9%. These results indicate that the model parameters and, most importantly, our
conclusion on the efficiency consequence of the subsidy program is not very sensitive to
either small measurement errors in the data or small perturbations to the data moments
for other reasons.

In Panel B of Table [6] we conduct a different type of robustness check. In particular,
we increase the internally calibrated parameters by 5% one by one and re-compute the
return to the subsidy program in each case. For example, if v(S,n = 0) in column 1
is increased by 5% (from 0.02) while holding all other model parameters constant, the
estimated return to the subsidy program would become -19.9%. This represents a very
small change from the baseline estimate of -19.7%.

We do similar comparative statics for each of the other calibrated parameters in the
other columns. From the results reported in the last row, we can see that the estimated
return to the subsidy is within a relatively narrow range between -19.1% and -20.0%.
In other words, our conclusion regarding the return to the subsidy program is not very

sensitive to a small change in any of the model parameters.
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The Central Role of the Mild Government Failure

Consider a thought experiment in which mild government failure does not exist. In partic-
ular, the bureaucrats can distinguish the patent quality and choose different probabilities
of granting a subsidy depending on the patent quality. In this case, it is optimal to only
subsidize the high-quality patents. Let T be the tax cut for an SEC with six high-quality
patents. We search for the optimal values of Ty that would maximize the welfare while
holding all other model parameters as given. We find that Ty = 0.15 would maximize
the welfare. In other words, the optimal program design would not count low-quality
patents but would subsidize firms with a high-quality patent with even a bigger tax cut
(15 percentage points reduction in the tax rate) than in the current subsidy program (10
percentage points reduction).l?]

This result is reported in Column 1 of Table [§] As we see from Panel (1.2), in the
absence of a subsidy for low-quality innovations, no firm would waste resources on them.
On the other hand, comparing Panel (1.1) of this column with the corresponding numbers
in Column A of Table 6, all firms now invest more in producing high-quality patents. In
contrast to the baseline case (Column B of Table 6), we now see an increase in the
number of patents with no deterioration in their average quality. Patent trade now plays
a positive role in raising social welfare: those SCEs with a low initial patent count now
buy more high-quality patents from other firms (Panel (2) in the first column). The
positive spillover to productivity from the increased high-quality patents now raises the
revenues of all three types of firms in the targeted industry (as seen in Panel (3) in the
first column).

Given these changes induced by the subsidy, the social return to the subsidy program,
in this case, is 7.8%. The positive social return is not surprising since there is a well-
defined market failure in this economy - the existence of a positive spillover to industry-
level productivity from firm-level high-quality innovations that have not been internalized
by individual firms. In the absence of mild government failure, the subsidy to high-quality
innovations mitigates market failure.

Note that we are not saying that real-world bureaucrats should be able to differentiate

23We have also examined a case in which potentially separate subsidies can be given to in-house versus
externally purchased patents. We find that, in the absence of mild government failure, the optimal
policy would not distinguish between in-house versus purchased high-quality patents, and would give a
15 percentage points tax cut in both cases (but no tax cut to low-quality patents).
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the quality of patents as it is intrinsically hard to do so. Instead, this thought experiment
makes the point that the existence or absence of a mild government failure can have a
significant consequence on the efficacy of an industrial policy. While we intentionally
assume away a strong form or a semi-strong form of government failure in the current
paper, we are not saying that corruption, lobbying, or incompetence is irrelevant to the
implementation of industrial policies. If we are to add these ingredients to the model,

the social return to the subsidy program would be even lower (i.e., more negative).

The Role of Patent Trade

To examine the interactions between patent trade and industrial policy, we consider three
thought experiments. The first is to reduce the friction in patent trade by doubling the
probability that firms can participate in the patent market, o, from 33 percent to 66
percent. The results are reported in columns 2 (a laissez-faire economy) and 3 (the
subsidy regime) of Table [§]

In the subsidy regime (relative to the baseline case of more friction to patent trade),
the total subsidy expenditure is increased to 8.98 billion RMBs (as more SCEs would now
be able to buy and own a patent). While the number of patents increases, the quality of
innovation declines further, as indicated by a decline in the renewal rate. This translates
into an even lower return to the subsidy (-24%) than the benchmark case (-19.7%) in
Table [l Relative to the existing literature on patent trade (Akcigit et al] (2016))) that
highlights the benefits of patent trade in improving resource allocation, our case illustrates
the possibility that patent trade could worsen resource misallocation in the presence of a
mild government failure.

As a second experiment, we consider a case in which only in-house patents can be
used in the subsidy application (while maintaining the values of all other parameters and
0=0.33). That is, SCEs cannot rely on patent trade to boost their chance of receiving a
subsidy. The results are reported in column 4 of Table[§] This change in the design of the
subsidy program removes the incentive to produce low-quality patents by all firms other
than those directly applying for a subsidy. This reduces the quantity of the low-quality
patents produced as well as the expenditures on them.

Without the ability to use purchased patents to apply for a subsidy, fewer SCEs would

apply for a subsidy. Compared to the baseline subsidy program described in column B of
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Table @, the total subsidy expenditure declines to 8.32 billion. These savings represent
a substantial improvement over the baseline case. As a result, the social return to the
subsidy is now -10% (rather than -19.7%). Note that the return to the subsidy is still
negative because those SCEs with a low initial patent still have the incentive to waste
resources on producing low-quality patents. In fact, they try harder to do so in order to
compensate for not being able to use purchased patents in their subsidy applications.
In the third experiment reported in column 5, we fix the total subsidy budget at the
baseline level (8.65 billion RMBs) while excluding purchased patents from the subsidy
consideration. This implies a bigger tax cut per firm. Relative to the original program,
the new program also delivers a better outcome (with the return to the subsidy at -15%).
An important part of the improvement comes from avoiding resource waste in producing
low-quality patents by firms not directly applying for a subsidy. However, relative to
the previous case of not fixing the subsidy budget, the subsidy is too large for the size
of the productivity spillover, and it exacerbates the incentive for the SCEs to produce

low-quality in-house patents.

Optimal Policy Subject to Mild Government Failure

A possible improvement in the design of the program is to assign different levels of
subsidies to in-house and externally purchased patents (while the bureaucrats still cannot
differentiate the quality of patents). We solve for their optimal values numerically while
taking as given all other model parameters. We find that the optimal tax cut is 12% for
the in-house patents and 0% for the external patents. In other words, the optimal policy
should not count the externally purchased patents in the subsidy decisions. Moreover, in
the presence of mild government failure, the optimal policy also needs to substantially
reduce the subsidy for in-house patents. The results from this experiment are reported
in Column 6 of Table [§] The total subsidy expenditure declines to 0.76 billion RMBs.
The social return to the optimal subsidy program is now 0.2%.

It is useful to compare this case to the “first-best” case in Column 1 of Table|8] With-
out mild government failure, the optimal policy does not need to distinguish between in-
house versus purchased patents, but will only subsidize high-quality innovations. Indeed,
we find that the optimal subsidy is 15 percentage points reduction in the tax rate, which

is 50% larger than China’s actual industrial policy. Since it is not realistic to remove the

36



mild government failure, the “first best” policy described above is not a feasible policy.
It may be tempting to regard the policy described here as a constrained optimum.
We note that distinguishing between in-house versus purchased innovations may not be
straightforward either. If the subsidy rule only allows for in-house patents, the subsidy
applicants may have an incentive to buy “pre-patents” from other firms - i.e., patentable
innovations to be disguised as in-house innovations. For example, a black market for
“pre-patents” may emerge that would match a potential buyer - an SCE in need of a
patent - with a prospective seller - before an external innovation is patented. Then it is
a question of how costly it is for the bureaucrats to tell whether a given innovation is
truly developed in-house. The cost may be especially high in some developing countries
where bureaucratic incompetence or corruption is severe. In such economies, our results

suggest that the pro-innovation industrial policy is more likely to fail.

Size of the Spillover

A key parameter governing the importance of market failure is the size of productivity
spillover from innovations. The estimates of the spillover parameter, 7, by [Bloom et al.
(2002)), based mostly on data from advanced economies, range from 0 to 0.2. To err on
the side of giving a more favorable interpretation of the subsidy program, we set n = 0.2
in the baseline case. It is possible that the actual size of spillover is smaller for a country
like China since it is not on the technological frontier. To assess the sensitivity of the
conclusion, we plot the returns to the subsidy as a function of 7 in Figure [9] The solid
blue line indicates the return to the subsidy as a function of n when 7 = 0.2. As we can
see, for all realistic values of 7, the subsidy program always yields a negative return. In
particular, if the spillover parameter for China is 0.10, i.e., which is in the middle of the
empirically estimated range (between zero and 20%), the return to the subsidy program
would be -90%. The dashed line represents the return to the subsidy when only in-house
patents are counted in the subsidy applications. As we see, the return would be somewhat
better than when externally purchased patents are included, though still negative.

For an easy comparison, we plot the case of no mild government failure in the dashed-
dot orange line. The return to the subsidy program (where the subsidy to high-quality
innovation is optimally computed) will always be positive for n between 0.1 and 0.2. Of

course, the greater the spillover, the higher the return to the subsidy program. When
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n = 0.20, the social return to the subsidy program is 7.8%, exactly as reported at the
bottom of Column 1 in Table

In Appendix B, we estimate the size of the spillover using Chinese data and find it
to be around 0.01, which is much smaller than the one used in our baseline calibrations.

This would imply a much lower return to the subsidy program.

Relabeling R&D expenditures

Some NCEs in the targeted industry may pretend to be SCEs by relabelling some non-
R&D expenditures (such as management costs) as R&D expenditures. This is carefully
studied by |Chen et al. (2021)), who estimates the average relabelling cost to be 24% of
the true R&D cost. We now extend our model to include this distortion. Each N;j firm
(in the targeted industry) can now choose to pretend to be an SCE at the beginning
of the innovation stage. The overall cost inclusive of manipulation and innovation is
C (0n,0r;v) + q, where g is a fixed cost to relabel. We calibrate relabeling cost ¢ to be
24% of the true R&D (following (Chen et al.| (2021))). It is easy to verify that if p = 0, no
firm would want to incur the extra relabelling cost. We compare two policy designs: the
baseline subsidy program and an alternative policy that only counts in-house patents. In
both cases, we keep p unchanged.

Table [J] reports the result. As we can see, with possible relabeling, the subsidy in
both cases increases substantially, as more firms become eligible for a subsidy. When
purchased patents are allowed in the subsidy application, the true R&D cost (excluding
the relabelling cost) is lower than the benchmark case. For the NCEs to pretend to be
SCEs, the innovation cost rises. By diverting financial and labor resources to relabelling,
they reduce the true R&D resources. Thus, the aggregate productivity declines, and the
return on subsidy is -26%, 7 percentage points lower than the case of no R&D mislabeling.

We now exclude externally purchased patents in the subsidy application. In column
2, the total subsidy declines to 20.17 billion RMBs. The social return to the subsidy
is -7%, better than allowing purchased patents, but still worse than without the R&D
mislabeling. To summarize, even with the possibility of relabeling R&D expenditure (so
that some of the subsidy-eligible firms are fake SCEs), the social returns to the subsidy
program are better when externally purchased patents are excluded for consideration in

the subsidy applications.
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6 Conclusion

We study how even a mild form of government failure - the bureaucrats can count but do
not differentiate quality - affects the efficacy of a large pro-innovation industrial policy
in China. We show that the presence or absence of this feature could change the sign on
the return to the subsidy program. In particular, without the mild government failure,
the return to the program would be 7.8%. In contrast, with mild failure (which is a more
realistic scenario), the return to the subsidy program is -19.7%.

We also pay special attention to the role of patent trade. By counting purchased
patents by applicant firms in competing for a subsidy, the architect of the industrial
policy may hope to use patent trade to inspire more innovations even by firms not directly
competing for a subsidy. (This feature is not unique to Chinese industrial policy, and is
shared by the patent box policy in Europe and elsewhere). Our estimation suggests that
this feature lowers the return to the subsidy program. We also show a reduction in the
friction to patent trade could exacerbate the welfare loss of the program in the presence

of mild government failure.
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Table 1: How are applicants scored?

(1) (2) (3) (4) () (6)
Total Points (OLS) Subsidy or Not (Probit)
Avg citation Avg renewal rate Avg citation  Avg renewal rate
Patent count=1 or 2 0.000 0.000 0.000 0.062 0.063 0.043
(0.000) (0.000) (0.000) (0.075) (0.076)  (0.118)
Patent count=3 0.945%* 0.912%* -1.037 0.147 0.148 0.025
(0.418) (0.335) (1.526) (0.084) (0.086)  (0.131)
Patent count=4 0.965** 0.914* 1.809 0.167%** 0.169***  0.057
(0.442) (0.547) (1.674) (0.026) (0.029)  (0.065)
Patent count=>5 3.131%** 3.133%**  3.040%** 0.238** 0.239**  0.128
(0.419) (0.856) (1.964) (0.085) (0.087)  (0.121)
Patent count=6 6.64 3% 6.590%HF*F  6.624*** 0.319%#* 0.311*%%  0.198*
(0.417) (0.551) (1.871) (0.069) (0.071)  (0.107)
Patent count> 6 7.693%** 7.614%%* 7.452 0.353%** 0.354*%**  0.203*
(0.499) (0.473) (1.697) (0.046) (0.048)  (0.101)
Quality proxy 0.007 -0.727 -0.459 0.007 0.011 0.007
(0.007) (0.473) (1.697) (0.016) (0.009)  (0.103)
Share of In-house Patents -0.007 -0.007 -0.006 0.001 0.001 -0.005
(0.004) (0.006) (0.008) (0.013) (0.014)  (0.015)
Share of college workers 1.062 1.095 0.563
(0.769) (0.761) (1.613)
Share of R&D workers -0.205 -0.264 0.825
(0.628) (0.752) (0.926)
In(sale) 1.307*#* 1.302%#%  1.279%** 0.003 0.003 0.002
(0.145) (0.131) (0.190) (0.002) (0.002)  (0.002)
In(TFP) -0.712%F%  _0.704***  -0.596%** 0.002 0.001 0.001
(0.159) (0.102) (0.187) (0.001) (0.001)  (0.001)
Industry FE Y Y Y Y Y Y
Year FE - - - Y Y Y
Only firms without software Y Y
Obs. 2,470 2,470 791 7,166 7,166 5,289
Adj. R2 0.17 0.17 0.22 0.16 0.16 0.15

Notes: This table shows the correlation between 2008 subsidized firms’ patents quality and their evalua-
tion by the bureaucrat. The dependent variables are total points evaluated by the bureaucrat in columns
1 to 3, while in columns 4 to 6, the dependent variables are dummy variables which equal 1 if the firm
first gets the subsidy and 0 otherwise. Quality proxy is the average citation (columns 1 and 4) or renewal
rates (other columns) of patents owned by a firm. In column 3 and 6, the sample is restricted to firms
without software. In-house patent share is the share of self-developed patents. All standard errors are
clustered at the industry level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2: Labor Productivity and Patents

In(labor prod;;) In(labor prod,;) In(labor prod,,)

New patent,, , 0.04 1% 0.043**
(0.013) (0.025)
(New patent,, ;) X (¢t > 2008) -0.060*** -0.037*
(0.021) (0.022)
New inventiong_; 0.058%*
(0.030)
(New invention;_1) X (¢t > 2008) -0.025%*
(0.009)
New non-invention;;_q 0.011
(0.010)
(New non-invention;;—q) x (¢ > 2008) -0.056**
(0.027)
Year FEs Y Y Y
Firm FEs Y Y
Obs. 31,332 10,995 10,995
Adj. R2 0.42 0.77 0.77

Notes: This table shows the marginal change of firm labor productivity when the patent count increases.
New invention and New non-invention are the counts of new obtained inventions and non-inventions. All
standard errors are clustered at the firm-year level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Parameter Values Used in the Baseline Simulation

Parameter =~ Value Description Source
v(S,n=0) 0.04 SCE (n=0): high quality patent innov. cost Calibration
v(N1,n=0) 1.57 NCE1 (n = 0): high quality patent innov. cost  Calibration
v(N2,n=0) 0.75 NCE2 (n =0): high quality patent innov. cost  Calibration
v(S,n > 0) 0.02  SCE (n > 0): high quality patent innov. cost Calibration
v(N1,n>0) 0.04 NCE1 (n > 0): high quality patent innov. cost  Calibration
v(N2,n>0) 0.01 NCE2 (n > 0): high quality patent innov. cost Calibration
v 0.003 Low quality patent innovation cost Calibration
v 0.0001 Low quality patent innovation cost Calibration
o 0.33  Probability of participating in patent trade Calibration
c 0.01  Renewal cost Calibration
Q. 0.11  Prob of obsolescence shock Calibration
w 7.99  Level of knowledge spillover Calibration
¢ 1.00  Curvature of innovation cost Acemoglu et al. (2018)
a 0.70  Span of control Lucas (1978)
TH 0.03  Value of high quality patent Estimated from data
n 0.20  Elasticity of knowledge spillover Lucking et al. (2019)
T 0.20  Marginal shadow cost of 1 RMB public funding Chen et al. (2021)

Notes: The model value is 1 million RMB.
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Table 4: Model Fitness

Targeted Moments Data Model

Pre-subsidy new patent count
by firms with no initial patent:

- SCEs 3.18  3.21
- NCEs in targeted industries 2.10  2.08
- NCEs outside targeted industries 0.36  0.36

Pre-subsidy new patent count
by firms with some initial patents:

- SCEs 3.60  3.52
- NCEs in targeted industries 2.16  2.13
- NCEs outside targeted industries 0.48  0.47
Pre-subsidy external patent share 0.03 0.03

Pre-subsidy patent renewal rate:

- All firms 0.83  0.83
- Firms with above median productivity 0.89  0.89
Pre-subsidy profit growth rate 0.03  0.03

Relative difference in new patent count due to subsidy

between intrinsically less and more innovative SCEs 1.80  1.80
Relative difference in patent renewal rate due to subsidy
between intrinsically less and more innovative SCEs -0.13  -0.15

Non-targeted Moments
Relative difference in renewal rates due to subsidy

between intrinsically less and more innovative NCEs 0.01  0.03
Relative difference in patent counts due to subsidy

between intrinsically less and more innovative NCEs 0.03  0.01
Relative difference in shares of purchased patents due to subsidy

between intrinsically less and more innovative SCEs 0.13  0.07
Relative difference in shares of purchased patents due to subsidy

between intrinsically less and more innovative NCEs 0.00  0.00

Notes: This table reports the model’s fit by comparing the moments in the model and the data.
The phrase “less and more innovative” firms compares those firms with fewer than six initial patents
relative to those with six or more initial patents.

46



"mo1 98] a1y 10 9deoxa sjuajed )O(‘T St

JTun oY, "ApIsqns [jim AUIou0d9 oY) pue (APISqNSs o) oare] Zossle] :SOLIRULdS om) ul odA) wiy yoes I10j Ajpenb pue Lj1yuenb juaged oY) syrodal o[qe) SIY, :SOION

1°86 - 17 1'% - 00 00 00 (%ur 2/q = p)
syuajed Ajirenb mof jo axeys
1'6¥ 8°66T 8661 L'0GT L0ST 1'89 (q+e =2)sjuaged jo Toquinu [ejof,
GLT 9'8- GLT 2’9 00 00 00 00 Ansnpur payje8ire) opIsIno SFON -
e 9°¢ 7'G 08 00 00 00 00 Ansnpur pajedre) ul SPON -
00 70" 00 70 00 00 00 00 9 < syudged [enyrur YIM SHDS -
€'GT LT €'¢e 9°€l 00 00 00 00 9 > sjuoyed [enrur Yim SHNHG -
iz z'8¥ rai 0°0 00 00 (q) syuoyed Ayrenb mof ejof,
6°0- L0T L€ 6'Cy 91T 97¢ 6'ch 8'GT Anysnpur pajedre) 9pIsIno SEON -
0" g0 07S ¢'eg 90 s G'es 700 Ansnpur pajesre) ut SHON -
9°0- v'el- 60 €'ee T'T1- 9°1¢ Lze ¢'6 9 < syudged [enyrur YIM SHDHS -
9¢ ¢l 0°€% 8°1¢ T'T- 70T ¢'1% A 9 > sjuayed [enrur Yim SHNHG -
6°0 9'1GT 9'TGT L'0GT L70GT 1'89 (e) syueged Ajenb ysiy rejor,
Anq jou  opery-ysod opery-oxd | Anq jou  operj-ysod opery-oxd | syuoyed [eryruy

(€)-(9)=(8) (L) (9) (9) (v) (€) (@) (1)

Apisqns woy

wwﬁ@p@& \V4 %UEQS@ Iopun QIT8H ZoSSTe |

squajed ‘T=11un) weisoiJ ApIsqng oyl I9) ue o10jog Ajrpuen ue Aren() juoleq G 9[qe
000 T=% d APISqUS o JV P Jod P [ d 8L

47



Table 6: Expenditures and Profits (in billion RMBs) and the Return to Subsidy (%)

@) (©)
Laissez Faire With Subsidy

(1) Innovation Expenditure 6.15 6.33
(1.1) R&D cost for high quality patents 6.15 6.23
- SCEs with initial patents < 6 0.65 0.82
- SCEs with initial patents > 6 1.68 1.59
- NCEs in targeted industry 2.44 2.44
- NCEs in non-targeted industry 1.38 1.38
(1.2) R&D cost for low-quality patents 0.00 0.10
- SCEs with initial patents < 6 0.00 0.08
- SCEs with initial patents > 6 0.00 0.003
- NCEs in targeted industry 0.00 0.01
- NCEs in non-targeted industry 0.00 0.01
(2) Net Purchases from Patent Trade 0.00 0.00
- SCEs with initial patents < 6 -0.38 0.46
- SCEs with initial patents > 6 -3.87 -4.66
- NCEs in targeted industry 0.22 0.21
- NCEs in non-targeted industry 4.04 3.99
Price of high-quality patent py (in 1,000 RMBs) 350 351
Price of low-quality patent py, (in 1,000 RMBs) 0 3
(3) Revenue from Production and Subsidy 271.89 280.75
(3.1) Output Value Excluding Subsidy 271.89 272.10
- SCEs with initial patents < 6 14.45 14.49
- SCEs with initial patents > 6 37.21 37.32
- NCEs in targeted industry 77.24 77.33
- NCEs in non-targeted industry 143.00 142.97
(3.2) Subsidy 0.00 8.65
- Average p among SCEs 0% 67%
(4) Total Firm Profit Inclusive of Subsidy

= (3) -(1)-(2) 265.74 274.42
(5) Increase in Total Firm Value (=(4B)-(4A)) 8.68
(6) Social Cost of the Subsidy (=(1+7)*Subsidy) 10.38
(7) Return to the Subsidy ( = ((5)-(6))/Subsidy) -19.7%

Notes: This table reports the economy in two scenarios: without subsidy (column 1) and with subsidy
(column 2). The unit is billion RMBs except for pg and pr, which are in thousand RMBs.
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Table 9: Extension - Possible Mislabeling of R&D Expenditure

Laissez Faire With subsidy Count In-house patent

(1) Innovation Expenditure 6.15 6.82 7.09
(1.1) R&D cost for zy 6.15 6.19 6.28
- SCEs with initial patents < 6 0.63 0.62 0.63
- SCEs with initial patents > 6 1.70 1.64 1.70
- NCE in targeted industry 2.44 2.60 2.60
- Other NCE 1.38 1.33 1.35
(1.2) R&D cost for zy, 0.00 0.63 0.81
- SCEs with initial patents < 6 0.00 0.07 0.23
- SCEs with initial patents > 6 0.00 0.08 0.02
- NCE in targeted industry 0.00 0.48 0.56
- Other NCE 0.00 0.00 0.00
Share of NCE pretend to be SCE 0% 23% 22%
(2) Value from Trade 0.00 0.00 0.00
- SCEs with initial patents < 6 -1.06 0.10 0.03
- SCEs with initial patents > 6 -3.19 -3.64 -3.53
- NCE in targeted industry 0.19 -2.24 -1.68
- Other NCE 4.07 5.78 5.18
Price of high-quality patent py (in 1,000 RMBs) 350 330 330
Price of low-Quality patent py (in 1,000 RMBs) 0 4 0
(3) Revenue from Production and Subsidy

(3.1) Output value excluding subsidy 271.76 271.29 275.22
- SCEs with initial patents < 6 14.97 10.72 10.36
- SCEs with initial patents > 6 36.65 29.00 31.07
- NCE in targeted industry 7717 86.61 89.62
- Other NCE 142.98 144.96 144.18
(3.2) Subsidy 0.00 20.93 20.17
- Ave. p within SCEs 0% 59% 57%
(4) Total Value Inclusive Subsidy 265.61 285.41 288.30
~(3)+(2)-(1)

Welfare ((4) - (1+7)%(3.2)) 265.61 260.29 264.10
Return (Awelfare/subsidy) 0% -26.1% -7%

Notes: This table describes an economy in which the NCEs may pretend to be SCEs. In the second
column, the subsidy policy is the same as the previous baseline case. In the third column, the bureaucrats
only subsidize in-house patents. py and py, are in thousand RMBs. Other numbers except for percentage
are in billion RMBs.
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Figure 3: Patent count distributions of SCEs
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Notes: This figure shows the patents holding distributions of the subsidized firms in years 2007 and 2008.

Figure 4: Difference in innovation increase between SCEs with initially low and high
patent counts
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Notes: Figure A shows estimates of new patents difference between SCEs/NCEs with initial patents
lower and higher than 6 (equation ) by years. Figure B shows estimates of renewal rate difference
between SCEs/NCEs with initial patents lower and higher than 6 (equation (3))) by years. The circles

indicate point estimates, and capped spikes represent 90% confidence intervals.
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Figure 5: External patent share of SCEs and NCEs

External patent share (SCE)

L 4
<
<
<
<

2 g

o -

2004 2005 2006 2007 2008 2009 2010 2011
Year

—— SCEIPR<6 ——®—- SCE IPR>=6
—— NCE

Notes: This figure shows the average external patent share of SCEs and NCEs.

Figure 6: Shares of patent sold to less innovative SCEs and other firm types
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< or > 6, respectively.
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Figure 7: Timing of the model
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Figure 8: Model predicted distributions of patent counts for SCE before and after the
subsidy
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line) the subsidy.
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Figure 9: Return to the subsidy of InnoCom program under different technological
spillover parameter n
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Notes: This figure shows the return to the total subsidy when counting (solid line) or not counting

(dashed line) external purchased patents.
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Online Appendix (not for publication in print)

A When Innovation Outcome is Random

In this appendix, we reformulate the model so that the representative firm chooses the
number of projects x and the probability to convert a project to a high-quality patent
q, instead of choosing the numbers of high- and low-quality patents directly. We denote
the expected numbers of high- and low-quality patents by 6y and 6}, respectively. Since
0y = xq and 0 = (1 — z)q, choosing = and ¢ by the firm is equivalent to choosing 0y
and 6y,

Define the numbers of high- and low-quality patents after the innovation stage by ny
and np, respectively. Their expected values are ny + 0y and ny + 0y, respectively. The

firm’s value at the beginning of the production stage is
EV3(i, z,ng,n)] = m + Elngyr(z) + Elp(i, g + g )| T

where the expectation is over ngy and ny. Considering the first-order Taylor expansion

around the expectations of ny and ny, then this function can be written as
E[Vé(l, Z, ﬁH, ﬁL)] = 7T—|—(nH—|—9H)ar(z)+p(i, 7”LH+(9H+71L+(9L)T7T = %(Z, 2, nH+9H, TLL+9L)

This means that our benchmark model in the main text can be considered the first-

order approximation of this model.

B Estimating Knowledge Spillover

Rather than relying on the literature for the value of knowledge spillover, We estimate
it in this appendix. Denote N;; as the total patent count in the industry ¢ cumulative
up to year t, and r; as the average renewal rate (survival rate of patents three years
after the granted years) of the industry i. For every industry i in year t, we define a pair
of within-sector knowledge capital, K¥®"" and knowledge capital from other sectors,
Kother.

K™ = digNygry, K§' =" dijNjerjq (13)

J#
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where d;; is the knowledge distance between industry ¢ and j, measured by the share of
patent citations between industry ¢ and j in all patent citations. The two functions imply
that high-quality patents (high renewal rates) contribute more to the knowledge capital.
The spillover from industry j to the industry i is also greater if the two industries cite
each other more frequently.

We estimate the following equation

In7p =mIn K;ﬁ’ihm + 12 ln Kfftﬁ” + py + pg + error (14)

where 7y, is firm f’s labor productivity (profit/workers) in year t, K ;}izihm and Kfftﬁe’” are
the two knowledge capitals facing firm f in industry i, respectively. py and p, are the
firm and time-fixed effects, respectively. n; and 1, measure the spillovers from the within-
sector knowledge accumulation, and other sectors’ knowledge accumulation, respectively.
As a firm’s own innovation can change its productivity directly, we restrict our sample
to firms without any patents. We also use only data during 2000-2007 to exclude the
impact of the InnoCom program itself.@

As 7 and industry-level innovations may respond to common shocks, we need to con-
sider some instruments for K;;’}hm and Kf]fﬁer, respectively. We assume that the changes
in the patent count across industries in response to a subsidy program are proportional

to the initial patent shares across industries. Furthermore, the subsidy does not change

the productivity of no-patent firms directly. We construct our instruments as follows:

. Patent,
]V;;vzthzn = d.. atentio

Patent
i S, TVother — diyj——"2"-38 15
TotPatent, "’ Z ¢ (15)

! P ar ot Patent,
where Patent;y and Tot Patent, are the patent counts for industry ¢ and the whole coun-
try, respectively, in 1998 (i.e., a decade before the subsidy program). S; is the total
subsidy to innovations.

The OLS estimates reported in the first column of Table suggest that when the
patent in a firm’s own sector increases by 1%, the firm’s labor productivity increases by

0.052%. But a weighted average of other sectors’ patents increases by 1%, and the firm’s

labor productivity drops by 0.102%. In the second column, using the instrumented values

24We use the Annual Survey of Chinese Manufacture Enterprises database which covers firms’ financial
information up to 2009. We do not use the administrative tax records because it does not have data
before 2007.
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of the two knowledge capitals, we find that the spillover from own sector innovation is
0.01%, which is economically small. The spillover from other sectors’ innovation is not
statistically different from zero[”|

As a sensitivity check, we refine the knowledge capital by simply adding up all patents
without adjusting for renewal rates. The new estimates of n; and 7, reported in Column
3, become smaller and neither is statistically significant.

To see if the knowledge spillover is stronger in the InnnoCom targeted industries than
the economy at large, we interact a dummy for the InnoCom industries with the two
knowledge capitals and report the results in Column 4. Neither coefficient on the two
interaction terms is significant. We conclude therefore that the InnoCom industries are
not special as far as the size of the spillover is concerned. We do the same regression
using only the post-2008 data and find the same results (Column 5).

In Columns 6 and 7, we do similar regressions as in Columns 6 and 7 except that we
do not adjust the patents by quality. (That is, knowledge capital is the simple sum of
the patents regardless of the quality). In these cases, we see no positive and significant
coefficients anymore. These results are consistent with the interpretation that low-quality
patents do not contribute to productivity spillover.

In sum, we find a positive but small knowledge spillover from within-sector innovations
by other firms, but no significant spillover from innovations in other sectors. Note that

the estimated size of spillover in our data is smaller than those in Lucking et al.| (2019).

25Tn the first stage, we find the F statistics is over 2,000.
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