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asking individual researchers to apply their different solution techniques to a simple
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1. INTRODUCTION

During the last few years there has been an increased demand for numerical solution
methods for nonlinear rational expectations models. The demand has come from economic
researchers with diverse research goals and modelling strategies. In almost all areas of
macroeconomics, rational expectations models are becoming increasingly complex and richer
in structure. Empirical researchers studying real business cycle models are attempting to go
beyond simple representative agent models with convenient, but sometimes unrealistic,
functional forms for the utility functions; they are also beginning to study models with
distortions and externalities. Researchers focusing on monetary models are finding it
necessary to solve large nonlinear stochastic systems in order to apply rational expectations
techniques to practical problems of monetary policy, including international monetary policy.
Finance economists interested in dynamic "consumption-beta" models are finding it necessary
to go beyond simple analytical models in order to confront the theory with the data. As
electronic computing power becomes faster and cheaper, numerical solution procedures will
enable macroeconomists and financial economists to study these more complex models and

apply them to practical policy or other applied problems.

The purpose of this paper is to report on a comparison of several alternative
numerical solution techniques for nonlinear rational expectations models. All the techniques
are currently under development, and rely on high speed computer technology or will
eventually need this technology when they are moved beyond simple test problems. The
comparison is one of the activities of a'research group called the Nonlinear Rational
Expectations Modelling Group supported by the National Bureau of Economic Research.
Participants in the group meetings at Stanford and Minneapolis have included Marianne
Baxter, Wilbur John Coleman, Lawrence Christiano, Darrell Duffie, Ray Fair, Joseph

Gagnon, Lars Hansen, Beth Ingram, Kenneth Judd, Pamela Labadie, David Luenberger,



Rodolfo Manuelli, Albert Marcet, Ellen McGrattan, David Runkle, John Rust, Thomas
Sargent, Christopher Sims, Kenneth Singleton, John Taylor, George Tauchen, and Harald
Uhlig. The comparison was made by asking individual researchers to apply different solution
techniques to a simple representative agent, optimal, stochastic growth model designed to
describe the behavior of aggregate consumption and the capital stock. Though simple, the
problem does not have an analytic solution. Hence, the solution results are of interest in

their.own right in addition to enabling a comparison of alternative methods.

The second section of the paper describes the stochastic growth model. The third
section very briefly describes the solution methods. More details about each of the technigues
are contained in papers by the individual authors that accompany this paper. The forth
section presents the comparison of the different solution methods on the test problem. The

concluding section considers issues for future research.

2. THE STOCHASTIC GROWTH MODEL.
The following problem was proposed by Chris Sims to be solved by the individual
researchers. Let C, be consumption and K, be the capital stock. Agents are assumed to
maximize
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(2) Ci+K,-K;;=6K "

and to the side conditions that K,>0 and C,>0, for all t. Note that equation (2) implies that
there is no depreciation of the capital stock. A slightly more general formulation would have
some depreciation in which a coefficient less than one would multiply the lagged value of
the capital stock in equation (2). Agents at time t choose K, and C,. Agents are assumed to

know the history of all variables dated t and earlier when they choose variables dated t.
The stochastic process for 4, is given by
(3) Iné, =plnb,_; +¢

where ¢ is a serially uncorrelated, normally distributed random variable with mean 0 and

constant variance o,.

For this problem, rdecision rules for consurﬁption C, and the capital stock K, in any
period t are given by the functions f(K,_,,8,) and g(K,_,.6,) of the capital stock in period
t-1 and the random shock in period t. Exact solutions for f and g are not known for this
problem. If the utility function is logarithmic (r=1) and there is full depreciation rather than
zero depreciation as in equation (2), then there is a simple closed form solution (see, for
example, Sargent (1987), p.122). For the problem in equations (1) and (2), the functions f

and g must be evaluated numerically.

To compare the different solution methods, the stochastic growth problem was solved
for ten cases of parameter values. The parameters for the ten cases are given in table 1 with
« = .33 and p = .95 for all casés. These values of the coefficient of relative risk aversion (1)
allow for considerable differences in the degree of risk aversion. Note also that the

technology shock has a very large variance in cases 1 through 4 indicating a high degree of



uncertainty.

Individual researchers reported results in two basic forms: decision rules (f and g) for
consumption and capital, and stochastic simulation paths for consumption and capital. The
decision rules f and g were evaluated for a grid of values of capital and the technology
shock. For the stochastic simulations, shocks on ¢, were drawn so as to generate a path for

C, and K, over time.

3. THE SOLUTION METHODS

Ten researchers participated in the solution comparison by submitting decision rules
and/or stochastic simulation paths. The names of the researchers, in alphabetical order,
along with the type of method that each researcher used, an indication of whether decision
rules were submitted, and the number of periods in the simulated time series submitted in

each case is listed in table 2.

A very brief overview of the general features of each method is provided for
convenience here. Details of how these methods are implemented in the stochastic growth
model can be found in the papers by the individual authors that accompany this paper. In

order to use the methods one, of course, needs to read these papers.

Value Function Grid. The basic idea here 15 to approximate the continuous valued
growth problem by a discrete valued problem over a grid of points. In other words, the
values of K and the shocks are discretized. By making the grid finer, the actual solution for
K can be approximated arbitrarily closely. These approximations result in a discrete state
space dynamic optimization model which is solved by iterating on the value function. The

finer the grid is, the more expensive will be the computation for this method. Higher



dimensions for the control variable increase computation time greatly, but for the test
problem there is only one dimension and computing time is not a problem. Christiano used

this method to solve the growth problem in equation (1). See Christiano (1990) for details.

re Value Function Grid. This method also discretizes the state space, but it is
potentially more efficient than the simple grid in tl‘lat a quadrature rule is used to discretize
the state space. Tauchen has applied this method successfully in several problems. See
Tauchen (1986,1990) for a description of the method and for a discussion of some

applications.

Linear-Quadratic (lin-L.Q-Normal, lin-LQ-Discrete, log-L.Q-Normal, log-LO-

Discrete). This method approximates the control problem in equation (1) with a standard
linear quadratic control problem to which linear decision rules for K and C are optimal and
can be computed easily. The linear decision rules are then treated as approximations to the.
exact solutions. The approximation is made by first substituting the constraint (2) into the
objective function (1) and then making a quadratic approximation of the utility function at
each time period. The approximation is taken about the steady state values of the problem.
This method was used by Kydland and Prescott (1982). Its application to the problem
considered in this paper is described by Christiano (1990) and McGrattan (1990).

In preparing calculations for the linear quadratic method reported in this paper,
Christiano did four variants of this method. In one variant, log(K) was treated as a control
variable and in another variant, K was treated as a control variable. The two solutions are
referred to as log-LQ and lin-LQ respectively. Moreover, for each of these two variants,
Christiano drew the shocks in the stochastic simulations either according to a continuous
valued normal distribution or according to a discrete distribution. The identifiers "Normal"
and "Discrete” are used to indicate these two variants. The latter type of draws were made
for comparison with the value function grid methods. McGrattan’s linear quadratic results

are based on treating K as the control variable and drawing normal errors and, therefore, are



referred to as the lin-LQ-Normal method in this paper.

Backsolving. This method was proposed by Christopher Sims (1984, 1989). The
implementation for the stochastic growth problem is described in Ingram (1990) and Sims
(1990). The backsolving method is a general approach rather than a specific algorithm, and,
in fact, the Ingram and Sims backsolving implementations are considerably different in this
application. The backsolving method starts out by solving a problem that is more anélytically
tractable than the actual problem and then approximates the actual problem at the stage
when the stochastic shocks are drawn. For example, in this application, Sims solves a linear
quadratic approximation to the original problem and draws shocks for the Euler equation,
backsolving for the shocks in the production function. Ingram modifies the original problem

by adding another shock with a convenient distribution, thus relaxing the budget constraint.

Extended Path. This method is described in general terms in Fair and Taylor (1983)
and its implementation in the stochastic growth problem is described in Gagnon (1990).
When applied to the optimal control problems like the one in equation (1), it works by
solving the nonlinear dynamic first order conditions that are implied from the discrete time
calculus of variations formulation of the problem. These first order conditions at time t
involve conditional expectations of K, ;. These future expectations are solved out
iteratively in order to solve the first order conditions, thereby obtaining the decision rule
solution for K,  The decision rule for consumption is then computed from the budget
identity. Although stochastic iterations may improve the accuracy of the method in some

cases, only deterministic iterations were performed by Gagnon.

Euler Equation Grid. Coleman’s method and Baxter’s method fall into this category.
Coleman’s method works by approximating the decision rules for consumption and capital by
piecewise functions (linear, for example). Using these approximate functions, the method

then iteratively solves the Euler equations directly, rather than by iterating on the value



function. Convergence is checked over a grid of values. (See Coleman (1990) and the
references therein.) Baxter’s method discretizes the state space and then iterates to find the
value for capital, restricted to the grid, that comes closest to ‘solving the Euler equations.
(See Baxter, Crucini, and Rouwenhorst (1990) for the implementation of the method in the

stochastic growth problem.)

Parameterizing Expectations., This method was originally proposed by Marcet (1988)
and its implementation for the stochastic growth problem is described in den Haan and
Marcet (1990). Like the Euler equation grid and the extended path methods, this method
uses the first order conditions (Euler equations) for the dynamic optimization problem. The
general idea is to hypothesize a general functional form with undetermined parameters for
the conditional expectation of future variables that appear in the first order conditions. The
parameters of this functional form are then “estimated” by least squares using a single set of
simulated values. The functional form can then be generalized until convergence of the

solution is achieved.

Least Squares Projections. This method was originally proposed by Labadie (1986) and
its implementation for the stochastic growth problem is described in Labadie (1990). Like
the method of parameterizing expectations, this method focusses on obtaining expressions for
the conditional expectations implicit in the first order conditions (Euler equations). It
attempts to "estimate” certain parameters of the conditional expectations functions by using a

single simulation of the random shocks in the model.

Counting the linear quadratic methods only once there are a total of 8 different
solution methods examined in this paper. This paper reports on 14 different sets of solutions
because there are four variants of the linear quadratic method, and because the backsolving
method, the lin-LQ-Normal method, and the Euler equation grid method are each used by

two researchers (though in some cases with a very different implementation procedure).



4. A COMPARISON OF THE RESULTS.

As indicated above researchers reported results both in the form of decision rules and
stochastic simulation paths. The stochastic simulation paths were plotted graphically and
were also used to calculate several summary statistics to aid in the comparison of the solution
algorithms. In the first part of this section we discuss the plots of the simulation paths, and

then go on to discuss the decision rules and the summary statistics.

4.1. Plots of the Stochastic Simulations.

The reported stochastic simulation paths for all 10 cases are available on request. Due
to space limitations we only report plots of a sample of cases here. These cases were selected
with several criteria in mind: to include as many researchers as possible, to demonstrate
differences in behavior most clearly, and to illustrate that the differences are not particular

to just one case.

4.1.1. Time Series Charts

Figure 1 shows the realizations for consumption and capital for a single stochastic
simulation for case | for thirteen of the different solution methods. (To assist the reader in
scanning the figures, the charts in each figure are organized in the same order, and in cases
where a solution method is not available, a blank appears in the figure.) Note that each
researcher used different sets of draws of the random variable so that the actual realizations
will be much different for each method. Even if two methods gave exactly the same
accuracy, only the general patterns of the stochastic simulations would appear similar for the

different methods. On an absolute basis, the level of consumption is, of course, much less



than the level of the capital stock. The fluctuations in consumption are also smaller than the
fluctuations in the capital stock. All the methods show a high degree of contemporaneous
correlation between consumption and the lével of capital. Most of the variance in both
consumption and capital is in the low frequencies (assuming an annual time frame). The
disretization of capital in Tauchen’s method is quite evident as is the resulting erratic
behavior of consumption. Note also the encounters with zero in the Lin-LQ-Normal
simulation and the shock-and-convergence-back behavior in the Lin-LQ-Discrete
simulation. But even aside from this "exotic” behavior, differences among the solution
methods may be quite large: compare, for example, the plots for McGrattan’s solution and
Marcet’s solution. Marcet’s parameterizing expectations solution finds a much higher
variance for capital and a much lower frequency of fluctuations than does McGrattan’s linear
quadratic method. The macroeconomic interpretations of these two simulations would be

much different.

Figure 2 shows the time series plots of investment (K, - K,_,) for twelve of the
methods for case 10. This case has a much higher coefficient of relative risk aversion and a
much lower technology shock than case 1. This comparison also shows considerable
differences between the methods. Some of the methods in which the shocks are drawn
discretely (Christiano--Lin-LQ-Discrete, Christiano-- Value Function Grid, and Tauchen)
show long periods of no change in the investment series. Note that Ingram’s solution appears

to have a higher volatility of investment than the other methods.
4.1.2. Empirical Density Functions for Consumption and Investment
In Figure 3, we present empirical density functions for consumption for case 5 (50 grid

points), and in Figure 4, we present empirical density functions for investment for case 10

(25 grid points to achieve more smoothness). The density functions all integrate to one, but



notice the different vertical scales (Frequently, a histogram is drawn as a step function with
certain heights for each bin. Note however, that connecting these heights by straight lines as
we do in Figures 3 and 4 results in a function with the same integral as the original step

function, if the boundary values are 0).

As with the time series plots, the differences between the empirical density functions
are quite striking. Except for Coleman and possibly McGrattan, none of the density
functions is particularly smooth. Obviously, even with 2000 simulated data points, the
variance on these estimated density functions is quite high. Nonetheless, the differences
between the solutions are large with some methods showing very little spread, some showing
double peaks, and others showing a very wide spread. In particular, the question of whether

investment is sharply peaked cannot be decided from these different methods at this point.

4.1.3. Scatter Diagrams for Consumption and Capital

Figure 5 shows scatter plots of the decision variables capital K, and consumption C,
for caée 4 on a scale common to all researchers. Figure 6 shows scatter diagrams for a
selected samples of points for each method (again case 4) with the points connected to show
the general direction of movement. Note that the scales differ in Figure 6. The solutions for
Ingram, Sims and Coleman seem to move along rather large loops whereas the Log-LQ-
Normal solution jumps around without ever dropping below a rather rigid boundary. The
Lin-LQ-Discrete solution moves along steadily on apparently parallel lines with "quantum
leaps" in between. Also, sudden drops in consumption can be observed in Tauchen’s solution
and-Gagnon’s solution. Notice in the latter, how the values accumulate to two "islands".
These islands are probably due to the fact that Gagnon has provided a small sample of
points. Gagnon has reported that additional simulations (not reported here) show that more

data points begin to fill in the sparse areas and the scatter diagram develops into a simple

10



large scatter as do most of the other methods.

Additional scatter plots not reported here shows additional anomalies. For example,
scatter diagrams of investment versus the change in consumption showed a strikingly curved
scatter with a sharp boundary on the inside for the Log-LQ-Normal method; and Tauchen’s
solution showed star-like patterns that were probably the result of discretization. It is not
clear to us where the curvature in the Log-LQ-Normal solution comes from. It appears to
disappear for cases 5 to 10. Since cases | through 4 are parameterized with higher
disturbance variance, it possible that the curvature is a result of the quadratic
approximation. Since the linear-quadratic method is probably one of the most commonly

used methods, this is an important issue for future research.

These diagrams reveal large differences among the different methods.

4.2 Decision Rules.

For 10 of the 14 methods researchers reported decision rules
K, = f(K,_,, 8,)
Cy = g(Ky_1.6)
for consumption and capital. The results for cases | and 2 are reported in Table 3. The
decision rules were evaluated for a grid of values of K, ; and §,. The grid of values for the
tabulation of the function f and g in cases | and 2 were:
b= 4 7 10 13 16

Kg= 5 10 15 20 25

Note first that the results for the two independent calculations of the lin-LQ are

identical. (For the decision rules there is, of course, no difference between lin-LQ-Normal



and lin~LQ-Discrete.) This is, of course, not surprising, but provides a useful check on the
results. The log-LQ results are somewhat different from the lin-LQ results. The log-LQ
results are very similar to the quadrature value function grid solution (Tauchen) or the Euler
equation grid solution (Coleman). Assuming that these grid solutions are fairly accurate, this
shows the advantages of choosing functional forms when using the linear quadratic method.
The values for the quadrature method reported in the table are interpolated from the grid
values that automatically emerge from the method, so that there is some question about the
accuracy of these numbers as estimates of the exact solution. Given the small computation
time for the linear quadratic approximations, these preliminary results are very promising for

the log-LQ method.

One puzzle about both the linear quadratic method (especially the lin-LQ version), is
that the response of consumption to the technology shock is surprisingly non-monotonic:
over some regions, lower values of the technology shock actually increase consumption, over
other regions lower values more plausibly decrease consumption. This result may reflect the
inaccuracies of the method which could lead to theoretical misconceptions. Note that the
grid methods do not have this property. One exception is the rise in the value of C, in case |
for Tauchen’s method when K, ; = 15 and 4, falls from .7 to .4. This does not occur for

Coleman’s solution at this point.

There is also a broad similarity between the results for the extended path method and
the two grid methods of Tauchen and Coleman. Given the relatively low cost of the
extended path method, these results are promising, especially for application in higher
dimension problems or in problems that are mixtures of optimization equations and other
equations. Note that the extended path method does not have the non-monotonicity property
mentioned above. The decision rule for consumption shows that consumption is a positive
function of the technology shock over the entire region of initial capital stocks and

technology shocks.
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4.3 Summary Statistics

From the stochastic simulations the contemporaneous covariance matrix of (C,, K,)’,
unijvariate autoregressions of C, and K, (AR(l), AR(2), AR(3), and AR(4)), afid bivariate
autoregressions of (C,,K,)’ (VAR(1), VAR(2), VAR(3), and VAR(4)) were computed. These
statistics are available on request. All the statistics reveal a high degree of serial dependence
for consumption and capital and a high degree of correlation between consumption and

capital. These properties were also evident from the time series charts.

In addition, four other summary statistics were computed and are reported and

discussed below. These include,

(i) the statistic .

4) m= 2 (Ex'x,) (€ x’ x5 (E x/x,) 2,

where

(5)  a=(Ex'x)t(Exn)

is the usual OLS estimator in a regression of the Euler equation residual

(6)  ny=BC (1 + a8 K, ,*)C,," - |

on a list x, of 5 lags of consumption and 6. The statistic m provides a test for the

martingale-difference property, E,_n, = 0, a property that is satisfied by the theoretical

solution. Focussing on 5, and the statistic m was suggested by den Haan and Marcet (1989)
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as a way to overcome the fact that an analytical solution to this problem was not available.
We call m the den-Haan-Marcet statistic in the sequel. The statistic is closely related to the

statistic suggested in White (1980).

(if) TRZ from the regression of the productivity shock ¢, on 5 lags of consumption,

capital and 6. The idea is to test for the martingale-difference property E, ¢, = 0.

(it)) R? from the regressions of the first difference of consumption on both lagged
consumption and capital. This is a test of the random walk hypothesis for consumption; note
that in general the random walk hypothesis will not hold with the utility function in this
simple growth model, but the differences in the test statistic are a useful way to assess the

different solution methods.

(iv) Ratios of the variance of investment to the variance of the change in
consumption. This ratio is a measure of the relative volatility of consumption and
investment, a frequently discussed feature of economic fluctuations. (Note that this ratio has
a flow variable in the numerator and a change in a flow in the denominator, but still is a

useful measure of relative volatility).

The differences among the methods turned out to be quite substantial for some of
these statistics. The results for the statistic m (for n,) are found in Table 4. Under the null
hypothesis of a martingale difference, this statistic has approximately a x%(11) distribution
asymptotically, see den Haan and Marcet (1989). A two-sided test at a significance level of
2.5% for each side would be 3.82 < m < 21.92, using the asymptotic distribution. Unless of
course a solution method works directly to enforce the Euler-equation (like the backward
solution methods) in which case the statistic m must be x%(11) by construction, the
Euler-equation residual is likely to have a predictable component, which will be picked up

by this statistic.



The same approach can be used for ¢,, although we do not have to correct for
heteroskedasticity her. Thus, the statistic TR? suffices. The test statistics are reported in
table 5. Since there are 15 regressors plus a constant term in each regression, TR, has an.
asymptotic x3(15) distribution. Observe that this test does not detect a deviation from 0 for
the mean of the residual. However, a solution method would probably not generate a
systematic bias without being linked to past data in the model. The majority of the methods
generated the technology shocks directly from a random number generator in which case the
test statistic is x3(15) by co_nstruction. But several methods do not, or they generate the
shocks for a slightly modified problem. In these cases, Table 5 provides a genuine
accuracy-check. The two sided test at the significance level of 2.5 % for each side is given

by 6.26 < TR? < 27.49.

Table 6 shows the significance of a regression of the first difference in consumption
on past data, which is a test for the random walk hypothesis for consumption in the
simulated data. We report the R? statistic. An RZ close to zero supports the random walk

hypothesis.

The two bottom lines of the table report the total range and the range for those
simulations that were within the confidence range for both the statistics m and TR2. Since
the random-walk hypothesis might be considered an important issue in this model, the
finding that the different solution techniques seem to be rather far apart are disturbing. The

different solution methods are delivering different answers to the same question.

However, restricting the comparison to those models that passed the above tests
narrows the range substantially. In case 4 this narrowing may occur simply because the
range is smaller for 2 much smaller number of models (in case 4, only Sims’ method), but in
other cases there are a fairly large number of methods and the range is small. In unpublished

work (and using a TRZ statistic instead of the den-Haan-Marcet statistic m also for n,),
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Chris Sims has demonstrated that discrimination based on the TR? test increases agreement
among the methods. He shows this using a weighted regression approach in which methods

with high TR? values in both the n, and the ¢, test are given less weight.

Note also that there is at least one general pattern of some economic interest that
emerges from all the methods with few exceptions: as the coefficient of relative risk
aversion rises, the tabulated R2 for the random walk declines. The exceptions are the
Gagnon extended path results in cases 3-4 and cases 8-9-10, the Christiano value function
grid for cases 9-10 and Coleman Euler equation grid for cases 9-10. There is no evidence

either way on this issue for the methods of Baxter and Labadie.

In Table 7, we report the ratio of the variance of investment to the variance of the
first difference of consumption. As noted above, this ratio is meant to measure the relative
volatilities of investment and consumption. The four lines at the bottom of Table 5 report
the total range of the methods as well as for those that were within the stated range for both
the m statistic and the TR? statistic. Again, the results show large differences among the
different methods. For methods that only allow discrete choices for some or all of their
variables, differences can arise if one variable is bearing relatively too much of the
adjustment burden either because the grid is much finer for that variable or because the
variable is chosen in a continuum to begin with. This makes, in particular, Tauchen’s
numbers very small in his method, it is mainly the consumption series which adjusts (look
also at the time series plots discussed above). Note also the dependencies of the results on

the parameters of each case.

4.4. Computing times.

In table 8 we compare the computing times in seconds. The data were reported to us by

the individual researchers. Time | refers to the computation of the decision rules whereas
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time 2 is the time needed to compute the simulations. The numbers are hard to compare
since they certainly vary strongly with the machine and the software used as well as the
precision desired and e.g. the number of grid points. It is desirable to perform all calculations
on the same machine with the same software and with some common standard for precision

in future comparisons.

Still, it is probably fair to state that the methods of e.g. Baxter, Gagnon, Tauchen and
Christianos Value Function Grid, i.e. grid methods and the extended path method are
computationally quite involved, whereas linear-quadratic methods are typically quite fast for

the simple stochastic growth model.

One should recognize that differences in computing costs can be enourmous once the
problem at hand goes beyond only a few dimensions and the "curse of dimensionality" starts
10 matter. It might be quite impossible to compute the solution for a model with 15 state
variables say, using some grid method. However, methods that work with linear quadratic
approximation or parameterizing expectations (including backsolving) or extended path

methods will still be available at reasonable costs for these problems.

5. CONCLUSION.

The conclusions from this comparison of different solution techniques for nonlinear

rational expectations models can be summarized briefly as follows.

(i) The simulated sample paths generated by the different solution methods have
significantly different properties. While certain common time series features of the behavior
of consumption and investment emerge from time series plots for all the methods, other

features show up in the empirical density functions and scatter diagrams that reveal quite



different behavior even though the same model is being solved by each method.

(ii) The decision rules indicate that some of the easily computed rules--the linear
quadratic (log-LQ) method and the extended path method--are fairly close to the "exact"
decision rule as represented here by the quadrature value function grid method of Tauchen
or the Euler equation grid method of Coleman. Given the relatively low computation times
for these methods and their relatively easy generalization to higher dimensions, it is
important to establish whether this property holds up in other problems. However, neither
the log LQ nor the extended path method perform particularly well in the martingale-

difference tests for the Euler equation residual.

(iii) Summary statistics, which researchers might typically examine to test theoretical
hypotheses, are significantly different for many of the solution methods even though the
theoretical problem solved is exactly the same for each method. For example, the solution .
methods give very different answers to basic questions concerning the relative volatility of
investment and consumption. However, there is some similarity among the methods in
detecting the effects of risk aversion on random walk consumption behavior, and the
methods which satisfy both the den-Haan-Marcet test for the accuracy of the Euler equation
and the TR? test for the distribution of the disturbance term -~ Sims’ backsolving
implementation, Marcet’s parameterizing expectations method, and Coleman’s Euler equation

iteration method -- produce similar summary statistics and plots.

Given these large differences in the solution methods, the most obvious question is:
"who won"? Unfortunately, this question is still very difficult to answer: the criteria of
succéss for the solution methods are different. For some researchers, the appropriate
measuring stick might be the closeness of the numerical solution to the true decision rule.
Grid methods are likely to do very well here, and we noted that the log-LQ and the extended

path methods come close to the grid methods in terms of the decision rules. For others, it is
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computing time that is most important, as long as the results are within reason. This might
be the case for estimation applications or with applications with a large number of state
variables. Applications of this type can potentially eihibit financially significant savings in
computing time when solved with methods that work with linear-quadratic approximations
or parametrization of the expectations or extended path methods instead of one of the grid
methods. In other applications it might be important to be accurate with respect to first
order conditions to test, for example, asset pricing relationships; Sims’ backsolving method or
Marcet’s parameterizing expectations method are likely to perform very well in this respect.
Finally the level of difficulty and the judgement required to implement a particular method

can be of great importance to the practioneer.

The comparisons performed above did not single out one or several of the methods as
performing at the very top in every respect. For a researcher who wants to select one of the
techniques, it seems important to consider the particular problem and the budget constraint,
Researchers might want to be careful not to use any solution method blindly hoping that the
results are within acceptable bounds. A paper which relies primarily on one method could
include at least a partial set of results using an alternative, preferably unrelated method as an
accuracy check and a diagnostic of potential areas where results or inference might be
distorted. E.g. a researcher who uses linear-quadratic methods might want to compare the
results to those from some grid method for a few, simple cases. Tests like the den-Haan-
Marcet statistic seem reasonable as an additional diagnostic device. More checks of this type

are desirable.

Even in such a simple model considered in this paper, the different solution methods
can yield quite different econometric results. It is essential to get a better understanding of
where these differences come from and how big they can be in a particular application

before relying too much on conclusions drawn from these solution methods.
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Table 1. Parameter choices for the ten cases.

Case

95
.95
.98
.98
.95
.95
.95
.98
.98
.98

0.5
1.5
0.5
1.5
0.5

3.0
0.5

3.0

02
02
02
02
02
02



Table 2. Summary of the methods

Researcher

Baxter

Christiano

Coleman
Gagnon
Ingram
Labadie
Marcet
McGrattan
Sims

)
Tauchen

Type of Method

Euler Equation Grid
Lin-LQ-Normal
Lin-LQ-Discrete
Log-LQ-Normal
Log-LQ-Discrete
Yalue Function Grid
Euler Equation Grid
Extended Path
Backsolving

Least Square Projection
Parameterizing Expectations
Lin-LQ-Normal
Backsolving

Quadrature Value Function Grid

Decision
Rules

Yes
Yes
Yes
Yes
Yes
No.
Yes
Yes

No

Yes
Yes
No

Yes

Simulation
Periods

2009
2000
2000
2000
2000
2000
1999
500

1000
680

1649
2000
2000
2000

Cases

all cases
all cases
all cases
all cases
all cases
cases 5-10
all cases
all cases
all cases
cases 1,5,7
all cases
all cases
all cases

all cases



Table 3. Decision Rules for Euler Equation Grid (Baxter)

CAPITAL, Case |

8
0.40 0.70 1.00 1.30 1.60
5.0 5.02 5.19 5.62 6.05 6.48
10.0 9.84 10.01 10.36 10.88 11.48
K, 15.0 14.15 14.41 15.01 15.62 16.22
20.0 18.63 18.98 19.67 20.18 20.87
25.0 23.19 23.54 24.23 25.01 25.70
CONSUMPTION, Case |
8
0.40 0.70 1.00 1.30 1.60
5.0 0.66 1.00 1.08 1.16 1.24
10.0 1.46 1.49 1.78 1.90 1.94
K, 15.0 1.83 2.30 243 2.56 2.69
20.0 2.44 2.90 3.02 3.31 3.43
25.0 297 3.48 3.66 3.75 393
CAPITAL, Case 2
8
0.40 0.70 1.00 1.30 1.60
5.0 5.02 5.02 5.19 5.53 5.88
10.0 9.93 993 10.01 10.44 10.88
K, 15.0 14.84 14.84 14.93 15.27 15.79
20.0 19.84 19.84 19.92 20.18 20.78
25.0 24,75 24.75 24.84 25.18 25.78
CONSUMPTION, Case 2
8
0.40 0.70 1.00 1.30 1.60
5.0 0.66 1.17 1.51 1.68 1.84
10.0 0.93 1.57 2.13 2.34 2.54
K, 15.0 1.14 1.87 2.51 2.91 3.12
20.0 1.23 2.04 2.77 3.31 3.52
25.0 1.41 2.27 3.05 3.58 3.85



Table 3. (continued) Decision Rules for Lin~LQ (Christiano)

CAPITAL, Case |

01
0.40 0.70 1.00 1.30 1.60
5.0 4.07 5.13 5.80 6.30 6.69
10.0 8.69 9.75 10,42 1091 1131
K, 150 13.31 14.36 15.04 15.53 15.92
20,0 17.93 18.98 19.65 2015 20,54
25.0 2254 23.60 2427 24,77 25.16
CONSUMPTION, Case |
91
0.40 0.70 1.00 1.30 1.60
5.0 161 1.06 0.90 0.91 1.03
10.0 216 175 172 1.86 211
K, 150 267 2135 2.41 2.64 2.99
200 315 2.90 3.03 334 3.76
25.0 361 3.43 3.62 3.99 .47
CAPITAL, Case 2
0.40 0.70 1.00 1.30 1.60
5.0 a1l 4.90 5.40 5.76 6.06
10.0 8.92 9.71 1021 10.58 10.87
K, 150 13.74 14.52 15.02 15.39 15.68
200 18.55 19.33 19.83 2020 20.49
250 23.36 2414 24.64 2501 25.30
CONSUMPTION, Case 2
51
© 0.40 0.70 1.00 130 1.60
5.0 1.57 129 1.30 1.45 1.67
10.0 1.93 179 1,93 2,20 2.55
K, 150 224 219 2.43 279 323
20,0 2.53 255 286 3.30 3.81
25.0 2.30 2.88 3.25 3.75 433



Table 3. (continued) Decision Rules for Log-LQ (Christiano)

CAPITAL, Case |

b
0.40 0.70 1.00 1.30 1.60
5.0 4.88 5.22 5.45 5.63 5.77
10.0 9.25 9.90 10.34 10.68 10.95
K, 15.¢ 13.45 14.40 15.04 15.53 15.92
20.0 17.54 18.78 19.61 20.25 20.77
25.0 21.55 23.08 24.10 24.88 25.52
CONSUMPTION, Case |
8y
0.40 0.70 1.00 1.30 1.60
5.0 0.80 0.97 1.25 1.58 1.95
10.0 1.61 1.60 1.80 2.10 2.47
K, 15.0 2.53 2.31 2.41 2.65 2.99
20.0 3.53 3.10 3.07 3.24 . 3.53
25.0 4.60 395 3.79 3.88 411
CAPITAL, Case 2
8
0.40 0.70 1.00 1.30 1.60
5.0 4.80 5.05 5.22 5.34 5.45
10.0 9.36 9.84 10.17 10.4] 10.61
Kq 15.0 13.82 14.54 15.02 15.38 15.67
20.0 18.23 19.18 19.81 20.28 20.67
25.0 22.60 23.77 24.55 25.14 25.62
CONSUMPTION, Case 2
8
0.40 0.70 1.00 1.30 1.60
5.0 0.88 1.14 1.48 1.87 2.28
10.0 1.50 1.65 1.97 2.37 2.81
K, 15.0 2.15 2.17 2.43 2.80 3.24
20.0 2.84 2.70 2.88 3.21 3.63
25.0 3.56 3.25 3.34 3.62 4.01



Table 3. Decision Rules for Euler Equation Grid (Coleman)

CAPITAL, Case |

21
0.40 0.70 1.00 1.30 1.60
5.0 4.88 527 5.67 6.08 6.49
10.0 9.43 9.90 10.40 10.90 11.41
Kq 15.0 13.96 14.49 15.04 15.60 16.18
20.0 18.47 19.04 19.65 20.26 20.89
25.0 22.99 23.59 24.23 24.89 25.56
CONSUMPTION, Case 1
21
0.40 0.70 1.00 1.30 1.60
5.0 0.80 0.92 1.03 1.13 1.23
10.0 1.42 1.59 1.74 1.88 2.01
Kg 15.0 2.02 2.23 2.41 2.57 2.73
20.0 2.60 2.84 3.04 3.23 3.41
25.0 3.17 343 3.66 3.87 4.07
CAPITAL, Case 2
. 0,
0.40 0.70 1.00 1.30 1.60
5.0 4.82 5.08 5.36 5.65 594
10.0 . 9.54 9.86 10.21 10.58 10.96
Kq 15.0 14.26 14.63 15.03 15.46 15.90
20.0 19.00 19.39 19.84 20.31 20.80
25.0 23.74 24,16 24.64 25.15 25.68
CONSUMPTION, Case 2
21
0.40 0.70 1.00 1.30 1.60
5.0 0.86 1.11 1.34 1.57 1.78
10.0 1.32 1.64 1.93 2.20 2.46
Kg 15.0 1.71 2.09 241 2.72 3.01
20.0 2.08 2.49 2.85 3.19 3.50
25.0 2.42 2.86 3.25 3.61 3.95



Table 3 (continued) Decision Rules for Extended Path (Gagnon)

CAPITAL, Case 1

5
10
K 5
Y
25

0.40

4.88
9.45
13.98
18.51
23.05

CONSUMPTION, Case 1|

5

10

K s
20
25

CAPITAL, Case 2

5

10

K s
° 20
25

0.40

0.80
1.40
2.00
2.56
310

0.40

4.82
9.55
14.30
19.07
23.87

CONSUMPTION, Case 2

0.40

0.86
1.31
1.68
2.00
2.28

0.70

5.27
9.89
14.53
19.07
23.63

0.70

0.92
1.60
2.19
2.81
3.39

0.70

5.06
9.87
14.66
19.45
24.26

0.70

1.13
1.62
2.05
243
2.77

1.00

5.68
10.38
15.00
19.69
24.24

1.00

1.04
i.75
2.44
3.00
3.62

1.00

5.34
10.18
15.00
19.90
24.73

1.00

1.36
1.96
2.44
2.79
3.16

1.30

6.07
10.88
15.57
20.24
24.94

1.30

1.14
1.89
2.61
3.26
382

1.30

5.62
10.54
15.40
20.23
25.09

1.30

1.59
2.24
2.78
327
3.67

1.60

6.48
11.3%
16.1¢
20.83
25.56

1.60

1.24
2.03
2.76
3.47
4.067

1.60

5.91
10.91
15.84
20.71
25.57



Table 3. (continued) Decisions Rules for Parameterizing Expectations (Marcet)

CAPITAL, Case 1

5
10

K 15
20
25

0.40

4.84
9.39
13.95
18.51
23.09

CONSUMPTION, Case |

5
10

K 15
20
25

CAPITAL, Case 2

10

20
25

0.40

4.67
9.38
14.13
18.91
23.70

CONSUMPTION, Case 2

10
K 15
° 20
25

0.70

5.27
5.88
14.47
19.05
23.64

0.92
1.62
2.24
2.83
3.39

0.70

5.01
9.77
14.54
19.34
24.15

1.00

5.70
10.39
15.03
19.64
24.24

1.00

1.00
1.74
2.42
3.05
3.65

1.00

5.36
10.17
14.98
15.80
24.62

1.30

6.15
10.93
15.61
20.25
24.88

5.72
5.72
15.43
20.28
25.12

1.30

1.49
2.19
2.74
3.22
3.64

1.60

6.61
11.47
16.20
20.88
25.54

B —
— b =1 \O —
O = D

1.60

6.08
6.08
15.90
20.77
25.63



Table 3. (continued) Decision Rules for Lin-LQ (McGrattan)

CAPITAL, Case !

91
0.40 0.70 1.00 1.30 1.60
5.0 4.07 5.13 5.80 6.30 6.69
10.0 8.69 9.75 10.42 1091 1131
K, 150 1331 1436 15.04 15.53 15.92
200 17.93 18.98 19.65 20.15 20.54
25.0 22.54 23.60 2427 24.77 25.15
CONSUMPTION, Case |
01
0.40 0.70 1.00 1.30 1.60
5.0 161 1.06 0.90 091 1.03
10.0 216 1.75 172 1.86 211
K, 150 267 235 2.41 2.64 2.99
20.0 315 2.90 3.03 3.34 3.76
25.0 361 343 3.62 3.99 447
CAPITAL, Case 2
91
0.40 0.70 1.00 1.30 1.60
5 411 4.90 5.40 5.76 6.06
10 8.92 971 1021 10.58 10.87
K, IS5 13.74 14.52 15.02 15.39 15.68
20 18.54 19.33 19.83 20.20 20.49
25 2336 2414 24.64 25.01 25.30
CONSUMPTION, Case 2
91
0.40 0.70 1.00 1.30 1.60
5 1.57 1.29 1.30 1.45 1.67
10 1.93 1,70 1.93 2.20 255
K, IS 2.24 219 2.43 2.79 322
20 2.53 255 2.86 3.30 3.81
25 2.80 2.88 3.25 3.75 43



Table 3. (continued) Decision Rules for Quadrature Grid (Tauchen)

CAPITAL, Case |

5
10

K 15
20
25

0.40

4.96
9.60
13.52
18.43
23.04

CONSUMPTION, Case |

5
10

K s
° 20
25

CAPITAL, Case 2

5
10
K, IS
20
25

0.40

— O B~
MDA N

0.40

4.69
9.60
14.40
16.20
24.00

CONSUMPTION, Case 2

10

20
25

0.40

0.99
1.26
1.58
1.87
2.16

0.70

5.26
9.97
14.40
19.20
23.69

0.70

0.93
1.54
2.31

- 2.68

333

0.70

5.05
9.95
14.40
19.20
24.00

0.70

1.14
1.55
2.31
2.68
3.02

1.00

5.65
10.43
15.00
19.67
24.00

1.00

5.37
10.24
15.00
20.00
2491

1.00

1.33
1.90
2.44
2.69
2.99

1.30

6.06
10.85
15.63
20.18
25.00

1.30

5.63
10.57
15.48
20.18
25.00

1.60

6.49
11.42
16.16
20.83
25.52

B —
—_ 1O N
—_— ] n O

1.60

5.96
10.98
15.81
20.83
25.65

1.60

1.76
2.44
3.10
3.47
398



Table 4. The den-Haan-Marcet Statistic m for

Baxter

Christiano
LogLQ-Normal

LogLQ-Discrete
LinLQ-Normal
LinLQ-Discrete
Value Function Grid
Coleman

Gagnon

Ingram

Labadie

Marcet
McGrattan

Sims

Tauchen

584

24

396

303

34

22
69

284

the Martingale Difference on n,

24
31
10

25
22

153

12

704

22
12
558

30
62

322

3

ws



Table 5. TR? Statistic for the Martingale Difference on ¢,

Baxter

Christiano
LogLQ-Normal

LogLQ-Discrete
LinLQ-Normal
LinLQ-Discrete
Value Function Grid

Coleman

Gagnon

Ingram

Labadie

Marcet
McGrattan

Sims

Tauchen

30

30

16

22

46
122

21
27

(3]

673

20
26

317

214

254

165

230



Table 6. R? Tests for Random-Walk for Consumption

Case

1 2 3 4 5 6 7 8 9 10
Baxter 36 .01 .02 .02 .07 .03 .02 .07 .02 .05
Christiano
LogLQ-Normal 36 .04 12 .04 .43 .05 .02 24 .03 01
LogLQ-Discrete .46 .16 .26 A2 42 .08 .05 .37 .06 .04
LinLQ-Normal 16 .06 .08 .04 .34 .05 .02 .28 .04 .01
LinLQ-Discrete .14 .03 .05 .02 33 03 .01 .20 .01 .01
Value Function Grid .37 .04 .02 .29 .02 .02
Coleman .40 .05 .29 .03 41 .05 .02 .30 .02 .0t
Gagnon .07 .05 .05 .06 15 .02 .02 .05 .04 .04
Ingram 35 .18 26 .10 .44 .06 03 .33 .04 .02
Labadie 91 .98 99
Marcet .40 04 33 .03 42 .06 .03 .35 .04 .02
McGrattan 13 .04 .07 .04 34 .04 .02 .21 .02 01
Sims 41 .06 .32 .04 .44 .07 .04 .36 .04 .02
Tauchen .50 .38 34 .27 .50 .38 33 .34 27 .27
Max/Min for Group
min .07 .01 .02 .02 07 .02 .01 .05 .01 01
max 91 .38 .34 27 98 .38 .99 37 27 27
Max/Min for Subgroup
min .40 .04 .29 .04 41 .02 .02 .30 .02 0l
max 41 .06 33 .04 .44 .07 .04 .36 .04 .02

NOTE: The subgroup consists of solution methods which are within the symmetric 95 % confidence bands
in table 4 and table 5.



Table 7. Ratios of the Variance of Investment to the

Variance of the First Difference in Consumption.

Case
1 2 3 4 5 6 7 8 9 10

Baxter 30 5 9 3 5 1 I 2 3 8
Christiano

LogLQ-Normal 24 9 45 36 29 11 8 132 59 45
LogLQ-Discrete 25 23 80 74 29 12 12 167 79 83
LinLQ-Normal 8 4 23 13 2510 8 136 50 48
LinLQ-Discrete 8 3 21 11 24 9 7 114 43 37
Value Function Grid 28 10 8 149 53 47
Coleman 29 12 139 37 29 10 8 155 53 47
Gagnon - 10 3 5 2 i7 5 3 8 4 3
Ingram 29 170 155 490 30 12 20 162 66 98
Labadie 56 61 481

Marcet 28 9 168 55 30 13 10 178 78 74
McGrattan 6 3 17 10 24 9 7 112 44 38
Sims 30 12 165 64 31 13 i1 171 66 59
Tauchen 3 2 2 2 3 2 2 2 2 2
Max/Min fo;' Group

min 3 2 2 2 3 1 1 2 2 2
max 56 170 168 490 61 13 4381 178 79 98
Max/Min for Subgroup

min 29 9 139 64 29 5 3 155 53 38
max 30 12 168 64 31 13 11 171 78 74

NOTE: The subgroup consists of solution methods which are within the symmetric 95 % confidence bands
in table 4 and table 5.



Table 8. Computing Times

Machine Co-Chip MHz Software time | time 2

Baxter IBM PS2 - 80 80287 16 Fortran 3.31 1188.0
Matlab 3.13 164.0

Christiano :
LogLQ-Normal Amdahl 5860 Rats total .6
LogLQ-Discrete Amdahl 5860 Rats total 1.2
LinLQ-Normal Amdahl 5860 Rats total .6
LinLQ-Discrete Amdahl 5860 Rats total 1.2
Value Function Grid Amdahl total 5 hours
Coleman Amdahl 5890-300 VS-Fortran 2.3 total 111.24
Gagnon Amdahl 5850 TROLL 13.0 396 5320
Ingram HP Vectra ES/12 80287 12/10 Gauss 2.0 total 72.01
Labadie IBM Model 30 yes Gauss 1.4.9b total 4 hours
Marcet Compaq 386/25 25 total 240
McGrattan Compaq 386/20 Weitek 1167 20 Matlab 3.25 total 0.7
Sims Dell System 310 80386 20 Microsoft C 20 107
Tauchen Compaq 386/25 80387-25 25 Gauss 1.49b total 2768

NOTE: time 1 refers to the CPU time in seconds to compute the decision rule for one case (typically case I,
time 2 refers to the CPU time in seconds to compute a simulation of 2000 data points for one case (typicall
case 1). The term "total" indicates that the sum of time 1 and time 2 is given. In Christianos Value Functio
Grid, 20 000 grid points were used.



FIGURE TITLES

Figure 1.

Figure 1 shows the realizations for consumption and capital for a single stochastic simulation for case
1 for thirteen of the different solution methods. A blank appears here and in the following figures,
if a solution method is not available. Different cases have been used for different figures to
illustrate the points most clearly, Here, in figure I, the time span is 200 to 800. The range for
consumption and capital is O to 50 for all simulations except Labadies: in her case the range is 0 to
120. The smaller of the two time series is always the consumption series. Gagnons and Labadies
series were shorter than the 800 periods and are therefore cut off. Note that only patterns can be
compared, since different researchers used different random numbers. Note the effect of
discretization in the simulations Christiano LinLQ-Discrete, Christiano LogLQ-Discrete and

Tauchen.

Figure 2.

Figure 2 shows the time series plots of investment K, - K,_, for twelve of the methods for case 10
and time periods 200 to 800. The range for investment is -1.5 to 1.5. Case 10 has a much higher
coefficient of relative risk aversion than case 1. Some of the discrete methods show long periods of
(almost) no investment (Christiano LinLQ - Discrete, Christiano LogLQ - Discrete, Christiano Value

Function Grid and Tauchen). Ingrams solution is quite volatile compared to others.

Figure 3.

Figure 3 shows the empirical density functions for consumption for case 5 and for all available data
of a simulation. The range for consumption is 1.8 to 3.4 (actually, these numbers are rounded from
the original bin-bounds which explains the cutoff in Ingrams graph). 50 bins are used and the
peights connected by a straight line: this still results in a density integrating to 1, if the boundary
values are 0. Most density functions are surprisingly ragged. Some - e.g. Christianos Discrete
Methods - show double peaks. The shapes vary a lot across methods, but it is possible that this is

largely due to the rather small length of the simulated time series (mostly 2000 data points).



Figure 4.

Figure 4 shows the density functions for investment K, - K,_, in case 10, using 25 bins to achieve
more smoothness. Again e.g. Christiano LogLQ - Discrete shows double peaks. The density for
Gagnon and Tauchen is very narrow and sharply peaked compared to the other methods. It is
therefore difficult to decide wether this is actually a feature of the true solution. The range for

investment is -1.0 to 1.0 in all graphs.

Figure 5.

Figure 5 shows scatter plots of the decision variables capital K, versus consumption C, incase 4. A
common scale is used for all researchers: 0 to 300 for capital and -4.0 to 12.0 for consumption. Note,
how a sharp boundary is visible in Christiano LinLQ - Normal, Christiano LogLQ - Normal and
McGrattan, i.e. in the most commonly used linear q.uadratic methods. Observe that the points scatter
around two "islands" in Gagnon’s solution. Gagnon reports, that this island structure starts te

disappear with longer simulations.

Figure 6.

Figure 6 is similar to figure 5 except that subsequent data points are connected by a straight line and

the scale varies across methods. Subsamples of 100 data points were used for these diagrams. Note

the sharp adjustments in e.g. Baxter, Christiano LinLQ - and LogLQ - Discrete and Tauchen. The
simulations of Coleman, Ingram and Sims show rather large loops. Shorter loops can be seen in the
simulations of e.g. Christiano LinLQ - Normal and Marcet. Again the features and the behaviour of

the methods are quite different. This can be relevant in economic applications.
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