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1 Introduction

Innovation and technological progress are considered to be key determinants of economic growth

(Romer, 1990; Aghion and Howitt, 1992; Jones, 1995). There is growing suggestive evidence that

immigrants play a key role in US innovation. For example, immigrants comprised 23% of the total

workforce in STEM occupations in 20161 and account for 26% of US-based Nobel Prize winners

from 1990 through 2000. A large and growing literature has found that patent data provides a

useful laboratory to study the causes and consequences of innovative activity. Using survey data

from 2003, Hunt and Gauthier-Loiselle (2010) found immigrants authored 24% of US patents.

In this paper, we characterize the contributions of immigrants to innovation. Clearly, there

are many ways to measure innovation, but this paper will focus on the production and impact of

US patents as a metric of innovation. We bring to bear administrative patent data and a unique

approach to identifying the immigrant status of individuals residing in the United States at scale.

First, we use the richness of our data to describe the life-cycle patterns of patenting by immigrant

status and investigate possible mechanisms driving productivity differences between immigrants and

the US born. Second, we quantify the extent to which inventors’ patenting productivity is impacted

by collaborations with other inventors, and how these productivity spillovers vary according to

immigrant status. Finally, using these estimates, we quantify the share of aggregate US patenting

production that can be attributed to immigrants, inclusive of their indirect productivity spillovers

on US-born inventors.

Our analysis relies on the Infutor database, which provides the exact address history of more

than 300 million adults living in the United States over the past 30 years. Beyond the exact address

history, this data also includes the individuals’ names, years of birth, genders, and the first five

digits of their Social Security numbers. We link the universe of patents from 1990-2016 to the

Infutor data based on a merge of first and last name, city and state of residence as of the date of

the patent. By using the Infutor data as a “back bone” for the patent data, we can disambiguate

which inventors are the same person across patents. This provides an alternative disambiguation

procedure to Balsmeier et al. (2015).2 Our methodology infers immigrant status by combining the

first five digits of their Social Security Number (SSN) together with information on year of birth.

The first five digits of the SSN pin down the year in which the SSN was assigned. Since practically

all US-born individuals are assigned a SSN during their youth, or even at birth, those individuals

who receive a SSN in their twenties or later are highly likely to be immigrants.3

Using individual-level address information provided by both Infutor and the USPTO, we merge

information on an individual’s immigrant status with the universe of patents. In our sample from

1Data are from the 2016 American Community Survey. STEM occupation is defined as engineers, mathematical
and computer scientists, natural scientists, and physicians.

2A benefit of our disambiguation method is that we do not need to rely on similarity of patenting technology
class across patents or assumptions of geographic immobility of inventors across patents. Indeed, when studying how
inventors choose their topics of innovation and geographic locations, using an identification method that relies on
these not changing over time can lead to biased estimates.

3This method has been used to identify immigrants in prior work by Doran et al. (2022) to study H1-B visa supply
of firm hiring and Yonker (2017) to study immigrant CEOs.
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1990 to 2016, we find immigrants that came to the United States when they were 20 years old or

older make up 11% of the US population and 16% of all US-based inventors. Immigrant inventors

have produced roughly 23% of all patents during this time period, more than a 40% increase relative

to their share of the US-based inventor population and more than a 100% increase relative to their

share of the total US population. This finding is consistent with Hunt and Gauthier-Loiselle (2010)

who find that 24% of patents in 2003 are authored by immigrants, while constituting 14% of the

inventor population, according to survey evidence from the National Survey of College Graduates

(NSCG).4’5 Relative to this prior work, by having access to administrative patent data, we are able

to observe granular information regarding patent characteristics and patent quality by immigrant

status, as well as panel information of patenting activity over the life-cycle.

In particular, immigrant patents do not appear to be of lower impact. Using the number of

patents weighted by the number of forward citations, which captures the impact of innovation (Hall

et al., 2001), we find that the immigrant contribution is slightly higher at 24%. Finally, using the

Kogan et al. (2017) measure capturing stock market reaction to patent grants available for publicly

traded firms and imputed for private firms, we find that the immigrants have generated 25% of the

aggregate economic value, an increase of over 50% relative to their share of the inventor population.

Descriptive trends of inventor life-cycle productivity show both US-born and immigrant in-

ventors exhibit an inverse U-shape pattern. Inventors are quite unproductive at the beginning of

their careers, become most productive in their late 30s and early 40s, and decline in productivity

thereafter.6 However, immigrant inventors diverge from US-born inventors as they reach the peak

of innovative productivity, with immigrants producing significantly more patents, citations, and

generating more economic value. This gap persists throughout the rest of their careers.7

Prior descriptive work using administrative patent data in the modern period has focused on

documenting time trends in patenting output across inventors of different ethnic origins, with

ethnicity imputed according to their first and last name (Kerr, 2008b,a, 2010; Foley and Kerr,

4Key advantages of the National Survey of College Graduates are that it allows for identification the type of visa
used by immigrants. Hunt (2011) shows that the most innovative immigrants enter the US on a student or temporary
work visa, as compared to alternative visa entry points. Moreover, Hunt and Gauthier-Loiselle (2010) describe the
role of occupation and education in inventor productivity by immigrant status, which we are unable to observe.

5Doran et al. (2014) exploit random variation H1-B lottery winners to argue that additional H1-B workers lead
to only modest, insignificant impacts on total innovation at the firm level. However, this estimate is a local-average
treatment effect (LATE), analyzing the incremental patenting generated by the marginal immigrant selected by H1-B
lotteries. In contrast, our work studies patenting output of the average US-based immigrant patenting between 1990
and 2016. Indeed many immigrants are not on H1B visas. They could have green cards, become US citizens, have O1,
J1, or OTP visas. Also, Kerr and Lincoln (2010) exploit large changes in the H1-B program, which likely generates
a different complier population, and document increased patenting in exposed firms and cities.

6These findings hold with respect to patent production, the citation adjusted number of patents, and the economic
value of the patents produced. These inverse U-shape productivity patterns are consistent with a large literature
exploring the relationship between age and scientific contributions (see Jones et al. (2014) for a survey), reflecting
the necessary time to accumulate relevant human capital.

7Akcigit et al. (2017) use the now public-use 1880-1940 censuses to show immigrants were more productive histor-
ically as well, producing 9% more patents over their careers than their US-born counterparts. Relative to this work,
our paper focuses on the modern period, documents the full patenting life-cycle, addresses differential sorting across
location and technology, provides stylized facts on immigrant networks / collaboration, and estimates productivity
spillover effects.
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2013). For example, Kerr (2008b) uses this approach to show that Chinese and Indian contributions

to US technology formation increased dramatically during the 1990s and that ethnic innovation is

concentrated in high-tech sectors. While this approach allows one to infer inventor ethnicity, it

cannot differentiate foreign-born individuals from US-born individuals as our methodology allows

us to do.

While the goal of this paper is not to fully decompose all the reasons immigrant inventors are

more productive than US-born inventors over their life-cycle, we do investigate a few mechanisms.

While immigrant inventors in the US may be selected based on their innate ability, we observe

them also making choices that complement their productivity. For example, immigrants dispropor-

tionately patent in technology classes that are experiencing more innovation activity. We further

document that immigrants disproportionately choose to live in highly productive counties (“inno-

vation hubs”), relative to US born inventors. This latter finding is analogous to Kerr (2010), who

shows ethnic inventors are more spatially concentrated than US-born inventors. These findings

suggest that immigrant inventors are likely to benefit more from, and contribute more to, agglom-

eration forces than their US-born counterparts. Ultimately, a flexible regression-based analysis

which includes county by technology class by year fixed effects, as well as year-of-birth cohort fixed

effects, can explain approximately 30% of the raw patenting gap between immigrant and US-born

inventors.

We also provide suggestive reduced-form evidence that immigrant inventors foster the impor-

tation of foreign ideas and technologies into the United States and facilitate the diffusion of global

knowledge. During their careers, immigrant inventors rely more heavily on foreign technologies, as

illustrated by their higher shares of backward foreign citations. Immigrants are also about twice as

likely to collaborate with foreign inventors, relative to US-born inventors. Finally, foreign inventors

are about ten percentage points more likely to cite the patents of US-based immigrant inventors

relative to patents of US-born inventors. These results complement those of Foley and Kerr (2013),

who show that increases in a multinational firm’s patenting activity by a particular ethnicity are

associated with increases of affiliate activity in countries related to that ethnicity.

We also address the extent to which immigrant inventors are integrated in US knowledge markets

and the extent to which they collaborate with their US-born inventor counterparts. One possibility

is that, due to cultural impediments or lack of assimilation, immigrant inventors are less integrated

into the overall US knowledge market, remain isolated at their workplace, and collaborate less,

which Jaravel et al. (2018) document is important to the innovative process. We show this is not

the case. Immigrant inventors in fact tend to have more collaborators than US-born inventors.

Furthermore, while we do find that immigrants are more likely to work with other immigrants (as

compared to US-born), this tendency declines over the life-cycle, suggesting a gradual assimilation

process.

These team interactions between immigrant and US-born inventors in the production of patents

are of particular interest since they may be a key mechanism through which an inventor’s knowledge

spills over onto the knowledge and productivity of his collaborators. We next turn to the secondary
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goal of the paper of measuring the extent to which immigrant inventors, through collaboration,

make other US-based inventors more productive in their patenting.

We estimate the magnitudes of immigrant and US born knowledge externalities on their col-

laborators using the exogenous termination of such relationships. Specifically, to construct causal

estimates of these spillovers, we exploit the premature deaths of inventors, defined as deaths that

occur before the age of 60.8 We then follow the patenting behavior of inventors who had co-authored

a patent with the deceased inventor, at some point prior to the inventor’s death. We compare the

change in patenting activity of these co-authors before versus after the inventor death to a matched

control group of inventors who did not experience the premature death of a co-author. This form of

identification strategy is becoming increasingly common in the literature (Jones and Olken, 2005;

Bennedsen et al., 2020; Azoulay et al., 2011; Nguyen and Nielsen, 2010; Oettl, 2012; Becker and

Hvide, 2013; Isen, 2013; Fadlon and Nielsen, 2021; Jaravel et al., 2018).

Overall, we find that premature death leads to a 10 percent decline in the innovative productivity

of their co-inventors, as measured by patents and top patents, consistent with Jaravel et al. (2018).

This decline takes place gradually and has a long-lasting impact. Most strikingly, we find that the

disruption caused by an immigrant death causes a significantly larger decline in the productivity

of the co-inventors than that of US-born inventor deaths. The death of an immigrant lowers co-

inventor productivity by approximately 16%, while a US-born inventor’s death lowers productivity

by approximately 9%. These gaps are large and persistent, and take place across all of our measures

of innovative productivity.

To explore potential mechanisms driving these differential productivity effects of immigrants,

we estimate a detailed heterogeneous treatment effects model. For example, if more productive

inventors have larger spillover effects, and dying immigrant inventors are more productive, then

controlling for productivity-driven spillover effects could narrow the differential spillover effects

between immigrant and US-born inventors. Even after controlling for a host of observable charac-

teristics interacted with treatment, which could explain the heterogeneous treatment effects between

US-born and immigrant inventors, the productivity spillover gap between US-born inventors and

immigrant inventors remains essentially unchanged. To further understand why the gap remains

stable, we estimate a Gelbach (2016) decomposition of the difference based on ten dimensions of

treatment effect heterogeneity. We find 15% of the immigrant-US-born productivity spillover gap

can be explained by dying inventors who have more patents at time of death have larger effects

on their surviving collaborators. However, the immigrant-US-born productivity gap is widened by

54% due to surviving collaborators with more prior patents being less impacted by a dying inventor,

and immigrant collaborators having more patents than US-born collaborators. Thus, controlling

for these observable differences, along with measures of age, cohort, measures of the collaboration

network, recency, and intensity, knowledge overlap between collaborators, and geography does little

to explain away the larger external effect of immigrant inventor deaths. Our inability to reduce

8We link our data to a public-use copy of the social security death master file to identify inventor deaths courtesy
of SSDMF.INFO.
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the gap, despite controlling for many observable differences, provides evidence that there is some-

thing unique about immigrant inventors that drives large productivity spillovers on their US-based

co-authors, which cannot be easily replicated.

Given the nature of our inventor-patent panel, our work is unable to speak to possible crowd-out

effects, which could exist in conjunction with positive productivity spillover effects. Specifically,

we are unable to track whether individuals with no prior relationship to the dying inventor now

start to patent more, replacing some of the knowledge that would have been produced by the dying

inventor and his/her team. Prior work on the extent of crowd-out is mixed. Borjas and Doran

(2012) provide evidence that the post-1992 influx of Soviet mathematicians crowded out young

American scholars, with total US mathematical output remaining stable. In contrast, Moser et al.

(2014) show that the influx of Jewish immigrant chemists from Nazi Germany increased patenting

in chemistry by 71%, driven by the entrance of new domestic scientists. Doran et al. (2014) use H1-

B lottery data to argue that additional H1-B workers crowd out other workers at the firm and lead

to only modest, insignificant impacts on total firm innovation. Conversely, using a different firm

sample, Brinatti et al. (2023) find no evidence that winning H1-B lotteries leads to net displacement

of US-born workers. Similarly, Kerr and Lincoln (2010) exploit large changes in the H1-B program

and find increases in patenting in exposed firms and cities, with evidence of small crowd-in effects

as opposed to crowd-out.

Prior work by Hunt and Gauthier-Loiselle (2010) suggests that positive spillover effects of

immigrants on patenting exceed any crowd-out effects. They instrument for changes in immigrant

college populations using a 1940-2000 state panel and show that a 1 percentage point increase in

the immigrant college share increases patents per capita by 9-18 percent, larger than the 6 percent

increase suggested by the raw patenting differences.9 We build on this prior work by exploiting

micro information regarding individual inventor teams to cleanly isolate one specific source of

spillovers, collaboration externalities. We show that immigrants contribute in a disproportionate

way to the productivity of their collaborators, relative to their US-born counterparts.

Our analysis raises the question of whether positive spillover effects of immigrants on their US-

born collaborators are confined to the teams they are both a part of, increasing team-specific capital,

or if they reflect human capital spillovers that increase the productivity of their collaborators on

teams which the immigrant is not a part of. To address this question, we construct and estimate a

team-based structural patent production function, which allows us to quantify these two channels

separately. We find that immigrants increase team-specific capital, but also increase the transferable

human capital of their US-born collaborators.

Finally, we use this structural framework to quantify the share of aggregate innovation which

can be attributed to immigrants, both through their direct output and indirect human capital

spillovers. We conclude that 32% of total US innovative output, since 1990, can be ascribed

9Cristelli and Lissoni (2020) show the Swiss 1999 easing of border restrictions led to increased patenting in the
border regions and increased collaboration with cross-border inventors, with no evidence of crowd-out. Wigger (2022)
uses exogenous variation in push factors to show high-skilled immigration within Europe led to increased regional
patenting, driven in part by increased immigrant-native collaboration and increased native patenting.
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to US-based immigrants, despite only making up 16 percent of the inventor workforce and only

directly authoring 23% of patents. This additional 9 percentage points of innovation, over and

beyond immigrants’ direct output, is due to immigrants’ substantial human capital externalities

on US-born inventors. Moreover, the decomposition also highlights the importance of the two-way

spillovers between immigrant inventors and US-born inventors, with one-quarter of US innovation

attributable to this source.

The remainder of the paper proceeds as follows. Section 2 describes the data used in the

analysis. Section 3 details our empirical approach for identifying immigrant status and provides

basic summary statistics. In Section 4, we characterize the immigrant share of US innovative output

and explore life-cycle characteristics of immigrant and US-born inventor productivity. Section 5

analyzes collaboration externalities of immigrant and US-born inventors and Section 6 provides a

structural framework to separately quantify immigrant contributions to team-specific capital and

transferable human capital, as well as to quantify the aggregate contribution of immigrants to total

innovation. Section 7 concludes.

2 Data

We bring together data from multiple sources whose combination enables us to observe immigrant

innovative productivity and explore how it compares to the innovative productivity of US-born

inventors in the United States. Specifically, we combine patent data from the US Patent Office

(USPTO) together with data provided by Infutor, which allows us to identify immigrant status

based on the combination of the first five digits of an individual’s social security number (SSN) and

their year of birth.

2.1 Infutor Database

The Infutor database provides the entire address history for more than 300 million US residents.10

The address history generally dates back to 1990, although there are some individuals with entries

dating back to the 1980s. For each individual, we have the exact street address at which the

individual lived and the dates of residence. The data also provides the first and last name of the

individual, as well as some demographic information such as year of birth and gender. Finally, 83%

of the data provides the first five digits of the individual’s social security number. This data was

first described and made use of by Diamond et al. (2019).

This data appears to be highly representative of the overall US adult population.11 To examine

the quality of the data, we use the address history provided and in each year map all individuals in

the dataset to a US county. Using this mapping, we then create county-level population counts as

measured by Infutor. We can compare these county-level populations with the population counts of

10Infutor is a data aggregator of address data using many sources including phone books, magazine subscriptions,
and credit header files.

11Infutor does not have any entries on one’s address history as a child. In practice, people appear to enter the data
at some point during their early to mid twenties.
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over 18 years old individuals provided by the US census. Figure A.1 illustrates this relationship for

the year 2000. Using the variation across counties, we find each additional person in Infutor predicts

an additional 1.28 people living in that county, according so the 2000 Census. This implies Infutor

covers 78% of the overall adult US population. Moreover, the data matches the cross-sectional

distribution of US individuals across counties extremely well. The Infutor county-level population

in 2000 explains 99% of the census county variation in population.

2.2 Patent Data

We obtain data on all U.S. patents granted from 1990 through 2016 directly from the United

States Patent and Trademark Office (USPTO). The USPTO data provides information on the

date a patent was applied for and ultimately granted, the individual(s) credited as the patent’s

inventor(s), the firm to which the patent was originally assigned, and other patents cited as prior

work. From this, we can determine how many citations a granted patent receives in the future.

The data also provides information on the technology class of the patent, as well as the city and

state in which each inventor on the patent lives.12

One challenge the raw data presents is that it lacks consistent identifiers for patent inventors

and firms over time. In order to identify inventors, we link each inventor listed on each patent to the

Infutor data using name, city, and state of residence at time of patent application. See Appendix

A for details.13 We are able to merge 70% of patent-inventors to an Infutor record. Since Infutor

only covers 78% of the US population, this implies a merge rate of 90% within the Infutor sample.

As a comparison, Jaravel et al. (2018) merge US inventors to the IRS tax records from 1996-2012

and obtain a merge rate of 85%.14 Using this procedure thus gives us a panel of inventors from

1990-2016, whereby in each year, we have data on any patents an inventor applied for (and was

ultimately granted).

In the complete patent dataset, there are roughly 880,000 unique inventors over the 1990-2016

time period residing in the U.S. It should be noted that we use the names of all individuals denoted

as inventors in the patent documents, not just those who are assigned the intellectual property rights

(i.e., the “self-assigned” holders of the patent rights). For example, if an inventor is working for a

firm, it is usually the company who will be the awarded the patent rather than the employee herself.

However, the employee will be still identified on the patent documents as the actual originating

inventor, along with any co-authors. We therefore define an individual as a US-based inventor if

he or she is named as such on the patent document and has a US address. We examine patenting

12Note that these addresses are indeed the home addresses of the inventors, and not the addresses of the firms at
which the inventors work.

13We provide a summary of our USPTO-Infutor matching steps in Table A.1 in the Appendix.
14An alternative method to linking each inventor-patent pair to Infutor would be use previously made inventor IDs

produced by Balsmeier et al. (2015). These inventor IDs are created through an algorithm that combines inventor
names, locations, co-authors, associated firms, and patent classifications to create an inventor identifier, using only
the patent data. Since Balsmeier et al. (2015) does not have the Infutor data to rely to disambiguate inventors, their
methods have a hard time linking patents from different fields to the same inventor, even if the inventor really did
patent in different fields.
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between the years of 1990 to 2016 and we restrict our analysis to those inventors in the age range

of 20 to 65 years old in any given year.

2.3 Measures of Inventor Productivity

To study differences in innovative output and productivity between immigrant and US-born inven-

tors, we use a variety of patent-based measures that have been widely adopted over the past two

decades (Jaffe and Trajtenberg, 2002; Lanjouw et al., 1998).15 Our primary measure of the quan-

tity of an individual’s innovative output is the number of ultimately granted patents the individual

applied for.

Our primary measure of the impact of a worker’s innovative output is the number of citations

the patents receive within some specified time frame. In general, we use a time window of three

years since the grant date. Patent citations are important in patent filings since they serve as

“property markers” delineating the scope of the granted claims. Furthermore, Hall et al. (2005)

document that patent citations are a good measure of a patent’s innovative impact and economic

importance. Specifically, they find that an extra citation per patent boosts a firm’s market value

by 3%. Similarly, Kogan et al. (2017) find that patent’s economic value is strongly correlated with

its impact and scientific value as measured by patent citations.

One challenge in using patent citations as a standardized measure of innovative productivity

is that citation rates vary considerably across technologies and across years. To address both of

these issues, we normalize each patent’s three year citation count by the average citation count for

all other patents granted in the same year and three-digit technology class. We call this measure

“adjusted citations”. Finally, we construct a variable which we call “top patents”, which is a simple

indicator variable equal to one if a patent was in the top 10% of patents from the same year and

technology class in terms of citations received. This variable identifies a subset of highly influential

patents granted within a technology class in a given year.

Finally, we additionally use a measure developed by Kogan et al. (2017) of the actual economic

value generated by a patent. The measure is based on the stock market reaction to the announce-

ment of the patent grant. Naturally, the manner in which this variable is constructed restricts the

analysis to the sub-sample of patents assigned to publicly traded firms. Kogan et al. (2017) (KPSS)

find that median economic value generated by a firm is substantial ($3.2 million in 1982 dollars).

Following Kline et al. (2019), we impute the economic value for private firms using the relationship

between KPSS value among publicly traded firms and patent application and assignee-level covari-

ates. This allows us to measure the KPSS value for the full set of patents, both from public and

private firms. The imputation regression is shown in Table A.2.

15More recent contributions include Lerner et al. (2011); Aghion et al. (2013); Seru (2014); Bernstein (2015).
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3 Identifying Immigrant Inventors

We use information regarding the first five digits of an individual’s Social Security Number (SSN),

in combination with information regarding the individual’s age, to determine immigrant status.

The essential idea is straightforward. The first five digits of the SSN pins down within a narrow

range the year in which the number was assigned. When combined with information regarding

the individual’s birth year, we can determine how old the individual was upon being assigned the

number. Since practically all US-born individuals are assigned an SSN during their youth, those

individuals who receive an SSN in their twenties or later are extremely likely to be immigrants. We

apply this methodology to our merged data described in the previous section, thus allowing us to

study the contribution of immigrants to US innovative output.

Clearly, this method will miss those who immigrated to the US prior to age 20, which we use as

our baseline cutoff. We investigate what share of immigrants we should expect to miss using 2014

ACS data. We find that 17.1% of adults are foreign born, while 10.4% of adults are foreign born

and immigrated at age 20 or later, implying 39% of all immigrants in 2014 immigrated prior to age

20. This number falls to 32% among college graduates and 19% among PhDs. This suggests we

will classify some immigrants as US-born, implying our analysis focuses on those who immigrate

during adulthood.16 A second issue is that we will miss illegal immigrants, as they would not have

SSN. However, this is likely less of an issue for high skilled immigrants who are inventors, since

they would likely be employed in the formal sector.

Since our approach relies closely on the structure and precise assignment method of US Social

Security numbers, we start by outlining the relevant history and institutional details of the SSN

program. We then detail our exact approach to identifying immigrants using micro-level SSN

and age information provided by Infutor. Finally, we perform several empirical tests to verify the

validity of our immigrant classification methodology.

3.1 Institutional Details of SSN

The Social Security Number (SSN) was created in 1936 for the sole purpose of tracking the earnings

of U.S. workers, so as to determine eligibility for Social Security benefits. By 1937, the Social

Security Administration (SSA) estimated that it had issued 36.5 million SSNs, capturing the vast

majority of the U.S. work force at that time. Since that time, use of the SSN has substantially

expanded. In 1943, an executive order required federal agencies to use the SSN for the purpose of

identifying individuals. In 1962, the IRS began using the SSN for federal tax reporting, effectively

requiring an SSN to earn wages. In 1970, legislation required banks, credit unions, and securities

dealers to obtain the SSNs of all customers, and in 1976 states were authorized to require an SSN for

driver’s licenses and vehicle registrations. Since its origination, the SSA has issued SSN numbers to

more than 450 million individuals. Today, the SSN is used by both the government and the private

16Note that immigrants classified as US-born are unlikely to affect the characteristics of the US-born group given
their particularly small fraction relative to the overall group.
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sector as the chief means of identifying and gathering information about an individual. Practically

all legal residents of the United States currently have a Social Security Number.

Since its establishment in 1936, and until 2011, Social Security numbers were assigned according

to a specific formula.17 The SSN could be divided into three parts:

XXX︸ ︷︷ ︸
area number

− XX︸︷︷︸
group number

− XXXX︸ ︷︷ ︸
serial number

The first three digit numbers of the SSN, the area numbers, reflect a particular geographic region of

the United States and were generally assigned based on the individual’s place of residence. Groups

of area numbers were allocated to each state based on the anticipated number of SSN issuances

in that state.18 Within each area number, the next two digits, the group numbers, were assigned

sequentially. A given area would assign the next group number in the line of succession after all

of the possible serial numbers, i.e. the last four digits of the SSN, ranging from 0001 to 9999 had

been exhausted.19

The sequential, formulaic nature of the assignment process implies that Social Security numbers

with a particular combination of the first five digits were only assigned during a certain year(s). In

fact, this information is available from the Social Security Administration (SSA) through the High

Group List that they maintained up until 2011. Designed to enable the validation of issued SSNs

and to prevent fraud, this data provides, for each area number, the month and year when a certain

two digit group number began to be issued.20

17The Social Security Administration changed the structure of SSN numbers in 2011 to randomly assign all the
parts of the SSN.

18If a state exhausted its possible area. numbers, a new group of area numbers would be assigned to it. There are
some special cases of area numbers. For example, area numbers from 700 to 728 were assigned to railroad workers
until 1963. Area numbers from 580 to 584, 586 and from 596 to 599 were assigned to American Samoa, Guam, the
Philippines, Puerto Rico and U.S. Virgin Islands. Area numbers between 734 and 749 or between 773 and 899 were
not assigned until 2011. Finally, no SSN can have an area number of 666 or 000. For more details, see Puckett (2009).

19Group numbers were assigned in a non-consecutive order: first odd-numbers from 01 to 09, second even numbers
from 10 to 98, third even numbers from 02 to 08, and finally odd numbers from 11 to 99. We encoded the group
number to a sequential order from 01 to 99, so, for example, encoded group number 02 and 03 corresponds to SSN
group 03 and 05 respectively. That is, our encoded group numbers reflect the true position in the line of succession,
rather then the actual SSN group number. This simplifies the graphical illustrations discussed in the text.

20The High Group list is available on the ssa.gov official website. Its publication ended in 2011 due to the imple-
mentation of SSN Randomization. Since the historical information on Group Number assignment years, however, is
available on the SSA website from 2003 only, we use an alternative data provider, www.ssn-verify.com, also based on
the historical High Group Lists, to collect group number assignment years dating back to 1950. We verify the accu-
racy of the reported assignment year by checking that within each group number, the assignment year corresponds to
the highest year of birth plus 16 within the cohort that has that SSN (that is, reflecting the most common age that
individuals get their SSN at the time). This data provides us with information on assignment years between 1951
and 2011. Before 1950 we imputed the assignment year by simply adding 16 years to the most frequent year of birth
within the group number. This assumes that most people got their SSNs when they were 16 years old before 1950.
We show that this imputation is valid because there is no discontinuity of encoded group numbers sequence around
1950 for each area number (Figure A.2).
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3.2 Identifying Immigrants

Combining this mapping between the first five digits of the SSN and assignment years with indi-

viduals’ birth year from Infutor, we can use the age at which they are assigned an SSN to classify

US-based individuals as either US-born or immigrant individuals.

Historically, SSNs were typically assigned at the age of 16 when individuals first entered the

labor force, but as the SSN’s usage and popularity grew due to the legislative initiatives described

above, individuals began to receive an SSN at earlier and earlier ages.21 Figure A.3 in the Appendix

shows the 25th, 50th, and 75th percentiles of the age distribution of SSN assignees by assignment

year, as measured by Infutor. Consistent with what we have described, all three percentiles of

the age distribution are always under 20 years old and the median is always around 16 years old

or below. Moreover, after 1960 the average age at which individuals receive their SSN begins to

decline considerably.22

Given these considerations, we classify as an immigrant all individuals in the Infutor data who

are more than twenty years old when assigned an SSN.23 We also explore alternative, more conser-

vative classifications of immigrants, requiring gaps of 21 to 25 years between the SSN assignment

year and the individual’s birth year. Our results are robust to these alternative classifications. In

Appendix A.1, we explore how representative our classification of immigrants is when compared to

three different sources of aggregate statistics on immigrants in the United States. We find our data

is representative.24

3.3 Summary Statistics

Table 1 provides summary statistics at both the inventor level and the patent level for our final

sample. We have about 650,000 unique inventors that have non-missing SSNs and birth dates.

We first see that the productivity distribution for inventors is highly right-skewed. The median

inventor has two patents, four citations, and approximately one adjusted citation over the course

of a career. The median inventor also generates $27 million of economic value, as measured by

the stock price reaction measure taken from (Kogan et al., 2017), and no top patents. The mean

inventor, by contrast, has 4.88 total patents, 24 total citations, 6.73 adjusted citations, and 1.26

top patents. Most significantly, the mean inventor is associated with patents generating $91 million

of economic value. Note that for patents with multiple co-authors we apportion the patents output

equally across all inventors, e.g., if a patent has 2 inventors, this would only count as half a patent

21By 2006, more than 90% of SSNs were being assigned at birth.
22In 1986, as part of the Tax Reform Act, the IRS began to require an SSN for all dependents older than age 5

reported on a tax return. The law further required that student loan applicants submit their SSN as a condition of
eligibility. In 1987 the “Enumeration at Birth” (EaB) program started, which allowed parents of newborns to apply
for an SSN as part of the birth registration process.

23We classify all individuals that have an SSN that is either an ITIN or belongs to Enumeration at Entry program
as immigrants as well. To summarize, if we sum all the special cases that we do not account for in the immigrant
classification (U.S. territories, not issued areas, not valid areas, group number 00, railroad, and not issued groups),
they represent 0.83% of the Infutor data.

24See Figures A.4, A.5, A.6, and A.7 in the Appendix for these additional validation exercises.

12



of output for each inventor.

This right-skewness is also apparent at the patent level. The median patent has 1 citation,

0.42 adjusted citations, and generates $11.83 million in economic value. The mean patent has 4.5

citations, 1.29 adjusted citations, and generates $18.62 million of economic value. The table also

reports that the mean age of an inventor filing a patent is 47 years (median is 46).

Finally, Table 1 provides some basic summary information on the demographics of inventors in

our sample. 11 percent of the inventors in our sample are female and 17 percent of the inventors

are immigrants to the United States.

4 Results

In this section, we explore the innovative contributions and patterns of US immigrant inventors over

recent decades. We begin by exploring the contribution of immigrants to total US innovative output,

relative to their share of total US-based inventors. We then examine the innovative productivity

of immigrants over their life-cycle, and compare these patterns to US-born inventors. Next, we

explore the role of immigrant inventors in fostering the global diffusion of knowledge and, finally,

we analyze the extent to which immigrants appear to assimilate into the broader US inventor pool

over time.

4.1 Immigrants’ Share of Innovation

When looking at the number of patents, patents’ citations, and patents’ economic value, we find that

immigrants’ contribution to US innovative output is significantly higher than their share of total

US-based inventors. Starting by calculating the share of immigrants among US-based inventors,

Figure 1 shows that 16% of US-based inventors immigrated to the United States when they were

at least 20 years old. This number is in line with statistics provided by the 2016 ACS that says

that 16% of workers in STEM occupations were immigrants who immigrated at age 20 or later.25

Given that we find 16% of inventors in our sample are immigrants, the next natural question

is: What was the overall share of US innovative output between the years of 1990 to 2016 that was

produced by immigrants? To calculate the relative share of immigrants in innovative production,

however, we need to account for the fact that some patents are produced in teams. Therefore, to

calculate an individual inventor’s output, we divide each patenting variable of interest by the size

of the team associated with that patent. For example, if four inventors are listed on a patent, we

assign each inventor a quarter of a patent and divide the number of citations and patent market

value by four.26

We find that immigrants account for approximately 23% of all patents produced over the time

period of our sample. Remarkably, this represents a 43% increase relative to their share of the

25STEM occupation defined as engineers, mathematical and computer scientists, natural scientists, and physicians.
26Figure A.8 shows that our results are robust to apportioning the full value of the patent to each co-inventor on

the team.
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US-based inventor population. One possibility, though, is that immigrants might be producing

more patents of lower impact than their US-born counterparts. We find that this is not the case.

The fraction of raw future citations attributed to immigrants in our sample is again roughly 23%,

suggesting that the higher production of patents by immigrants is not coming at the cost of the

lower impact. Yet another concern is that immigrants may select into technologies that have higher

citation rates, which could account for these results. However, looking at adjusted citations, which

scales citation rates by the average citations of all patents granted in the same year and technology

class, we find that the contribution of immigrants is, if anything, slightly higher, accounting for

24% of the total. Similarly, when we focus on the production of top patents, those patents that

are at the top 10% of citations within a technology class and year, we find a similar pattern, with

immigrants generating roughly 25% of top patents in our sample period. We finally explore the

share of economic value that immigrants have generated over the last four decades.27 We find that

immigrants have generated 25% of the aggregate economic value created by patents in publicly

traded and private companies between the years of 1990 and 2016.

While we apportion patenting outcomes to team members on an equal-weighted basis, one might

still be concerned the above results are driven by differential team sizes between immigrants and

the US-born. This would be the case, for instance, if immigrants work on a larger teams and there

are increasing returns to scale. First, we show in Figure A.9 that the distribution of team sizes

is quite similar between immigrants and US-born inventors. The average team size for US-born

and immigrant inventors are 2.366 and 2.300, respectively. Moreover, Figure 1 shows that the

disproportionate contributions of immigrants to US-based innovation holds for solo patents as well.

Figure A.10 shows that on the intensive margin, controlling for team size, patents produced by

teams with more immigrants have larger scaled citation counts.28

We additionally explore whether the contribution of immigrants to innovation is concentrated

in particular technology categories. In Figure 2, we construct the relative contribution of immi-

grants across six technology categories. Immigrants account for about 25% of patents among the

four main technological categories that were emerging during our sample period: Computers and

Communications, Drugs and Medical, Electronics, and Chemical technologies. In contrast, the

presence of immigrants seems to be lower at about 15% in more traditional technologies such as the

“Mechanical” category, which involves Metal working; Transportation; Engines; and the “Other”

category, which includes various technologies related to Heating, Agriculture, Furniture, among

others.

27We rely on the Kogan et al. (2017) measure that captures stock market reaction to patent grants. This measure
is available originally for publicly traded firms; we impute the value for private firms following Kline et al. (2019) as
illustrated in Table A.2 in the Appendix.

28To deal with non-linearity of productivity by team size and differential sorting into different team sizes between
US born and immigrant inventors, we have added Table A.3 in the Appendix, which calculates the shares of immigrant
contribution across patenting outcomes for different team sizes. Holding team size fixed, patents from teams with
a larger immigrant share have more citations. Holding fixed immigrant share, patents from larger teams have more
impact. Thus, despite the fact that immigrants tend to be on slightly smaller teams, they are still more productive.
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4.2 Inventor Productivity over the Life-Cycle

The previous section illustrates the disproportionate contribution of immigrants to overall US inno-

vative output, relative to their share of the US-based inventor population. In this section, we begin

to unpack the source of these differences, exploring the innovative productivity of both immigrant

and US-born inventors over the life-cycle. To do so, we study patenting activity throughout the

span of each inventor’s career. We find that both immigrant and US-born inventors show an inverse

U-shape productivity over their life cycle, peaking in their late 30s, but immigrant inventors are

significantly more productive than US-born inventors at the peak of their productivity.

Panel (a) of Figure 3 illustrates the life-cycle innovative productivity of US-born and immigrant

inventors as measured by the annualized number of patents. This figure plots average outcomes

by age, separately for immigrant and US-born inventors. These figures plot simple raw means of

patenting output over the life cycle using a balanced panel of observations at the inventor-year

level. This does not control for time or cohort effects. For both populations, we see that, on

average, the number of patents per year increases rapidly during the 30s, peaking in the late 30s,

and then declines slowly into one’s 40s and 50s.29 While the innovative productivity of US-born

and immigrant inventors follow similar trajectories early in the life-cycle, the two populations

diverge when reaching the peak of innovative productivity, with immigrant inventors significantly

more productive than their US-born counterparts. At its peak, the gap amounts to more than

50% higher productivity of immigrants. The gap, while somewhat declining, continues to persist

throughout the rest of their careers.

While the number of patents may not necessarily capture the impact of the underlying inno-

vation, a similar pattern is apparent in Panel (b) of Figure 3, in which we measure innovative

productivity according to the annualized sum of citation-adjusted number of patents. For both

immigrant and US-born inventors, we find an inverse U-shape pattern of inventor productivity,

but immigrant inventors become significantly more productive than US-born inventors in terms of

adjusted citations from mid-30s and onward. At its peak, based on this measure, the gap suggests

that immigrants are almost twice as productive as US-born inventors. These patterns are also

confirmed in Panels (c) and (d) of Figure 3, which respectively provide measures of the annualized

production of top patents and economic value generated.

The inverse U-shape productivity of US-born and immigrant inventors is consistent with a

large literature exploring the relationship between age and scientific contributions. See Jones et

al. (2014) for a survey. This research consistently finds that performance peaks in middle age: the

career life-cycle begins with a training period in which major creative output is absent, followed

by a rapid rise in output to a peak, often in the late 30s or early 40s, and finally ending with a

subsequent slow decline in output through one’s later years (e.g., Lehman (1953); Zuckerman (1977);

Simonton (1991b,a); Jones (2010), among others). These patterns are consistent with theoretical

models of human capital accumulation in which researchers invest in human capital at early ages,

and, in so doing, spend less time in active scientific production. Consequently, skill is increasing

29Hunt et al. (2013) also document a similar age profile of patenting for men and women, albeit with coarser data.
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sharply over time but is, initially, not directed towards output. Eventually, researchers transition

to active innovative careers (Becker, 1964; Ben-Porath, 1967; McDowell, 1982; Levin and Stephan,

1991; Stephan and Levin, 1993; Oster and Hamermesh, 1998). Researchers also surely benefit from

learning-by-doing (Arrow, 1962), which provides yet another source of increasing output overtime.

Such models may explain the low productivity of immigrant and US-born inventors early on in the

life-cycle, but do not account for the differences in productivity between immigrant and US-born

inventors around the peak productivity point.

4.3 Cohort Effects and Differential Sorting

In this section, we consider a variety of potential explanations for the life-cycle differences in

productivity between immigrant and US-born inventors, including cohort effects and differential

sorting across industries and space. We find that, although they explain part of the gap between

immigrant and US-born inventors, they still cannot account for the majority of the difference.

First, Jones (2009, 2010); Jones and Weinberg (2011) emphasizes that the age-output profile

within fields is not fixed but has actually changed quite dramatically over time. In line with a

“burden of knowledge” view of the innovative process, they observe that the quantity of precursor

scientific and technological knowledge has expanded substantially over time, leading high impact,

significant technological contributions to shift towards later ages. This implies that the life-cycle

pattern of productivity might depend on birth cohort. A potential concern which arises from this,

then, is that our results on the gap between immigrant and US-born productivity could be driven

by differences between immigrant and US-born inventors in the distribution of birth years.

Another concern is that immigrant inventors may simply work in different technology classes

than US-born inventors. Then, to the extent that certain technology classes are easier to innovate,

have more impactful innovations, or have lower burden of knowledge, we would find differences

in the innovative output of immigrants versus US-born inventors over their life-cycles. A related

concern is immigrant inventors may be differentially sorted into different regions in the United

States. To the extent that immigrants, often thought to be more mobile than US-born individuals,

are more likely to settle in innovation hubs, i.e. regions which foster innovative productivity through

local agglomeration spillovers, such geographic sorting might account for the measured productivity

gaps. See, for example, Marshall (1890); Jaffe (1989); Audretsch and Feldman (1996); Ellison et al.

(2010), among others. Indeed, according to our data in 2005, 13.2% of immigrant inventors lived

in Santa Clara County, i.e. Silicon Valley, while only 4.4% of US-born inventors inventors did so.

We explore the importance of these channels in a regression setting in Table 2. In panel (a) we

explore these effects on the annual number of patents. We start in column (1) by simply controlling

for year of application fixed effects. Immigrants seem to produce on average 0.093 higher number

of patents per year, and the effect is highly statistically significant. In column (2) we add year

of birth fixed effects, which account for variations across cohorts in the time required for training

and human capital accumulation to reach the knowledge frontier, as discussed by Jones (2009,

2010); Jones and Weinberg (2011). We find that the coefficient remains unchanged. In column
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(3), we also add county fixed effects, comparing individuals who reside in the same region, and

thus likely benefiting from the same local knowledge spillovers and agglomeration externalities.

The innovation gap between immigrants and inventors does decline, but is still positive and highly

statistically significant at 0.071 patents per year. In column (4), we also allow for sorting across

technology classes by including county by technology class fixed effects in addition to year fixed

effects and YOB fixed effects. The results are largely unchanged. In column (5), we allow for the

possibility that local county agglomeration benefits vary over time and include county by year fixed

effects. In column (6), we include county by technology class by year fixed effects in addition to

YOB fixed effects. There is still a substantial productivity gap between immigrant and US-born

inventors. Immigrants produce 0.063 more patents per year, even when accounting for these sources

of differential sorting, and the effect is highly statistically significant at 1% level. Finally, in column

(7) we include controls for team size and the productivity of one’s co-inventors. Peer quality is

defined as the average number of patents and scaled citations across all co-authors within the team

(grouped into ventile bins). It is possible the immigrants collaborate with especially productive

inventors and thus immigrants are “getting credit” for the disproportionate contributions of their

co-inventors. Controlling for team size and peer quality narrows the immigrant-US-born patenting

gap to 0.052, but it is still economically large and highly statistically significant.

These results suggest that differential sorting, particularly regional sorting, can explain some

of the productivity gap between immigrant and US-born inventors but still cannot account for the

large majority of the difference. In general, regional sorting appears to account for 32% of the

productivity gap.

In panel (b) we explore the effect of these channels on annual citation-adjusted number of

patents, in panel (c) we explore annual production of top patents, and finally in panel (d) we explore

the effect on annual economic value. In all of these measures we find that while the gap seem to

decrease, between immigrant and US-born inventors, once we hold these differential sorting factors

fixed, it nevertheless remains quite large and highly statistically significant. Specifically, immigrants

produce 0.087 more annualized citations adjusted number of patents, 0.02 more annualized top

patents, and $0.95 million more in annualized economic value.

In the Appendix, we show the inverse U-shape of the innovation production function of im-

migrant and US-born inventors still remain when we add such controls, and at the peak of one’s

career immigrants still remain significantly more productive. See Figures A.11, A.12, and A.13.

4.4 Immigrant Integration into Global Knowledge Market

Do immigrant inventors bring unique knowledge to US innovation markets? Some theories of human

capital accumulation and longstanding conceptions of creativity define a cognitive process where

new ideas are seen as novel combinations of existing material (Usher, 1954; Becker, 1982; Weitzman,

1998). Therefore, one potential benefit of immigration to the United States is the importation of

global knowledge and the integration of foreign ideas with US-based ideas. Indeed, immigrants may

be trained and exposed to vastly different types of technologies and ideas in their origin countries,

17



relative to the United States. This suggests that immigrants may be uniquely positioned to explore

novel combinations of knowledge acquired in their home countries, together with technologies to

which they are exposed in the U.S.

To explore the extent to which immigrants are more likely to import and integrate foreign

technologies, we further explore the details of US-based innovative output, particularly the reliance

on foreign technologies and collaboration with foreign inventors. Our results are reported in Figure

4. In Panel (a), we explore the extent to which immigrant and US-born inventors rely on non-US

technologies. To do so, for each patent we calculate the share of backward citations of patents

that were issued outside the United States. We present the share of foreign backward citations

separately for US-born and immigrant inventors over their life-cycle. As Panel (a) illustrates,

immigrants are significantly more likely to rely on foreign technologies in their patent production,

when the gap amounts to more than 15%. In Panel (b), we find that immigrants are significantly

more likely to collaborate with foreign inventors, relative to US-born inventors. Specifically, on

average, immigrants collaborate with at least one foreign inventor in 16% of their patents, by

contrast to 9% of US-born inventors. Appendix Figure A.14 further shows that those immigrant

inventors that have more foreign co-authors also have more US-born collaborators. In this way,

immigrant inventors are well placed to intermediate the flow of knowledge from foreign markets to

the US-born.

Finally, in Panel (c), we provide an additional measure that explores the extent to which

immigrants are integrated with global innovation markets by exploring how likely foreign inventors

are to cite immigrant patents relative to US-born patents. As expected, we find that immigrants’

patents are more likely to be cited by foreign inventors. This illustrates the fact that immigrant

innovation not only disproportionately draws from foreign markets, but it is also disproportionately

visible to foreign markets. All of this evidence together supports the view that immigration to the

United States fosters the global diffusion of knowledge and the integration of foreign and US ideas.

Moreover, it is interesting to note that the gap between immigrant and US-born inventors in terms

of the tendency to collaborate with foreign inventors or to be cited by foreign inventors is declining

over time. The result may be driven by increasing assimilation of immigrant inventors over time.

We directly explore this question in the following subsection.

4.5 Assimilation of Immigrants in the US

We might expect that differences in language and culture may limit the ability of immigrants to

collaborate and integrate into the local labor market.30 Indeed, work by Freeman and Huang

(2015) shows scientists with the same ethnicity collaborate more frequently than would be implied

by their population shares. Also, immigrants may face discrimination in local labor markets (Moser,

2012).31 These forces suggest that immigrants may be more inclined to either work in seclusion or,

30See Borjas (2014) for a formalization of this idea.
31Moser (2012) exploits a change in attitudes toward a particular immigrant group—German Americans after the

outbreak of World War I—to evaluate the effect of discrimination on immigrants’ economic opportunities. She shows
that during (but not before) the war, men of German ancestry were more likely to be excluded from seats on the
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alternatively, may be less inclined to work with US-born inventors. On the other hand, immigrants

may collaborate with each other simply because it is beneficial to work with other highly productive

inventors. The extent to which immigrants collaborate with US-born inventors may have important

implications for the spillovers and the indirect contribution of immigrants to US innovation. The

patent data provides a unique glimpse into the assimilation of immigrants to the US labor market

over time, as patent application documents provide information on an inventor’s collaborators.

In Panel (a) of Figure 5, we explore whether immigrants are more likely to work in seclusion,

or less likely to collaborate, with US inventors over time. We do so by constructing the number of

unique co-authors that appear on an inventor’s patent applications in a given year, as a proxy for

the number of inventors that an individual collaborates with. As Panel (a) shows, in their early

years, US-born and immigrant inventors exhibit similar patterns, in terms of the number of unique

inventors with which they collaborate. However, immigrants seem to work with a higher number

of individuals during their 40s and 50s, consistent with their higher productivity in those years

(relative to earlier years). We find similar results in panel (b) when focusing only on co-authors

that are based in the US.

We next explore the extent to which immigrants work with other immigrants and the extent

to which they collaborate with US-born inventors. If assimilation requires cultural adaptation,

and acquisition of US-specific skills, we anticipate that over time we may see a gradual increase

in the tendency of immigrants to collaborate with US-born inventors. Indeed, we find patterns

that are very consistent with this hypothesis. In Panel (c) of Figure 5, we calculate the share

of unique co-authors that are foreign born. Among US-born inventors, we see that the share of

immigrant collaborators is fairly fixed and equal to roughly 7% over their life-cycle. In contrast,

for immigrants, early on in their careers, the share of unique immigrant co-authors is roughly

17% (more than twice the share of US-born). However, unlike for US-born inventors, we also see a

gradual decline over time in the propensity of immigrants to work with other foreign-born inventors.

Again, as illustrated in panel (d), we find similar patterns when focusing only on collaborators who

are based in the US. This gradual decline in the share of immigrant collaborators may suggest that

immigrants increasingly assimilate over time, although, the gap never closes and, even towards the

end of their career, immigrants are still more likely to collaborate with other immigrants.

5 Productivity Spillovers

In this section, we explore the extent to which immigrants generate positive spillovers on their

collaborators, and whether such spillovers are larger than those for the US-born. Such spillovers

could arise from disproportionate contributions of immigrant inventors to team-specific capital; that

is, immigrant inventors may increase the productivity of the specific teams on which they work.

Immigrant inventors may also disproportionately increase the general innovative human capital of

their collaborators, allowing them to be more productive even on future teams that the immigrant

New York Stock Exchange.
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inventor is not himself a part of. In what immediately follows, we take a reduced-form approach at

the individual level and evaluate the extent to which immigrants impact the productivity of their

inventor co-authors. Subsequently, in Section 6 we use a structural approach and a team-based

analysis to decompose these spillovers into contributions to team-specific capital and contributions

to general innovative human capital.

Measuring any given individual’s contribution to the productivity of collaborators is challenged

by the endogenous creation and ending of collaborative research efforts. The ideal research design,

therefore, is to find situations in which the collaboration between two patent inventors exogenously

ends, and then study if there is any significant and long lasting impact on the careers of the

collaborators. For our purposes, we are particularly interested in whether such disruptions differ

across immigrant and US-born inventors, that is, whether immigrant or US-born inventors yield a

greater productivity boost to their co-authors.

To construct causal estimates, our identification strategy exploits the pre-mature deaths of

inventors, defined as deaths that occur before or at the age of 60, as a source of exogenous variation

in collaborative networks. This form of identification strategy is becoming increasingly common in

the literature.32 We primarily follow Jaravel et al. (2018), in which the causal effect is identified

through a difference-in-differences research design using a control group of patent inventors whose

co-inventors did not pass away, but who are otherwise similar to the inventors who experienced the

premature death of a co-inventor. We then compare the relative impact of a pre-mature death of

an immigrant on co-authors with that of a US-born inventor to estimate their respective spillover

effects.

In the next subsections, we describe the data construction and the compilation of the matched

co-author sample. We then describe the empirical specifications we use to identify the causal

productivity spillover effects of immigrant and US-born inventors on their inventor co-authors.

5.1 Data Construction

We first identify 28,404 deceased inventors that were granted a patent before their death. Informa-

tion on the year of death and age at death is available from the Social Security Death Master File

(DMF), which is a database file made available by the United States Social Security Administration

(SSA).33 It contains information on all Social Security numbers that have been retired since 1962

due to death of the individual. In 2009, the file contained information on over 83 million deaths.

We only include inventors that are present in our Infutor sample so that their immigrant status

can be determined.

Next, we refine our sample of deceased inventors in the following ways. First, we keep only

those inventors who died at the age of 60 or earlier. The goal of this restriction is to primarily

capture only premature deaths. Older individuals may have prolonged periods of ill health prior

32See, for example, Jones and Olken (2005); Bennedsen et al. (2020); Azoulay et al. (2011); Nguyen and Nielsen
(2010); Oettl (2012); Becker and Hvide (2013); Isen (2013); Fadlon and Nielsen (2021); Jaravel et al. (2018).

33We accessed a public-use copy of the Social Security Death Master File courtesy of SSDMF.INFO.
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to death, leading to pre-trends in the analysis. By plotting the dynamics of the effects below, we

will show that there indeed does not appear to be any pre-death deterioration in the productivity

of the deceased inventor co-authors. In addition, we restrict our sample to deceased inventors who

we can unambiguously impute their immigrant status. Applying these restrictions results in 6,043

real deceased inventors.

As in Jaravel et al. (2018), we construct a group of “placebo deceased” inventors who appear

similar to the deceased inventors on various dimensions, who did not pass away, and who are not

coauthors of the deceased inventors. Specifically, we match placebo deceased inventors based on

immigrant status, the age at (real or placebo) death, the cumulative number of patent applications

at the time of (real or placebo) death, the calendar year of (real or placebo) death, and finally the

cumulative number of coauthors at the time of (real or placebo) death, grouped into ventiles. We

find matches to all 6,043 deceased inventors using this procedure. When there are multiple matches

to real deceased inventors, we randomly select up to fifty placebo matches to obtain a sample of

one-to-many matches. Finally, we remove inventors for whom we cannot find their associated co-

authors prior to death and also remove inventors who died before 1995 to ensure that we have

enough pre-death periods in the difference-in-difference analysis below. We end up with 3,947

matching groups of real-deceased and placebo-deceased inventors.

In Panel (a) of Table 3 we provide summary statistics for the real deceased and matched placebo

deceased inventors. By construction, real deceased and placebo deceased inventors are perfectly

balanced on age, year of death, immigrant status, and cumulative patents. At the time of death,

the deceased is, on average, 51.1 years old and has filed an average of 3 patents. Ten percent of the

deceased sample are immigrants. Since we match also on the ventiles of accumulated number of

co-author pre-death, real and placebo deceased are balanced on that dimension as well, with 3.45

and 3.18 co-authors, respectively.

Panel (a) also shows that real deceased and placebo deceased are well-balanced on other mea-

sures of patenting productivity, despite not explicitly matching on these variables, providing further

validation of our procedure. For example, real deceased inventors have an average of 3.97 total ad-

justed citations, have 0.50 top patents, have generated an average of $76 million of economic values,

worked on average with a team size of 3.37 collaborators. These statistics for the placebo deceased

are, respectively, 3.72 adjusted citations, 0.47 top patents, $65 million of economic value, and a

team size of 3.32 collaborators. Finally, we build the entire co-author network of collaborators prior

to the death for each of the real and placebo deceased inventors. This yields 369,509 co-inventors

of the placebo deceased, whom we refer to as placebo survivor coauthors, and 15,471 co-inventors

of the real deceased inventors, whom we refer to as real survivor inventors.

Panel (b) of Table 3 provides summary information on the real and placebo co-authors. We once

again find that, despite not explicitly matching on the characteristics of co-authors or the strength

of collaboration, the sample of real and placebo surviving co-authors is well-balanced. The surviving

co-authors of real deceased are, on average, 48.3 years old. Fifteen percent are immigrants and ten

percent are female. Placebo co-authors are, on average, 46.5 years old, with 20 percent immigrants
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and 11 percent female. Real surviving co-authors co-patented, on average, 1.91 patents with the

deceased prior to death. They have, on average, filed 8.63 cumulative patents, 1.65 top patents, and

received 12.6 total adjusted citations. Placebo surviving co-authors are very similar. On average,

they have co-patented 1.87 innovations with the deceased, filed 6.95 cumulative patents, 1.30 top

patents, and received 10.07 total adjusted citations.34 In Panel (c) we also compare the distribution

of patents across technologies for real and placebo deceased inventors as well as their collaborators.

Overall, the distributions seem to be quite balanced across both populations.

5.2 Research Design

Our identification strategy is similar to that of Jaravel et al. (2018). To study the dynamics of the

effect and test for pre-event trends, we use a full set of leads and lags around co-inventor death

specifically for real survivor inventors (Lrealit ) as well as a full set of leads and lags that both real and

placebo survivor inventors (Lallit ) within each matched pair m of real and placebo dying inventor.35

This allows for arbitrary trends within the set of surviving inventors among each matched pair of

real and placebo dying inventors. These additional controls give us more power. Specifically, we

estimate the following OLS specification:

Yit =

9∑
k=−9

βrealk 1Lreal
it =k +

9∑
k=−9

βallmk1Lall
it =k + αi + εit (1)

The effects of interest are denoted βrealk , where k denotes time relative to death. These estimates

reflect the causal effect of co-inventor death on the outcome of interest k years around death. Note

that the joint dynamics around death for both real and placebo survivors is captured by βallkm. We

also include individual fixed effects (αi), absorbing individual time-invariant characteristics.36

To summarize the results and discuss magnitudes, we employ a second specification that relies

on an indicator variable that turns to one after the real death of the inventor (AfterDeathrealit ),

but maintaining the same controls as equation (1). Thus, βreal gives the average causal effect of

death on collaborators. We also estimate this second specification by OLS:

Yit = βrealAfterDeathrealit +
9∑

k=−9
βallmk1Lall

it =k + αi + εit (2)

34One perhaps surprising aspect of Panel (b), Table 3 is how productive the real and placebo surviving co-authors
are relative to the average inventor in the full sample. In fact, this is very consistent with Jaravel et al. (2018). As
that paper notes, this is due to selection. More productive inventors, i.e. those who have generated a lot of patents,
are more likely to experience the (real or placebo) death of a collaborator. Indeed, this selection is exactly why it
would not be appropriate to use the full sample of inventors as a control group and why, instead, we use the placebo
co-author survivors.

35We only include data within event years -9 to 9 in the regression.
36Since we match each treatment death to a set of placebo control deaths from the same year and allow for

arbitrary time trends for this set of matched treat-control inventors, we do not suffer from the issues discussed in
the new difference-in-differences econometrics literature (Roth et al., 2022). These issues in difference-in-differences
estimation come from the use of two-way fixed effects models where the time trends depend on calendar year, not
the event year of each matched treat-control sample.
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Note that this model once again includes event-year and individual fixed effects. We estimate

equations (1) and (2) for the full sample of real and placebo survivors, and then separately for

real and placebo survivors of immigrant and US-born inventors. Finally, we estimate separately

the effect of immigrants pre-mature deaths on immigrant co-authors and US-born co-authors, and

repeat the same empirical exercise for US-born inventors’ pre-mature deaths. In all analysis, we

cluster standard errors at the deceased inventor level.

5.3 Results

We examine four outcomes: number of patents, patents in the top 10% of citations in their tech-

nology class (top patents), weighted number of patents by adjusted citations (scaled citations),

and economic value. Our results from equation (2) are reported in Table 4, which reports βreal.

For all inventors, we see economically meaningful and statistically significant declines in innovative

productivity across all measures, except adjusted citations. Moreover, across all four measures of

innovative productivity, we find that co-inventors of immigrants face a larger decline in the years

subsequent to a collaborator’s death, suggesting that the causal effect of an immigrant inventor

death on his or her team is larger than that of a US-born inventor.

We first focus on the annual number of patents produced. In column (1) of Table 4, we provide

the estimate for all inventors, regardless of whether the deceased inventors are immigrant or US-

born. The coefficient βreal equals to -0.087 and is highly statistically significant. Thus, relative to

placebo co-authors, those inventors who experience the real death of a collaborator are significantly

less productive. To interpret these magnitudes of the treatment effect, we quantify the percent

change in the outcome, relative to the expected mean outcome of the treatment group, had they

not been treated.37 Relative to this expected mean (reported in Table 4), the treatment effect

implies that a deceased inventor lead collaborators to produce 10.3% lower patenting output. In

column (2), we explore the effect of a premature death of an immigrant. We find that the decline

in the number of patents of co-inventors is significantly larger. The coefficient equals -0.182 and

is again highly statistically significant, implying a 16.3% decline in patenting. By contrast, in

column (3) we focus on the causal effect of pre-mature death of US-born inventors, and find that

the magnitude of the decline in productivity of co-inventor, as measured by number of patents,

while still statistically significant, is only 9.2%. The dynamic treatment effects for US-born and

immigrant inventors around year of death are plotted in Panels (a) and (b) of Figure 6.

In columns (4) to (6) of Table 4, we focus on the adjusted citations measure and find similar

results. The dynamic treatment effects around year of death are plotted in Panel (b) of Figure 6.

As shown in column (4), for all inventors, we find a statistically significant coefficient of -0.154,

37Specifically, we calculate the expected mean counterfactual for the treatment group by estimating a simple
regression specification that is standard in the diff-in-diff framework: Yit = β0+β1Treat+β2Postt+β3TreattPostt+
εit. The estimated outcome of the treatment group, absent treatment is: β0 + β1 + β2. This simplified regression
removes the individual fixed effects and replaces them with a dummy for being in the treatment and replaces the
calendar year fixed effects with the dummy for being in the post period (after either placebo or real death). The allows
us to quantify the average outcome in the post period for the treatment, absent treated by essentially averaging the
individual fixed effects together into the treatment dummy, and average the calendar year FEs into the post dummy.
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which is equivalent to a 14.7% decline in the number of adjusted number of citations following a

collaborator death. Again, the effect is significantly higher for immigrants. Specifically, as reported

in columns (5) and (6), immigrant inventor death leads to a decline of 23.0% in adjusted citations

filed by co-authors, while the effect is only 13.1% for US-born inventors. In columns (7) to (12) of

Table 4 we explore two additional dimensions of innovative productivity, the number of top patents

and the economic value of patents. We find similar patterns. The death of a collaborator leads to a

decline in innovative productivity, but the effect of a death of an immigrant is significantly larger.

The dynamic treatment effects around year of death for these outcomes are plotted in Figure 7.38,39

5.4 Mechanisms driving spillover differences

Having established differential productivity impacts of US-born versus immigrant inventor deaths

on co-authors, a natural question is what drives this difference. For example, we have shown

that immigrant inventors are more productive in their patenting output than US-born inventors.

To the extent that more productive inventors have larger spillover effects, this could drive our

results. Alternatively, and perhaps more interesting from a policy perspective, it may be that there

is something special and unique about the immigrant inventor that drives the large productivity

spillovers.

We investigate these issues by estimating heterogeneous treatment effects of inventor deaths

along a number of observable dimensions of inventor characteristics in addition to estimating the

effect of immigrant versus US-born deaths. For example, the average dying immigrant inventor

is 0.48 years older than the average dying US-born inventor. If we allow for treatment effect

heterogeneity of an inventor death based on their age, then our estimated spillover gap between

US-born and immigrant inventors would only capture the differential effects above and beyond

the treatment effect heterogeneity driven by their age differences. To implement this, we allow for

treatment effect heterogeneity based on the dying inventor’s age, the dying inventor’s year of death,

the dying inventor’s cumulative patents and citations prior to death, the dying inventor’s average

coauthors’ ages, the dying inventor’s average coauthors’ cumulative patents and citations (measured

in the year prior to death), the collaboration recency between the dying inventor and surviving

coauthor, the number of unique prior coauthors prior to death, the number of co-patents between

dying and surviving coauthors prior to death, the similarity in dying and surviving inventor’s prior

work as measured by the share of their own patent’s backward citations to over-lapping technology

classes, and the number of patents per-capita in their commuting zone of residence, as measured in

38These results are robust to using the Callaway and SantAnna (2021) methods that deal with possible issues with
staggered difference-in-difference research designs. The issues that this estimator fixes are not a problem for our
research design since we include match group-X-event year fixed effects for all of our specifications. To be sure, Table
A.4 shows we get very similar results using the Callaway and SantAnna (2021) estimator.

39One alternative specification is a Poisson estimation, which has the most economically interpretable units. How-
ever, since the estimation must be carried out using MLE, having thousands of fixed effects in the regression make it
essentially impossible to estimate. For this reason, we have opted to assess robustness using a log(1 +x) specification
in Table A.5 in the Appendix: the death of an immigrant co-inventor has a larger negative impact, consistent with
our main specification.

24



the year prior to death. We measure each of these and then convert them to z-scores so that their

units are comparable. To implement this, we augment equation (2) as follows:

Yit = βrealimmX
imm
i ∗AfterDeathrealit + βrealZi

Zi ∗AfterDeathrealit

+βrealAfterDeathrealit +
9∑

k=−9
βallmk1Lall

it =k + αi + εit, (3)

where Ximm
i is a binary indicator denoting whether the dying inventor is an immigrant and Zi is a

vector of observable characteristics of the dying inventor and surviving inventors measured in the

year prior to death. These are the additional dimensions of treatment effect heterogeneity described

above.

We estimate equation (3) and report the coefficients in Table A.6. For example, we find that

a one standard deviation increase in the age of the deceased inventor leads to 0.044 more patents

by the surviving inventor. This implies that inventors who die younger and are thus at a more

productive point of their careers have larger impacts on their surviving coauthors. Table (3) reveals

other intuitive forms of treatment effect heterogeneity. Row 3 shows dying inventors who were

more productive prior to death have larger (more negative) treatment effects on their surviving

collaborators. Row 6 shows that the treatment effects are larger (more negative) when the last

collaboration between the dying inventor and co-author was more recent. The table reports the

treatment effect heterogeneity over 10 different dimensions, which are estimated simultaneously, as

denoted in equation (3).40

In Table 5, Panel A reports the baseline treatment effect differential between US-born and

immigrant inventors before controlling for these additional dimension of observable treatment ef-

fect heterogeneity. Panel B reports the treatment effect differential after controlling for the ten

observable heterogeneous treatment effects, (reported in Table A.6). Panel C reports the differ-

ence between the two. We see that after controlling for a host of heterogeneous treatment effects

along many observables, the productivity spillover gap between US-born and immigrant inventors

remains essentially unchanged for scaled citations and economic value, and in fact increases by a

statistically significant amount for number of patents and number of top patents.

To investigate why the immigrant-US-born spillover gap does not narrow we estimate a Gelbach

(2016) decomposition of the difference based on the ten dimensions of treatment effect heterogene-

ity.41 Positive (negative) percentages indicate that controlling for the treatment effect heterogeneity

based on the given observable widens (shrinks) the difference. We first see from Row 3 of Panel

40While we run these heterogeneous treatment effects for all four of our outcome measures, the estimates using
economic value may be less informative because imputation for the privately-own patents economic value were imputed
using a regression that not contain all of these values. This could make treatment effect heterogeneity along these
dimension misleading. We will not focus on this outcome in this section of the paper.

41The Gelbach (2016) method applies the omitted variable bias formula to quantify how much of a focal coefficient
from a regression without a given set of controls can be explained by each of the additional controls, once they are
added to the regression. See Gelbach (2016) for the full setup and details.
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D of Table 5 that accounting for treatment effect heterogeneity driven by the productivity of the

dying inventor does narrow the treatment effect gap between immigrant and US-born inventors for

number of patents, scaled citations, and top patents. That is, consistent with the discussion above,

the treatment effect on co-authors increases in magnitude with the dying inventor’s productivity.

This, together with the fact that dying immigrant inventors are more productive than dying US-

born inventors, as shown in column (5), reduces the gap in productivity spillovers. In particular,

controlling for productivity at the time of death reduces the treatment effect gap by 15.7% for the

number of patents, 4.8% for scaled citations, and 22.4% for top patents.

However, we also see from Row 6 that controlling for the time since the dying inventor co-

authored a patent with the surviving inventor actually widens the immigrant-native gap across

productivity measures. Specifically, it widens the gap by 10.6% for number of patents, 4.2% for

scaled citations, and 3.6% for top patents. This is due to the fact that the dying immigrants have

collaborated with the surviving co-author less recently than dying US-born inventors and that death

involving more recent collaborations have more negative (larger magnitude) treatment effects.

Taken together, Table 5 shows that there is meaningful treatment effect heterogeneity that is

consistent with economic intuition. Moreover, immigrants and US-born inventors differ on key ob-

servable characteristics, such as own and co-author productivity, that generate significant treatment

effect heterogeneity. However, collectively these ten dimension of treatment effect heterogeneity do

little to explain why immigrant inventor deaths have greater impact on their collaborators’ pro-

ductivity. This provides strong evidence that there is indeed something special and unique about

the immigrant inventor that drives large productivity spillovers on their US-based co-authors.

6 Decomposition of Immigrant Contribution to US Innovation

The previous sections showed that immigrants have substantial contributions to US innovation, both

directly through their own output and indirectly through positive spillovers onto their collaborators.

The purpose of this section is two-fold. Using a structural framework, we first study whether the

disproportionate spillover effects documented in the previous section arise solely from immigrant

contributions to team-specific capital, or whether immigrants increase the innovative human capital

of their co-authors, which increases their productivity even on teams the immigrant co-author is

not a part of. We then further use this structural framework to quantify the share of total US-based

innovation that can be attributed to immigrants.

6.1 Team-Based Innovation Framework

We begin by introducing a structural framework in which innovation is produced by teams, where

the productivity of the team depends on a team-specific productivity as well as the human capital

of the constituent team members. Let j denote a team of inventors collaborating on at least one

patent in the sample. We assume that the innovative output of a team j in year t is given by the

following production function:
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Yjt =
(

1− βdeath1deathjt

)
hjtg (|Jj |) εjt (4)

hjt =

∏
i∈Jj

hit

 1
|Jj |

(5)

hit =
(
1 +N imm

it

)βimm (
1 +Nnat

it

)βnat

. (6)

Here 1deathjt is a binary variable equal to one if any of the team members of team j are no longer alive

in year t and Jj is the set of team members on team j. Thus, if a team member dies, the output of

that team in the future is reduced by a constant fraction βdeath.42 The variables N imm
it and Nnat

it

denote the number of alive unique prior immigrant and US-born collaborators of team member

i in year t, respectively. hit denotes the human capital level of inventor i in year t. Equation

(6) shows that an individual’s human capital is a function of his collaborator network, where we

allow differential returns with respect to US-born and immigrant prior co-authors, as reflected by

βnat and βimm respectively. The team’s innovative productivity then depends on the geometric

average of human capital of all members within the team, denoted by hjt. Finally, we allow the

team’s innovative productivity to depend on team size through a non-parametric function, g(|Jj |),
as well as a team-specific idiosyncratic productivity εjt. If immigrant team members generate high

team-specific capital, that will be reflected in higher levels of εjt.

As evident from equation (6), the death of an inventor affects team productivity through two

different channels. First, there is the direct channel by which the team’s the dying inventor lowers

his teams’ productivity by the scaling factor βdeath. Second, there is the indirect channel. The

death lowers the human capital of the dying inventor’s co-authors, according to the parameters

βimm and βnat. This in turn lowers the productivity of the teams those surviving collaborators

are on, even among teams the dying inventor was never a part of. We next discuss how these key

structural parameters can be recovered from the data.

Recovering βimm and βnat. We focus on number of patents as our dependent variable of interest.

We restrict our sample to teams that survived throughout our analysis period, denoted by J1, such

that 1
death
jt = 0 for all t and that βdeath drops out from equation (6). Intuitively, these are teams

that did not experience a direct death of a team member. This subsample allows us to isolate

the indirect human capital channel of team members losing co-authors in their prior collaboration

network. To derive an estimation equation, we take a first-order approximation of the production

functions with respect to the number of unique living immigrant and US-born collaborators.43

42Theoretically, the productivity of a team should drop to zero after a team member dies, suggesting βdeath = 1.
However, in the data we observe multiple instances where patents were granted after the team was destroyed due to
death, allowing βdeath < 1. This is likely due to patent applications and research projects that were initiated prior
to a team member’s death, but that had not yet resulted in a patent granted at the time of death.

43The reason we use a first-order approximation is to simplify issues of dealing with years when inventors have
zero output, which prevents taking logs of the production functions. Alternatively, working with the production
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Taking this first-order Taylor expansion around a base value and rearranging yields:

(
Yjt − Y
Y

)
j∈J1

= βimm

(
N imm
jt −N imm

1 +N
imm

)
j∈J1

+ βnat

(
Nnat
jt −N

nat

1 +N
nat

)
j∈J1

+ ε̃jt, (7)

where Ng
jt =

∏
i∈Jj (1 + Ng

it)
1
|Jj | − 1 for g ∈ {imm, nat} and all variables with a bar reflect the

centering point of the Taylor expansion. Specifically, we consider the approximation around the

average values of the placebo-deceased group across years following the inventor death. Appendix

B provides a detailed derivation of equation (7).

The left-hand side of equation (7) represents the percent decline in output due to the the

change in the team-average number of alive prior collaborators. Thus, to recover the structural

parameters, we need to understand how, on average, an inventor death impacts the output of the

teams the inventor’s collaborators are a part of, excluding the teams the dying inventor is directly

a part of. The results are reported in columns (1) and (2) of Panel A of Table 6. The estimating

specification resembles equation (2), except now we replace the individual subscript i with the team

subscript j. For example, column (1) suggests that the death of an immigrant coauthor in a team

member’s prior collaboration network lowers that team’s productivity by 17.2%. The right-hand

side of equation (7) shows that this productivity decline depends on the percent change in the

team’s average number of immigrant and US-born coauthors. This relationship highlights that, in

order to recover the structural parameters, we also need to know how the exogenous death of a

coauthor in the network changes the team’s average number of prior alive immigrant and US-born

collaborators. We estimate these numbers in columns (3)-(6) of Table 6. For example, columns

(3) and (5) suggest that the death of an immigrant coauthor in a team member’s network lowers

the team’s average number of prior alive immigrant and US-born collaborators by 25.6% and 7.6%,

respectively.

We finally take these estimates from Panel A of Table 6, plug them into the first-order approx-

imation in equation (7), and solve for the two structural parameters of interest.44 These estimates

are reported in columns (1) and (2) of Table 7.45 We find that the disproportionate immigrant

spillover effects documented in the previous section do not solely arise from contributions to team-

specific capital. Relative to US-born inventors, immigrant inventors disproportionately contribute

to the innovative human capital of their collaborators, human capital which is transferable to

function directly in levels delivers a model where the error term εjt is non-separable, making structural estimation
challenging. The first-order approximation transparently maps standard OLS estimates to structural parameters of
the production function.

44The ε̃jt drops out of the equation since we are plugging sample means.
45Specifically, we plug sample means into the LHS and RHS of equation (7), separately for teams experiencing

an immigrant death in the co-author network and a US-born death in the co-author network. This provides us
with two equations in two unknowns which allows us to estimate the parameters βimm and βnat. First, we use the
estimates from Panel A of Table 7 on the effects of an immigrant (or US-born) death on number of patents to calculate
(Yit − Ȳ )/Ȳ . Second, we calculate the effects of an immigrant (or US-born) death on the team’s geometric average
number of prior collaborators to estimate (Ng

jt − N̄
g)/N̄g for g ∈ {imm,nat}. We then use the average team-level

number of unique collaborators before death, N̄g, to scale this estimate by N̄g/(1 + N̄g).
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teams the immigrant co-author himself is not a part of. In particular, we find βimm = 0.718 and

βnat = 0.290.

Recovering βdeath. We next restrict our sample to teams that experience an inventor death at

some point in our analysis period, denoted by J2, such that I
death
jt = 1 for t ≥ tdeathj . We again

take a first-order approximation of the production function, this time with respect to team-average

human capital and the death indicator, yielding the equation:(
Yjt − Y
Y

)
j∈J2

=

(
hjt − h
h

)
j∈J2

− βdeath, (8)

where hjt can now be calculated according to the estimates of βimm and βnat above. We again

consider the approximation around the average values of the placebo-deceased group across years

following the inventor death. Appendix B provides a detailed derivation of equation (8).

The left-hand side of equation (8) represents the percent decline in output due to the death of

an inventor on the team. The right-hand side of equation (8) shows that this productivity decline

operates through two channels: the direct channel from experiencing a dying inventor on the team

and the indirect channel from lowering the team’s human capital. Columns (1) and (2) of Panel B

of Table 6 display our estimates of the percent decline in output and team-average human capital

respectively. We find that the death of an inventor decreases output by 28.2% and human capital

by 11.6%. Substituting these numbers into equation (8), we recover βdeath = 0.166, as reported in

column (3) of Table 7.

Team-Specific Capital. We have shown that immigrant inventors disproportionately contribute

to the transferable human capital of their collaborators, relative to US-born inventors. A natural

outstanding question is whether immigrants also contribute disproportionately to team-specific

capital. In other words, do teams with immigrants have higher levels of εjt

To study this question, we use our production function parameter estimates to recover the

production residual, g(|Jj |)εjt. We correlate this with the share of immigrants within the team,

controlling for the log of team size, ln(|Jj |), yielding the estimates displayed in Panel B of Table 7.

Once we strip out team size effects and the spillover effects on collaborators and compare the average

innovation across teams with different shares of immigrants, we see that moving from a team that

is zero percent immigrants to one hundred percent is associated with a team-specific productivity

increase of 5% (0.0036/0.0743). This is statistically significant at the 1% level. Thus immigrants

appear to contribute disproportionately to both team specific capital and the transferable human

capital of their collaborators.

6.2 Decomposing Aggregate Innovation

We finally use our model to quantify the contributions of immigrant and US-born inventors to

total US innovation, taking into account their indirect spillover effects on the human capital of
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their collaborators. We focus on the number of patents as our metric. We emphasize that these

calculations are an accounting decomposition of the observed innovation we see in the data and

do not represent counterfactual analysis of what would have happened under different levels of

immigration to the United States.

To quantify immigrant indirect contributions through human capital spillovers, we compute

the portion of US-born innovation that can be attributed to the human capital generated by their

immigrant collaborators. We perform a similar calculation to understand the importance of US-

born human capital spillovers on immigrants. To start, we calculate the contribution share of

immigrant and US-born inventors by taking all patents granted between 1990-2016, assigning equal

credits among all members within the team, adding them up across time and team separately

for the immigrant and US-born, and then finally dividing by the aggregate nationwide output.46

Specifically, for g ∈ {imm, nat}, we calculate

1

Y agg

∑
j

∑
t

[∑
i∈Jj 1

g
i

|Jj |
Yjt

]
, (9)

where 1gi takes a value 1 if i belongs to group g and 0 otherwise and Y agg =
∑

j

∑
t Yjt is nationwide

aggregate innovative output. In column (1) of Table 8, we find that US-born and immigrant

inventors produce 77% and 23% of the total patents respectively.

We then calculate how much aggregate innovation would decline if all cross-group collaboration

between immigrant and US-born inventors are removed. Specifically, for each patent, we reduce

the team-average human capital by setting immigrant team members to have zero US-born col-

laborators, holding fixed their number of prior immigrant collaborators. Likewise, we set US-born

team members to have zero immigrant collaborators, holding fixed their number of prior US-born

collaborators. In particular, for g ∈ {imm, nat} and given the production function estimates in

Table 8, we calculate:

1

Y agg

∑
j

∑
t

[∑
i∈Jj 1

g
i

|Jj |
Ỹjt

]
(10)

where Ỹjt =
(

1− βdeath1deathjt

)∏
i∈Jj

h̃it

 1
|Jj |

g (|Jj |) εjt

h̃it =
(
1 + 1

imm
i N imm

it

)βimm (
1 + 1

nat
i Nnat

it

)βnat

.

Removing cross-group spillovers reduces US-born innovation to 60% of total innovation, as shown

in column (2) of Table 8. This implies 17% (77-60) of total US innovation can be attributed to

immigrants collaboration spillovers on their US-born collaborators and, further, that 22% ((77-

46We focus on the innovative human capital spillover channel and not the team-specific capital.
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60)/77) of US-born inventors total innovation can be indirectly attributed to their immigrant

coauthors. Removing US-born contributions to immigrant human capital lowers the immigrant

share of total innovative output to 15%, implying that US-born human capital spillovers account

for 8% (23-15) of aggregate innovation. This further suggests that 35% ((23-15)/23) of immigrant

inventors’ total innovation can be indirectly attributed to their US-born co-authors.

In sum, these calculations suggest that immigrants contribute directly to 15% of innovation,

and their indirect contributions, through the enhancement of US-born inventors human capital,

explain 17% of innovation. Together, immigrants account for 32% of total US-based innovation,

despite only making up 16% of the inventor workforce. Finally, cross-group spillovers (US-born on

immigrants and immigrant on US-born) account for 25% of total US innovation, highlighting the

importance of joint US-born and immigrant collaboration in driving US innovation. We summarize

these results in column (3) of Table 8.

7 Conclusion

In this paper, we characterize the contribution of immigrants to the innovative output of the

United States since 1990. Using inventor address information provided by the USPTO, we link

patent records to the Infutor database. We then develop a methodology based on the first five

digits of an individual’s SSN and the individual’s year of birth to identify the immigrant status of

inventors. We perform several validation checks of this procedure and show that our methodology

matches Census provided county immigrant shares with a very high degree of accuracy.

We find that over the course of their careers, immigrant inventors are more productive their US-

born counterparts, as measured by the number of patents, patent citations, and the economic value

of these patents. Immigrant inventors also appear to facilitate the importation of foreign knowledge

into the United States, with immigrant inventors relying more heavily on foreign technologies

and collaborating more with foreign inventors. Immigrant inventors have a greater number of

collaborators than US-born inventors and while they are more likely to work with other immigrants,

this tendency declines over time.

Our study raises a number of important questions for future research. First, it would be

interesting to examine the heterogeneity of direct and indirect immigrant contributions by country

of origin. One could then look at the network effects between immigrants from the same country

versus interactions across countries. Alternative data sources might also allow one to study the

contributions of immigrants who arrive in the United States as children or the contributions of

second-generation immigrants, as compared to the first-generation adult immigrant sample we

study here. Another important question is whether immigrants contribute disproportionately to

innovation in countries other than the United States. Finally, since our paper is unable to speak

to whether immigrants crowd-out innovation of US-born inventors, our paper is unable to provide

evidence on how total innovation would change from immigration reform that changes the number

of immigrants in the US. This would be a fruitful direction for future research to pursue.
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Figure 1: Share of Immigrant Contribution

Notes. Categories are: (a) share in the overall population from 1990-2016 according to the ACS; (b) share

of overall number of inventors, where inventor is defined as an individual who patent at least once; (c) share

of overall number of patents; (d) share of overall number of citations, calculated over a three year horizon

to avoid truncation issues; (e) citations normalized by the average number of citations in a given technology

class year (the year in which all patents were applied); (f)-(j) share of top patents, where a top patent is

defined as a patent that is in the top 50%, 25%, 10%, 5%, and 1% of citations in a given technology class and

year, respectively; (k) share of patent value, calculated based on stock market reaction to patent approval

using the KPSS measure which is available for publicly traded firms and imputed for private firms. The blue

bars include all patents. The red bars include solo-author patents only.
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Figure 2: Share of Immigrant Contribution across Technology Classes

Notes. Categories are: (a) share of overall number of patents; (b) citations, calculated over a three year

horizon to avoid truncation issues, normalized by the average number of citations in a given technology class

year (the year in which all patents were applied); (c) share of top patents, where a top patent is defined as

a patent that is in the top 10% of citations in a given technology class and year; (d) share of patent value,

calculated based on stock market reaction to patent approval using the KPSS measure which is available for

publicly traded firms and imputed for private firms.

(a) Number of Patents (b) Total Adjusted Citations

(c) Top Patents (d) Market Value
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Figure 3: Productivity over the Life Cycle

Notes. Categories are: (a) share of overall number of patents; (b) citations, calculated over a three year

horizon to avoid truncation issues, normalized by the average number of citations in a given technology class

year (the year in which all patents were applied); (c) share of top patents, where a top patent is defined as

a patent that is in the top 10% of citations in a given technology class and year; (d) share of patent value,

calculated based on stock market reaction to patent approval using the KPSS measure which is available for

publicly traded firms and imputed for private firms.

(a) Number of Patents (b) Total Adjusted Citations

(c) Top Patents (d) Market Value
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Figure 4: Global Knowledge Diffusion

Notes. Citations are calculated using a three year horizon to avoid truncation issues. Categories are: (a)

share of foreign patents that were cited by the inventor in their patents; (b) share of patents in which a

foreign inventor is one of the co-authors in a given year; (c) share of foreign patents that cited one of the

inventors patents.

(a) Share of Foreign Backward Citations
(b) Share of Patents Collaborated with Foreign
Inventors

(c) Share of Foreign Forward Citations
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Figure 5: Assimilation over the Life Cycle

Notes. Categories are: (a) number of unique co-authors for all patents filled in a given year; (b) number

of unique U.S. based co-authors for all patents filled in a given year (c) share of immigrants among unique

co-authors for any given year ; (d) share of immigrants among unique U.S. based co-authors for any given

year.

(a) Number of Unique Co-authors (b) Number of Co-authors Based in the U.S.

(c) Share of Immigrants among Unique Co-
authors

(d) Share of Immigrants among Unique U.S.
Based Co-authors
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Figure 6: Comparing Immigrant and US-born Inventor Death

Notes. Effect of the death of a co-author on inventor productivity for US-born and immigrant inventors,

estimated using a diff-diff estimator in a sample matched by age, cumulative number of patents, year, ventiles

of the number of co-authors. Vertical lines represent a 95% confidence interval constructed using standard

errors clustered at the deceased inventor level. Categories are: (a) number of patents; (b) citations, calculated

over a three year horizon to avoid truncation issues, normalized by the average number of citations in a given

technology class year (the year in which all patents were applied).

(a) Number of Patents

(b) Number of Adjusted Citations
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Figure 7: Comparing Immigrant and US-born Inventor Death

Notes. Effect of the death of a co-author on inventor productivity for US-born and immigrant inventors,

estimated using a diff-diff estimator in a sample matched by age, cumulative number of patents, year, ventiles

of the number of co-authors. Vertical lines represent a 95% confidence interval constructed using standard

errors clustered at the deceased inventor level. Categories are: (a) number of top patents, where a top

patent is defined as a patent that is in the top 10% of citations in a given technology class and year; (b)

total patent value, calculated based on stock market reaction to patent approval using the KPSS measure

which is available for publicly traded firms and imputed for private firms.

(a) Top Patents

(b) Economic Value
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Table 1: Summary Statistics

Notes. This table shows summary statistics of the final inventor panel ranging from 1990 to 2016.

Number of patents is defined as the number of patents applied for by an inventor during the period. Total

citations is the total number of citations received by an inventor. Total adjusted citations is citations

normalized by the average number of citations in a given technology class year (the year in which all

patents were applied). Total value created is the share of patent value, calculated based on stock market

reaction to patent approval using the KPSS measure which is available for publicly traded firms and

imputed for private firms. Top patents is defined as a patent that is in the top 10% of citations in a

given technology class and year. Age at application is the average age of all authors at the time of application.

Mean Median Top 90% Std Dev # Obs

Patenting Outcomes - Inventor-Level

Number of patents 4.88 2.00 11.00 11.67 652,832

Total citations 24.01 4.00 50.00 104.55 652,832

Total adjusted citations 6.73 1.19 13.21 35.70 652,832

Total value created 91.38 26.70 187.34 305.25 652,832

Top patents 1.26 0.00 3.00 4.40 652,832

Patenting Outcomes - Patent-Level

Citations 4.50 1.00 11.00 10.47 1,790,161

Adjusted citations 1.29 0.42 2.84 6.34 1,790,161

Market value 18.62 11.83 35.25 37.44 1,790,161

Top patents 0.25 0.00 1.00 0.43 1,790,161

Age at application 47.09 46.00 61.00 10.66 1,790,161

Demographics of Inventors

Female 0.11 0.00 1.00 652,832

Immigrant 0.17 0.00 1.00 652,832
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Table 2: Productivity Differences between Immigrant and US-born Inventors

Notes. This table estimates the effect of being an immigrant on inventors’ productivity with different

combinations of fixed effects. Precisely, we run Yit = β0 + β1Immigranti +Xγ + εit, where Yit denotes our

outcome of interest for inventor i in year t, Immigranti equals 1 if the inventor is an immigrant based on

our measure, and X is a vector of fixed effects that we successively add to the regression. Peer quality is

defined as the average number of patents and scaled citations across all coauthors within the team (grouped

into ventile bins). Standard errors appear in parentheses and are clustered at the inventor level. *, **, and

*** denote statistical significance at the 10%, 5% and 1% level, respectively. Panel A shows the effect on

total annual number of patents per-inventor. Panel B shows the effect on total annual citations normalized

by the average number of citations in a given technology class year (the year in which all patents were

applied). Panel C shows the effect on annual aggregate economic value of the patent, calculated based on

stock market reaction to patent approval using the KPSS measure which is available for publicly traded

firms and imputed for private firms. Finally, panel D shows the effect on annual number of top patents,

where a top patent is defined as a patent that is in the top 10% of citations in a given technology class and

year.

Panel A: Annual Number of Patents

(1) (2) (3) (4) (5) (6) (7)

Immigrant 0.093*** 0.092*** 0.071*** 0.062*** 0.071*** 0.063*** 0.052***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 15,714,917 15,714,917 15,714,906 15,192,932 15,709,593 15,187,669 15,187,669

Year FE yes yes yes yes yes no no

YOB FE no yes yes yes yes yes yes

County FE no no yes no no no no

County × Tech FE no no no yes no no no

County × Year FE no no no no yes yes yes

Tech × Year FE no no no no no yes yes

Team size × Year FE no no no no no no yes

Peer quality × Year FE no no no no no no yes

Panel B: Annual Adjusted Citations

(1) (2) (3) (4) (5) (6) (7)

Immigrant 0.149*** 0.147*** 0.100*** 0.086*** 0.100*** 0.087*** 0.072***

(0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Observations 15,714,917 15,714,917 15,714,906 15,192,932 15,709,593 15,187,669 15,187,669

Year FE yes yes yes yes yes no no

YOB FE no yes yes yes yes yes yes

County FE no no yes no no no no

County × Tech FE no no no yes no no no

County × Year FE no no no no yes yes yes

Tech × Year FE no no no no no yes yes

Team size × Year FE no no no no no no yes

Peer quality × Year FE no no no no no no yes
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Table 2: (Continued)

Panel C: Annual Number of Top Patents

(1) (2) (3) (4) (5) (6) (7)

Immigrant 0.029*** . 0.030*** 0.022*** 0.020*** 0.021*** 0.020*** 0.017***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 15,714,917 15,714,917 15,714,906 15,192,932 15,709,593 15,187,669 15,187,669

Year FE yes yes yes yes yes no no

YOB FE no yes yes yes yes yes yes

County FE no no yes no no no no

County × Tech FE no no no yes no no no

County × Year FE no no no no yes yes yes

Tech × Year FE no no no no no yes yes

Team size × Year FE no no no no no no yes

Peer quality × Year FE no no no no no no yes

Panel D: Annual Aggregate Economic Value

(1) (2) (3) (4) (5) (6) (7)

Immigrant 1.790*** 1.733*** 1.213*** 0.860*** 1.229*** 0.945*** 0.761***

(0.054) (0.054) (0.055) (0.055) (0.055) (0.056) (0.053)

Observations 15,714,917 15,714,917 15,714,906 15,192,932 15,709,593 15,187,669 15,187,669

Year FE yes yes yes yes yes no no

YOB FE no yes yes yes yes yes yes

County FE no no yes no no no no

County × Tech FE no no no yes no no no

County × Year FE no no no no yes yes yes

Tech × Year FE no no no no no yes yes

Team size × Year FE no no no no no no yes

Peer quality × Year FE no no no no no no yes
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Table 3: Inventor Death Controls

Notes. This table shows summary statistics for control variables and pre-treatment dependent variables for

the real and placebo deceased and survivor inventors at the actual/counterfactual deceased year. The real

and placebo deceased sample was created by matching on age, cumulative number of patents, year, and

ventiles of the number of co-authors. In Panel A, controls include age, year of death, immigrant status,

gender, team size, and number of teams (χ2 = 7.85). In Panel B, controls include age, immigrant status,

and gender for the Infutor matched sample where the characteristics are available (χ2 = 81.68). For the

full sample in Panel B, we also include collaboration strength variables: the number co-patents between a

survivor inventor and his or her deceased co-inventor before time of death. Panel C shows the number of

patents and share of patents for real and placebo deceased and survivor inventors in each of the six technology

categories (χ2
deceased = 8.05 and χ2

survived = 74.95).

Panel A: Real vs. Placebo Deceased Demographics

Real Deceased Placebo Deceased

Mean Median Std. Dev. Mean Median Std. Dev.

Age 51.13 53 7.05 51.13 53 7.05

Year 2,004.42 2,005 4.89 2,004.42 2,005 4.89

Immigrant status 0.10 0 0.10 0

Cumulative patents 3 2 2.65 3 2 2.65

Co-authors 3.45 2 4.35 3.18 2 3.51

Adjusted citations 3.97 1.19 9.38 3.72 1.05 10.74

Top patents 0.50 0 1.40 0.47 0 1.48

Economic Value 76.11 23.11 265.43 64.50 20.79 189.51

Team size 3.37 3 2.20 3.32 3 2.49

Female 0.07 0 0.10 0

Sample size 3,947 155,711
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Table 3: (Continued)

Panel B: Real vs. Placebo Co-Inventor Characteristics

Real Deceased Placebo Deceased

Mean Median Std. Dev. Mean Median Std. Dev.

Age 48.37 49 16.61 46.56 48 20.58

Immigrant status 0.15 0 0.20 0

Co-patents pre-treat 1.91 1 2.26 1.87 1 2.26

Cumulative patents 8.63 3 20.46 6.95 3 16.06

Adjusted citations 12.58 3.24 35.70 10.07 2.39 29.09

Top patents 1.65 0 4.79 1.30 0 3.80

Economic Value 209.40 49.97 585.34 165.03 39.44 539.83

Female 0.10 0 0.11 0

Sample size 15,471 369,509

Panel C: Comparing Technologies

Deceased Inventors Placebo Inventors Deceased Co-inventor Placebo Co-inventor

# Patents Share # Patents Share # Patents Share # Patents Share

Chemicals 2,182 0.09 68,868 0.08 21,112 0.09 324,931 0.07

Computers 2,843 0.12 108,034 0.12 25,009 0.10 508,505 0.11

Drugs 1,810 0.07 72,390 0.08 16,205 0.07 275,415 0.06

Economic Value 1,957 0.08 79,082 0.09 21,734 0.09 380,562 0.08

Female 1,929 0.08 63,383 0.07 12,953 0.05 224,088 0.05

Sample size 1,936 0.08 63,925 0.07 10,551 0.04 197,966 0.04
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Table 4: Inventor Death

Notes. This table shows the difference-in-difference OLS estimates of the inventor death full sample. The

sample is the same as defined in table 3 and all variables are as defined in table 1. Standard errors appear

in parentheses and are clustered at the deceased inventor level. *,**, and *** denote statistical significance

at the 10%, 5%, and 1% level, respectively.

Dependent Variable: Number of Patents Adjusted Citations

All Immigrant US-born All Immigrant US-born

(1) (2) (3) (4) (5) (6)

Post Death -0.087*** -0.182*** -0.075*** -0.154*** -0.337*** -0.130***

(0.011) (0.050) (0.011) (0.015) (0.063) (0.015)

Control Post Mean 0.850 1.111 0.815 1.049 1.465 0.993

Percent Change -10.3% -16.3% -9.2% -14.7% -23.0% -13.1%

Match Group × Event Year FE yes yes yes yes yes yes

Individual FE yes yes yes yes yes yes

R2 0.560 0.573 0.557 0.366 0.319 0.377

Number of Deceased Inventors 159,658 8,017 151,641 159,658 8,017 151,641

Observations 6,769,647 502,103 6,267,544 6,769,647 502,103 6,267,544

Dependent Variable: Top Patents Economic Value

All Immigrant US-born All Immigrant US-born

(7) (8) (9) (10) (11) (12)

Post Death -0.027*** -0.075*** -0.020*** -1.697*** -3.016*** -1.523***

(0.003) (0.013) (0.003) (0.208) (0.812) (0.210)

Control Post Mean 0.201 0.283 0.190 13.307 19.247 12.511

Percent Change -13.4% -26.6% -10.8% -12.8% -15.7% -12.2%

Match Group × Event Year FE yes yes yes yes yes yes

Individual FE yes yes yes yes yes yes

R2 0.373 0.329 0.384 0.454 0.466 0.450

Number of Deceased Inventors 159,658 8,017 151,641 159,658 8,017 151,641

Observations 6,769,647 502,103 6,267,544 6,769,647 502,103 6,267,544
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Table 5: Decomposition of Inventor Death Treatment Effect Differentials

Notes. This table shows Gelbach decomposition of the treatment effect differentials between immigrant and US-born

inventor deaths for number of patents, scaled citations, top patents, and economic value in columns (1), (2), (3),

and (4), respectively. Panel A reports our baseline differentials. Panel B reports the differentials after controlling for

ten additional characteristics. We standardize each of these characteristics to have mean 0 and standard deviation

1 across all deceased inventors in the sample. Panel C reports the absolute difference between the two panels.

Panel D decomposes this difference into percentages explained by these heterogeneity dimension (rows) listed below.

Positive (negative) percentages mean controlling for the treatment effect along the given dimension widens (shrinks)

the difference. Column (5) of Panel D reports the difference in mean z-scores along these dimensions between

deceased immigrants and deceased US-born inventors in the sample. In Panel D, rows 1-3 consider heterogeneity

along the deceased inventors’ characteristics; rows 4-5 consider heterogeneity along the average surviving coauthors’

characteristics; rows 6-9 consider heterogeneity related to the interactions between deceased inventors and their

collaborators pre-death; and row 10 considers the number of patents per capita in each commuting zone. In rows 3,

5, and 9, we combine the two sub-dimensions as one by adding and re-standardizing their z-scores. *, **, and ***

denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variables: Number of Scaled Top Economic Difference

Patents Citations Patents Value in Mean

(1) (2) (3) (4) (5)

Panel A. Differentials Before Controlling for Treatment Effect Heterogeneity

–0.1065 –0.2073 –0.0548 –1.4923

(0.0496) (0.0620) (0.0130) (0.8086)

Panel B. Differentials After Controlling for Treatment Effect Heterogeneity

–0.1538 –0.2027 –0.0615 –1.3823

(0.0502) (0.0619) (0.0130) (0.8003)

Panel C. Absolute Difference between Estimates in Panels A and B

0.0473 –0.0046 0.0067 –0.1100

(0.0113) (0.0111) (0.0027) (0.1753)

Panel D. Gelbach Decomposition

Total percentage explained: 44.38% –2.21% 12.18% –7.37%

1. Deceased inventor’s age 0.33% 0.31% 0.27% 0.44% 0.0676

2. Deceased inventor’s year –0.31% –0.07% –0.18% 0.01% –0.0502

3. Deceased inventor’s cumulative –15.71% –4.79% –22.38% 35.06% 0.3196

patents and citations

4. Average surviving coauthors’ age 1.44% 0.70% 0.63% 1.54% –0.0161

5. Average surviving coauthors’ 54.03% –5.03% 29.24% –29.88% 0.1770

cumulative patents and citations

6. Collaboration recency: time to 10.56% 4.18% 3.57% 8.57% 0.0697

most recent app pre-death

7. Collaboration network: number of –3.45% –0.43% 4.53% –23.86% 0.1560

unique coauthors pre-death

8. Collaboration strength: number of 0.60% 0.25% 0.31% –0.37% 0.0775

co-patents pre-death

9. Collaboration size: average team 5.19% 2.62% 2.61% 2.70% –0.1589

size on co-patents pre-death

10. Knowledge gap: backward citations –8.31% 0.07% –6.42% –1.59% 0.3534

and overlapping technology classes
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Table 6: Team-Level Inventor Death

Notes. This table shows the difference-in-differences OLS estimates of inventor death at the team level that

we use to recover the production function parameters. A “team” is defined as a set of unique inventors

collaborating on at least one patent in our inventor death sample in Table 3. We classify teams into two

subsets. Panel A include teams in which none of member died during the analysis period. However, each

member could experience deaths of prior coauthors in the collaboration network outside the team considered.

For each outcome in this panel, we consider the effect of immigrant and US-born inventor deaths separately

on the number of patents, number of immigrant collaborators, and number of US-born collaborators. Panel

B include teams in which one member died at some point during the analysis period. For each outcome in

this panel, we consider the overall effect of inventor death, pooling immigrant and US-born deaths, on the

number of patents and geometric-average of human capital across all members within the team. Standard

errors appear in parentheses and are clustered at the deceased inventor level. *, **, and *** denote statistical

significance at the 10%, 5%, and 1% level, respectively.

Panel A. Teams That Did Not Experience Inventor Death

Dependent variable: Number of Patents Immigrant Collaborators US-born Collaborators

Dying inventor: Immigrant US-born Immigrant US-born Immigrant US-born

(1) (2) (3) (4) (5) (6)

Post Death −0.058*** −0.033*** −1.215*** −0.378*** −0.782*** −1.896***

(0.019) (0.005) (0.090) (0.022) (0.152) (0.049)

Control Post Mean 0.34 0.31 4.75 3.16 10.24 12.08

Percent Change −17.2% −10.7% −25.6% −11.9% −7.6% −15.7%

Match Group × Event Year FE yes yes yes yes yes yes

Team FE yes yes yes yes yes yes

R2 0.487 0.434 0.886 0.894 0.888 0.893

Deceased Inventors 5,178 76,755 5,178 76,755 5,178 76,755

Teams 92,138 873,275 92,138 873,275 92,138 873,275

N 1,597,747 15,371,473 1,597,747 15,371,473 1,597,747 15,371,473

Panel B. Teams That Experienced Inventor Death

Dependent variable: Number of Patents Team Human Capital

Dying inventor: Any Any

(1) (2)

Post Death −0.034*** −0.385***

(0.003) (0.013)

Control Post Mean 0.12 3.33

Percent Change −28.2% −11.6%

Match Group × Event Year FE yes yes

Team FE yes yes

R2 0.288 0.927

Deceased Inventors 103,325 103,325

Teams 181,485 181,485

N 3,202,773 3,202,773
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Table 7: Innovation Production Function Estimates

Notes. This table shows our innovation production function estimates. In Panel A, columns (1) and (2)

display the parameters governing returns to an individual inventor’s human capital with respect to the

number of unique prior immigrant and US-born collaborators, respectively. Column (3) display the parameter

governing the negative productivity shock from experiencing the death of an inventor within the team. Panel

B regresses production residuals, averaged across years for each team, on the share of immigrants on that

team, controlling for team size. Standard errors appear in parentheses and are clustered at the deceased

inventor level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A. Parameters

Parameter: βimm βnat βdeath

(1) (2) (3)

0.718 0.290 0.166

Governing: human capital human capital inventor death

Inventor: immigrant US-born any

Panel B. Residuals

Dependent variable Team-level Residuals

Mean dep. var. 0.0743 0.0743 0.0743

(1) (2) (3)

Share immigrant 0.0036*** 0.0004

(0.0005) (0.0005)

Team size (in logs) −0.0804*** −0.0803***

(0.0003) (0.0003)

R2 0.1319 0.1318 0.0000

N 653,228 653,228 653,228
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Table 8: Decomposing Aggregate Innovation Output

Notes. This table shows the direct and indirect contribution of US-born and immigrant inventors to total

US innovation from 1990-2016. These estimates are based production function parameters reported in

Table 7. Innovation is measured in terms of number of patents. Column (1) reports the observed output

shares between immigrant and US-born inventors directly in the data. Column (2) calculates output if

immigrants only work with immigrants and US-born inventors only work with US-born inventors. Column

(3) attributes the indirect effects of US-born and immigrant inventors on each other to those who are

causing the increased output. Thus, column (3) for immigrants equals immigrant output in column (2) plus

the change between columns (1) and (2), representing the additional output US-born inventors produce by

working with immigrants.

(1) (2) (3)

US-born Output 0.77 0.60 0.68

Immigrant Output 0.23 0.15 0.32

Total Output 1.00 0.75 1.00

Direct Output Attribution: YES YES NO

Indirect Output Attribution: NO NO YES

US-born collaborate with: Both US-born Both

Immigrants collaborate with: Both Immigrants Both
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Appendix

A Matching Algorithm of Patent Data with Infutor

In this section, we discuss how we construct our inventor identifiers in the USPTO patent dataset.

The idea is to use individuals’ address histories in Infutor to verify the address at which each inventor

lived during the patent application and track inventors who moved. Precisely, in the patent data,

we define “identifiers” (ID) as a unique combination of the inventor’s first name, last name, city

name, and the state in which he lived. In the raw USPTO data, we begin with 14,991,282 patents

granted worldwide and restrict to 7,350,977 patents granted in the U.S and then to 7,228,174

patents for which state and city name are not missing. Since the Infutor dataset spans 1990 to

2016, we necessarily restrict the patent data to these years only. At the start, there are 6,229,618

patents filed and ultimately granted to 1,351,024 unique IDs. We discuss our disambiguation steps

in detail as follows.

We begin by matching each observation in the patent data to address histories in Infutor.

Our matching criterion is such that state, city, last name, and the first three letters of first name

exactly match between the two datasets: 1,034,288 unique IDs have at least one Infutor match at

this stage. In this matched subset, each ID can still map to multiple individuals in Infutor. Thus,

we successively apply disambiguation restrictions, where we identify unique matches in a given step

and then remove them from the pool before applying the next restriction.

First, we impose that first names match exactly and that middle initials do not conflict between

the two datasets (i.e., they agree or at least one or both are missing). Now, given typographical

inconsistencies in first names observed between the two datasets, we allow first names to match

weakly. Second, we impose that first names can contain each other (e.g., “Timothy” and “Tim”)

and that middle initial does not conflict. Third, we allow for alternate first names (e.g., “Richard”

and “Rick”) and for minor misspellings (e.g., “Stephen” and “Steven”’), while maintaining that

middle initials do not conflict. In these steps, we identify 876,438 IDs, each mapping exactly to

one individual in Infutor: 680,261, 144,431, and 51,746 IDs from the first, second, and third steps,

respectively.

Next, we disambiguate the remaining 157,850 IDs for which state, city, last name, and the first

three letters of first name match precisely, but for which we cannot find unique Infutor matches in

the first three steps from above. In each of these steps, we always condition on observing at least

one patent for which the application year falls between the beginning and ending address years

(allowing plus or minus two years). In addition to this condition, in each step, we successively

apply a stricter matching criterion. IDs are identified as unique matches at the end of each step if

we only find exactly one Infutor match. For brevity, we define the following terms. Middle initials

“match strictly” if both are non-missing and agree across the two datasets and “ match weakly” if

at least one or both are missing. First names “match strictly” if they agree across the two datasets

and “match weakly” if one contains the other, is an alternate name for the other, or contains minor

misspellings by at most two characters.
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In the fourth step, we require that middle initials match weakly and that first names match

weakly. The fifth step imposes that first names match strictly, while maintaining middle initials

match weakly. In the sixth step, we require that middle initials match strictly and that first names

match weakly. The seventh step imposes that both first names and middle initials match strictly.

The eighth step considers the cases where both middle names (rather than middle initials) and first

names match exactly across the two datasets. We identify 51,622 IDs with unique Infutor matches

in these steps: 30,709, 14,457, 2,443, 652, and 3,401, respectively. These first eight disambiguation

steps together identify 928,100 IDs.

Finally, we turn to the 316,736 IDs in the patent data for which we cannot find matches in

Infutor using precise matches on state, city, last name, and the first three letters of the first name.

To do so, we match these observations to Infutor using exact matches on state, city, and last name,

completely ignoring first name. In essence, these observations are those with inconsistent first three

letters of first name. Then, we condition these potential matches on a strict middle initial match

and a weak first name match (as defined above). This final step yields 3,529 IDs.

In summary, out of the 1,351,024 IDs in the patent data, we find 931,629 IDs with unique

Infutor matches, indicating a match rate of 69.0% and corresponding to 879,988 unique individuals

in Infutor. We summarize all of these data construction steps in Table A.1 below.

A.1 Validation Tests

We begin by comparing the proportion of county-level immigrants based on the entire Infutor

dataset and our new classification methodology to the proportion of foreign born individuals at the

county level in the 2000 Census.47 To do so, we first geocode individuals in the Infutor dataset

to US counties based on their exact 2000 street address. From this mapping and our immigrant

classification procedure, we then calculate the immigrant proportion of the 2000 county population.

We perform this calculation several times as we apply different SSN assignment cutoffs between

ages of 20 to 25. We finally run regressions of the proportion of foreign born individuals as measured

by the Census on our constructed measures. In each regression, we use the 2000 population size as

reported by the 2000 Census as weights.

Figure A.4 in the Appendix reports the R2 of these regressions. The x-axis denotes the minimum

gap between the SSN assignment year and birth year that is required to classify an individual as

an immigrant. Comfortingly, all of our specifications produce R2 of approximately 90%. This test

illustrates that our immigrant classification procedure captures well the cross-sectional variation in

immigrant shares across US counties. Figure A.5 provides binscatters of these regressions. While

we match the cross-sectional variation extremely well, these results also illustrate that, on average,

the proportion of foreign born in a county according to the 2000 census is slightly above 1.5 times

the proportion of immigrants predicted by our method. This is expected, however, because the

Infutor data only contains adults and legal immigrants, while the Census counts all age groups as

47The 2010 CENSUS does not have the proportion of immigrants at the county level.
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well as undocumented immigrants.48

To explore whether our immigrant classification method can do even a better job in explaining

variations of immigrants shares when we focus on adults only we use the ACS. The ACS allows us

to not only incorporate individuals age but also, importantly, identify the age in which immigrants

arrived to the US. In principle, this allows us to identify in the ACS exactly those immigrants we

propose to identify in Infutor. Due to confidentiality restriction, we cannot work with the data at

the county level. To have a representative sample at each age, we use the ACS at the state level

rather than at the county level and calculate the proportion of the population that is both foreign

born and immigrated after they had reached 20 years of age. Similar to what we did previously,

we then regress the proportion of the state population of a certain age that is both foreign born

and immigrated after the age of 20, as reported by the ACS, against the same statistic constructed

through Infutor.

Figure A.7 illustrates the fit of these regressions through binscatters using the 2005 ACS for

several adult age groups. For example, panel (a) provides the binscatter for adults in ages of 40-44.

The R2 in that case if 94%, and consistent with the notion that we have a more comparable group

now, explains better the cross-section variation of immigrant proportion. Moreover, it is also useful

to note that the under-representation of immigrants declines, again, consistent with the fact that

we no longer pool immigrants that arrived as kids to the US. We find similar results when we focus

on age groups 45-49, 50-54, and 55-59, when the R2 ranges between 94%-97%.

The ACS shows approximately 30% more immigrants than our data, this is expected because

our immigrant classification does not account for illegal immigrants. Indeed, the Department of

Homeland Security estimates that 34% of immigrants were illegal in 2014. This matches very closely

with the 30% under count of immigrants in Infutor, further validating our methods.

B Additional Derivations

Derivation of equation (7):
Yjt − Y
Y

= βimm

(
N imm
jt −N imm

1 +N
imm

)
+ βnat

(
Nnat
jt −N

nat
j

1 +N
nat
j

)

Since we focus on teams that did not experience a team member death, it must be that 1deathjt = 0

for all j and t. Next, we substitute for members’ human capital in the team innovation production

function, yielding:

48In Figure A.6 in the Appendix we plot the combined R2 and regression coefficients for age thresholds between 10
years old to 30. As expected, the lower the age threshold, the lower the regression coefficient, implying that the share
of foreigners, based on this classification is increasing, as we classify younger and younger individuals as immigrants.
However, it is important to note the changes in the R2. As we approach the age threshold of 20, our ability to explain
variations in immigrants across counties increases, and stabilizes around the age of 20, consistent with the notion
that around that age threshold we are indeed able to separate immigrant and US-born individuals based on the age
in which they received their social security number.
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Rearranging this yields equation (7) as desired. Note that in practice we calculate the average

value across teams in the placebo-deceased group and across post-death years as our base value.

Derivation of equation (8):
Yjt − Y
Y

=
hjt − h
h

− βdeath

Since we focus on teams that experienced a team member death, it must be the case that (i) for

the real-deceased teams we have 1
death
jt = 1 for all j and some t > tdeathj ; and (ii) for the placebo-

deceased teams we have 1
death
jt = 0 for all j and t. Given known values of βimm and βnat, hjt

is identified. Similarly, we take a first-order approximation of the innovation production function

with respect to hjt and 1
death
jt around a base value (h,1

death
, Y ), which is the average value across

teams in the placebo-deceased group and across post-death years (suggesting 1
death

= 0).
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Note that in the post-death period the death effect estimate of 1deathjt must equal 1 since it takes a

value 1 for the real-deceased teams and a value 0 for the placebo-deceased teams. Recognizing this

fact and rearranging this last equation yield equation (8) as desired.
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Figure A.1: Validation with CENSUS 2000 - Population Sizes (millions)

Notes. Scatterplot at the county level. The y axis has the total population that is older than 18 years old

in each county, according to CENSUS 2000. The x axis has the number of people that Infutor places living

in each county in 2000. If Infutor places a person in two different counties, we use only the county in which

that person stay longer in 2000.
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Figure A.2: Validation of Pre-1950 Assignment Year Imputation

Notes. Binscatter of the encoded group numbers for each assignment year, constructed after controlling for

fixed effects of area code and weighted by the number of observations in each area and group. Assignment

year was collected from the website (https://www.ssn-verify.com/) for after 1950 and using the most frequent

birth year plus 16 for before 1950. Data comes from Infutor only individuals that have a social security number

and year of birth.
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Figure A.3: SSN Issuance Age Distribution

Notes. Quantiles of the age of SSN issuance distribution by assignment year, calculated at the individual

level. Assignment year was collected from the website (https://www.ssn-verify.com/) for after 1950 and

using the most frequent birth year plus 16 for before 1950. Data comes from Infutor only individuals that

have a social security number and year of birth.
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Figure A.4: Validation with CENSUS 2000

Notes. R2 of regressing at the county level the proportion of foreign born in the CENSUS 2000 against the

proportion of immigrants among all individuals that Infutor places in county for each immigrant classification

variable. The x-axis shows the minimum gap between assignment year and birth year needed to classify

someone as immigrant for each immigrant classification variable. Data comes from Infutor, only individuals

with a SSN number and a birth year. All regressions are weighted by the total population at that county in

CENSUS 2000.
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Figure A.5: Validation with CENSUS 2000 – Binscatters

Notes. Binscatters of the proportion of foreign born in the CENSUS 2000 against the proportion of im-

migrants among all individuals that Infutor places in county for selected immigrant classification variables

at the county level. Data comes from Infutor, only individuals with a SSN number and a birth year. All

regressions are weighted by the total population at that county in the CENSUS 2000.

(a) Immigrant if assig. year − birth year ≥ 20 (b) Immigrant if assig. year − birth year ≥ 21

(c) Immigrant if assig. year − birth year ≥ 22 (d) Immigrant if assig. year − birth year ≥ 23
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Figure A.6: Validation with CENSUS 2000

Notes. R2 and slope coefficient of regressing at the county level the proportion of foreign born in CENSUS

2000 against the proportion of immigrants among all individuals that Infutor places in county for each

immigrant classification variable. The x-axis shows the minimum gap between assignment year and birth

year needed to classify someone as immigrant for each immigrant classification variable. Data comes from

Infutor, only individuals with a SSN number and a birth year. All regressions are weighted by the total

population at that county in CENSUS 2000.
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Figure A.7: Validation against ACS by Selected Age Bins in 2005

Notes. Binscatters of regressing the proportion of immigrants in the state by age level in the ACS against

the same proportion in Infutor using our immigrant classification (immigrant being everyone who arrived in

the U.S. after they were 20 years old) for each year and age bins. Each age bin had a separate regression. All

regressions are weighted by the number of individuals in each state and age level. Data comes from Infutor,

only individuals with a SSN number and a birth year.

(a) 40-44 years old (b) 45-49 years old

(c) 50-54 years old (d) 55-59 years old
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Figure A.8: Share of Immigrant Contribution, Equal Credits

Notes. Categories are: (a) share in the overall population from 1990-2016 according to the ACS; (b) share

of overall number of inventors, where inventor is defined as an individual who patent at least once; (c) share

of overall number of patents; (d) share of overall number of citations, calculated over a three year horizon

to avoid truncation issues; (e) citations normalized by the average number of citations in a given technology

class year (the year in which all patents were applied); (f)-(j) share of top patents, where a top patent is

defined as a patent that is in the top 50%, 25%, 10%, 5%, and 1% of citations in a given technology class and

year, respectively; (k) share of patent value, calculated based on stock market reaction to patent approval

using the KPSS measure which is available for publicly traded firms and imputed for private firms. The blue

bars include all patents. The red bars include solo-author patents only.
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Figure A.9: Team Size Distribution by Immigration Status

Notes. Average number of scaled citations by share of immigrant inventors within the team. The plots are

displayed separately by team size or the number of inventors on the patent.
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Figure A.10: Team-level Share of Immigrant Contribution

Notes. Average number of scaled citations by share of immigrant inventors within the team. The plots are

displayed separately by team size or the number of inventors on the patent.
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Figure A.11: Productivity over the Life Cycle - First Patent in 1990s

Notes. Categories are: (a) total number of patents per year; (b) citations, calculated over a three year

horizon to avoid truncation issues, normalized by the average number of citations in a given technology class

year (the year in which all patents were applied); (c) number top patents per year, where a top patent is

defined as a patent that is in the top 10% of citations in a given technology class and year; and (d) share of

patent value, calculated based on stock market reaction to patent approval using the KPSS measure which

is available for publicly traded firms and imputed for private firms. Only individuals who applied for their

first patent between 1990 and 1999.

(a) Number of Patents (b) Total Adjusted Citations

(c) Top Patents (d) Market Value
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Figure A.12: Productivity over the Life Cycle - 1970s Year of Birth

Notes. Categories are: (a) share of overall number of patents; (b) citations, calculated over a three year

horizon to avoid truncation issues, normalized by the average number of citations in a given technology class

year (the year in which all patents were applied); (c) share of top patents, where a top patent is defined as a

patent that is in the top 10% of citations in a given technology class and year; and (d) share of patent value,

calculated based on stock market reaction to patent approval using the KPSS measure which is available for

publicly traded firms and imputed for private firms. Only individuals born between 1970 and 1979.

(a) Number of Patents (b) Total Adjusted Citations

(c) Top Patents (d) Market Value
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Figure A.13: Productivity over the Life Cycle - Regressions

Notes. Regression includes: individual FE, Year FE, age interacted with immigrants FE. The dependent

variables are: (a) overall number of patents (b) overall number of citations first normalized by the average

number of citations in a given technology class year (the year in which all patents were applied) and then

added over a three year horizon to avoid truncation issues; (c) overall number of top patents, where a top

patent is defined as a patent that is in the top 10% of citations in a given technology class and year; and (d)

Patent value calculated based on stock market reaction to patent approval using the KPSS measure which

is available for publicly traded firms and imputed for private firms.

(a) Number of Patents (b) Total Adjusted Citations

(c) Top Patents (d) Market Value
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Figure A.14: Collaboration with US-born and Foreign Inventors

Notes. The x-axis is the unique number of US-born collaborators an immigrant inventor has over her lifetime.

The y-axis is the unique number of foreign collaborators for the same inventor. Since we cannot disambiguate

foreign inventors using the Infutor data, we use combinations of their first name, last name, and country at

which the patent was applied and granted in the USPTO data to define individual foreign inventors. Our

resulting numbers correlate extremely well (ρ = 0.999) with those calculated using the inventor identifier

from Balsmeier et al. (2015). The regression below controls for year-of-birth fixed effects.
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Table A.1: Sample Construction

Notes. Identifier (ID) is a combination of state, city, last name, and first name in the patent data. “Middle1”

stands for the first letter of middle name. “Weak middle1 match” is when middle1 is missing in at least one

dataset (USPTO or Infutor). “Strict middle1 match” is when middle1 is non-missing and the same across

the two datasets. “Middle 1 consistent” is either weak or strict middle1 match. “First3” stands for the first

three letters of first name. “Weak first name match” is when first name is either contained within or an

alternate name for each other or contains misspelling. “Strict first name match” is when first name matches

exactly across the two datasets.

Data Processing Steps # Patents # Unique IDs

Panel A. Cleaning Raw Patent Data

– Start with raw USPTO data 14,991,282

– Keep only U.S. patents 7,350,977

– Keep if state and city are not missing 7,228,174

– Keep if application year is between 1990 and 2016 6,229,618 1,351,024

(100%) (100%)

Panel B. Disambiguating Inventors using Infutor Data

– State, city, last name, and first3 match and :

? Step 1: Middle1 consistent, exact first name match 3,287,142 680,261

? Step 2: Middle1 consistent, contained first name match 673,854 144,431

? Step 3: Middle1 consistent, alternate or misspelled first name 237,993 51,746

– At least one patent with consistent application-address year and :

? Step 4: Weak middle1 match, weak first name match 79,859 30,709

? Step 5: Weak middle1 match, strict first name match 84,531 14,457

? Step 6: Strict middle1 match, weak first name match 7,869 2,443

? Step 7: Strict middle1 match, strict first name match 3,388 652

? Step 8: Both middle name and first name match exactly 17,589 3,401

– State, city, last name match and :

? Step 9: Middle1 consistent, exact/contained/alternate/misspelled 14,986 3,529

first name

– Number of IDs with unique Infutor matches 4,407,211 931,629

(70.7%) (69.0%)

– Number of unique inventors/individuals in Infutor 879,988
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Table A.2: Prediction of KPSS Economic Value

Notes. This table reports the relationship between KPSS economic value and patent application and assignee-

level characteristics, following a similar imputation in Kline et al. (2019). Coefficient estimates are based on

a Poisson model with technology class random effects. The sample is the subsample of granted patents for

which the Kogan et al. (2017) measure of economic value is available in our analysis sample. The dependent

variable is the KPSS measure of economics value in millions of dollars. Standard errors are reported in

parentheses. Number of claims measures the number of claims in the published U.S. patent application.

log(σv) reports the log of the estimated standard deviation of the technology class random effects. χ2

reports a likelihood ratio test statistic against a restricted Poisson model without random effects.

KPSS Value

1(number of claims = 1) 0.2737*** (0.0025)

log(number of claims) 0.1793*** (0.0003)

Application year 0.0026*** (0.0002)

(Application year)2 0.0035*** (0.0000)

Decision/grant year 0.0267*** (0.0002)

(Decision/grant year)2 -0.0099*** (0.0000)

Constant 2.2346*** (0.0373)

log(σv) 0.7559*** (0.0522)

Technology class 573

χ2 2.67×106

N 1,425,642
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Table A.3: Share of Immigrant Contribution – Different Team Sizes

Notes. This table shows the share of immigrant contribution across different metrics listed in panels (c)-(k)

of Figure 1. The statistics are displayed in row 1 for all patents granted between 1990-2016 and in rows 2-6

broken down by team size or the number of inventors on the patent.

Outcome: number number raw scaled top 50% top 25% top 10% top 5% top 1% economic

inventors patents citations citations patents patents patents patents patents value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

All patents (100%) 0.165 0.233 0.229 0.242 0.240 0.243 0.247 0.247 0.254 0.252

Team size 1 (54.6%) 0.181 0.242 0.241 0.249 0.249 0.255 0.260 0.261 0.268 0.263

Team size 2 (26.4%) 0.184 0.229 0.227 0.242 0.235 0.239 0.241 0.239 0.245 0.246

Team size 3 (11.3%) 0.185 0.220 0.216 0.234 0.225 0.228 0.230 0.228 0.235 0.245

Team size 4 (4.5%) 0.188 0.212 0.210 0.229 0.216 0.219 0.219 0.218 0.219 0.241

Team size ≥5 (3.2%) 0.179 0.202 0.192 0.201 0.206 0.204 0.203 0.200 0.198 0.233
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Table A.4: Robustness to Staggered Diff-in-Diff Methods

Notes. We replicate our baseline diff-in-diff estimates for the effect on inventor death on surviving collabo-

rators and then repeat the analysis using the Callaway and SantAnna (2021) method.

Specification: Baseline ATE Results Callaway & Sant’Anna

Inventor death: All Native Immigrant All Nat Imm

(1) (2) (3) (4) (5) (6)

Panel A. Number of Patents

βpostdeath -0.087*** -0.075*** -0.182*** -0.137*** -0.122*** -0.299***

(0.011) (0.011) (0.050) (0.017) (0.019) (0.044)

Panel B. Scaled Citations

βpostdeath -0.154*** -0.130*** -0.337*** -0.202*** -0.176*** -0.434***

(0.015) (0.015) (0.063) (0.027) (0.027) (0.096)

Panel C. Top Patents

βpostdeath -0.027*** -0.020*** -0.075*** -0.030*** -0.023*** -0.099***

(0.003) (0.003) (0.013) (0.005) (0.005) (0.015)

Panel D. Economic Market

βpostdeath -1.697*** -1.523*** -3.016*** -2.836*** -2.624*** -4.177***

(0.208) (0.210) (0.812) (0.372) (0.393) (1.139)
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Table A.5: Inventor Death, Log Specification

Notes. This table shows the difference-in-difference OLS estimates of the inventor death full sample. The

sample is the same as defined in table 3 and all variables are as defined in table 1. Standard errors appear

in parentheses and are clustered at the deceased inventor level. *,**, and *** denote statistical significance

at the 10%, 5%, and 1% level, respectively.

Dependent Variable: Log(1 + Number of Patents) Log(1 + Adjusted Citations)

All Immigrant US-born All Immigrant US-born

(1) (2) (3) (4) (5) (6)

Post Death -0.034*** -0.043*** -0.033*** -0.032*** -0.049*** -0.030***

(0.003) (0.011) (0.003) (0.003) (0.011) (0.003)

Match Group × Event Year FE yes yes yes yes yes yes

Individual FE yes yes yes yes yes yes

R2 0.541 0.548 0.539 0.475 0.480 0.474

Number of Deceased Inventors 159,658 8,017 151,641 159,658 8,017 151,641

Observations 6,769,647 502,103 6,267,544 6,769,647 502,103 6,267,544
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Table A.6: Inventor Death Treatment Effect Heterogeneity

Notes. Each heterogeneity dimension has mean 0 and standard deviation 1 across the real-deceased inventors

in our death analysis sample. Full details are given in the footnote of Table 5.

Dependent variables: Number of Scaled Top Economic

Patents Citations Patents Value

(1) (2) (3) (4)

Post-death × treat –0.056*** –0.103*** –0.014*** –1.286***
(0.011) (0.014) (0.003) (0.179)

Post-death × treat × immigrant –0.154*** –0.203*** –0.061*** –1.382*
(0.052) (0.064) (0.013) (0.828)

Post-death × treat × z-score:

1. Deceased inventor’s age 0.044*** 0.079*** 0.018*** 0.822***
(0.013) (0.019) (0.003) (0.271)

2. Deceased inventor’s year –0.091*** –0.041** –0.026*** 0.053
(0.014) (0.018) (0.004) (0.246)

3. Deceased inventor’s cumulative –0.046** –0.027 –0.034*** 1.431***
patents and citations (0.018) (0.028) (0.005) (0.366)

4. Average surviving coauthors’ age –0.131*** –0.124*** –0.029*** –1.956***
(0.014) (0.020) (0.004) (0.241)

5. Average surviving coauthors’ 0.356*** –0.064 0.099*** –2.755***
cumulative patents and citations (0.054) (0.058) (0.011) (0.570)

6. Collaboration recency: time to 0.164*** 0.126*** 0.028*** 1.860***
most recent app pre-death (0.012) (0.017) (0.004) (0.219)

7. Collaboration network: number of –0.019 –0.004 0.013** –1.801***
unique coauthors pre-death (0.020) (0.030) (0.006) (0.377)

8. Collaboration size: average team –0.030** –0.024 –0.008** 0.259
size on co-patents pre-death (0.013) (0.019) (0.004) (0.307)

9. Knowledge gap: backward citations –0.057*** –0.056*** –0.015*** –0.416
and overlapping technology classes (0.012) (0.017) (0.003) (0.256)

10. Commuting zone number –0.021 0.000 –0.008** –0.055
of patents per capita (0.013) (0.018) (0.003) (0.260)
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