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1. Introduction1

In Prucha and Nadiri (1982) we introduced a methodology to estimate
systems of dynamlc factor demand that allows for considerable flexibility in
both the choice of the functional form of the technology and the expectation
formation process. This approach was explored further in Prucha and Nadirl
(1986). It is based on a firm with a finite but shifting planning horizon.
The stocks at the end of the planning horizon are determined endogenously via
the assumption that the firm maintains a constant firm size and static
expectations beyond the actual planning horizon. Prucha and Nadiri (1982)
introduced also a corresponding estimation algorithm that avoids the need for
an explicit analytic solution of the firm’'s control problem and show how at
the same time it is possible to evaluate (for reasons of numerical efficlency)
the gradlent of the statistical objective functlon from analytic expresslons.
A generalization of the-algorithm is given in Prucha and Nadiri (1988).

In this paper we apply the methodology of Prucha and Nadiri (1982) to
estimate the production structure and the demand for labor, materials, caplital
and R&D 1in the historic U.S. Bell System. (The merits of the breakup of the
U.S. Bell System is still an item of consliderable debate. In future research
it seems of interest to compare the historic U.S. Bell System with several of
the currently operating telephone companles.) We consider alternative
specifications of the length of the planning horizon and the expectation
formation process; we compare, in particular, results obtained from the finlte
horizon model with those from an infinite horizon model. The empirical
application to the U.S. Bell System not only provides an illustration of the
methodology but also contributes several new features to the exlsting

literature on the production structure of AT&T. First, we formulate and



estimate a dynamic model in contrast to the static models that were usually
applied to AT&T data.2 Schankerman and Nadiri (1986) find evidence to reject
the hypothesis that for AT&T all factors are variable. Second, contrary to
conventional studies we include R&D as a factor of production. R&D should be
of particular importance in a high technology firm like A'l'&’l'.3

As a description of the technology we introduce a new restricted cost
function that generalizes the restricted cost function introduced by Denny,
Fuss and Waverman (1981a) and Morrison and Berndt (1981) from the linear
homogeneous to the homothetic case. Furthermore, we discuss measures of
technical change if the firm is in temporary rather than long-run equilibrium
and 1f the technology is not a priori assumed to be linear homogeneous.

The paper is organized as follows: In Section 2 we describe the
theoretical model under both the assumption of a finite and infinlte planning
horizon, and derive the factor demand equations used in the empirical
analysis. In Section 3 we present the parameter estimates of the model
corresponding to different planning horizons and expectation regimes.
AdJjustment cost characteristics as well as price and output elasticities of
the inputs in the short-, intermediate- and long-run are presented in Section
4. Section S deals with the formulation of pure measures of technical change
and the measurement of returns to scale. In Section é we provide a
decomposition of the traditional measure of total factor productivity growth
into components attributable to technical change, scale and the adjustment
costs. We also provide a decomposition of the growth of output and labor
productivity. Section 7 deals with the calculation of rates of return on
physical and R&D capital. The conclusions are contained in Section 8 followed

by a brief technical appendix.



2. Theoretical Model and Empirical Specification

2.1 Theoretical Model

Consider a firm that employs m variable inputs Vl (i=t,...,m) and n
quasi-fixed inputs XJ (j=1....,n) 1in producing the single output good Y.
The firm’s production process is described by the following generalized

production function:

(1) Y, = FIV.X, L 8X.T)

_ n - n
where Vt = (Vu)l:1 is the vector of variable inputs, Xt (th}1=1 is the

vector of end-of-period stocks of quasi-fixed factors, TL is a technology
index, (and t denotes time). The vector AXt = Xt - Xt_1 appears in the
production function to model internal adjustment costs in terms of forgone
ocutput due to changes in the quasi-fixed factors. It is assumed that F{(.)
Is twice continuously differentiable and that Fv > 0, Fx1 > 0 and FIAxI <
0.4 It is furthermore assumed that the production function is strictly
concave in all arguments (except possibly in the index of technology). This
implies that the marginal products of the factors of production V and X_1

are decreasing and that the marginal adjustment costs are increasing.

The stocks of the quasi-fixed factors accumulate according to (j=1,...,n)

(2} X =1 + (1-8 )X s
it it 1 e

where Ijt denotes gross investment and 5J denotes the deprecliation rate.
The firm is assumed to face perfectly competitive markets with respect to

its factor Inputs. We denote the acquisition price for the variable and

quasi-fixed factors as Yo (i=1,....m) and ajt (j=1,...,n), respectively.

It proves convenient to normalize all prices in terms of the price of the



first varlable factor. We denote those normallzed prices as wit = Glt/Glt

n

/w , and define vectors w = {w_} and q = {q .
to 1t t = t =t

d = q
and 4, = 9,
Instead of describing the production structure in terms of the productlon
function (1) we can describe the productions structure equlvalently 1ln terms
of the normalized restricted cost function. Let {V“')";‘__1 denote the cost

minimizing variable factor inputs needed to produce output Yt conditional on

X ) and AXt; then the normalized restricted cost function is defined as

(3) Glw, X, 8K Y,.T) = L5 W V.

This function has the following properties (compare Lau (1976)): Gx < 0,
G >0, G >0, G >0. Furthermore G(.) 1s convex In X and AX
| ax]| Y W -1

and concave ln w.

The firm's cost ln period t 1is given by

(4) CX, X _om) =GO, X L AX YL T) + B a1+ A

where At denotes taxes (which will be specified ln detall later on) and LN
is a vector composed of wt. qt, Yt, Tt. as well as tax parameters.

The flrm 1s assumed to minimize the present value of current and future
costs. We conslder two alternative specifications of the firm's optimizatlon
problem regarding the length of the planning horizon. First consider the case

of an infinite planning horizon. In this case the firm's objective function

in period t 1s assumed to be glven by

-T
(3) i:oC(xut' xt.+'t-1 ' Etnt+‘t) (1+r) '

where Et denotes the expectatlons operator conditlional on information

avallable at the beginning of period t and r denotes the real discount



rate. [t is assumed that in each peried t the firm derives an optimal plan
for the quasi-fixed inputs for periods ¢t,t+l,... such that (S) is minimized
subject to the initial stocks Xt_1 and information available at that time;
the firm then chooses its quasi-fixed inputs in period t according to this
plan. (Note that in each period the firm only implements the initial portion
of its optimal input plan.) The firm repeats this process every period. In
each period a new optimal plan is formulated as new information on the
exogenous variables becomes available and expectations on those variables are
modified accordingly.S

Next consider the case of a finite but shifting planning horizon.
Following Prucha and Nadiri (1982, 1986) we assume that the stocks of the
quasi-fixed inputs at the end of the planning horizon are determined
endogenously subject to the assumption of static expectations and a constant
firm size beyond the planning horizon. This means that under the finite
horizon specification the firm minimizes (S) in each period t subject to the
constraints Xt+r = )('“T and Etnt+r = Etut+T for T = T. As in the
infinite horizon case the process is repeated every period as new information

becomes available. The firm’s objective function can now be written as
(6) L, _CX, .X Enr_)(1+r)" + ¥(X _Em )

=0 t+T T t+T-1" Tt t+T t+T’ b teT
with

-T
\F[xur'Etnur) - ):::qu[xur'xur'Etnur)[1"1‘) =

C(X ,X L,E= _)/lr(1+r)T]
t+ t+T t t+T

T

Here W[Xt*T,Etnt+T) represents the present value of the cost stream incured

by the firm from maintaining its operation beyond the (actual) planning

horizon at the same level as at the end of the (actual) planing horizon.



2.2 Empirical Specification

For the empirical analysis we specialize the model to the use of two
variable inputs, labor (L) and materials (M), and two quasi-fixed factors, the
stock of physical capital (K1 and the stock of R&D (R). In the subseguent

discussion we use the following notation: Vt = [vlt'vzt] = [Lt'Ht] where Lt

and Mt denote, respectively, labor input and materlal input; Xt = [th'xzt

= [Kt'Rt] where Kt and Rt denote, respectively, the end of period stocks
of capital and R&D. Further W TV, denotes the price of material goods,

and q,, = qt and th = q: denote the investment deflators for capital and
R&D normalized by the wage rate, respectively.

The technology is (dropping subscripts t) modeled in terms of the

following normalized restricted cost functions

(7) Glv,k_,R_,0K,AR,Y,T) =

hiY){a + T + av + LM vz} + oK + aR + o AK +x.AR +
0 T v 2 vv K -t R - K R

a vK + a VR + a . vAK + a .VvAR +
vR -1 vk vR

vk -1

1 2 1 2

{=a K +a KR + —a R° + a K AK + a .K AR +
2 KK -1 KR -1 -1 2 RR -1 XK -1 XR -1

2

@« .R BAK + « .R AR + ‘a. .AK? + « . AKAR + ia..AR}/R(Y)
RK -1 RR -1 2 KK KR 2 RR

p0+pIZnY
where h(Y) = Y
It is not difficult to see that the normalized restricted cost

corresponding to a homothetic production function is in general of the form

v K—z R-z AK AR
8\V Y BT HOY) B VY

T]H(Y)

where H(Y) 1is a function in Y. (The scale elasticity 1s then given by
H(Y)/[Y(dH/dY)]; compare also Section S.) We note that h(Y) can (apart from

a scaling factor) be viewed as a second order translog approximation of H(Y).



(Suppose we approximate H(Y) 1n terms of a second order translog expansion,

+
pllnY} and therefore

then #nH(Y) = const + pDEnY + panY2 = const + &n{YPo
H(Y) & Yp°+p1&nY') The restricted cost function (7) can hence be viewed as a
second order approximation to that of a general homothetic production
function. The functional form (7) is a generalizatlon of the restricted cost
function Introduced by Denny, Fuss and Waverman (198la) and Morrison and
Berndt (1981) from the constant returns to scale case to the homothetlic case.
In case of constant returns to scale we have Py = 1 and P, = 0.

Following Denny, Fuss and Waverman (1981a) and Morrison and Berndt (1581)
we impose parameter restrictlons such that the marginal adjustment costs at
AK = AR = O are zero: @, = @, =« L =@ = == 0. Ve

have furthermore tested the hypothesis that aKR = L= 0, which implies

separability in the quasi-fixed factors. We could not reject this hypothesis;
the subsequent analysis hence corresponds to this hypothesls which greatly
simplifies the exposition.6 The convexity of G(.) in K, R, AK, AR and the
concavity in v implies that aii > 0, ahﬁ > 0, axx > 0, aRR > 0, avv < 0.

The firm's cost in period t 1is now given by:

(8) CX . X m) =G +q 1"+ q' 1" +4 ,
v -1t e t Lt tt t
with
Gt = G(vt'Kt-l'Rt-l'AKt'ARt'Yt'Tt)
_ _ _ RR _ _ KK
A = ut[pth E N Dt] sttht,
_ T K. K
D, = Z:=udt.(1 mtst)qtlt_“
1* = kK -(1-8)K _, 1I®=R-(1-8)R _ .
t s k' i1 t t R t-1

14
Here p denotes the output price deflator normalized by the wage rate, I
and I? denote gross investment in capital and R&D, and 6K and 6R the

depreciation rates of capital and R&D knowledge, respectively. In defining



taxes A, BR&D expenditures are treated as immediately expensable; u 1is the
corporate tax rate, s |is the rate of tax credit for gross investment, m 1is

the portion of the tax credit that must be deducted from the depreciable base,

i

d the portion of investment that can be depreciated after 1 years.

We will explore the model under alternative assumptions on the planning
horizon and expectations on output. Expectatlions on relative prices and tax
parameters are taken as static. In case of an infinite planning horizon the

firm’'s objective is defined as to minimize (5) subject to (7) and (8). We

restrict the solution space for {K _,R 15 to the class of processes
t+T' t+T T=O

1/2. Under static output

that are of mean exponential order less than (l+r)
expectations the control problem is standard; cp., e.g., Hansen and Sargent
(1980, 1981), Kollintzas (1985, 1986) and Madan and Prucha (1988)., The
following conditions (corresponding to the derivatives of the objective
function with respect to KUT and R“_r for T =1,2,..) need to be

satisfled by the optimal sequence of the quasi-fixed factors with S=K,R:

(9a) -a..S + [+ (2+r)a, . ]S - (1+r)a..S =
SS t+T+} SS SST t+T SS t+T-1
S
[aS + avsvt + ct]h[Yt), t=0,1,...,m»,
where
¢ (r+s )[1 - s - u (1-m s )B 1/(1-u ) if S=K,
s t 4 t t tr ot t
(9b) c =
t R
qt(r+5R) if S=R,
with
1 -1
9 p—
(9¢) B, )::zodt(Hr) .

The above described restriction of the solution space rules out the unstable

roots of the above sets of second order difference equations. We denote the

corresponding optimal input path for capital and R&D as {Kt t}:so and
(Rt‘T):=°. Solving (9) explicitly for the stable root and assuming Kt = Kt,o



and Rt = Rt o ylelds the accelerator equations

13

L
(10a) AKt = m“(l(t - Kt_l) '
AR =m (R -R ),
t RR t t-1
s _ _ ! K
(10b) Kt a“[aK v, + ct]h(Yt),
L] -1 R
R =-o [a +a v + c lh(Y],
t "RR R vR t t t
2 1/2
{10c) m_ o=~ (1/72){r +a_/a.. - [(r +a /o .)"+da /o 1"} ,
KK t KK KK t KK KK XK' Kk
_ _ 2 1/2
mee = (1/2){rt+ann/ahh [(rt+aRR/a§k) +4ann/aﬁh] } .

By Shephard's lemma we get the following demand equations for materials

and labor:
(11) Mt = BG(.)/avt = (av + aVVvt}h(Yt) + avKKt—l ta R,
_ _ - _1 2
(12) Lt = G(.) vtMt h(Yt){[ao + atTt Eavvvt] + aKKt_l/h(Yt)

1 2 2
s aR /MY + o (K /AYDIT +a R /h(Y)]

2 2
+ akk[AKt/h(Yt)l + ahﬁ[ARL/h(Yt)] }.

The estimating equatlions for the infinite horizon model are given by (10),
(11) and (12), with random errors added to each of those equations.

in case of a finite planning horizon of, say. T+! periods the firm's
objective is defined as to minimize (6) subject to (7) and (8). Let Yt’T =
Ethrt' The following conditions (corresponding to the derivatives of the
objective function with respect to Kt*T and Rt+r for 1=0,...,T) need to

be satisfied by the optimal sequence of the quasi-fixed factors with S=K,R:

(13) - aéést+1+1 * [ass * (1+Bt,T+l)a§§]St+T - Bt,T¢1a§§St+T-1 =
- (e +a v + c 1h(Y ). T=0,1,...T-1,
S vS t t t,T+1
[ + re..]S - re, .S =
sS 557 TteT 55 t+T-1
- la_+a v +clhlY ), =T,
s vS t t t,T



7
with Bt't = (1+r)h(Yt,t+1)/h(Yt't). We denote the optimal 1lnput path for

T T

capltal and R&D corresponding to the filnite horizon model as {Kt T}T=O and
T T : T T
= = t
{Rt,t)r=o' Assuming Kt Kt.o and Rt Rt,o Wwe can write the flrs order

conditions for =0 as:

-1 K
(14) AKt = [at':K + (1+Bt,1)akk] {-[aK ta v+ Ct]h(Yt,I)
v o K - (e +a)K },
KK t,1 KK Kk t-1
-1 R
ARt = [aRR + (1+Bt.1)ahh] {—[aR tea v+ ct]h(Ytji)
T
LI 01 o (mRR + ahﬁ)Rt_l}

The demand equations for the variable factors, labor and materials, are the
same as 1n the infinite horizon case. The estimating equations for the finite
horizon model are hence given by (11), (12) and (14), with random errors added
to each of those equations. The next period plan values K:l and RI'1
appearing in (14) are unobservable but implicitly defined by (13). In
principle we could solve (13) to obtaln expliclt analytlc expressicns for

K:l and RIJ’ and substitute those expressions into (14). However,

because of the complexity of the expresslons lnvolved this approach is quite
Impractical even for short planning horizons. We hence estimate the model
using the algorithm developed in Prucha and Nadirl (1982, 1988) for the full
information maximum likelihood estimator for systems of equations with
implicitly defined variables.8 This algorithm does not requlre an explicit
analytic solutlon for K:J and R:J but sclves (13) numerically for those
values at each iteratlon step of the estimation algorithm, l.e. for each set

of trial parameter values. For numerical efficlency Prucha and Nadiri (1982,

1988) show how the algorithm can be designed such that the gradlent of the

10



log-likelihood function can be evaluated from analytic expressions rather than

by numerical differentiation.

We note that under static output expectations the “finite horizon®
quasi-fixed factor demand equatlons (14} differ from the "infinite horizon"
quasi-fixed factor demand equations (10} only in the expression for the next

period plan values. In the infinite horizon case we have Ktl =m, (2 -

-
2 -m R+ (1 - mRR]ZRt,-l' It is

L}
m“)KL + (1 - mKK)ZK and RL'1 = mRR(

t-1

not difficult to see that substituting these expressions for K:, and RI:

in (14) yields (10}.

11



3. Estimation and Empirical Results

We have estimated the production structure and factor demand for the Bell
System using data from 1951 to 1979. Data on 1967 constant dollar gross
output, capital, R&D, labor, and materials, as well as data on the rental
prices of capital and R&D, the wage rate, and material prices, were taken from
sources provided by AT&T. The sources and construction of the data are
described in Nadiri and Schankerman (1981b). We used a simple time trend as
our technology index and a real discount rate of 4 percent.9 Data on output,
stocks of capital and R&D, labor and materials were used in mean scaled form;
prices were constructed conformably.

For the finite horizon model we considered several different forms of
expectations, but because of need for brevity only the results obtained for
two expectations processes are reported. First, in order to identify the true
effect of changing the planning horizon we consider (as in the infinite
horizon case) static expectations: Yt;r = Yt for T =0,...,T. To generate
the second form of expectations we first estimate an AR model for output10 and
then use the model to generate a sequence of rational expectations.

We have tested several hypotheses (in addition to the hypothesis that the
ad justment paths of the two quasi fixed factors are separable, which was, as
reported above, accepted). We first considered the hypothesis that the
technology is homogeneous, i.e., p1=0, and accepted this hypothesis.11 The
second hypothesis considered the absence of ad]justment costs for both of the
quasi-fixed factors, 1l.e. @y = ahﬁ = 0. This hypothesis was clearly
rejected; similarly the hypotheses of the absence of adjustment costs was

rejected individually for K and R. This suggests that a static equilibrium

model 1s inappropriate to describe the technology and the structure of factor

12



demand of the Bell System. A similar concluslion was reached by Schankerman
and Nadiri (1986) using a different methodology.

In Table ! we present the estimation results for the infinite horizon
model with statlc expectations and of the 4-periocd and 10-pericd horizon
models with static and rational (output) expectations. We allowed for
autocorrelation of the disturbances in all equatlions. The estimation
technigque used was full information maximum likelihood. The results reported
in Table 1 show goond R%'s for all four equatlions and models. The
DW-statistics generally do not suggest further autocorrelation. A comparison
of the likelihoods corresponding to static and rational expectations on output
suggests (somewhat informally) the rejection of the hypothesis of static
expectations in favor of rational expectations.

The parameter estimates for the infinite and the 4-period horizon model
under statlc expectations are very similar. The largest change occurs In the
estimate for L which is about 90 percent higher for the 4-period horizon
model. The estimate of L changes only by 5 percent. We hypothesize from
this result that by expanding the planning horizon a bit more we should be
able to duplicate (in a numerical sense) the results of the infinite horizon
model under static expectations almost exactly with our finite horizon model.
This is borne out by the results reported in Table 1 for the 10-period
planning horizon. The results for the 10-period and infinite horizon model
under static expectations are essentlally identical.12

By allowing for nonstatic expectations we get further differences in our

aramet timates, 1 for a , y , .. and «_ .. h
p meter estimates, especlally fo o %R % o % and ” The

i3



Table 1: FIML Estimates of the Demand Equatlops for Labor, Materials,
Capital, and R&D for AT&T, 1951-1979
Planning Horizon
Infinite 4-Period 4-Period 10-Period 10-Period
Expectations
Static Static Ratlional Static Rational
a 5.639 5.653 5.231 5.642 5.191
(.74) (.75) (.65) (.74) (.66)
@ -.552 -.572 -.659 -.554 -.631
(.31) (.33) (.30) (.31) (.31)
av 3.316 3.348 3.529 3.316 3.493
(.27) (.27) (.28) (.27) (.28)
a -6.729 -6.749 -6.159 -6.731 -6.118
(1.08) (1.08) (.91) (1.08) (.91)
aR -.265 -.242 -.203 -, 264 -, 228
(.13) (.13) (.12) (.13) (.12)
avK -1.653 -1.649 -1.749 -1.652 -1.760
(.18) (.18) (.18) (.18) (.18)
avR . 265 . 237 . 192 . 264 227
(.16) (.16) (.15) (.16) (.15)
avv -2.610 -2.636 =2.750 -2.610 -2.717
(.41) (.41) (.40) (.41) (.40)
a . 5.520 5.535 5.262 5.520 5.229
(1.00) (1.01) (.89) (1.00) (.88)
aRR .130 .118 .108 .130 .127
(.07) (.07) (.07) (.07) (.07)
uik .375 . 389 1.195 .376 1.183
(.59) (.59) (.86) (.59) (.85)
LIS 1.454 2.782 3.230 1.463 1.837
(1.62) (3.24) (3.17) (1.63) (1.99)

14



Table 1 (continued)

Planning Horizon

Infinlite 4-Period 4-Period 10-Period 10-Period
Expectations
Static Static Rational Static Rational
p0 .638 .640 .649 .638 . 647
(.03) (.03) (.02) (.03) (.03)
P, -.033 -.035 -.038 -.033 -.036
(.02) (.02) (.02) (.02) (.02)
P .839 .835 .878 .839 .889
(.09) (.09) (.07) (.09) (.07)
pH . 608 .598 .658 .608 .671
(.13) (.13) (.13) (.13) (.13)
pK .835 . 830 .679 .834 .689
(.10) (.10) (.13) (.10) (.13)
pR .672 .661 .606 . 671 . 609
(.19) (.19) (.21) (.19) (.22)
lLog of
likelihood 301.845 301.845 306.664 301.846 306.738
L eqn.: R 0.953 0.952 0.971 0.953 0.972
DW 1.82 1.81 1.37 1.82 1.43
M eqn.: R2 0.997 0.996 0.997 0.997 0.997
DW 2.08 2.08 1.77 2.08 1.78
AK eqn.:R2 0.798 0.798 0.754 0.797 0.753
DW 2.16 2.16 2.62 2.15 2.64
AR eqn.:R®  0.869 0.869 0.859 0.869 0.858
DW 1.58 1.58 1.59 1.58 1.62

* Asymptotic standard errors are given in parentheses. With Pr Py Py Pp We

denote the autocorrelation coefficient in the labor, material, capital and R&D
equation, respectively.

15



estimates for L form the 4-period horlzon model with rational expectatlons
is 200 percent larger than that from the 4-period horizon model with static
expectations. We note, however, that the results for the 4-period and

10-period horizon model under rational expectatlons are agaln very simllar.

The above results suggest that the optimal plans for the finite horlzon
model converge rapldly to those of the infinite horizon model as the planning
horizon increases. (Similar evidence was reported by Prucha and Nadiri (1986)
for a somewhat different model under rational prlce and output expectations.)
We note that this result may be viewed as a justification for why it may be
reasonable for a firm to only plan moderately ahead into the future (which is
what firms actually do). Additional planning costs will very quickly exceed
additlonal gains from extending the planning horizon. To put it differently,
the length of the planning horizon does matter for the investment decision of
the firm. However once.a reasonable horizon 1s ldentified, the finlte horlzon
model approximates the infinite horizon model very well.

In principle, we can estimate all of the technology parameters from the
variable factor demand equations, i.e. the labor and material demand equation,
alone. Those equatlons are essentlally unaffected by the cholce of the
planning horlzon and the form of the expectations. By estimating the labor
and material equations jointly with the demand equations for capltal and R&D
we hope to lncrease the precislion of our estimates. We can, however, only
expect improvements if the demand equations for the quasi-fixed factors and In
particular the expectatlions entering those equations are properly specified.
In light of this remark we would not expect that different forms of
expectations and different choices for the length of the planning horizon

affect all estimates of model parameters equally. Not surprisingly we flnd

16



the maln changes ln estimates for parameters that determine the adjustment
path of capital and R&D (whlle the estimates of other parameters that

determlne characteristics of the technology such as scale are essentlally

unaffected).

17



4, Ad justment Costs, Price and Qutput Elasticities

4.1. Adjustment Process

For the infinite horizon model the optimal paths for the quasi-fixed
factors caplital and R&D are described by the flexible accelerator equations
(10). In each period a fraction of the difference between the initial stocks
of capital and R&D and the respective long-run optimal values are closed.
(Note that the long-run optimal values, 1.e. the targets, are changing over
time in response to changes in the variables exogenous to the firm’s lnput
decisions.)} These fractions correspond to the adjustment coefficients LI
and LI For the finite horizon model the optimal input path has no exact
accelerator representation. Still, since the expressions for the adjustment
coefficients in {10c) only depend on the technology parameters and the
discount rate, we can pose the question of what values for L and meR are
implied by the estimates of the technology parameters obtained from the finlite
horizon models.

Table 2 contains estimates of implied adjustment coefficients for capital
and R&D, m and mon’ for the infinite horizon model under static
expectations and the four-period horizon model under static and rational
expectations. The estimates of the adjustment coefficlents for capital are
quite different from those for R&D. The estimates for mo vary between 0.94
and 0.83 and those for L between 0.24 and 0.21. The estimates for m
and L. obtained under the assumption of rational expectations are about 10

percent smaller than those obtained under the assumption of static

expectatlions.
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Table 2: Adjustment Coefficlients for Capital and R&D

m m
KK RR
Infinite Planning Horizon with Static Expectations 0.94 0.24
Finite 4-Period Planning Horizon with
Static Expectations 0.94 0.23
Finite 4-Period Planning Horizon with
Rational Expectations 0.83 0.21

Table 3: Percentage Deviations of Actual Values from the Long-Run Optimal
Values in Selected Years

Variables Year
1951 1960 1970 1979
Labor 25 i3 11 10
Materials 34 2 S 2
Capital -18 -6 -7 -6
Ra&D -12 -30 -19 =20
' Percentage deviations are calculated as (Zt-Z:)/2:-100 for,
respectively, Z =L, M, K R , and 2 =L, M, K, R
t t7 e -1t t-t t A A A !

To give some indication of the disequilibrium (from a long-run
perspective) in the factor inputs we have calculated for the infinite horizon
model with static expectations the percentage difference of actual values from
long-run optimal values for respective inputs. These deviations are given in
Table 3. The long-run optimal values for capital and R&D, K: and R:, are

defined by (10); the long-run optimal values for labor and material, L: and
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M:, are obtained by substituting K: and R: into (11].

At the beginning of the sample period labor and materials exceeded
considerably the long-run optimal values: the reverse is true for capltal and
R&D. Over tlme there have been changes in the extent to which actual and long
-run optimal values differ. For the variable inputs, labor and materials, as
well as for capital the (absolute) difference between actual and long-run
optimal values declined substantially in the 1950's. The gap between the
actual stock of R&D and the long-run optimal value widened in the late 1950's,
then declined throughout the 1960's. It widened again slightly in the 1970"s;
still, the size of the shortfall in the actual stock of R&D from the long-run

optimal value in 1979 is about 65% higher than in 1951.

4.2. Elasticities

Tables 4 and 5 contain, respectively, price and output elasticities of
the demand for capital, R&D, labor and materials. Elasticities calculated
from estimates obtained from the 4-period, 10-perlod and infinite horizon
model under statlc expectations were found to be quite similar. Likewise
elasticities calculated from estimates obtained from the 4-period and
10-period horizon model under rational expectations were found to be similar.
In Tables 4 and 5 we hence only report elasticities corresponding to estimates
of the 4-period horizon model with static and rational output expectations,
respectlvely.13 Short-run, intermediate- and long-run elasticities are,
respectively, evaluated at t+r with =0, T=1 and T=.

The own-price elasticities for both capital and R&D are small. The

long-run own-price elasticity for capltal varies between -0.25 and -0.28, that

for R&D between -0.12 and -0.14. The cross-price elasticities of R&D are
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Table 4: Short-, Intermediate- and Lopg-Run Price Elasticities of Factor
Demand for AT&T, 1967 Values

4-Period 4-Period

Planning Horizon Planning Horizon

Elasticities Static Expectations Rational Expectations
SR IR LR SR IR LR
CK" 0.147 0.158 0.158 0.141 0.164 0.169
€, 0.089 0.094 0.095 0.092 0.108 0.111
€K -0.236 -0.252 -0.253 -0.233 -0.272 -0.279
cnu 0.155 0.273 0.663 0.145 0.259 0.673
ch -0.127 -0.224 -0.545 -0.114 -0.204 -0.529
cRcR -0.028 ~-0.049 -0.119 -0.031 -0.055 -0.143
cuu 0.861 0.655 0.782 0.856 0.655 0.716
euv —0l861 -1.048 -1.177 -0.856 -1.030 -1.144
€.k 0.000 0.401 0.429 0.000 0.381 0. 456
chR 0.000 -0.008 -0.034 0.000 -0.006 -0.029
€. -0.314 -0.488 -0.558 -0.311 ~0.452 -0.522
eLv 0.314 0.239 0.283 0.311 0.239 0.258
chK 0.000 0.245 0.260 0.000 0.210 0.250
€ R 0.000 0.004 0.015 0.000 0.003 0.013

With €, ¥e denote, respectively, the elasticities of the factor Z =

capital (K), R&D (R), materials (M), labor (L) with respect to s = wage rate
(wg. price of materials (v), rental price of capital (c'), rental price of R&D
(c’). The symbols SR, IR and LR refer to the short-run, intermediate-run and
long-run.
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higher reflecting the small share of R&D. Materlal demand is quite elastlc.
The long-run own-price elasticity for materlals takes on values between -1.14
and -1.18. The long-run own-price elastlicity of labor varies between -0.52
and -0.56.

The long-run output elasticitles of capital, R&D, materials and labor are

estimated to fall between 0.64 and 0.65 reflecting scale economies In AT&T.

Table 5: Short-, Intermedlate- and Logg-Run QOutput Elasticities of Factor
Demand for AT&T, 1967 Values

4-Period 4-Period

Planning Horizon Planning Horlzon

Elasticities Static Expectations Rational Expectations
SR IR LR SR IR LR
€,y 0.594 0.632 0.637 0.537 0.626 0.645
€y 0.148 0.262 0.637 0.139 0.248 0.645
€ 1.531 0.565 0.637 1.564 0.716 0.645
€y 1.382 0.73% 0.637 1.291 0.786 0.645

With CZY we denote, respectively, the elasticitles of the factor Z =

capital (K), R&D (R}, materials (M), labor (L) with respect to output (Y}).
The symbols SR, IR and LR refer to the short-run, Intermediate-run and
long-run.

The respectlve estimates for the short-run output elasticlty of capltal are
0.60 and 0.54, those of R&D are 0.14 and 0.15. The estimates of the short-run
output elasticity of materials and labor show that both factors overshoot in

the short-run. The respective estimates of the short-run output elasticlity of
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materials are 1.53 and 1.56, those of labor are 1.38 and 1.29.

The differences in the short-run output elasticities corresponding to
estimates obtalned under the assumptions of static and ratlonal output
expectations are sizable. Consider a change in output by, say, 7 percent.
(The average growth rate of output for AT&T over the sample period was 7.33
percent.) Then the implied differences in the estimated short-run demand for
the stock of capital, the stock of R&D, materlals and labor would be
approximately -0.4, -0.1, -0.2, and 0.6 percent. The average ratios of net
capital and R&D investment to the stocks of capital and R&D over the sample
period were 5.9 percent and 6.3 percent respectively. Therefore the above
reported differences in the demand for stocks of capltal and R&D translate
themselves into big differences in investment demand. The labor bill and the
materials bill of AT&T in 1967 were, respectively, 4329 and 1508 millions of
dollars. The above reported differences in the demand for labor and materials
hence imply significant dollar differences in how we expect variable costs to

react to changes in output.

23



5. Technical Change and Scale

To avold ambiguities we explicitly define measures for technical change
and scale within the context of our cost of adjustment technology, i.e. within
the context of temporary equilibrium. In the following we use again the
general notation of Section 2 with V = [Vl,vzl = [L,M] and X = [Xl,le =
(X,R].

Let a(ﬂ,V,X_l,AX,T) be the factor by which output can be increased for
given inputs if the technology index shifts by @9, 1i.e. aF(V,X_l.AX,T) =
F(V.X_l,AK,T+6). Similarly let b(ﬂ,V,X_l.AX,T) be the factor by which all
inputs can be decreased for a given level of output if the technology lndex
shifts by 9, 1i.e. F(V.X_l,AX.T) = F[bV.bX_l,bAX,T+0). We then define the

following "output and input based" measures of technical change:

_ da(.) 1 aF
{15a) AY = _55~_|6=0 = F a7

__ 8b(.) _ oF OF
(le) Ax - __60—|0=0 - aT/[ 16V * zz laxj -lxj,-l * Zi:laﬁijxj]

Let u(A.V,X_l.AX,T) be the factor by which output increases if all
inputs increase by the factor A, l.e. uF(V,X_l,AX,T) = F(AV,AX_l,AAX,T).

Then the returns to scale, say €., are defined as

(15¢) e = 2ul.) oF y +)jz 16X6F T e T ):2 OF ax pa

a laer = [1=1avl \ a -138%

Of course g = AY/AX. We note that the definitions adopted here are analogous
to those given in Caves, Christensen and Swanson (1981) and Caves, Christensen
and Diewert (1982a,b) for technologies without adjustment costs.

The Lemma in the Appendix implies immediately the following relationships

between the derivatives of the production function F and the restricted cost
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function G =V + w V_:

1 2 2
(i6) BF/BV1 = 1/[aGra¥Y], BF/BVZ = uz/[ac/ayl,
BF/BXJ 4 - -[BG/BXj _1]/[3G/6Y], BF/BAXJ = —(6G/BAXJ]/[6G/6Y].

8F/8T = -[8G/aT1/[8G/aY].

Consequently AY and Ax' and hence €, can be written as follows in terms

of the restricted cost function G(.):

_ _ 8G, 3G
(17a) A, = - 750
__8G,. 8G 8G
(17b) A, = - /(G ZZF“SXJ -1x"" - Z?:; 88X % 1.
3G G aG
(17¢) e=1[G- ):11:3)(J _1XJ.-1 - Ei: 38X, AXJ]/[WY]'

Glven our estimate for the restricted cost functlon G we can now
estimate technical change and scale from the above expressions. Our estimates
for technical change and scale are quite stable over models. (As remarked
above, thls suggests that differences in the specification of expectatlions and
the length of the planning horizon mainly affect the estimates of the dynamic
characteristics of the model and not the estimates of basic technological
characteristics.) The estimates were also quite stable over time. In the
following we report results for the 4-period horizon model with rational
expectations. The estimate of scale, ¢, for 1967 is 1.60, suggesting that
AT&T has experlenced substantlial economies of scale. This estimate lis
somewhat lower than that reported in Nadiri and Schankerman (1981b) and within
the range of estimates reported in Christensen, Cummings and Schoech (1983).
Our 1967 estimates for technical change AY and hx are 0.60 and 0.37

percent. Denny, Fuss and Waverman {1981b) report similar results for Bell
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Canada.

The expressions in (17) for output based and input based technical change
and scale in terms of the restricted cost function were given previously in
Nadiri and Prucha (1983, 1984). They generalize analogous expressions given
Caves, Christensen and Swanson (1981) for a model without expllicit adjustment
costs and by Otha (1975) for a model where all factors are variable. (We note
that the algebra employed here is completely analogous to that used by Caves,
Christensen and Swanson.) All results generalize trivially to the case of m
variable and n quasi-fixed factors. Furthermore, the results can be readlily
generalized along the lines of Caves, Christensen and Swanson to the multiple
output case.ls

The issue of a proper measure of technical change, given the firm is in
short-run or temporary equilibrium but not in long-run equilibrium, has also
been discussed, in particular, in recent papers by Berndt and Fuss (1981,
1986), Hulten (1986), and Morrison (1983, 1986). Those papers relate the
proper measure of technical change to an adjustment of traditlional measures in
terms of a capaclty utilization measure. Berndt, Fuss and Hulten consider
technologies with constant returns to scale. Morrison allows for (possibly)
non-constant returns to scale and works within an explicit dynamic framework.
Glven our analysis also allows for (possibly) non-constant returns to scale
and ls based on an explicit dynamic framework it seems of interest to relate
our measures of technical change to those given by Morrison (and hence to that

in the papers by Berndt, Fuss and Hulten). Define total cost and shadow cost

as

(18) c X

C=0G+
z§=1 J ).
-*
C =G + z X + z A
Zj=1 J 3. Ij IZJ xJ
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where cJ and z‘1 = —aG/axj denotes the long-run rental price and the

shadow value for the j-th quasi-fixed factor and ZJ = —6G/6AXJ denotes the

shadow value of ij' Consider the following traditional measure of technical
change defined in terms of the total cost function: € © -(3C/aT)/C. Then

observing that @8C/8T = 8G/dT it follows immediately from (17a,b) that

(19a) A

€€ C/C‘ R
cT

(19b) A

-
e Cs/C .
cT

Analogously, let €y = (8C/8Y) (Y/C) denote the output elasticity of total
cost. Then observing that a8C/dY = 8G/3Y it follows immediately form (17¢c)

that
-1 _*
(19c¢) e =¢ C/C.
cy

Morrison’s (1983,1986) measures of pure technical change {(denoted in her paper
by c;T and c;T) correspond exactly to the expressions on the right hand
side of (19a) and (19b), and hence are ldentical to those considered here.
Based on the expressions on the right hand side of (19a) and (19b) and the
observation that C‘/C can be viewed as a measure of capacity utilization
Morrison emphasizes that the derivation of a pure measures of technical change
from €er involves an adjustment in terms of capacity utilization to account
for temporary equilibrium, The approach taken here, and previously by Nadiri
and Prucha (1983, 1984), is to first look for a proper definition of technical
change on the production side and then to demonstrate how this measure can be
evaluated in terms of the restricted cost function. The two approaches

complement each other in terms of interpretation. We emphasize the simplicity

in the algebra employed here.
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6. Decomposition of Tatal Factor Productivity and Output Growth

Traditional measures of productivity growth assume, 1in particular, (1)
that all factors are varlable, (2) that the technology exhibits constant
returns to scale, (3) that output and input markets are perfectly competitive,
and (4) that factors are utilized at a constant rate. If any one of those
assumptions is not satisfled, traditlonal measures of total factor
productivity growth will not be pure measures of technical change.16 Given
traditional measures of total factor productivity growth are widely used, it
seems of interest to analyze the compositlion of those measures if those
assumptions are possblly not satisfied. (The questlion how to properly
estimate technical change under non-constant returns to scale and within a
dynamic framework was discussed ln Section S.)

Denny, Fuss and Waverman (1981b) and Nadirl and Schankerman (198la,b)
consider technologles with non-constant returns to scale and provide, within a
static framework, a decomposition of the traditional measure of total factor
productivity growth into a part attributable to technical change and a part
attributable to economies of scale. A similar decomposition exists for our
cost of adjustment technology. More specifically, letA TFP be the rate of
growth of total factor productivity as measured by the conventional Divisla

index and let ATFP be the corresponding Tornquist approximation defined as
(20a) ATFP{ = AtnYt - A&nNt,

where AtnYL denctes the growth rate of output and AtnNL denotes the growth
rate of a cost share weighted index of aggregate 1nputs. The index of

aggregate inputs, N, 1is defined by
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(20b) AfoN =§

with 2 =V =L1,2,=V, =M Z =X  =K.2Z =X =R, The cost

shares are defined as s_ {(t) =w V /C for 1=1,2 and s_ (t) =
z, 1ttt z,

c X /C for 1=3,4. (Recall that C =G + c_X +c_ X
1o, e-1" Tt t t 1t 1,t-1 2t 2,t-1
denotes total cost and cjt is the (long-run) rental price for the j-th

quasi-fixed factor.} The following decomposition of ATFP was first given in

Nadiri and Prucha (1983, 1984);17 the proof is Included in the Appendix for

completeness:
1 2 3 4
{21) ATFPt = ATFPt + ATFPt + ATFPL + ATFPt .
where
1 _1 -
ATFPt =3 [Ax(t) + Rx(t 1)]
aTFPZ = (1-¢ ')atnY
t t t
3 1 (aGr/ax1 T—1+C1T)x1 T-1 T
ATFP = - 3 zT=Lt-1{ € _{8G_/3Y_)Y lﬁtnx1nf1 - Aant]
R AR SR
1 (6Gt/8X2 r-1+czr)x2 T-1 T
PR SR ey ¢ 2 ) (X, - 8N T,
L 2Rt M M 4
. ' (aGT/anlr)Axit T
ATFPt =Tz £T=t.t-l{ e (8G_/8Y_)Y [ALnAXiL - AEnNt] '
Rt AR MO -
(8G /30X__)AX
1 T 2t et

T
T2 £T=t,t~1{ e (8G_/8Y_)Y [AﬂnAXZt - AEnNt]
T T Tttt

Observe that e(3G/8Y)Y = ¢’ as is immediately seen from {17c) and the
definition of the shadow cost in (18). The first term in the above
decomposition of ATFP corresponds to technical change. The second term
reflects the scale effect. The third term reflects the difference in the
marglnal condltions between short and long-run equilibrium, i.e. the

difference between the shadow price and the (long-run) rental price, due to
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Table 6: Decomposition of the Traditional Measure of Tgtal Factor
Productivity Growth for AT&T (in percentages)

Total Factor Technical Scale Temporary Direct Unexplained
Productivity Change Effect Equilibrium Adjustment Reslidual
Effect Cost Effect
Period ATFP ATFP! ATFP® ATFP? ATFP®
1952-1979 3.12 0.38 2.56 0.02 ~0.05 0.22
1952-1965 2.82 0.30 2.13 0.02 -0.09 0.45
1965-1972 2.71 0.39 2.83 0.01 ~-0.00 ~0.52
1972-1979 3.87 0.54 3.03 0.02 -0.02 0.29

'Based on the 4-perlod horizon model with rational expectations.

the adjustment costs. We refer to this effect as the temporary equilibrium
effect. The fourth term reflects the direct effect of the presence of AX in
the production function. We refer to thls term as the direct adjustment cost
effect. In long-run equillbrium both of the last two terms are zero since

then BG/a)(J ' + cJ = BG/AXJ = 0. Furthermore both of the last two terms are

zero If all factors (and hence the aggregate input index) grow at the same
rate.

Based on (21) we have decomposed ATFP for different types of model
specifications and different periods. We present in Table 6 the results for
the four-period herizon model with rational expectations. The results for the
other models were similar to those reported in this table. They indicate that
the scale effect is by far the most important contributor to total factor
productlivity growth. The temporary equilibrium effect and the ad justment cost
effect are negligible and technical change contributes about 10 to 12 percent
to growth of total factor productivity. The contributions of scale and

technical change are comparable to those reported by Denny, Fuss and Waverman
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Table 7: Decomposition of Qutput Growth for AT&T, 1952-1979, Average Annual
Rates of Growth (in percentages)

OQutput Labor Materlials Caplital R&D Adjustment Costs Technlical

Period Growth Effect Effect Effect Effect Capltal R&D Change
1952~

1979 7.33 1.02 1.13 4.38 0.12 -0.01 -0.07 0.60
1952~

1965 6.92 0.67 0.95 4,52 0.09 -0.01 -0.07 0.43
1965~ :

1972 7.82 1.55 1.21 5.18 0.11 - -0.04 0.61
1972~

1979 7.50 1.10 1.43 3.48 0.19 - -0.08 0.90

TBased on the 4-period horizon model with ratlonal expectations.
“Smaller than one percent of a percentage point.

(1981b} for Bell Canada. Average total factor productivity growth for the
Bell System was about 2.82 percent in 1952-1965; it declined slightly (2.71
percent) in 1965-1972, but increased substantlally in 1972-1979 to 3.87
percent. This pattern is in sharp contrast to the behavior of total factor
productivity growth at the level of the total economy and many of the
industries (Nadiri (1981)) for the period 1972 to 1979.

The contributions of inputs, technical change and adjustment costs to

growth of output are shown in Table 7. This decomposition is based on the

approximation
_ 1 - 1 _
(22) atnY, = - {leleni(t]ﬂ:ni(t D1ainz,  + A (8] + A (=)
with Z =V =L, 2 =V_=M, Z =X =K ,2 =X =R , 2 = 48X =
1 1 2 2 3 1,-1 -1 4 2,-1 -1 5 1

AK, Z6 = sz = R and where the erz s denote respective output
s

elasticities. The output elasticitles are computed from the estimates for the
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Table 8: Decomposition of Labor Productivjty Growth in AT&T Average Annual
Rates of Growth {in percentages)

Labor
Produc- Ad justment Cost
tivity Materials Capital R&D Effects Technical Scale
Years Growth Effect Effect Effect Capital R&D Change Effect
1952-
1979 5.61 0.80 3.04 0.09 -0.01 -0.06 0.60 0.98
1952~
1965 5.75 0.77 3.66 0.07 -0.01 -0.07 0.43 0.54
1965-
1972 4.99 0.66 2.91 0.06 A -0.02 0.61 1.57
1972~
1979 5.86 1.04 2.21 0.14 0.01 -0.06 0.90 1.15

tBased on the 4-period horizon model with rational expectations.
"Smaller than one percent of a percentage point.

restricted cost function obtained for the four-period horizon model with
rational expectations using the formulae given in (16). Decompositions based
on estimates from other models were agaln very similar to those reported in
Table 7. The average growth rate of output of the Bell System has been very
high, about 7.33 percent per annum over the entire sample period. The
contributions of various inputs to the growth of output differ considerably.
The most significant source of the growth of output is the growth of capltal
which contributes more than 50 percent to the growth of output. Materials and
labor inputs contribute about 14 percent while the contributlion of technical
change 1s about half as much. Growth of R&D contributes about 2 percent
which, given its small share in the production cost, is falrly substantial.
The same pattern of contributions are evident over the time periods of
1952-1965, 1965-1972 and 1972-1979. The results suggest that most of the

growth of output is accounted for by the growth of the conventional inputs in

the Bell system.
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In Table 8 we look at the sources of the growth of labor productivity in
the Bell System. The results are based on the approximation

=1 —
(23) sn(Y /L) =2 ):f=1[c'__z|(t}+c'__zl(t 1lata(z, /L)

1 1
+ E[Ay(t) + Ay(t-l)] + '2'[8'."' Et-l - 1]A£nLt'

The major component of labor productivity growth is again due to the growth of

capital and to a much lesser extent due to technical change, materials and
scale. Growth in R3D also contributed less than 1 percent to the growth of

labor productivity; the adjustment costs played a relatively small role in

reducing labor preoductivity.
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7. Average Rate of Return on Physical and R&D Capital

In the following we define a measure for the rate of return on the
investment expenditures on an individual factor in period t within the present
framework of a dynamic factor demand model; cp. also Mohnen, Nadiri and Prucha
[1986)}. In this paper we have assumed that the firm chooses its
inputs such that it minimlzes, for a given output stream, the discounted value
of its costs. For expository reasons, consider for a moment a firm

whose objective is to maximize the discounted value of its net revenue stream:
T
(24) E:=OH(Vt+T'Xt+T-1'Axtff)/(1+r)

where H(Vt,XLJ,AXt) denotes net revenues in perlod t. (Since price

expectation have been taken to be static, we suppressed, for notatlonal

A~ A~

simplicity, prices in the argument list of II.) Let (X _,V 5 denote
t+T’ t+T T=0

the optimizing input sequence.

The firm is assumed to reallze the initlal portion of its investment
plan. The firm’s net investment expenditures on (say) the first quasi-fixed

tor th a = q X - .
fac are then given by qltnxlt qn(xlt XLt-1) To calculate the net
returns from this investment we have to compare these returns with the returns
from an input sequence where that partlicular investment is not undertaken. To
capture the pure effect of the firm’'s lnvestment we assume that this
alternative input sequence is conditlonally optimal, i.e., optimal subject to
the condition that the firm's investment in the first quasi-fixed factor in
period t is not undertaken and hence zero. More formally, we consider as the
~ -]

alternative input sequence, say (X _,V _}

cot' Vet 1o UPE input sequence that

maximizes (24} subject to the constraint Axlt = 0. We now defline as our rate

of return the internal rate p that equates the present value of the
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differences in the two net return streams with the initial investment

expenditure, f.e.,:

~

(25) quAXlt = "(Vt'xt-i'axlt'AXZL) - "(vt'xt-z'o'AXZt) +

Z:ﬂ{mvut’xht-l'ﬁxur) - n(qut'xutq'Aiut”/(“p)—l"

The definition generallizes in an obvious way to the case of a finite
planninglhorizon. Further, in case of a cost-minimizing firm we can think of
establishing the respective input sequences by optimizing (24) subject to the
output constraint. Formally, we can then still use (25) for the calculation
of the average rate of return on lnvestment. However, since gross revenues
are identical for both input sequences we then effectively compare the
difference in cost streams.

In Table 9 we present the estimated internal rates of return on net
investment in plant and equipment and RRD for the period 1952-1979 and for
three subperiods for both finite and infinite planning horizons and for both
static and rational expectations on output. These rates are net of the
adjustment costs and depreclation of the two quasi-fixed inputs. They are
calculated using equation (25). The gross rate of return will be of course
much higher. The gross rate of return on capital will average about 13
percent and that on R&D about 30 percent. The magnitude and pattern of these
rates are quite comparable to what has been reported in the literature.1

Several interesting points about these results should be noted: First,
the net average rates of return for capital and R&D are quite different; the
rate of return on R&D is about two to five times larger than that on capital.

This result is consistent with the results reported in the literature
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Table 9: Internal Rates of Return on Net Investment in Capital and R&D (in

percentages)
Infinite 4-Period 4-Period

Planning Horlzon Planning Horlizon Planning Horizon
Time Span Static Expectations Statlc Expectations Ratlonal Expectatlons

Capital R&D Capital R&D Capital R&D
1952-1979 7 21 7 24 7 22
1952-1965 9 17 9 22 9 19
1965-1972 6 19 7 23 7 21
1972-1979 4 29 4 31 S 27

which show that the rate of return on R&D is much higher than that on physical
capital. Second, there are variations in the rates of return over time for
both capital and R&D. The return on physical caplital is fairly stable from
1951 to 1972 at about 7 to 8 percent and then declines to an average rate of
return of 4 to 5 percent. The average rate of return on R&D is not only
higher than that on physical capital but seems to rise over time and therefore

the gap between the two rates widens substantially.
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8. Conclusions

In Prucha and Nadiri (1982, 1986, 1988) we developed a methodology that
allows for the estimation of systems of dynamic factor demand without strong a
priori restrictions on the functional form of the technology and the
expectation formation process. In this paper we applied this methodology to
estimate the production structure and dynamic factor demand of AT&T. We
considered alternative assumptions concerning the planning herizon and the
form of expectations. The technology was modeled by a new restricted cost
function. This function generallizes the restricted cost function introduced
by Denny, Fuss and Waverman (1981a) and Morrison and Berndt (1981) from the
linear homogeneocus to the homothetic case. The paper computes various short-,
intermediate~ and long-run price and output elasticities. Furthermore, we
present proper measures of technical change for technologies where some of the
factors are quasi—fixed-and shows how those measures can be evaluated in terms
of the restricted cost function. Those measures were first introduced in
Nadiri and Prucha (1983,1984) and are related here to measures introduced by
Morrison (1983, 1986). The paper also provides a decomposition of (the
traditional measure of ) total factor productivity growth into technical change
and components that are attributable to scale and the adjustment costs.

Our empirical results suggest the following:

(1) The optimal plans for the finite horizon model converge rapidly to
those of the infinite horizon model as the planning horizon extends. (The
obtained estimation results for the 10-period and the infinite horizon model
are found to be nearly identical; Prucha and Nadiri (1986) report similar
results.) This observation suggests that additional planning costs will

quickly exceed additional gains from extending the planning horizon. This
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observation may hence serve as a rational for why many firms only plan
moderately into the future.

(2} Not all parameter estimates are equally sensitive to alternative
specifications of the expectation formation process. On the one hand
estimates of parameters determining the adjustment path of capital and R&D
turned out to be sensitive. This, of course, would in turn affect concluslons
concerning the effects of tax and monetary policles on investment. On the
other hand estimates of other characteristics of the underlying technology
such as scale seem to be insensitive to the specification of the expectation
formation process.

{3) Using our model we calculate the rates of return on physical and
R&D capital. The net rate of return on R&D is about two to five times larger
than that on capital. Also the gap between the two rates widens over the
sample period. The average net rate of return on R&D investment over the
period 1952 to 1979 is approximately 20 percent.

(4} The model generates reasonable estimates of the price and output
elasticlities for the variable and quasi-fixed inputs in the short-,
intermediate- and long-run. We find evidence that the variable lnputs
overshoot in the short-run their long-run targets and that in particular the
estimates of the short-run elasticities are sensitive to the specification of
the expectation formation process.

(5} The obtalned estimates for output and input based technlcél change
are approximately 0.60 and 0.37, those for the returns to scale are
approximately 1.60.

(6} The estimates of the adjustment coefficlents suggest a fairly short

ad Justment period for physical capital and a long ad]Justment period of about
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four to five years for R&D. Our estimates of the adjustment coefficlents are
sensitive to the form of expectations, but lnsensitive to the length of the
planning horizon (unless it is chosen very short).

(7) Our decomposition of the traditional measure of total factor
productivity growth shows that approximately 80 percent of the growth is due
to scale effects and only approximately 10 percent is due to pure technical
change. That is, the traditional measure of total factor productivity growth

would seriously mizmeasure technical change in the U.S. Bell Systen.
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Appendix: Decomposition of Total Factor Productlivity Growth

Lemma: Let y, m, n, k, and w be elements of R, R, Rp, R? and Rf,

respectively. Conslder the function

(A.1) y = f(m,n,k)

that maps elements of RxRPxR® into R. Let m = m(n,k,y) be the unique solutlon
of (A.1) for m for any n, k, y. Let n = nl(w,k,y) be the unique solutlon of
(A.2) (8/6n) (m(n,k,y) + w'n) =0

for any w, k, y. Define

(A.3) ylw,k,¥y) = m(nlw,k,y), k,y) + o' nlwk,y),
then:
(A. Q) afsém = 1/18y/8y], af/dn = w/l8y/dyl, afs/8k = -[8y/dkl/[8y/3yl,

L}

(A.5) dy/ow n, ©08y/8k = ém/dk, Jdy/3y = om/dy.
(Note that we have implicitly assumed that f(.), m(.) and y(.) are

differentiable).

Proof: The proof 1s standard; compare, e.g., the proof of Shephard’s or
Hotelling’s lemma. By definition, y = f(m(n,k,y),n, k). Differentiatlion
ylelds

(A.6) 1

[8f/8m] [Bm/8y], O = [8f/8mllém/dn] + 3f/0n,

0

[8f/3m] [8m/8k] + B8f/8k.
Furthermore, differentiation of (A.3) and observing (A.2) ylelds
(A.7) dy/0w = n, B8y/0k = dm/3k, OJy/6y = om/dy.

Equations (A.4) and (A.5) follow lmmedlately from (A.6) and (A.7). o

In the following we give a proof for the decomposition of total factor

productivity growth as stated in equation (21). Recall the definition of the
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shadow prices z and 2]' the shadow cost C'. and the total cost C given

in Section 5. Recall further that (17c) and (18) imply that c' = £(8G/aY)Y.

Substitution of (16) into the decomposition of output growth (22) then yields:

(A.8) Ay, = 3 [afaY, + AfnY['1, AfY[ = e [F_w V AV o+

1
2 =1 1T 1T

I SRS ST it S LTES e+ Ry(t).

T=t,t-1. (We have implicitly assumed that the ijt s are positive.) Next

we rewrite (20b) as

(A.9) AtnN_ = 1 [AlNT + afoNT'), BEONT = [T_w Vv _amv o+

1
2 i=1 1T IT

Y2 c X _ AtX  )C_,
j=1 JT J,T-1 Jat-1 T

T=t,t-1. Furthermore observe that the definition of ABnN: implies

Ty _ _ _ T
(A.10) L ¥V, (BV -BENT) = - T e X (AtnX  -OlON().

It follows from (A.8) that

(A.11) alnY® — AnNT = (1-1/e_)atnY' + 1/e_AfnY' - AbaN' =
t t T t T t t
T T
(1-1/e_)AtnY + [)jle‘.r”v”(zxtnvlt MON) +
T .
- x -
D2, K, g (AKX - AEND) ¢ Tz AX (AtnAX
ANTIYC) + A (T)/e_ =
t T ¥ T
T T
- - - N +
(1-1/e )ata¥] + [L,_(z -c )X __ (AtX - a&N)
Tz aX (AtnaX - ANT))/C] + A (1),
J=1 jT It t T X
The last equality was obtained by utilizing (A.10). The decomposition in (21)
1 t t 1 t-1 t-1
now follows upon observing that ATFP = EIAtnYt - AZnNt] + E[MnYt - AfN, ]
(The expression for the scale effect is for reasons of notational simplicity
given under the assumption that €, =e )

t-1
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Endnotes

1 An earlier verslion of this paper {Nadiri and Prucha (1983)) was first

presented at the Workshop on Investment and Productivity of the Summer
Institute of the National Bureau of Economic Research, Cambridge, July 1983.
A first revision was circulated as Nadiri and Prucha (1984). (This revision
was submitted as a contribution to a book that remained in the stage of
preparation.) The present revision connects the material with recent
developménts in the theory of dynamic factor demand and productivity
measurement. We would like to thank Pierre Mohnen for his assistance. We
also gratefully acknowledge the fimancial support of the National Science
Foundation, Grant PRA~8108635, and the Research Board of the Graduate School
of the University of Maryland. Furthermore we thank the computer centers of
New York Unlversity and the University of Maryland for thelr support with

computer time.

2 Christensen, Cummings and Schoech (1983) and Nadiri and Schankerman

{1981b) specify a restricted varlable cost function and demand equations for
the variable factors, but do not estimate dynamic demand equations for the
quasi-fixed factors. Similar models have been estimated using Bell Canada

data; see Denny, Fuss and Waverman (1981b).

3 Nadiri and Schankerman (1981b) do treat R&D as a factor of production and

Christensen, Cummings and Schoech (1983) use R&D as a proxy for an index of

technology.

4 We take the production function to be twice differential in all

arguments. Let f be some function and let z be some argument of f. Then

fz denotes the partial derivative of f with respect to =z.
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S As an alternative to (5) we could have stated the firm’s objective

function in perioed t as
-T
(5") E L COX X o om0

It is well known that in case C(.) 1s linear-quadratic the (certainty
equivalence feedback control) solution for Xt corresponding to (5) is
identical to that implied by the (closed loop feedback control solution)
corresponding to (5'). This result is typlcally referred to as the certainty
equivalence principle. If C(.) is not linear-quadratic certainty equivalence
will generally not hold. Malinvaud (1969) derives, however, for this latter
case a first-order certainty equivalence result under reasonable conditions.
We note that the formulatlion in (5) may be interpreted as a limited
information formulation in that it only depends on knowledge of the first
while the formulation in (5')

moment of the exogenous variables {m _}-
t+T T=0

depends (in general) on the knowledge of their entire distribution. For an

interesting limited information formulation based on the knowledge of the

first and second moments see Bitros and Kelejian (1976).

6 We have tested the hypothesis that Cep = &Ko = 0 both from the infinite

horizon model and from the finite horizon model via the llikellhood ratio test.
To estimate the model in the infinite horizon case under the alternative we
followed the approach developed in Epstein and Yatchew (1985) and Madan and
Prucha (1988). 1In estimating the finite horizon model we followed the
approach developed in Prucha and Nadiri (1982, 1988).

7
Note that BL . reduces to (1i+r) in the case of static output

expectations.

8
We note that the aigorithm can be readlily modified to apply to

alternative objective functions.
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° We have estimated the model with alternative discount rates and found the

results quite insensitive to this specification.

10 The autoregressive model for output was of the form (t-ratios are given

in parentheses)

Y =~ 0.00373 + 1.56874 Y -1.10271 Y + 0.62257 Y
t t-1 t=2 t-3
(0.73) (9.12) (3.66) (2.93)
R° = .999, DW = 1.82.
11 The value of the likelihood ratio test statistic was 1.86 compared to the

critical value of 3.84.

12 To examine the effect of the length of the planning period we estimated

the finlte horizon model with planning horizons of two, four, five and ten
periods. Whatever changes can be observed seem to follow patterns that are
smooth with respect to the length of the planning horizon. To conserve space,
we report in Table 1 only the estimates for the four and ten period planning

horizon.

13 The elasticities are both a function of the model parameters and

expectations. The elasticities reported for the two sets of parameter
estimates are in both cases evaluated under static expectations. Therefore
any difference in the elasticities are solely due to differences in the

parameter estimates.

LI applying the Lemma we take y=Y, m=V , n=v_, k=[X_1,AX,T]. W=,

f(.)=F(.) and %(.)=G(.). The results summarized in the Lemma are standard.

The Lemma is only given for completeness.
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15 Suppose Y, V and X are k, m, and n dimensional vectors. Then

3G
A, = - /L. (3G/BY )Y ]

I P _
=" ar/le f}=1(aG/axJ.-1]xJ.-1 le(ac/anJ)AxJ]-

and € = AY/AX.

16 For a general discussion of problems in measuring technical change see

Griliches (1988).

17 Compare also Nadirl and Prucha (1989).

18 See, e.g., Schankerman and Nadiri (1986) on the Bell System data, and

Ravenscraft and Scherer (1982) and Clark and Griliches (1984) on U.S. firm
data.
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