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L. Iantroduction

This paper 1s concermed with how real cost and demand shocks interact to
determine aggregate real inventories and GNP in the postwar United States. Its aim
{s to answer such questions as: Do inventories respond mainly to demand shocks
(Holt et al. {1960))? Are demand shocks of secondary importance in explaining
fluctuations in GNP (Prescott [1986a,b])? What is the dynamic pattern of the
response of inventories to cost and demand shocks? Of GNP (Blanchard and Quah
[1988])?

A long tradition attributes the bulk of movements in inventories to demand
shocks. Accelerator models, ploneered by Metzler {1941] and Lovell [1961], posit
that inventories are proportional to expected sales. Production smoothing models,
piloneered by Holt et al. [1960], suggest that because of increasing marginal costs
of production, the desire to smooth production relative to demand will also cause
adjustment of inventories in response to demand.

Some recent evidence has, however, suggested that inventories may also (or
instead) be responding to cost shocks. One simple stylized fact that suggests this
i{s that for virtually any U. S. industry or aggregate, production is more variable
than demand (Blinder (1981, 1986a), Blanchard [1983]).} This is logically
inconsistent with a simple production smoothing model with increasing production and
inventory costs, because such a model argues that the sole reason to hold
inventories is to smooth production relative to demand (West [1986]). It is also
empirically inconsistent with more complex production smoothing models that allow
for accelerator effects and for quadratic costs of changing production, since these
additional complexities do not appear to explain the excess variability (West
[1986])).

Cost shocks, however, rationalize the excess production variability quite

naturally. This is most easily seen in an extreme case when demand is constant
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(there are no demand shocks). Production will still vary as costs vary, since
production will be high (low) when costs are low (high), with procyclical adjustment
of inventories covering the gap between production and sales. Production will
therefore be more variable than sales.

Partly because cost shocks provide a simple explanation of the excess
variability of production, recent inventory research has emphasized the potential
role of cost shocks (e.g., Blinder [1986b], Maccini and Rossana [1984], Miron and
Zeldes [1987]). It appears, however, that there is as yet no direct evidence, still
less a consensus, on how important cost shocks are relative to demand shocks.
Christiano and Eichenbaum [1987], for example, find the excess variability of
production suggestive of a predominant role for cost shocks, while Blinder [1986a]
constructs an example in which the excess variability is consistent with a very
small role. As stated above, one aim of this paper is to quantify the relative
importance of cost and demand shocks as determinants of aggregate inventories.

Simultaneously, the paper studies how these shocks interact to determine GNP.
Recent work in real business cycles has argued that most of the movements in GNP can
be explained by fluctuations in costs. Prescott (1986a], for example, suggests that
75 percent of these movements are cost related. Consistent with this, two very
recent vector autoregressive (VAR) studies have found that well over half of the
variance of GNP forecasts more than twelve quarters ahead is due to permanent rather
than transitory shocks (Blanchard and Quah (1988], King et al. [1987]); both studies
interpret permanent shocks as cost rather than demand related, while acknowledging
that other interpretations are possible. By contrast, an earlier VAR study
(Blanchard and Watson [1986]) found that demand shocks are the primary source of GNP
fluctuations, as did a recent study by Fair [1988].

The present paper uses comovements of inventories and GNP to help determine the

sources of fluctuations in GNP. Given the importance of movements of inventory
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stocks at cyclical turning points (Blinder [1981], Blinder and Holtz-Eakin [1986]), .
this seems likely to contain significant information about the sources of U. S.
business cycles. The basic intuition is suggested by a simple production smoothing
model, where the only cost terms are ones quadratic in the level of production and
inventories: demand shocks will tend to cause inventories to move countercyclically,
cost shocks will tend to cause them to move procyclically.

Since it is well known that inventory movements are procyclical (Summers
[1981]), this simple model would, of course, attribute much of the movement in GNP
and inventories to cost shocks. The model used, however, allows for a target
inventory-sales ratio (as does, e.g., Blanchard [1983], Ramey [1988] and West
[1986]). This can induce procyclical movements in inventories in response to demand
shocks, and no simple mapping between shocks and comovements is expected to obtain.
But estimation of the parameter that determines the target inventory-sales ratio,
together with the other parameters of the model, allows one to disentangle movements
due to cost from those due to demand shocks. These parameters may be computed from
the estimates of a bivariate VAR in inventories and GNP. The VAR is estimated on
quarterly data, 1947-1986, for both stationary and unit root specifications.

The point estimates suggest that cost shocks are the predominant source of
fluctuations in inventories. They are largely though not exclusively the reason
that GNP {s more variable than final sales; some excess variability appears to be
due as well to increasing returns in production. Cost and demand shocks are of
roughly equal importance in GNP fluctuations. Cost shocks are especially important
for inventories at relatively long horizons, for GNP at short horizons. Over 90
percent of the variance of inventory forecasts 20 quarters ahead is due to cost
shocks. The comparable figure for GNP {s about 40 to 60 percent.

GNP and inventories both display hump shaped responses to both demand and cost

shocks, with the peak affect occurring about four quarters out. When the shocks are
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assumed to have unit roots, new steady states are essentially achieved in about ten
to twelve quarters; when the shocks are assumed stationary, the variables are
markedly different from the steady state even forty quarters out.
For the usual reasons, however, these results should be interpreted with
" caution: tests of overidentifying restrictionsrstrongly reject the model (as in
Christiano and Eichenbaum [1987), for example), and confidence intervals are rather
large (as in Blanchard and Quah [1988), for example). In connection with the latter
point, it should be noted that the estimates are quite sensitive to the parameter
that determines the target inventory-sales ratio. The point estimate of the
relevant parameter is lower than that obtained in some previous studies (e.g.,
Blanchard [1983], Ramey [1988], West [1986]). When this parameter is constrained to
a higher value consistent with these previous studies, much less--only about 10 per
cent--of the movement in GNP over 20 quarters ahead is attributed to cost shocks.
Section II describes the model. Section III presents empirical results.
Section IV concludes. An appendix has some technical details, with an additional
appendix available on request from the author containing additional results and

details not of central importance.

11, Model

The basic model is a generalization of the linear-quadratic inventory models
in, for example, Blinder [1982], Blanchard [1983), Belsley [1969], and West [1986],
and was suggested by Sargent [1979, ch. XVI]. A similar model was developed
independently by Christiano and Eichenbaum [1987]. To focus on interactions between
inventories and output fluctuations, it is assumed that storage in inventories is
the only means of smoothing production or demand in response to shocks. Demand is
linear (the area under the demand curve is quadratic). Production and storage costs

. also are quadratic.
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lLet S, be real demand (sales), Q, real production, H, real inventories. The
variables are linked by the identity Q, = S, + aH,. Let L, be labor supply, P, the
real price of output, R, real profits, with the wage rate the numeraire.
Utility is separable over time. The per period utility function of the

representative consumer depends on labor and current consumption S.:

(1) - fL, - £gysSy? + 2£UgS,.

In (1), £ and g4s are positive, and U, 1is a demand shock. Constant and linear terms
in (1) and throughout are suppressed, for notational simplicity. The first term in
(1) reflects disutility from work, the second diminishing marginal benefit of
additional demand. The demand shock Uy, captures shocks to preferences, policy, and
the like. A positive value raises demand.

For the representative firm, production and storage costs L, = C, are

(2) Ce = BogQu? + B108Q:? + Zog(He-y-8asSe)? + 2U. (hH,+Q,).

In (1), h and ggs are positive and the other g parameters are such that the
maximization problem stated below is well defined (see footnote 3 below); U, is a
cost shock; E, is mathematical expectations (linear projections) conditional on
period t information.

The first term in (2) reflects increasing costs to production if 200,
decreasing costs if g,q<0. The second term reflects costs of adjusting production
(e.g., hiring and firing costs). Simple forms of costs of adjustment are often
assumed present in inventory models (e.g., Eichenbaum [1984], Maccini and Rossana
[1981,1984]). The quadratic specification can be considered an approximation to an

arbitrary cost function that is convex in production. The accelerator term,
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gog(He-1-8asSe)? appears in many studies of manufacturing and retail inventories
(e.g., Blanchard (1983], Irvine [1981]). It reflects a balancing of inventory
holding and stockout costs (Holt et al. [1960]), capturing a tendency of inventories
to track a target level ggS,, and gge is the target inventory-sales ratio that was
mentioned in the introduction. See Blanchard [1983] or West [1986] for additional
discussion of this and the other terms in the cost function.

A positive cost shock U, raises the cost of both production and inventory
storage. The parameter h measures the shock’s impact on inventory storage costs
relative to its impact on production costs. The shock captures random fluctuations
in technology.

The representative consumer maximizes the expected present discounted value of
utility, the representative firm the expected present discounted value of profits,

using a common discount rate b, O<b<l:

(3) max 1im g..e Ep Efeob®(-fly-£g0g5.2+2£UysS:) s.t. P,S, = L, + Ry,
(4) max lim ;..o Eq SI.b'R, s.t. R, = P,S, - L,

L, = Cy Se = Q, - 4H,.

The constraints in (3) and (4) assume that all profits are remitted to consumers as
profits are earned.

The model is solved as follows. Tentatively assume that all markets are
competitive. Set the number of firms and consumers to one. Use P,S, = L, + R, to

eliminate L, from (3),

(5) max lim g_sq Eq SEuob® [-£(P.Sy-R,)-EgosSe?+2£Uy,Se)
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Differentiate with respect to S,. The resulting first order condition may be

written as an aggregate demand curve
(6) P, = -28455,+2Uq,.

For the firm, use S, = Q, - AH, to write the sum in (4) in terms of H, and Q..
Let ¢, = E,_Z‘.;.ob-’C,_,_,. Differentiate with respect to H, and Q,. The resulting first

order conditions may be written

(7)) -PytbEcPyy, = dcy/0H, = 2gogBas (He1-gasSe) +
2bgoa(1-gas) (Hy-BasEeSesr) + 2hUc,
P, - 8¢, /3Q, = -2bg1qEQus1 + 2[ 8ot (1+b)g1] Qe

-2g10Qe-1 - BonBas(He-1-8esSe) + 2Uce.

The first equation in (7) says that the firm is indifferent between adding a unit to
inventory this period to be sold next period (excess of discounted expected revenue
over cost is bE.P,,,-dc./4H,) and selling the unit this period (revenue is P,). The
second equation in (7) says that the firm produces until marginal production cost
equals price. See or Blanchard and Melino [1986] for additional interpretation.

Equilibrium P,, Q,, S, and H, are determined by the three equations in (6) and
(7) and the identity Q,=S.+aH,. The equilibrium is perturbed as demand shocks shift
the aggregate demand curve (6), cost shocks shift the aggregate inventory and output
supply curves (7). To estimate how the shocks interact to determine Q,, H, and S,
it is convenient to eliminate P, and E,P,,, from (7) by substituting (6) and (6) led
one time period into (7). Let Y, be the (2x1) vector (H, Q). It follows from

straightforward algebra that the resulting first order condition is




(8) Ey[bA;'Yyy + AgYy + AY,.y + By (Dol + bDyUyyy)] = 0.

In (8), 50'Sos*$oq+50|$asz*(1"’b)8m? A and A, are 2x2 matrices that depend on the
discount rate b and the parameters in (1) and (2), with A; symmetric and positive

definite, with nonzero off-diagonal elements,

B, O
By Bs

52 ﬁl
B 1

AO -

Ay =

whore By ™ -Bo " [Bos*Boalas’) B2 = Bo [ (14b) gos+BonBas +bBoa(1-8as) ], By = -Bo 'B1ar Bi ™

-Bo Bos-8onBes(l-8es)]: Uy is the 2xl vector (U,,Us)’; the D; are 2x2 matrices,

Dy =

Equation (8) may be interpreted by noting that the competitive market structure
so far assumed solves a social planning problem of maximizing the expected present
discounted value of the excess of consumers surplus over production and storage

costs:

max lim ;..o Eq Zf.b®(W,* - C,) s.t. W = g5, 242Uy, S,,

Q. = S, + aH,.

Equation (8) says that one can increase this value neither by selling one fewer unit
this period, carrying the extra unit in inventory and selling it next period, nor by
producing and selling one extra unit this period.

Equation (8) was derived under the assumption that the product market is
competitive. Suppose instead that a single firm is a monopolist, as in Blinder

[1982]. 1It is straightforward to verify that (8) still holds, i.e., the
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monopolistic and perfectly competitive versions of the model are observationmally
equivalent. The analysis below therefore is robust to possible imperfection in the
product market, and allows sticky prices in the sense of Blinder [1982].%

Regardless of the structure of the product market, the reduced form solution to
(8) depends on the stochastic process followed by the shock U,. The empirical work
assumes that the cost and demand shocks follow uncorrelated AR(l) (possibly random
walk) processes with parameters ¢, and ¢4, with |¢.|, [#al<1: Ep yUse = S9Usge-y, EeoyUce

- ¢.U..,. let & be a 2x2 diagonal matrix, ¢ = diag(é..4y). Also, let

,  =E(U,-9U,.1) (U,-®U,. ) '=diag(s?,.0%) .

(9) D= Dy+b [0 -¢
0 o

The solution to (8) is

(10) Y, = O¥,., + FU,,

vhere I and F are 2x2 matrices that depend on b, D, &, Ag and A;. Since U, follows a
vector AR(1l) with coefficient matrix ¢, FU, follows a vector AR(l) with coefficient
matrix F¢F': FU, = (FOF})FU,., + F(U,-8U,.;). To obtain an equation with a serially

uncorrelated disturbance, quasi-difference (10) to obtain

(11) Y,-FOFYY,., - OV,., - FOF 'Y, , + V,, V,=F(U,-2U, ).

The aim of this paper is to use (ll) to determine how cost and demand shocks
interact to determine inventories, production and sales. This requires estimates of
M, Q, = EV,V,’, & and F. Given FOF™!, the first two are easily obtained from (l1) by
linear regressions; calculating FOF! entails some work (see below and the

appendix). Given F, Q, may be diagonalized by multiplying it by F!. One may then
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apply standard VAR.techniques to compute impulse response functions and variance
decompositions.

A basic check on the plausibility of the results is the pattern of impulse
responses. While complicated and perhaps counterintuitive dynamics are possible
(Blinder [1986a]), intuition suggests that the initial impact of a cost shock will
be to cause inventories, production and sales to fall, with a negative long run
impact as well when there are unit roots. One expects the initial impact of a
demand shock to cause production and sales to rise, with the effect on inventories
indeterminate: production smoothing will tend to make the effect negative, ggs>0 in
equation (2) will tend to make the effect positive (see also Blinder {1986a]). When
there are unit roots ($y=é.~1), the long run impact of a demand shock on production
and sales is positive, on inventories indeterminate (again because of conflicting
forces from production smoothing and ggs>0).

This section closes with an overview of the procedure used to identify the
shocks, and may be skipped without loss of continuity. The first step is to obtain
an estimate of F&F !, which is used construct the right and left hand side variables
in (11). Estimation of FOF! when $. and ¢4 are unimown i{s discussed in the
appendix. Consider instead when ¢, and ¢4 are imposed a priori. This was true,
with $4=d.=1, for one of the specifications estimated below. Then ®=FOF =1, the
shocks follow uncorrelated random walks, and equation (11) is just AY,=[AY, +V,.

Upon defining (vqy vz,)'=V,, this may be written out in scalars as

(12) AH, = Al + 728Q + Ve

AQ = mpAHyy + %pAQu.y + Vi

Given a value of the discount rate b, the four g; (1>0) defined in equation (8) can

be computed from the OLS estimates of the four =x's. The estimates of the §; can
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then be used to compute the g,;, as well as h, o%,, o’y and F. See the appendix for
details. Note that the g,, are only identified up to a normalization, as are h, Q,
and F. (This is apparent in (6) and (7): doubling all the g,; terms except ggg
leaves the first order conditions unchanged, apart from a rescaling of the
disturbances.) The normalization chosen was ﬂo-l. Variance decompositions, and
impulse responses to a one standard deviation shock, however, are invariant to
choice of normalization.*

It should be noted that whether or not & is known a priori this is not the
usual procedure for orthogonalizing vector autoregressive residuals (e.g.,
Haltiwanger and Maccini [1987]), and issues such as sensitivity of results to
orderings of variables are not relevant. The basic algebraic reason for this is
that the three unknowns h, o2, and o%; are determined uniquely by the three unknowns

in Q.

11I. Empirical Resulcs
Da nd Estimat{on Technique

The data were real (1982 dollars), quarterly, seasonally adjusted, and
expressed at annual rates, 1947:1 to 1986:4. Figures for GNP, final sales (demand)
and inventory investment were obtained from CITIBASE files GNP82, GNS82 and GV82.
The implied series for inventories was obtained by setting the 1982:1 figure to
match the corresponding entry in the CITIBASE file for real inventories, GL82, and
then using the series for inventory investment (GVB2) to compute the level in other
quarters.

The first step in the empirical work was to model deterministic and stochastic
trends. Regressions of log levels of the data on a constant and time trend yielded
estimated growth rates of 0.786 per cent per quarter for inventories, 0.828 percent

for production; when inventories and GNP were constrained to have a common
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deterministic growth rate, the figure was 0.807 percent per quarter. This suggested
that it. is reasonable to model the two variables as having a common deterministic
trend, and, indeed, neither asymptotic nor Monte Carlo tests could reject the null
of a common deterministic trend. Details on these tests, as well as on the
consistency of geometric growth with the model, are in the additional appendix
available on request. The data used in all the estimation below therefore are data
"scaled” by this common deterministic trend, i.e., the 1982 data just described
divided by (1.00807)®. The mean values for scaled inventories, GNP and sales were
1,017, 1,106 and 1,099 billion 1982 dollars. See Figure I for a plot of the scaled
data.

All the inference reported below is conditional on the estimated growth rate of
0.807 percent per quarter and, except for the results in Tables I and II below, on
an imposed discount rate b=0.98 as well. Related work (West [1986]) and some tests
described in a footnote suggest that the empirical results are not likely to be
sensitive to even large errors in the estimate of this deterministic trend, or to
the exact choice of discount rate.?

The Said and Dickey [1984] test for a unit root in the scaled data does not
reject the null of a unit root in either GNP or inventories at even the ten percent
level, for either 4 lags (t-statistic for H,: coefficient on lagged dependent
variable=1 is -1.96 for GNP, -1.20 for inventories) or 12 lags (t-statistic = -1.62
for GNP, -1.16 for inventories), using either the asymptotic or Monte Carlo levels
in Schwert [1987]. This suggested the importance of a differenced (¢.~$4~1)
specification. On the other hand, extreme serial correlation of GNP and inventories
is consistent with a stationary model as well, with the persistence coming from ¢,
and ¢, less than but near unity. This suggests the plausibility of an undifferenced
specification as well. A cointegrated specification seemed of secondary interest

because the null of no cointegration of GNP and inventories was not rejected at even
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the ten per cent level using the Engle and Granger (1987] CRDW test, when either GNP
was regressed on inventories (Durbin-Watson = 0.070) or inventories on GNP (Durbin
Watson = 0.042).

This suggests the importance of two of the specifications estimated: a
differenced one, with ¢.,-44~1 imposed, and a quasi-differenced one, where ¢.=0.969,
$4=0.997 was estimated as described in the appendix. In this stationary
specification, demand disturbances were overwhelmingly dominant at distant horizons,
for GNP (see the discussion of Table V below). To check whether this result
followed simply because ¢, was very near one, and slightly larger than ¢., a third
and final specification estimated ¢, and ¢, subject to the constraint that ¢ _=¢,.

The maximum likelihood estimate was ¢.,=4,~0.949. See Table 1 for a summary of the
serial correlation parameters for the three specifications, as well as the left hand
side variables used in the regression estimates of (l1).

In all three specifications, confidence intervals for various estimates were
bootstrapped (Efron (1982), Freedman [1984], Runkle [1987]), using one thousand

repetitions.®

For each of the one thousand repetitions: (a)a time series of Y, was
generated recursively using the estimated Il and F§F!, and sampling the estimated
residuals with replacement; (b)equation (l1) was reestimated (holding FOF! fixed),
to get another II. Inference was thus conditional on the estimated or imposed -
serial correlation matrix FOF! (and, as noted above, on the value of the discount
rate b and the estimated growth rate).

Impulse responses and variance decompositions over various finite horizons were
calculated in the standard way, using the RATS computer program. The results also
report variance decompositions at an infinite horizon, computed simply as the limit
of the finite horizon variance decompositions.

A speclalization of the model that involves a simple form of costs has simple

implications for the relative variabilities of GNP and final sales. Suppose in
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particular that heg,g=ggs=0, so that C, = geqQu® + goaHy® + 2QuU... Assume tentatively
that all variables have a zero unconditional mean. Then in a stationary
environment, (a)in the presence of demand shocks only (U,=0), 0 < E(5.2-Q,%) = ES,? -
EQ,'z = var(S) - var(Q), or var(Q)/var(S) < 1 (West [1986f); (b)in the presence of
cost shocks only (Uy=0), var(Q)/var(S) > 1 (see the additional appendix available
on request).

In the presence of unit roots, variances do not exist, but analogous
inequalities nonetheless hold (West [1987]). Since S, = Q.-4H,, 5,2-Q,2 = -2Q.AH, +
AH2. Under fairly general conditions--including in particular when (AH,,AQ,)
follows a vector autoregression, as in the present paper--EQ.AH, = E[(aQ, + 4Q,., +

YaH,] = E[(Z7.90Q,-3)0H,] exists (is finite). The simplified model defined in the
previous paragraph then implies (a)in the presence of demand shocks only (U.=0), 0
< E(5.%-Q,%), (b)in the presence of cost shocks only (Ug,m0), 0 > E(S.%-Q.%).

That the data do not have zero means, and are first scaled by gt, is irrelevant
for the stationary specification but introduces some minor complications for the
unit root specification. As explained in the additional appendix available on
request, it is necessary to examine not -2cov(Q.,AH,) + var(aH,) but -2cov(Q.,AH,) +
g”var(AHt). This was calculated in a straightforward fashion from the (aH,,AQ,)
autoregression, and is reported in the Table IV entries for E(Stz-Qtz).

B, Empirical Results

Estimates of the reduced form, of cost and demand parameters, of impulse
response functions, of production and sales variability, and of variance
decompositions will be discussed in turn. Table II has estimates of the reduced
form (10), where @I=[x,;]. (Constant terms were included in all the regressions, but
are not reported to conserve space.) Given how close are the values of ¢, and ¢,,

the reduced from estimates are of course quite similar (columns (2) to (5)).
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The results of three diagnostic tests are reported in coluans (6) to (8). The
Q statistics in columns (6) and (7) cannot reject the null of no serial correlation
in the residuals at the 5 per cent level, though they do reject at the 10 percent
level for the inventory equation all three specifications. Column (8) reports
maximum likelihood tests of the null of a lag length of one versus a lag length of
two (after differencing or quasi-differencing by FOF!). These reject the null of a
lag length of one quite strongly. For the stationary specifications, tests of an
unrestricted lag length of two, in levels, versus the restricted second order VAR
implied by (1l1) also reject the null at the .05 level (not reported in the Table).

The rejection of the overidentifying restrictions reported in column (8)
suggests that this model is too simple to fully characterize the data.

Qualitatively similar results obtain, however, when a more complicated model that
implies a longer length VAR is used (see section C below). Since the present model
is simpler to interpret, and since the parameter estimates and impulse response
functions are for the most part quite plausible (see below), I will focus on chis
simple model.

Cost and demand parameters are reported in Table III, with the normalization as
stated in the Table. Most parameters are correctly signed. The demand curve slope
g5, the inventory cost goz and the cost of adjustment g, are all fairly precisely
estimated, and are consistent with those for the automobile industry (Blanchard
[1983]) and for two digit nondurables manufacturers (West [1986]). The target level
parameter gy is, however, incorrectly signed, although the 95 percent confidence
interval is so large that it includes values such as .4 and .7 that are consistent
with Blanchard [1983], Ramey [1988] and West [1986]. I therefore interpret this as
a noisy and imprecise sample estimate of a population parameter that is positive
(though perhaps small).’ Particularly interesting are the estimates of the

quadratic production cost gy. As in Blanchard {1983], this cest is insignificantly
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different from zero and constant returns to scale cannot be rejected. As in Ramey
[1988], however, the point estimates are negative, implying a tendency to bunch
production.®

Figures II and III plot the response to one standard deviation cost and demand
shocks for the ¢ =94=0.949 specification. Figures IV and V do the same for
$.=pg=1.0. (To conserve space, plots for $.=0.969, $4=0.997 are not presented, but
any differences from ¢.=¢4~0.949 are noted below.) The signs of the shocks are as
in equations (1) and (2): a positive cost shock raises costs, a positive demand
shock raises demand. The units on the vertical axis are billions of 1982 dollars.
Note that the vertical scale in Figure III is slightly more compact than in the
other three figures, and that the horizontal scales are different for the
$ =pg=0.949 and ¢ =¢4=1.0 specifications.

In response to a positive stationary cost shock (Figure II), GNP, inventories
and final sales all fall initially, then rise back to the initial steady state. The
smoothing role of inventories is illustrated by the sharper initial fall of GNP than
demand, in response to the increase in costs; without inventories, this sharper fall
would not be possible. The smoothing pattern appears to make GNP more variable than
sales, as is expected in simplified versions of the model in the presence of cost
shocks alone.

The GNP and sales responses to a stationary demand shock, in Figure III, are
familiar hump-shaped ones. As in Blanchard and Quah [1988], the peak response
occurs at about four quarters. Inventories are initially drawn down, thereby
buffeiing GNP from the shock. They are then built up, accumulating above the
steady state level before falling back down. The pattern is similar to Haltiwanger
and Maccini’s [1987] estimates of the response of finished goods inventories to new
orders shocks. The smoothing by inventories appears to make GNP more variable than

demand. This is inconsistent with the standard production smoothing model with gy
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positive, but is unsurprising given that the estimated gy is negative.®

In response to a positive random walk cost shock (Figure IV), inventories,
demand and GNP all fall. Once again, inventories perform their smoothing role,
allowing demand to fall less than GNP. The decline in both inventories and final
sales is almost monotonic; GNP displays a hump shape (as in Blanchard and Quah
[1988] and King et al. [1987]). The new steady state is essentially obtained in
about two years, again as in Blanchard and Quah [1988) and King et al. [1987). (The
similarity of the steady state changes in fingl sales and GNP results because
inventory investment (the first difference of inventories) is assumed stationary.)

In response to a positive random walk demand shock (Figure V), inventories are
drawn down, demand and GNP rise. Some smoothing is apparent initially, although GNP
quickly rises past demand. Inventories show a hump shape; the return back towards
the initial level again suggests a target level. The steady state is again reached
in about two years.

Table IV reports the relative variability of GNP and final sales, using the
$.=$4=0.949 and ¢ =py=1 specifications. As is well known (Blinder [1981]), the
variance of GNP exceeds that of final sales (line 1, column 2). The appropriate
inequality holds as well when unit roots are assumed present (line 1, column 1).

The impression from the Figures that GNP is more variables than sales, in response
to either cost or demand shocks, is borme out by the relevant point estimates (lines
2 and 3), though the excess variability is statistically insignificant at the 95
percent level when there are demand shocks only (line 2).

Table IV suggests an explanation of the seeming contradiction between the
Blinder [1982] version of the production smoothing model and the fact that GNP is
more variable than final sales. The bulk of the explanation is that cost shocks are
important. But even in the absence of cost shocks, GNP would possibly continue to

be more variable. This excess variability appears to be attributable at least in
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part to a small tendency to bunch production (i.e., to the small negative value of
8oq): Lf the Table IV figures are recalculated for the ¢.,=4,~1.0 specification under
the counterfactual assumption that go=0 (constant rather than increasing returns to
scale), with all other parameters held constant, the entry in line (2) for just
demand shocks falls to 0.994.

Table V has variance decompositions. 1In all three specifications, the variance
of inventories is largely attributable to cost disturbances. This is especially
true at relatively long horizons. The point estimates suggest that over 90 per cent
of the variance is attributable to cost shocks at horizons of 4 quarters or more,
the confidence intervals that it is unlikely that less than half the variance is due
to cost shocks. This dominance of cost shocks is consistent with the marked
procyclicality of inventory stocks (see Figure I), and is perhaps unsurprising given
that-the estimates of the accelerator parameter gz Were negative.

All three specifications attribute to cost shocks about 40 to 60 per cent of
the variability of GNP at horizons of about 20 quarters. At longer horizons,
however, there are marked differences between the two specifications that impose
¢.~py (columns (1) and (2}) and the one that does not (column (3)). When ¢s~¢., the
infinite horizon figure is still about 40 to 60 per cent, but for ¢.-0.967,
$4=0.996, the figure is about only a little above 10 per cent. A comparison of
columns (2) and (3) indicate that this is an artifact of the slightly higher point
estimate of ¢4: if 4,=1, ¢.<l, the contribution of cost shocksvat an infinite
horizon would of course be zero. Here, instead, ¢4 is slightly less than one, so
the contribution of cost shocks at that horizon is not exactly zero.!? I am
therefore inclined to downplay the infinite horizon decompositions in column (3).

In this connection, the reader should recall that the confidence intervals are
conditional on the estimates of ¢. and ¢,, so the upper bound of 34.9 in the

infinite horizon confidence interval in column (3) probably is consistent with a
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point estimate in the 40 to 60 range.

This 40 to 60 per cent range is bracketed by the somewhat higher estimates in
Blanchard and Quah {1988] and King et al. [1987], and the somewhat lower estimates
in Blanchard and Watson [1986] and Fair {1988].!! A possible reconciliation with
the two papers that find higher estimates is that permanent shocks, tentatively
linked in those papers to cost rather than demand, are in fact partly demand
related: in the present context, at least, nothing in the model or results argues
for allowing for cost but not demand shocks to be permanent.

A possible reconciliation with the three papers that find a smaller role for
costs is suggested by the only one of the papers that has an inventory equation,
Fair [1988]. Fair uses a standard flexible accelerator/production smoothing model.
Desired inventories are proportional to sales; actual inventories adjust only
partially toward the desired level (Fair [1984, ppl31-132)). In Fair [1988], the
shock to the inventory equation is interpreted as one of the components of the
aggregate demand shock. In the present paper, however, the shock to the inventory
equation in both (8) and (10) depends on cost as well as demand. Inventory
investment therefore responds to cost shocks. The same plausibly applies to other
types of business investment. Insofar as the shocks to the aggregate demand curve
in Blanchard and Watson [1986] are due to business investment, some of the GNP
variability that those papers attribute to aggregate demand shocks might more
properly be attributed to aggregate cost shocks. In any case, whether or not I am
correct in arguing that shocks to investment equations plausibly reflect cost as
well as demand, my argument does suggest why I find a more important role for cost
shocks than do and Blanchard and Watson [1986] and Fair [1988]. Whether this
argument is persuasive of course will require further research.

To return to Table V: Cost shocks are less important for GNP as the forecast

horizon increases. This pattern held quite rigidly. Although not reported in Table
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V, the fraction of GNP variability attributable to cost shocks declined
monotonically as the horizon increased. Evidently, demand shocks are estimated to
have increasing real effects for GNP, with inventories serving as a buffer. This is
illustrated in the impulse responses. In both specifications, GNP responses to cost
shocks show an earlier peak and a quicker approach to the steady state.

The decreasing importance of demand shocks is consistent with Maccini and
Haltiwanger [1987], who report an analogous tendency for shocks to new orders to
account for an increasing fraction of the variance of manufacturing inventories as
the forecast horizonm increases. The contradictory Blanchard and Quah [1988] and
King et al. [1987] result that cost shocks are increasingly important as the horizon
increases again potentially can be reconciled with Table V if permanent disturbances
are demand as well as cost related.

Finally, fluctuations in final sales appear to be attributable in roughly equal
shares to cost and demand shocks. (I again discount the results in column (3), for
the reasons given above.) There does not appear to be a marked tendency for cost
shocks to be particularly important at any particular horizon. (Once again, for the
differenced specification, the similarity of the infinite horizon decomﬁosicions for
GNP and sales results because inventory investment is stationary.)

C. Additionsl Empirical Resules

As a check on the preceding results, two additional sets of estimates were
obtained. For simplicity, I imposed ¢.=$4~1 in both, and did not compute any
confidence intervals. The first set of estimates was already mentioned in the
discussion of diagnostic tests, and used a more complicated model that implied a

longer length VAR. Equation (2)’'s cost function was expanded to:

(13) G = BoqQe? + 8108Qc% + Bor(He-1-BasSe)? + 2Uce (hH+Q,) +

gt + BioAHAQ, + gad®H.? + gye0Q.t.
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The four additional terms are suggested by Eichenbaum [1984]). With ¢ =¢,~-1, this
can be shown to lead to an exactly identified second order VAR in (4Q.,AH,).
Diagnostic tests on the OLS estimates of this second order VAR: For the AH, .
equation, Q(36) for the residual was 32.81 (p-value = 0.62); for the AQ, equation,
Q(36)=28.37 (p-value = 0.82); x?(4) for lags=2 against lags=3 (second order against
third order VAR) yields 4.33 (p-value=0.36).

Point estimates for the g are given in Table VIA. Of the five parameters
present in the model used above, four fall within the 95 percent confidence
intervals in line 1 of Table III (the exception is g;q, which is a little larger
than one would expect from the Table III confidence interval). Most of the four
additional parameters are small relative to the original parameters, with three of
the four (g,q, £15. B2s) having negative signs. The interpretation of these negative
signs is unclear. Perhaps this suggests a tendency to bunch inventory holdings as
well as production. The entries corresponding to the "=" line in Table V are
reported in Table VIB. As may be seen, they are consistent with the Table V
entries.

I conclude that even though the model in section B was, as usual, rejected by
tests of overidentifying restrictions, substantively different results are unlikely
to be produced by extensions to models that are complicated and more difficult to
interpret, but unrejected.

A second set of additional estimates considered the implications of the
imprecise estimates of the accelerator parameter ggs. In this set, gz was fixed at
0.68 instead of its estimated value of -.04; .68 is the upper bound of the 95
percent confidence interval in line (1) of Table III, and is consistent with the
estimates of some earlier studies (Blanchard [1983], West [1986]). Holding the

other g parameters fixed at the values reported in Table III, I then solved for
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the reduced form and used this in all subsequent calculations.

One would expect the higher value of ggg to lead to a less important role for
cost shocks, since more of the procyclical movement of inventories will be
attributed to movements in demand. Indeed, with the other g  parameters held fixed
at the values reported in Table III, the implied infinite horizon fraction of the
variance of inventories, GNP and sales due to cost shocks falls, to 66, 9 and 9.
See Table VII. The estimates in Table V, then, are sufficiently imprecise that
fixing ggs at a plausible value that is rather different from its Estimated value
results in a variance decomposition that is rather different, and more consistent
with some earlier studies (e.g., Fair [1988,p232] who finds that supply shocks
account for 7 percent of the variance of the eight quarter ahead forecast error in

GNP) .12

IV. Conclusions

Fluctuations in aggregate inventories in the postwar U.S. appear to be due more
to fluctuations in cost than in demand. Despite some long standing difficulties in
linking movements in inventories to those in costs (a recent example is Miron and
Zeldes [1987]), the implication is that future inventory research should emphasize
the role of costs. Fluctuations in GNP appear to be due in roughly equal
proportions to fluctuations in cost and demand. The point estimates are, however,
noisy. With a different, and plausible, value for the parameter that determines a
target inventory-sales ratio, cost shocks are less important than demand shocks for

GNP fluctuations.



Footnotes ‘

1. An exception is production to order manufacturing, when demand is
measured by orders rather than sales (West [1988]).

2. Readers who prefer the monopolist interpretation should note that under
that interpretation the parameter estimate called gog is instead an estimate of
.5gs. In a related context, Eichenbaum [1984] states that an oligopelistic
structure results in an observationally equivalent equilibrium, provided
individual firms follow symmetric open loop Nash strategies.

3. Necessary conditions for (8) and (10) to be the optimal solution to the
model include (1)A, is positive definite (the Legendre-Clebsch condition for
optimality [Stengel, 1986,p213]); (2)the two smaller of the four roots te
[ba, 2" '+Ag+a,z |=0 are strictly less than b™'/? in modulus. These conditions are
guaranteed to hold if guq, Zom. Bos» Big > 0. See Hansen and Sargent [1981]. I
thank Tryphon Kollintzas for clarifying this point.

4. Actually, impulse response functions are invariant only up to a sign
change.

5. For the ¢_=4,=1 specification described below, I calculated the infinite
horizon variance decompositions described in the next paragraph, for data scaled
by (1.012)% = [1 + (1.5)x(.008)]* and (1.004)® = [1 + (.5)x(.008)]*. Nonme of
these estimates were more than four percentage points different than the figures
reported in Table V below. See West [1986] on the insensitivity of results to
exact choice of b. '

6. For the differenced specification, asymptotic standard errors were also
calculated for some of the parameter estimates, in a fashion similar to that
described in West [1988]. The results were about the same.

7. While ggs<0 is not sensible, this model still generates a positive level
of inventories (see Schutte [1983]). In the underlying model that allows for
deterministic growth in inventories and production, which is described in detail

in the additional appendix available on request, the quadratic costs in (2) are




interpreted as costs around a minimum point that grows over time. This growth
can lead to positive inventory levels even if ggs is negative (or, more
plausibly, zero).

8. The estimated value of goq is small enough relative to the other
parameters that the conditions noted in footnote 3 are ﬁet. It should be
emphasized that the conditions in that footnote are necessary but not sufficient.
James Hamilton has pointed out to me that these conditions therefore do mnot
establish that the point estimates are consistent with (8) and (10)
characterizing the optimal policy.

9. For ¢.=0.969, $,=0.997, the response to a cost shock is quite similar to
that in Figure II, but the response to a demand is somewhat different from Figure
I1I, in that (a)even after 80 quarters, no return to the steady state is obvious
(this of course results since ¢4 is so near unity), and (b)after initially
falling, inventories rise up above the steady state before finally falling back
towards the steady state.

10. The "=" entry for H, in column 3 indicates that this argument does mnot
yet apply to inventories with ¢4=.996; it would of course eventually apply for
some ¢, arbitrarily near unmity.

11. Fair [1988] only calculates decompositions up to eight quarters out;
these, too, attribute a much lower figure to costs than does Table V.

12. In defense of the present paper, it should be noted that these estimates
do not seem to be any less precise than those in Blanchard and Quah [1988] or
King et al. {1987]. Incidentally, for the ¢ .=g4~1 specification, plots of the
eight quarter ahead forecast error in GNP (as in Blanchard and Watson [19861)
indicated that both the cost and demand shocks tended to be negative in
contractions, positive in expansions, with no noticeable tendency for cycles to
be demand or cost driven. When ggg was fixed at .68, the same plot indicated
that all cycles were demand driven (including, perhaps implausibly, the 1973-75

recession).
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Appendix
This discusses (l)how to calculate F (defined in equation (10)), given
estimates of FOF ! and H; (2)how to estimate FOF! and II.
(1)Tentatively ignore the scaling for growth discussed in the text. Inserting (10)

led once into (8) yields

bA,’ (Y, +F8U,) + AsY, + A Y, - DU, = 0 ==>
bA,’ [I(ITY,_,+FU.)+F&U,] + Ag(IY,_,+FU,) + A,Y,, - DU, = 0 ==>
(Al) bA,'T? + ATl + A, = 0

(A2) [bA,’ (FOF '+I)+A4]F = D.

After estimating the reduced form (ll), one uses the four equations in (Al) to
linearly recover the four elements of Ay and A;,. Given estimates of Ay and A,, one
can calculate the three unknowns h, azc, and aza from the three equations in
[bA,’ (FOF 1+11)+A,]Q, [bA,’ (FOF 1+M)+Ay]’ = DA,D’. (An estimate of Q, is available from
the covariance matrix of the reduced form residuals.) One then calculates F =
[bA,’ (FOF 2+I)+Aq] ~'D.

As stated in the text, the data were scaled by a growth rate of (1.00807)% = g*
prior to estimation of (11). The model that allows such growth (described in detail
in the additional appendix available on request) implies that the first order

condition (10) should be written
E{ bgA,'Y. + AY, + gAY, + DU, } = O,
where D=D,+bgD,, D, and D, defined below equation (8). The calculations just

described are then modified in a straightforward fashion.

(2)When ¢ ~p4~4 for some scalar ¢, FOF =4I, and it is straightforward to estimate ¢




- A2 -

and I subject to the restriction that Y,=($I+OY, ,)-¢IOY, ,+V, for some scalar 4. Then
FOF =4I and one proceeds as above. When ¢.F¢,, maximum likelihood is very
cumbersome. (The constraint is not only nonlinear but involves both the regregéion
parameters and the variance-covariance matrix.) The following procedure, which
yields consistent though not efficient estimates, was therefore used instead:
(a)OLS was used to estimate the second order VAR Y,=IY, ,+I,Y,_,+V,.
(b)The matrix lag polynomial I-N,L-I,L? must be factored as (I-F®F'L)(I-NL). For
given I, and M, there may be zero, two or four real factorizations. (Analogy: if
FOF}, I, M; and 0, were all scalars, there would be zero or two factorizations: zero
if both roots to l-NML-M,L? are complex, two if the roots are real. In the latter
case one obtains two factorizations by assigning first one and then the other root
to the serial correlation parameter F&F!.) For the II; and I, actually estimated,
there happened to be two real factorizatioms.
(c)Let P=F®F!. For each factorization (each P and I): (i)Compute A, and A, as
described above. (ii)With some manipulation, (A2) implies that
D¢-[bA1'(P+lI)+A°]P[bA1'(P+lI)+A°]'1D. Imposing that & is diagonal allows one to solve
for ¢4. Given h (computed as described above), one can also use this to compute §,.
This yields & and D. (iii)Compute F as above, F-[bAl'(P+lI)+Ao]'1D. (iv)Compute F3F!
using the diagonal & produced in step (ii). Call this matrix P*. (v)The implied
restricted VAR is Y, =(P*+I)Y, ,-P*OY, ,+V,. Compute the likelihood (the log
determinant of the variance covariance matrix of V).
(d)Select the factorization that yields the highest likelihood. This P* is what is
reported as FOF! in Table I.

Estimation of the restricted model described in step (c), part (v) may be done
linearly, by defining left and right hand side variables that are appropriate
transformations of current and lagged H, and Q.

University of Wisconsin
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Additional Appendix

This appendix contains additional details on the empirical work that were
omitted from the main body of the paper to save space. Thefe are eight items:
1. Growth
I1. Production versus sales variability
I11. Tests for a common deterministic trend in Q and H
IV. Estimation of infinite horizon variance decompositions
V. Regressions to scale data
V1. Estimates of the 8,
VII. Asymptotic standard errors for the g,
VIII. Asymptotic standard errors for the =;;, ¢.=4;~1, both scaled and unscaled
data

IX. Plots of impulse response functions for ¢.-.969,44=.997.
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1. Growth
As noted in the text, exactly the same first order conditions, and,
therefore, exactly the same reduced form, is delivered by the observationally
equivalent model in which the economy maximizes the excess of consumers

surplus W,* over production costs,
(A3) max lim g ..o Ey ET.0b*(We* - Cp) s.t. Q = S, + AH,,

where in the model in the paper W,* = -go5,>+2UgS,. It is algebraically
convenient to work with the (A3) statement of the model. Let hy, q, Sy, Ug.
and u,, be the original data and shocks in levels, with H;, Q, S, Us, and

U., the scaled data (e.g., H,=h,/g®). Let W,*-C, be

(A4) Ky - BogS¢® - 2mgs,Sy + 2Ug:S
- 2gomy (Ny-Mopy - BasEeSee1) - 2Boge(de-Moge) - 2810 (8dy-Myge)

- Zog(he-;-Mom,-asse)? - Boq(de-Toge)? - B1q(8qp-miqe)?
- 2(h.hy+qp)ug, .

k, is a purely deterministic term that grows no faster than g®. The
deterministic m,;, shift the bliss level and minimum costs points, m;; =
g'mjo. Also, gy = 8%Bij0- Let Ye=(hy,qr), Up=(Ue,ug). Substituting (A4)
into (A3), using q, = s, + Ah, to substitute out for s,, differentiating with

respect to q, and h, and then dividing by two yields

E.{ bA;'Yrey + AgYe + AYe-y + My - [Douy + bDyjupyy] ) = O,
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where my=(mg,,mq)’, Ag, A;, Dy and D; are defined in equation (8), and, e.g.,

mge = -Mogy + DMoges; + Boge *+ BomBasTome-1 + PBor(l-Bes)Mory, with mg, defined

similarly. Dividing through by g' and rearranging yields
(A5) E.{ bgA;'Yy,; + AY, + g 'AY,., + M + DU, } = O,

where D=Dg+bgD; and M=(Mg,Mg)‘, with, e.g., Mg = - (l-bg)mosg + Bomo + BonBasMomo +
bgog(l-ggs)Mome- Equation (10) is a version of equation (A5) with the constant
term and growth factor g suppressed.

By mimicking the argument in Hansen and Sargent (1981), it can be
established that bA;’L l+Ag+A;L = (Co+bCiL™1)’(Co+CiL), with Co+CiL a stable
polynomial, Cy+bC,L! an unstable polynomial. It follows that
bgA,' L l+Ag+g IA|L = (Co+bgCiL™l)’ (Co+g 'CiL). Since g>1, Co+g 'CiL is a stable-
polynomial. As long as bg<l, Co+bgC,L™! is an unstable polynomial. The rule
of solving stable roots backwards, unstable roots forwards leads to the

solution in the text.
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II. Production versus sales variability

As in the previous section, let lower case letters denote the variables
before scaling by g% uppercase letters denote scaled variables. Let h./g"' =
H, = EH + H",, EH, = 0, with similar notation for Q, and S,. (This is not the
same H", and Q", that appear in Tables I and II.)

In the Stationary model, one can derive the inequality var(Q)<var(S) in
the presence of just demand shocks exactly as in West (1986). One compares
the unconditional expectation of the infinite sum in equation (A3) under the
optimal policy to that under the alternmative policy that sets h“ ~ Eh, =
g‘EH, s,_A - 8, q,_A = s, + EAh,. One can derive the inequality var(Q)>var(S) in
the presence of just cost shocks by performing the same comparison, this time
with an alternative policy that sets h,* = Eh,, s,* = q, - Eah,, g = q..

In a model with unit roots, if there is no deterministic trend to the
data (g=l), begin by noting that the period zero conditional expectation of
the infinite sum in (A3) must be larger for the optimal policy than for any
alternative. Consider the alternative that sets h,* = Eh, = g®EH, s* = s,

q* = s, + EAh,, in the presence of just demand shocks. Quadratic inventory
costs (H",2) are strictly greater in the optimal policy. So a necessary
condition for optimality is that the conditional expectation of the difference
between the optimal and alternative values of (A3), exclusive of such costs,
is nonnegative. Taking unconditional expectations of this difference implies
0 < E(5,%-Q,%). The argument for 0 > E(S5,2-Q,%) in the presence of just cost
shocks is similar.

That g>l introduces some slight complications. 1If, for example, gq,* = s,
+ Eah,, Q* = q*/g" = S, + EH - g'EH = Q, - H, + g''H,., + EH - g 'EH ==> (Q*)?

- Q2 - -2Q,4H, + AH? + Q. (1-g'h)H,.,, and the last of these three terms does
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not have a finite unconditional expectation. Considering instead the policy
q* = s, + Eah, + [(g-1)/g](h,-Eh,), we find that (Q*)? - Q2 = -2g7'QuH, +
g7%AH,%, which does have a finite expectation. It is an estimate of

cov(Q,,AH,) + g lvar(AH,) that is reported in Table 3.



--Additional appendix, pé--

111, Te§tsrf9: a common deterministic trend in Q and H

For the stationary specification, an asymptotic test of whether the two
unconstrained growth rates of .786 and .828 percent are significantly
different from one another was performed. This did not reject the null of a
common growth rate at conventional significance levels (t-statistic less than
1.43, using either fifth, tenth, or fifteenth order Newey and West (1987)
corrections). For the nonstationary specification, a bootstrap test of the
null of one deterministic and of the null of two stochastic trends was
performed. The residuals for the AR(1l) first difference specification were
sampled with replacement, the scaled data were generated according to the
estimated VAR parameters, and unscaled data were constructed using the
estimated common growth rate of .807 percent. For each sample, I estimated
and saved (a)the absolute value of the difference between the estimated growth
rates of (i)inventories and (ii)GNP, and (b)the Durbin Watson of the
regression of scaled inventories on scaled GNP, with an estimated common

growth rate used for scaling.

Fewer than 60 percent of the estimates of the separate growth rates were
less than .042 (=.828-.786) percent apart. The null of a common deterministic
trend thus cannot be rejected. In addition, fewer than 50 percent of the
Durbin-Watson statistics from the regression of scaled inventories on scaled
GNP were smaller than .042, the figure for the actual data. Thus, the null of

two stochastic trends cannot be rejected.
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v stimation o nite on variance de osjition
For data assumed stationary these are just unconditional moments,

caleculated from the Yule-Walker equations. For differenced data these were

. -1 :
calculated by computing lim n-->e ® var(Yt+n-Eth+n) -
(I-H)'I(FnuF’)(I-H)'l’ (easily established). This yields estimates of, say,
-1 2 :
01 gnd 02, where lim n-->e D vax':(Qt+ﬂ E:Q:+n) - 1° +92 a The infinite

horizon fraction of the variance of Qt due to cost shocks was then computed as

1° /(0 02+0 )
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V., Regressions to scale data

A. The first regression is that of log(H)
second that of log(Q) on a constant and a
and log(Q) on constants and a time trend,
time trend but not the constant to be the

on a constant and a time trend, the
time trend, the third that of log(H)
constraining the coefficient on the
same for both log(H) and log (Q).

DEPENDENT VARIABLE 22 LOGH
FROM 1947: 1 UNTIL 1986: 4
OBSERVATIONS 160 DEGREES OF FREEDOM 158
R¥*2 .98259523 RBAR**2 .98248507
SSR .41431915 SEE .51208135E-01
DURBIN-WATSON  .03435775
Q( 36)= 1203.30 SIGNIFICANCE LEVEL .000000
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
*dk Jkedkdekk *dk *kk dededededededdededkk Jodeve Fedededkok dedek ok Jedededededdeokokokkk
1 CONSTANT O O 6.898694 .8134820E-02  848.0451
2 TREND 24 0 .8278275E-02  .8765125E-04  94.44560
DEPENDENT VARIABLE 23 LOGQ
FROM 1947: 1 UNTIL 1986: 4
OBSERVATIONS 160 DEGREES OF FREEDOM 158
R**2 .98548817 RBAR**2 .98539632
SSR .31069384 SEE .44344297E-01
DURBIN-WATSON  .06198289
Q( 36)= 818,569 SIGNIFICANCE LEVEL .000000
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
Jodk ddkkhkk ek dekek Seddek Ak hdddeokk Jededdhe ko ok dkdkhdkkkkkkkk
1 CONSTANT O 0 7.016528 .704444LE-02  996.0372
2 TREND 24 0 .7862309E-02  .7590264E-04  103.5841
DEPENDENT VARIABLE 25 LOGHQ
FROM 1947: 1 UNTIL 2026: &
OBSERVATIONS 320 DEGREES OF FREEDOM 317
R¥*2 .98351946 RBAR**2 .98341548
SSR .75454189 SEE .48787891E-01
DURBIN-WATSON  .04651863
Q¢ 51)=  2824.53 SIGNIFICANCE LEVEL .000000
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
ek Jkdsrkdh Fkk Kk Jdk gk Rededodkdckdk dede A e e e dedek ok *hkkkhkkkkkkkk
1 CONSTANT O O 6.915436 .6121456E-02  1129.704
2 CON2A 27 0  .8434927E-01  .5454652E-02  15.46373
3 TREND? 26 O .8070292E-02  .5904949E-04  136.6700
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VI, Estimates of the 8,

95 percent confidence intervals, from the bootstrap, are in parentheses.

Seady & &, &y &

1.0,1.0 -.39 .93 -.34 -.40
(-.68,-.15) (.41,1.52) (-.39,-.21) (-.63,-.18)

.949,.949 -.32 .77 -.37 -.33
(-.61,-.11) (.29,1.40) (-.42,-.25) (-.58,-.17)

.997,.969 -.37 .87 -.35 -.33
(-.66,-.13) (.30,1.47) (-.48,-.20) (-.61,-.13)

v A totic sta d erro or the g,
$er 94 8oq 8os . Bom 8as 81q
1.0,1.0 -.072 .392 .145 -.040 344

(.128) (.152) (.064) (.352) (.050)



--Additional appendix, plO--

VIII. Asymptotic standard errors for the n;,, $.~$4~1, both scaled and unscaled
data : :

Scaled data:
DEPENDENT VARIABLE 30 AH
FROM 1947: 3 UNTIL 1986: 4
TOTAL OBSERVATIONS 158 SKIPPED/MISSING 0
USABLE OBSERVATIONS 158 DEGREES OF FREEDOM 155
Rx*2 .48732169 RBAR**2 .48070648
SSR 7262.5946 SEE 6.8451040
DURBIN-WATSON 2.43771175
Q¢ 36)= 49,5592 SIGNIFICANCE LEVEL .656635E-01
NO. LABEL VAR 1AG COEFFICIENT STAND. ERROR T-STATISTIC
dedk Ahkkkkk  Fhk RER kkdbkkkdhdk hkdkkdobkkokkk dkdokdekdkokokok ok
1 LT 30 1 .5000198 .6675202E-01 7.490707
2 %12 31 1 .2307379 .5219937E-01  4.420319
3 CONSTANT O 0 -.1975552 .5453114 -.3622796
DEPENDENT VARIABLE 31 AQ
FROM 1947: 3 UNTIL 1986: 4
TOTAL OBSERVATIONS 158 SKIPPED/MISSING 0
USABLE OBSERVATIONS 158 DEGREES OF FREEDOM 155
R**2 .17745930 RBAR**2 .16684587
SSR 19076.316 SEE 11.093827
DURBIN-WATSON 2.19384641
Q( 36)= 29.4534 SIGNIFICANCE LEVEL .771581
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC
*kk Fkdkh kAR kkk kkk ddkkdekkdobbhkk bbbk dokdekkokkekekokokek
1 g 30 1 -.2988348 .1081847 -2.762266
2 L 2% 31 1 .4889196 .8459927E-01 5.779242

3 CONSTANT O O -.2419853 .8837836 -.2738060



--Additional appendix, pll--

Unscaled (raw) data:

DEPENDENT VARIABLE 30 AH
FROM 1947: 3 UNTIL 1986: 4
TOTAL OBSERVATIONS 158 SKIPPED/MISSING 0
USABLE OBSERVATIONS 158 DEGREES OF FREEDOM 155
R**2 .48683366 RBAR**2 .48021216
SSR 30186.405 SEE 13.955322
DURBIN-WATSON 2.38573786
Q( 36)= 45.0114 SIGNIFICANCE LEVEL .144211
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC
*kk kkdkkhkkk  kkk dkkk kkkkkddkkkkkk  kkkkddkkbhkkk dkdkdkkdkkkkk ko
1 L2 30 1 .5329307 .6298521E-01  8.461203
2 L7 31 1 .2232077 .4883594E-01 4.570563
3 CONSTANT O O 3.200179 1.471144 2.175300
DEPENDENT VARIABLE 31 aQ
FROM 1947: 3 UNTIL 1986: 4
TOTAL OBSERVATIONS 158 SKIPPED/MISSING 0
USABLE OBSERVATIONS 158 DEGREES OF FREEDOM 155
R**2 .16822391 RBAR**2 .15749132
SSR 80816.213 SEE 22.834074
DURBIN-WATSON 2.18309959
Q( 36)= 46.2777 SIGNIFICANCE LEVEL .117221
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC
ke dkdokkdk dkdk kkk kdokdkdrkkkkkkd dkkdobkkkdkdkkk kkkdkkdkkdkkkkok
1 LO%) .30 1 -.3528995 .1030581 -3.424277
2 L2T 31 1 .4339241 .7990668E-01  5.430386
3 CONSTANT 0 0 14.74241 2.407125 6.124491



+ ao
o aH
08 L kL9 95 8h Ok 4% h¢e 91 g
_..._._-_\-_bl—__.___-__.__»rh\g>\-___.__-—-
83T I0JUIAUT

N

gares

E./’

MJOHS ONYWIO 01 S3ISNOJS3IH

hmm.uve .mcm.uue 103 suofiIduny asuodsaz asyndwy jo s107d °X1

0t

¢l



o J6
+ J0
° JH

08 L h9 95 8h Ok 4% he 9l 8
[P PR IR S NN I S U R

S9T103UIAUL

N,

MJOHS 1S0J3 0l S3SNOdS3H

g1-

“hil-

¢l-

01-



References

Belsley, David A., Industry Production Behavior; The Order-Stock Distinctionm,
(Amsterdam: North Holland, 1969).

Blanchard, Olivier J., "The Production and Inventory Behavior of the American
Automobile Industry," Jourmal of Political Ecopomy XCI (1983), 365-400.

Blanchard, Olivier J. and Angelo Melino, "The Cyclical Behavior of Prices and
Quantities: The Case of the Automobile Market," Journal of Monetary
Economies XVII (1986), 379-408.

Blanchard, Olivier J. and Danny Quah, "The Dynamic Effects of Aggregate Demand
and Supply Disturbances," National Bureau of Economic Research Working
Paper No. 2737, 1988.

Blanchard, Olivier J. and Mark W. Watson, "Are Business Cycles All Alike?",

123-156 in The American Business Cycle: Continuity and Change, Robert J.
Gordon (ed.), (Chicago, IL: University of Chicago Press, 1986).

Blindef, Alan S., "Inventories and the Structure of Macro Models," American
Economic Review LXXI (1981), 11-16.

Blinder, Alan S., "Inventories and Sticky Prices: More on the Microfoundations
of Macroeconomics,” American Economic Review LXXII (1982), 334-48.

Blinder, Alan S., "Can the Production Smoothing Model of Inventory Behavior be
Saved?", The Quarterly Journal of Economics CI (1986a), 431-454.

Blinder, Alan S., "More on the Speed of Adjustment in Inventory Models,"
Journal of Money, Credit and Bankipg, XVIII(1986b), 355-65.

Blinder, Alan S. and Douglas Holtz-Eakin, "Inventory Fluctuations in the

United States since 1929," 183-214 in The American Business Cycle, Robert
J. Gordon (ed.) (Chicago,IL: University of Chicago Press, 1986).

Christiano, Lawrence J. and Martin Eichenbaum, "Temporal Aggregation and the
Stock Adjustment Model of Inventories,"” Federal Reserve Bank of
Minneapolis Working Paper 357, 1987.

Efron, Bradley, The Jacknife, the Bootstrap and Other Resampling Plans,
(Philadelphia, PA: Society for Industrial and Applied Mathematics, 1982).

Eichenbaum, Martin S., "Rational Expectations and the Smoothing Properties of
Finished Goods Inventories,"” Journal] of Moneta Economics XIV (1984),
271-96.

Engle, Rebert F., and C. W. J. Granger, "Dynamic Model Specification with
Equilibrium Constraints: Co-integration and Error Correction,”
Econometrica LV (1987), 251-276.

Fair, Ray C., The Specification and Estimation of Macroeconomic Models,
(Cambridge, MA: Harvard University Press, 1984).



Fair, Ray C., "The Sources of Economic Fluctuations in the United States,"

Quarterly Journal of Ecomomics CIII (1988), 313-332.

Freedman, David, "On Bootstrapping Two Stage Least Squares Estimates in
Stationary Linear Models," The Annals of Statistics XII (1982), 827-842.

Haltiwanger, John C. and Louis J. Maccini, "The Time Series Properties of
Aggregate Order, Inventories and Labor Inputs," unpublished manuseript,
The Johns Hopkins University, 1987.

Hansen, Lars Peter, and Thomas J. Sargent, "Linear Rational Expectations
Models for Dynamically Interrelated Variables," 127-158 in Rational
Expectatjons and Ecopometric Practice, Robert E. Lucas, Jr., and Thomas
J. Sargent (eds) (Minneapolis, MN: University of Minnesota Press, 1981).

Holt, Charles C., Modigliani, Franco, Muth, John and Herbert Simon, Planning

Productjion, Inventories and Work Force, (Englewood Cliffs, N.J.:
Prentice-Hall, 1960).

Irvine, F. Owen, "Merchant Wholesalers Inventory and the Cost of Capital,”
American Economic Review LXXI (1981), 23-29.

King, Robert, Plosser, Charles, Stock, James and Mark Watson, "Stochastic
Trends and Economic Fluctuations,” NBER Working Paper No. 2219, 1987.

Lovell, Michael C., "Manufacturer’s Inventories, Sales Expectations, and the
Accelerator Principle, " Econometrica XXIX (1961), 293-314.

Maccini, Louis J., and Robert Rossana, "Investment in Finished Goods

Inventories: An Analysis of Adjustment Speeds,” American Economic Review
LXXI (1981), 17-22.

Maccini, Louis J., and Robert Rossana, "Joint Production, Quasi-Fixed Factors
of Production and Investment in Finished Goods Inventories," Journal of

Money, Credit and Banking XVI (1984), 218-236.

Metzler, Lloyd M., "The Nature and Stability of Inventory Cycles," Review of
Economics and Statistics XXIII (1941), 113-129.

Miron, Jeffrey A. and Stephen Zeldes, "Seasonality, Cost Shocks and the
Production Smoothing Model of Inventories," NBER Working Paper No. 2360,
1987.

Prescott, Edward C., "Response to a Skeptic,"” Federal Reserve Bank of
Minneapolis Quarterly Review X (1986a), 28-33.

Prescott, Edward C., "Theory Ahead of Business-Cycle Measurement,"” Federal
Reserve Bank of Minneapolis Quarterlv Review X (1986b), 9-22.

Ramey, Valerie A., "Non-Conﬁex Costs and the Behavior of Inventories,”
manuscript, University of California at San Diego, 1988.

Runkle, David E., "Vector Autoregressions and Reality," forthcoming, Journal
of Economic and Business Statistics, 1987.



Said, Said E. and David A. Dickey, "Testing for Unit Roots in Autoregressive -
Moving Average Models of Unknown Order," Blometrika LXXI (1984), 599-607.

Sargent, Thomas J., Macroeconomic Theory (New York, NY: Academic Press, 1979).

Schutte, David P., "Inventories and Sticky Prices: A Note," eric omic
Review LXXXIII (1983), 815-816.

Schwert, G. William, "Tests for Unit Roots: A Monte Carlo Investigation,”
unpublished manuscript, University of Rochester, 1987.

Stengel, Robert F., Stochastic Optimal Control (New York, NY: John Wiley and
Sons, 1986).

Summers, Lawrence H., "Comment," ookin Economi ctivity,
(1981:2), 513-517.

West, Kenneth D., "A Variance Bounds Test of th; Linear Quadratic Inventory
Model," Journal of Political Economy XCIV (1986), 374-401.

West, Kenneth D., "Order Backlogs and Production Smoothing,"” 305-318 in The

Economics of Inventory Management, Michael Lovell (ed), (Amsterdam:
Elsevier, 1988).

West, Kenneth D., "Dividend Innovations and Stock Price Volatility,"
Econometrica LVI (1988), 37-62.



Table I

Estimates of Serlal Correlation Parameters

1) (@ 3) (4) &)
. Left Hand Side Variable in Regressions
b 4 For~! H; Q;
(1) 1.0 1.0 1.0 0.0 He-He gy Qe -Qe-y
0.0 1.0
(2) 0.949 0.949 0.949 0.0 H,-0.949H,_, Q.-0.949qQ, .,
0.0 0.949
(3) 0.969 0.997 0.976 -0.005 H,.,-0.976H,.,+.005Q,., Q,+.027H,,-0.990Q,.,

-0.027 0.990
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(@8]

)

(3)

(L
be1ba
1.00,1.00

0.949,0.949

0.969,0.997

95 percent confidence intervals in parentheses, from bootstrap.

Table III

Estimates of Cost and Demand Parameters

2) (3) %) (3
Boq 81q 8os Bor
-0.072 0.344 0.392 0.145

-0.044 0.366 0.317 0.111

-0.055 0.347 0.367 0.129

are related by the normalization 1 = gus+geq+gos8las*(1+b) g1q-

(6)

8us

-0.040

(-0.320,0.232) (0.214,0.407) (0.111,0.657) (0.050,0.320) (-0.663,0.680)

-0.127

(-0.303,0.260) (0.251,0.417) (0.074,0.589) (0.041,0.287) (-0.947,0.551)

-0.057

(-0.315,0.218) (0.203,0.407) (0.108,0.625) (0.037,0.299) (-0.636,0.874)

The five parameters




Table IV
Variability of GNP versus Final Sales
Specification

(1) (2)
$o=$g=1.00  $o=4=0. 949

E(S.%-Q.%) var(Q)/var(S)
(1) Raw data -303.2 1.09
(-491.3,-161.7) (1.06,1.14)
(2) Just demand shocks -13.4 1.002
(-241.8,70.0) (0.90,1.05)
(3) Just cost shocks -289.7 1.17
(-472.3,-58.1) (1.09,1.40)

95 per cent confidence intervals in parentheses, from bootstrap. For column 1,
units are billions of 1982 dollars squared. To interpret these entries, it may help
to note that the values of var(aQ) corresponding to the three lines in column 1 are
146.8, 44.5, and 101.2.



Table V

Percentage of Variance Due to Cost Shocks

Variable Horizon Specification
(L) (2) (3)
$emdg=1.00 @ =py=0.949 $.=0.969,6,=0.996

H 1 89 77 83
(64.7,99.9) (60.3,98.2) (60.6,99.9)

4 97 94 96
(74.0,99.7) (75.5,98.9) (60.5,99.3)

8 98 97 99
(68.1,99.5) (78.2,99.2) (51.6,99.4)

12 99 98 99
(66.7,99.6) (78.3,99.4) (48.7,99.5)

20 100 98 99
(65.6,99.7) (78.2,99.4) (46.1,99.6)

@ 100 98 93

(64.5,100.0) (78.0,99.5) (36.7,98.5)

Q 1 75 83 76
(17.7,91.4) (67.0,96.8) (12.1,90.7)

4 60 71 59
(9.9,81.5) (31.4,90.6) (7.2,78.6)

8 51 63 48
(6.7,76.9) (24.6,87.3) (5.8,69.4)

12 48 60 43
(5.3,71.9) (22.9,85.9) (6.6,66.0)

20 45 58 37
(4.8,70.4) (21.7,85.0) (3.7,60.6)

@ 41 57 13
(3.2,68.2) (21.3,86.4) (2.9,36.9)

s 1 14 22 15
(0.1,38.6) (1.0,48.1) (0.1,61.1)

4 40 51 39
(6.2,61.3) (18.2,74.5) (6.2,59.7)

8 41 53 38
(3.7,66.9) (19.1,78.8) (2.9,61.4)

12 61 53 36
(3.6,66.2) (19.0,80.0) (2.7,60.2)

20 41 53 33
(3.6,66.7) (18.7,81.3) (2.64,57.1)

@ 41 53 12
(3.2,68.2) (18.8,81.7) (2.3,36.3)

95 percent confidence interval in parentheses, from bootstrap. For the column (1)
specification (95 percent bootstrap confidence interval in parentheses), h=0.81
(-0.38,4.70), (o./aq) =~ 0.85 (0.07,2.03). For the column (2) specification, h=0.65

(-0.14,2.87), (o./04) = 1.16 (0.07,9.86). For the column (3) specification, h=0.71
(-0.61,3.97), (o./ey) = 0.92 (0.09,1.94).



Table VI
Estimates for Expanded Model, ¢.=¢,~1

A. Estimates of Cost and Demand Parameters

Boq 21q Bos Zon 8as 829 818 821 81mq
-0.222 0.453 0.323 0.099 0.118 -0.088 -0.003 -0.045 0.115

B. Percentage of Variance Due to Cost Shocks
Horizon H Q S

© 99 45 45

No confidence intervals available; h— 1.83, (o./04) = 0.72.



Table VII
Percentage of Variance Due to Cost Shocks, ggs=.68, $.=g4=1
Horizon H Q S

© 66 9 9

No confidence intervals available; h= 4.98, (o./04) = 0.07.
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