NBER WORKING PAPER SERIES

INDEXES OF UNITED STATES STOCK PRICES FROM 1802 TO 1987

G. William Schwert

Working Paper No. 2985

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 May, 1989

William E. Simon Graduate School of Business Administration, University of Rochester, and National Bureau of Economic Research. Shing-yang Hu helped with some computation. Support from the Bradley Policy Research Center at the University of Rochester is gratefully acknowledged. This paper is part of NBER's research program in Financial Markets and Monetary Economics. Any opinions expressed are those of the author not those of the National Bureau of Economic Research.

NBER Working Paper #2985 May 1989

INDEXES OF UNITED STATES STOCK PRICES FROM 1802 TO 1987

<u>ABSTRACT</u>

Monthly stock returns from Smith and Cole [1935], Macaulay [1938] and Cowles [1939] are compared and contrasted with the returns to the CRSP value and equal-weighted portfolios of New York Stock Exchange (NYSE) stocks. Daily stock returns from Dow Jones [1972] and Standard & Poor's [1986] are compared and contrasted with the returns to the CRSP value and equal-weighted portfolios of NYSE and American Stock Exchange (AMEX) stocks. Effects of dividends, nonsynchronous trading and time-averaging are analyzed. Splicing together the best indexes gives monthly data from 1802-1987 (2,227) observations) and daily data from 1885-1987 (28,884 observations.)

G. William Schwert
William E. Simon Graduate School
of Business Administration
University of Rochester
Rochester, NY 14627
(716)275-2470

INDEXES OF UNITED STATES STOCK PRICES FROM 1802 TO 1987

G. William Schwert

1. Introduction

It is widely recognized that the development of the monthly New York Stock Exchange (NYSE) stock return database by the Center for Research in Security Prices (CRSP) at the University of Chicago spawned an explosion of empirical research in finance during the late 1960's and early 1970's. Papers such as Fama, Fisher, Jensen and Roll [1969], Blume [1971], Black, Jensen and Scholes [1972], and Fama and MacBeth [1973] have accumulated several hundred citations each from subsequent papers in economics journals. As noted by Merton [1987], one of the unfortunate byproducts of this public good is that researchers have focused most of their attention on these data because of the relatively inexpensive high quality data provided by CRSP. The CRSP database starts in 1926, just years before the Great Depression, which is the most severe economic contraction in United States' history. There is evidence that the behavior of stock market volatility and stock returns was unusual in the 1929-1939 decade, so empirical tests that include these data are suspect. For example, Schwert [1988] argues that the standard deviation of monthly stock market returns rose more during the Depression than can be explained by the increase in the volatility of other economic variables. Kim, Nelson and Startz [1988] and Poterba and Summers [1988] show that the mean reversion of stock returns discussed by Fama and French [1988a] is heavily influenced by the 1929-1939 data.

Because of the recent interest in long-run behavior of stock returns, and the realization that the Great Depression may be unusual, there has been a renewed interest in the behavior of pre-

It is worth noting that macroeconomists have devoted much effort to studying the unusual behavior of economic aggregates during the Great Depression. It is arguable that the creation and popularity of Keynesian economics was largely due to these empirical anomalies.

CRSP stock return data. For example, Wilson and Jones [1987] use a slightly corrected version of the Cowles [1939] stock market return series to replicate the Ibbotson and Sinquefield [1976] study of stock, bond and bill returns and inflation for 1871-1925. Schwert [1988, 1989a] and Pagan and Schwert [1989] study monthly volatility of stock return data from Smith and Cole [1935], Macaulay [1938] and Cowles [1939]. Schwert [1989b] studies the behavior of daily stock returns and volatility from February 1885 through 1987 using the Dow Jones' portfolios from 1885-1927 and the Standard & Poor's composite portfolio from 1928-1987.

This paper compares and contrasts all of the major indexes of stock prices or returns that are available monthly or daily from 1802-1925. In some cases these series overlap the CRSP data, so there is an opportunity to evaluate the limitations of the alternative series. The outcome of this comparison is a series of stock portfolio returns from 1802-1925 that come closest to the CRSP value-weighted portfolio of NYSE stocks.

Section 2 contains a brief description of early stock price or return indexes, including a description of the measurement process for individual stock prices, the method of weighting used to create the index, and the treatment of dividend payments. Section 3 performs descriptive statistical analysis of the various portfolio returns, with emphasis on a comparison of alternative portfolios when they overlap. Perhaps, the broadest portfolios of pre-1925 stocks, and the only one that includes dividends, is the series by Cowles [1939]. Unfortunately, the Cowles data use the averages of high and low prices in the month for individual stocks. This form of time aggregation has effects similar to the analysis of Working [1960]. To document the effects of this measurement process, section 4 analyzes a Cowles-type portfolio created from the CRSP database of daily stock prices and returns for all NYSE and American Stock Exchange (AMEX) stocks. Section 5 compares the daily stock price indexes available from Dow Jones [1972] for the 1885-1939 with the Standard & Poor's index from 1928-1987 and the CRSP index from 1962-1987. Section 6 contains summary statistics for the best spliced portfolio of monthly stock returns from 1802-1925 and the best spliced portfolio of daily stock returns from 1885-1987. Section 7 contains brief conclusions. The appendix at the end of the paper lists the spliced monthly stock price index number (a listing of the daily series

is available from the author.)

2. Early Stock Price Indexes

2.1 The Smith and Cole Indexes of Bank, Insurance and Railroad Stock Prices

Smith and Cole [1935] summarized much of the early work on stock price indexes by the Harvard Economic Society (see Persons etal. [1920], Matthews [1926], and Cole and Frickey [1928].) They created several indexes for various periods from 1802-1860. From 1802 through 1820 (Table 61, p. 173), they construct an equal-weighted portfolio of seven bank stocks in Boston(3), New York(2) and Philadelphia(2). The price quotations came from local newspapers, and they often were averages of bid and ask prices, rather than transactions prices. From 1815 through 1845 (Table 62, p. 174), they created an equal-weighted portfolio of six New York banks and one insurance stock. For both of these portfolios, Smith and Cole omitted most of the stocks for which they had collected price data. They chose stocks in hindsight to represent typical movements in the period. The sample selection bias caused by only including stocks that survived and were actively quoted for the whole period is obvious.

From 1834 through 1845 (Table 69, p. 183) and 1843 through 1862 (Table 70, p. 184), Smith and Cole constructed an equal-weighted portfolio of all railroad stocks for which a rate of return could be calculated. At most 27 stocks are in the portfolio, and they are split between New England and the Central Atlantic regions. In the period of overlap, these indexes differ only by rounding error.

It is unclear at what time in the month Smith and Cole collected stock prices, but they did use point-sampled prices rather than time-averaged prices (i.e., they used one price per month per stock, instead of an average of several prices in the month.) This is important in analyzing the autocorrelation of monthly returns or the volatility of returns.

Smith and Cole used equal-weighted portfolios of stock prices. They did not measure dividend payments. Thus, the portfolio return $R_{\rm pt}$ for N stocks is

$$R_{pi} = \sum_{i=1}^{N} w_i R_{ii}, \quad w_i = 1/N$$
 (1)

$$R_{u} = (p_{u}/p_{u,t}) - 1, (2)$$

where p_{it} is the price of stock i in month t.

2.2 The Macaulay Index of Railroad Stock Prices

Macaulay [1938] created an index of railroad stock prices from January 1857 through December 1938. His rationale for focusing on railroad stocks was that railroads were essentially the only non-financial stocks actively traded from 1857 through 1909 (Macaulay [1938, pp. 138-139]), and he wanted to maintain a comparable portfolio throughout his sample. It is unclear what sources Macaulay used to collect individual stock prices, but he included all railroads with actively traded stocks. The number of stocks in the index varied from about 25 to about 50, being lowest in the early part of the sample. Most of the railroads were in the Northeast and mid-Atlantic regions.

It is not clear when during the month Macaulay measured prices. He used a value-weighted portfolio of stocks to create his index number, and he did not measure dividend payments. Thus, the portfolio return $R_{\rm pl}$ for N stocks is

$$R_{pr} = \sum_{i=1}^{N} w_{ir} R_{ir}, \qquad w_{ir} = (p_{ir-1} q_{ir-1}) / (\sum_{i=1}^{N} p_{ir-1} q_{ir-1}), \qquad (3)$$

where individual stock returns are measured as in (2), and q_{s-1} is the number of shares outstanding at the beginning of the month.

2.3 The Cowles Index of NYSE Stock Prices and Dividends

Cowles [1939] was the largest effort to collect 19th century stock return data. His aggregate index included all NYSE-listed stocks whose prices were reported in the Commercial and Financial Chronicle during a month. In addition, Cowles is the only researcher to measure dividend payments so a total rate of return can be measured. As shown below, this is most important for judging the level of average returns to stocks. It is much less important for judging the autocorrelation or volatility of stock returns. In addition to his aggregate index, Cowles created 68 industry indexes.

The Cowles data cover the January 1871-December 1938 period. From 1918-1938, Cowles used the Standard & Poor's industrial portfolios. He used Macaulay's index for his railroad industry portfolio.

Cowles used a value-weighted portfolio of individual stocks to create his index number. He created both price and total return indexes. Thus, the portfolio return including dividends for N stocks uses (3) and returns are calculated as

$$R_{it} = [(p_{it} + d_{it})/p_{it-1})]-1, (4)$$

where d_{ii} is the dividend payment per share to stock i in month t. The number of industrial stocks in the Cowles index varied from 12 (in 1871) to 351 (in 1938.)

As mentioned in the introduction, the biggest problem with the Cowles data, relative to the CRSP value-weighted portfolio, is that the price for an individual stock was measure as the average of the high and low prices in the month, rather than the last trade (closing price) in the month. This problem occurred because the primary data source was the Commercial and Financial Chronicle, which only reported high and low prices. For the data after 1918, a similar problem exits, since the monthly Standard & Poor's indexes are averages of the weekly values in the month. Section 4 documents the effects of using such time-averaged data.

2.4 The Dow Jones Indexes of NYSE Stock Prices

Beginning February 16, 1885 to the present, Dow Jones [1972] has reported daily indexes of from 12 to 50 industrial and transportation stock prices. The composition of the index has changed many times, but the goal has been to include the stocks that were most important to stock traders in trading activity or market capitalization. The index numbers are price-weighted and they do not include dividends, so portfolio returns are calculated using

$$R_{p_i} = \sum_{i=1}^{N} w_{it} R_{it}, \qquad w_{it} = (p_{it-1} / \sum_{i=1}^{N} p_{it-1})$$
 (5)

and returns are calculated using (2). From 1885-1896, Dow Jones calculated one index that was dominated by railroad stocks, but included a few industrials. From 1897-present, they report separate indexes for transportation and industrial stocks. I combine these indexes to create a composite index weighting each subindex in proportion to the number of stocks in each portfolio

(e.g., 60 percent weight on the 30 industrials and 40 percent weight on the 20 transportation stocks since October 1928.)

2.5 The Standard & Poor's (S&P) Composite Index

From January 1928 through February 1957, Standard & Poor's [1986] reported a daily value-weighted index of 90 prominent NYSE common stocks. In March 1957, the coverage of the index expanded to 500 stocks. These indexes do not include dividends, so portfolio returns are measured using (3) and (2).

The monthly S&P composite index that is frequently published in government statistics sources is *not* the S&P composite index for the last day of the month. Instead, it is an average of the daily index values in the month. Thus, the time-aggregation problem mentioned above is a problem for this monthly S&P series.

3. Statistical Comparison of Alternative Indexes

3.1 Sample Moments and Autocorrelations of Returns

Table 1 contains the sample mean (Mean), standard deviation $(Std\ Dev)$, skewness (Skew), excess kurtosis (Kurt), studentized range $(SR)^2$ and 12 autocorrelations for the monthly returns to various indexes over the entire span of each index. It also contains the Box-Pierce [1970] statistic for the joint significance of the 12 autocorrelations (Q(12)). It is difficult to compare the various indexes when the sample periods differ. Nevertheless, several patterns emerge from table 1.

First, the earliest indexes of bank and insurance company stock returns, Smith and Cole [1935, Table 61] (SC(61)) and Smith and Cole [1935, Table 62] (SC(62)), are much less volatile than the later series. The standard deviations for these two returns series are less than half as large as the next lowest series.

²David, Hartley and Pearson [1954] describe the use of the range divided by the standard deviation as a test for non-normality or heteroskedasticity.

³An F-test for the equality of variances would be greater than 4, which is highly significant.

Second, as mentioned before, the main effect of dividends on the index returns is to increase mean returns. Comparing the Cowles series and the CRSP value and equal- weighted portfolios of NYSE stocks with and without dividends, the only statistic that differs is the average return, which increases by about .004 (0.4 percent per month.) Accordingly, including dividends increases the t-statistic for the mean return. Dividend yields of about 5 percent per year are a substantial fraction of the average return, but they vary so little through time it is almost like a constant is added to the capital gain returns.

Third, as noted by many analysts, the returns are not normally distributed. All of the skewness coefficients are reliably different from 0, and most are positive (exceptions are three of the Smith and Cole series SC(61), SC(62) and SC(70).) All of the kurtosis coefficients are reliably larger than 0, and the studentized range statistics are large receive to their sampling distribution. These results could be due to a fat-tailed distribution of returns or to non-constant variability of returns (heteroskedasticity.) Schwert [1988, 1989a, 1989b] and others show that heteroskedasticity is an important factor for these stock return series.

Finally, all of the index returns are positively autocorrelated at lag 1. Part of this effect could be due to nonsynchronous trading of the individual stocks in the index (Fisher [1966].) This is likely to be more serious in the earlier data, where price quotes are not readily available every day for every stock. As discussed before, the Cowles series is measured using the average of high and low prices for individual stocks in the month. As predicted by Working [1960], and the analysis in section 4 below, this causes autocorrelation at lag 1 close to .25. Although it is not clear how Macaulay [1938] obtained his stock prices, the large autocorrelation at lag 1 (.40) strongly suggests that he also used some form of time-averaged data.

3.2 Comparison of Indexes When They Overlap

The largest difficulty in drawing conclusions from the data in table 1 is that the sample periods are so different. Table 2 contains sample moments, studentized ranges, three autocorrelations and cross-correlations for 3 leads and lags for all pairs of returns series for periods of overlap. Many of these subsamples are small, but they provide the only direct basis for comparing different portfolio

returns series.

Smith and Cole [1935, Table 61] Bank Stocks (SC(61)) vs. Smith and Cole [1935, Table 62] Bank and Insurance Stocks (SC(62)), 1815-1820

These two series of bank stock returns are similar, although they are only correlated .54 in the current month. Even though these stocks are in the same industry, there is no overlap across these portfolios.

Smith and Cole [1935, Table 62] Bank and Insurance Stocks (SC(62)) vs. Smith and Cole [1935, Table 69] Railroad Stocks (SC(69)), 1834-1845

As mentioned in table 1, the bank stock series SC(62) has much less volatility than the railroad series SC(69) -- the standard deviation is almost twice as high for SC(69). Both series are positively autocorrelated at lag 1. They are correlated .52 in the current month, with cross-correlations of .19 and .23 at a one month lead and lag. This is consistent with prices for individual stocks in both indexes that are measured at different times in the month.

Smith and Cole [1935, Table 70] Railroad Stocks (SC(70)) vs. Macaulay [1938, Table 10]
Railroad Stocks, 1857-1862

This comparison provides some of the best clues about the measurement techniques used by different researchers. The Macaulay returns have a much lower standard deviation (.0509 vs. 0731) and larger first order autocorrelation (.26 vs. .13) than the Smith and Cole returns. Moreover, the correlation between the Smith and Cole return in month t with the Macaulay return in month t+1 is .65, which is almost as large as the contemporaneous correlation (.70). These facts strongly imply that Macaulay used some form of time-averaged data, while Smith and Cole used point-sampled data.

Macaulay [1938, Table 10] Railroad Stocks vs. Cowles [1938, Table P-1] Price Index For All NYSE Stocks, 1871-1937

As mentioned before, the main effect of dividend payments is to increase the total level of returns. Accordingly, I only compare the Macaulay series with the Cowles price index series. They overlap for 66 years, so there is a large sample available for comparison. The returns series are very

similar. Both have large first order autocorrelations and the cross-correlations at lead and lag one month are large (.41 and .30). The contemporaneous correlation is .91. In a sense, it is surprising that a portfolio of stocks from a single industry behaves so similarly to a portfolio of stocks that includes many other industries. Usual analyses of diversification suggest that the Cowles returns should have a lower standard deviation.

Dow Jones [1972] vs. Macaulay [1938 Table 10 and Cowles [1939, Table P-1] Price Index

l use the value of the Dow Jones' composite index for the last day in the month to create a point-sampled monthly stock returns series from 1885-1939. The mean returns are similar for the Dow Jones, Macaulay and Cowles series. The standard deviation of the Dow Jones returns is about 20 percent larger. Both the kurtosis and the studentized range statistics are smaller for the Dow Jones returns. The first-order autocorrelation is much smaller for the Dow Jones returns, and the cross-correlations between the Dow Jones return in month t-1 with the Macaulay and Cowles returns in month t are over .6. All of these statistics show the effect of time-averaging on the Cowles and Macaulay series.

Macaulay [1938, Table 10] Railroad Stocks vs. CRSP Value and Equal-weighted Portfolios of all NYSE Stocks without Dividends, 1926-1937

The CRSP portfolios of NYSE stocks (with and without dividends) are ideal for the period after 1926, in the sense that it uses the last trade in the month to measure individual stock prices and the coverage of stocks is the broadest of the alternatives available. Value-weights represent a feasible passive portfolio strategy that involves no trading. Equal-weights represent an active portfolio strategy with monthly rebalancing, but this portfolio gives relatively more weight to smaller capitalization stocks. Thus, it is interesting to compare the behavior of the Macaulay and Cowles portfolios in the period when they overlap with the CRSP data.

This comparison shows important differences between Macaulay's railroad industry portfolio and the larger CRSP portfolios. In particular, the average percent price change is negative for railroad stocks (-.0043) and positive for the broader value-weighted portfolio (.0056). This difference of about 1 percent per month over 11 years implies a large drop in the relative price of

railroad stocks. This is not surprising since many railroads went bankrupt during this period (see Warner [1977].) Since the Macaulay data are evidently time-averaged, while the CRSP data are point-sampled at the end of the month, the similar standard deviation estimates imply that the standard deviation of point-sampled railroad stock returns would be much higher (see section 4 for examples.) Moreover, the correlation of the Macaulay return in month t with the CRSP return in month t+1 is .65, which is almost as large as the contemporaneous correlation (.74). This is similar to the previous comparison between the Smith and Cole vs. Macaulay series.

Cowles [1938, Table P-1] Price Index or Total Return Index [Table C-1] vs. CRSP Value and Equal-weighted Price Indexes, or Total Return Indexes, 1926-38

Since all of these indexes cover virtually all NYSE stocks, it is not surprising that they are closely related. The average percentage price change for Cowles and the CRSP value-weighted portfolios are similar, and less than for the CRSP equal-weighted portfolio.⁴ As before, the time-averaging built into the Cowles series causes it to have a lower standard deviation, higher first order autocorrelation, and significant lagged cross-correlation with the CRSP return series. In fact, the correlation of the current Cowles return with the previous month's CRSP return is larger than the correlation with the contemporaneous CRSP return.

The relations among the total returns series are virtually identical, except all of the average returns are higher by the average dividend yield (about 0.4 percent per month.)

Thus, the direct comparison of different stock indexes when they overlap leads to three main conclusions:

- 1. Bank stock returns are much less volatile than railroad or industrial stock returns.
- 2. Dividend yields raise average returns by an important amount, but have little effect on other statistical behavior.
- Time-averaged data used by Cowles [1939] and (apparently) Macaulay [1938] leads to less
 variability, first order autocorrelation, and lagged cross-correlations with pointsampled returns.

⁴This reflects the well-known fact that average returns to small capitalization stocks are higher than for large capitalization stocks. Standard deviations are also higher.

3.3 Time-varying Volatility

Officer [1973] and Schwert [1988, 1989a,b] show that the Depression was a period of very high stock volatility. Figure 1 shows rolling 12 month standard deviation estimates for the CRSP value-weighted, Cowles, Dow Jones and Macaulay return series from 1927-1939.⁵ All the series show similar patterns, with volatility rising in late 1929 after the crash, and remaining high through 1934, then rising again in 1937. Thus, there are no important differences among the portfolios in terms of their implications for time-varying volatility.

4. The 'Working Effect' in the Cowles Index

Working [1960] analyzed the effect of time-averaging data that come from a random walk. For example, if the daily S&P composite index follows a random walk, and the monthly S&P index is an average of the daily values in the month, Working's analysis implies that the monthly S&P series would follow an integrated-moving average process of order 1 (IMA(1,1).)6. The autocorrelation of the changes in the index (or the returns) should be about .25 at lag 1, and 0 at higher lags. The process of averaging the high and low prices for the month, used by Cowles [1939], is similar to time-averaging. In particular, it is unlikely that these prices occur close to each other in calendar time. In addition to first order autocorrelation of returns, time-averaging reduces the variance of returns by about 20 percent. The predictions of Working's analysis are borne out by the comparisons between the Cowles and CRSP value-weighted portfolios in table 2 and figure 1. The standard deviations are lower and the first-order autocorrelation higher for the Cowles series. Moreover, the correlation between the point-sampled returns in month t and the time-averaged returns in month t+1 is high.

⁵Schwert [1988, 1989a,b] and Pagan and Schwert [1989], among others, argue for more elaborate measures of volatility. Nevertheless, the rolling standard deviation is a reasonable approximation to these better, but more complex measures. The standard deviation for month t is based on the last 12 monthly returns.

⁶See Box and Jenkins [1976] for a description of autoregressive-integrated-moving average (ARIMA) processes. For a related analysis of the effects of nonsynchronous measurement of individual stock returns on portfolio returns, see Lo and MacKinlay [1989].

To gauge the seriousness of this problem, I perform the following experiment (suggested to me by Michael Barclay.) Using the CRSP database of daily stock prices and returns from July 1962 through December 1986, I calculated the average of the high and low closing prices for the days in the month for each stock on the NYSE and AMEX. Then I calculate the return on an equal-weighted portfolio using these "Cowles" prices. Table 3 compares the sample moments, autocorrelations and cross-correlations of the simulated Cowles returns to the with the CRSP equal-weighted portfolio of NYSE and AMEX stocks based on end-of-month prices.

As predicted, the simulated Cowles returns have a large positive autocorrelation at lag 1 (.), and the standard deviation is about 20 percent lower than for the CRSP series. Thus, using average of high and low prices in the month makes the Cowles returns more persistent and less volatile than if they used end-of-month prices. Moreover, the correlation between the CRSP return in month t and the Cowles return in the following month (.59) is almost as large as the correlation in the current month (.69). Thus, the time-averaged return series lags the point-sampled return series.

5. Daily Stock Returns, 1885-1987

5.1 The Dow Jones Indexes

Table 4 contains sample moments and autocorrelations of daily returns to the Dow Jones' indexes for 1885-1896, 1897-1906, 1907-1916, 1917-1927, 1928-1939 and 1885-1939. Because of data collection expense, I have not collected the daily Dow Jones' data after 1939 in machine-readable form. The mean percent price changes are small and positive in each subperiod, although the t-statistics (in parentheses) are generally quite small. This is because the standard deviation of daily returns is comparatively large. It is about .8 percent per day for each subperiod, except 1928-1939, when it is over 1.8 percent per day. Thus, the variance of daily returns more than quadrupled during the 1928-1939 period relative to the previous 40 years experience. The skewness coefficient is reliably negative in the first four subperiods, and positive in the 1928-1939 subperiod. The kurtosis and SR statistics are large in all periods, implying fat-tailed distributions, heteroskedasticity, or

Also see Wilson, Jones and Sylla [1988] for a related analysis of the Cowles return series.

both. The autocorrelations of daily portfolio returns are small. In particular, relative to the later results for the S&P and CRSP portfolios, the autocorrelation coefficient at lag 1 is small.

Table 5 shows means and standard deviations of returns by day-of-the-week. Similar to the evidence in French [1980], Gibbons and Hess [1981] and Keim and Stambaugh [1984], the mean return from the close of trading on Saturday to the close on Monday is negative in each of the subperiods, and most of the other average daily returns are positive. Also, the standard deviation for Saturday is about 25 percent lower than for other days, consistent with the shorter trading hours (about a half day.) The standard deviation on Monday is slightly higher than for other days in some subperiods, but the extra time from the close on Saturday to the close on Monday does not have much effect on volatility. This is similar to the results in French and Roll [1986].

5.2 The S&P Composite Index

Table 6 contains sample moments and autocorrelations of the daily returns to the S&P composite index for 1928-1937, 1938-1947, 1948-1957, 1958-1967, 1968-1977, 1978-1987, and 1928-1987. As with the Dow Jones returns in table 4, the mean percent price changes are small and positive in each sample period. The standard deviation of returns is almost twice as high in the 1928-1937 period as in the later sample periods. In most of the subperiods, the skewness coefficient is reliably negative. The kurtosis and studentized range statistics are large relative to a homoskedastic normal distribution. The very large values in the 1978-1987 subperiod are due to the October 1987 stock market crash, when volatility was very high for a short period (see Schwert [1989b].) The autocorrelation of daily S&P returns is reliably positive at lag 1, and it is over .10 in the 1948-1957, 1958-1967 and 1968-1977 sample periods (it is .27 in the last period.) Fisher [1966] shows how nonsynchronous trading of individual stocks can lead to positive autocorrelation of portfolio returns. Nevertheless, the low first order autocorrelation for the Dow Jones returns in the 19th century, when trading volume was much lower, suggests that infrequent trading cannot explain much of this behavior.*

⁶Lo and MacKinlay [1989] argue that nonsynchronous trading cannot explain much of the autocorrelation patterns in CRSP daily returns.

Table 7 shows means and standard deviations of S&P returns by day-of-the week. As with the Dow Jones returns in table 5, the mean returns for Mondays are negative for all of the sample periods in table 7 (they range from -.13 to -.38 percent per day.) Most of the other average daily returns are positive. Standard deviations are lower for Saturday returns (which stop in 1953), and they are slightly higher for Monday returns.

5.3 CRSP Value and Equal-weighted Portfolios of NYSE and AMEX Stocks

From July 1962 through December 1987, CRSP constructs daily returns to value and equal-weighted portfolios of all NYSE and American Stock Exchange (AMEX) stocks. Table 6 contains sample moments and autocorrelations of these daily returns for 1962-1967, 1968-1977, 1978-1987, and 1962-1987. Table 7 shows means and standard deviations by day-of-the-week. The estimates for the CRSP value-weighted portfolio are very similar to those for the S&P portfolio, since the only differences are the small firms omitted by S&P and the dividends included by CRSP. As with monthly returns, including dividends increases the mean, but has no noticeable effects on the other sample statistics. The CRSP equal-weighted portfolio has a higher mean and standard deviation, and larger first-order autocorrelation, reflecting the influence of small capitalization stocks. Small capitalization stocks tend to be relatively risky, and more thinly traded.

5.4 Comparison of Dow Jones, S&P and CRSP Daily Returns

Table 8 contains cross-correlations between the daily Dow Jones and S&P portfolio returns from 1928-1939, for 6 leads and lags (about 1 week before and after.) There is a large correlation (.97) between the contemporaneous returns (lag 0). Otherwise, the correlations small and of random sign. Table 8 also contains cross-correlations between the daily S&P returns and CRSP value and equal-weighted returns for 1962-1967, 1968-1977, 1978-1987 and 1962-1987. The contemporaneous correlation between the S&P and CRSP value-weighted returns is always .99. The cross-correlation at lag and lead 1 between these series mimics the autocorrelations in table 6 -- they are around .2 at lag 1, and 0 at higher lags.

The cross-correlations between the S&P returns and the CRSP equal-weighted returns are more interesting because they are asymmetric. The correlation at lag 0 is around .85, and the correlation between the S&P return for day t with the CRSP return for day t+1 is around .3. Moreover, the correlations with CRSP returns for days t+2 to t+6 are generally positive, and many are larger than .05. The correlations between the current S&P returns and the lagged CRSP returns are small after 1 day. This pattern implies some form of lagged adjustment of small firms' stock prices to the information reflected in large firms' stock prices.9

5.5 Monthly Volatility Estimated from Daily Returns

Monthly standard deviations of returns provide an alternative comparison daily returns. Following French, Schwert and Stambaugh [1987], I use all of the daily returns R_{ii} in the month to calculate a standard deviation for month i,

$$\sigma^{2}(R_{ji}) = \left\{ \sum_{i=1}^{N_{t}} (R_{ji} - \overline{R_{i}})^{2} + 2 \sum_{i=1}^{N_{t}-1} (R_{ji} - \overline{R_{i}}) (R_{i+1t} - \overline{R_{i}}) \right\}^{V_{i}},$$
 (6)

where there are N_i trading days in month t and $\overline{R_i}$ is the average return in the month. The second term in (6) reflects the large first order autocorrelation in daily portfolio returns. This estimator has the dimension of a monthly instead of a daily standard deviation because it is not divided by the sample size N_i .

Figure 2 plots the monthly standard deviation estimates from the daily Dow Jones and S&P returns for 1928-1939. It is similar to the plots in figure 1 that use monthly data, but it is not smoothed by the 12-month rolling estimator. Each point in figure 2 represents a non-overlapping set of daily data. Most important, the time series of volatility estimates is similar for these two portfolios. The correlation between them is .98.

Thus, the notion of splicing the Dow Jones return series to the S&P series at the beginning of 1928 seems reasonable. During the decade after they first overlap they behave similarly in all respects.

⁹This point has been made by Lo and MacKinlay [1988,1989] and Mech [1988].

Figure 3 plots the monthly standard deviation estimates from (6) for the S&P and CRSP equal-weighted portfolios from 1962-1987. Because dividends are a small part of stock return volatility, and because ex-dividend days are not concentrated across stocks, there are no important differences between the S&P and CRSP value-weighted volatility estimates (they are correlated .994.) The CRSP equal-weighted volatility estimates are somewhat larger, reflecting the larger risk of small capitalization stocks. Nevertheless, the time path of these alternative estimates is similar. Volatility was high in 1970, 1973-1974, 1982 and especially in late 1987.

6. Combining Different Indexes to Create a Continuous Series

6.1 Methodological Issues

There are several ways that different series of stock returns could be combined to create a continuous series of market returns. First, a simple strategy is to choose the index that is "best" for each month. Of course, to use this strategy one must decide which criterion to use in choosing the best index. For example, it could be: (a) a broad coverage of underlying stocks, or (b) an appealing weighting method for the portfolio, such as value-weights, or (c) point-sampled, end-of-month price measurement for individual stocks, or (d) including dividends, or some combination of these factors. When measuring average returns, including dividends is important. On the other hand, when measuring stock return volatility or autocorrelations, the use of point-sampled, rather than time-averaged, prices is important.

A more complex strategy would involve adjusting the best return series for any known limitations. For example, one could estimate the unmeasured dividend yield and add it back into returns that do not include dividends. Schwert [1988, 1989a] follows this strategy by estimating the dividend yield to the Macaulay [1938] and Smith and Cole [1935] indexes using the average dividend yield to the Cowles [1939] index from 1871-1879.

¹⁰Schwert and Seguin [1989] show that stock return volatility tends to move together, at least for large portfolios.

6.2 Univariate Corrections for the Effects of Time-averaging

A correction for the effects time-averaged data is not easy. This is a signal extraction problem, where the true (point-sampled) return is measured with serially correlated error. A univariate method to eliminate serial correlation of returns is to estimate a first-order moving average process,

$$R_1 = \mu + \varepsilon_1 - \theta \varepsilon_{1,1}, \tag{7}$$

where the moving average parameter θ should be about -.3 (since the first-order autocorrelation from a MA(1) process is $-\theta/(1+\theta^2) = .3/1.09 = .27$). The estimate of the point-sampled return is $\hat{\mathbf{R}}_1 = \hat{\mu} + \hat{\epsilon}_1$, which has the same mean μ as the original data \mathbf{R}_1 , but no first-order autocorrelation. Unfortunately, the variance of $\hat{\mathbf{R}}_1$, which is the variance of $\hat{\epsilon}_1$, is less than the variance of the original data, $(\mathrm{Var}(\hat{\mathbf{R}}_1) = \mathrm{Var}(\mathbf{R}_1)/(1+\theta^2))$. The analysis in section 4 shows that time-averaging reduces the variance of \mathbf{R}_1 relative to $\hat{\mathbf{R}}_1$. This problem can be solved by multiplying the errors $\hat{\epsilon}$ by a constant $[1.2(1+\theta^2)^{n}]$, so the standard deviation of the estimated returns is 20 percent larger than the variance of the raw data, as predicted by section 4. Thus, the filtered return estimate is

$$\hat{\mathbf{R}}_{i} = \hat{\mu} + \hat{\varepsilon}_{i} \left[1.2 (1 + \hat{\theta}^{2})^{v_{i}} \right], \tag{8}$$

where the parameters $\hat{\mu}$ and $\hat{\theta}$, and the residuals $\hat{\epsilon}$, are from (7).

Unfortunately while this procedure corrects the mean, variance and autocorrelations, it does not accommodate cross-correlations with other stock returns. Table 9 contains sample moments and autocorrelations for the corrected Cowles and Macaulay returns \hat{R}_i . It also shows cross-correlations of these series with the returns to point-sampled portfolios such as the monthly Dow Jones portfolio and the CRSP value and equal-weighted portfolios.

Comparing the sample moments and autocorrelations for the filtered data in table 9 with the estimates for the raw data in table 1, the corrections in (8) achieve their goal. The standard deviation of \hat{R}_i is about 20 percent larger than for the raw returns R_i , and the first-order autocorrelation is about .25 lower. All of the other statistics are similar.

Unfortunately, the cross-correlations in table 9 show large correlation between the Dow Jones return in month t and the filtered Macaulay or Cowles returns in month t+1. Compared with table

2, the contemporaneous correlation is larger and the lagged correlation is smaller, but the change is not large. This is also true for the cross-correlations of the filtered Macaulay and Cowles returns with the CRSP value and equal-weighted returns. Thus, one can only conclude that the filter in (8) does not solve the time-averaging problem with the Cowles or Macaulay data.

Using the analogy with signal extraction, it is possible to use a Kalman filter to derive the minimum mean square error estimate of the point-sampled data (see Harvey and Pierse [1984].) Unfortunately, the time series behavior of the Kalman filter estimates will be nothing like the behavior of the actual point-sampled returns (if they could be observed.) The estimates will be smoother, with lower variability and positive autocorrelation. Thus, the "optimal" statistical method for correcting the effects of time-averaging yields estimates of returns that are unattractive.

6.3 Estimating Dividend Yields

Many of the stock indexes only measure price changes. As shown above, the main effect of ignoring dividend yields is to lower the mean return estimates. Table 11 contains sample moments, autocorrelations and cross-correlations of monthly dividend yields for the Cowles portfolio from 1871-1938, and for the CRSP value and equal-weighted portfolios of NYSE stocks from 1926-1987. The dividend yield δ_i is the difference between the total return and the capital gain return in month t,

$$\delta_{t} = \mathbf{R}_{t} - [(\mathbf{P}_{t} - \mathbf{P}_{t-1})/\mathbf{P}_{t-1}]$$

$$= \mathbf{d}_{t}/\mathbf{P}_{t-1}, \tag{9}$$

where d_i is the cash dividend paid on a portfolio with a price of $P_{i,1}$ at the beginning of the period.

As mentioned before, the average level of dividend yields is about .4 percent per month and the standard deviation of yields is small relative to the standard deviation of percent price changes. Yields are positively autocorrelated and there is a strong seasonal pattern shown by the large positive autocorrelations at lags 3, 6, 9 and 12. As with the cross-correlations of percent price changes in table 2, there is a large positive correlation between the CRSP value-weighted yield in month t and the Cowles yield in month t+1. This probably reflects the effects of time-averaging in the Cowles series.

in table 2 (.0731) shows that stock returns were much more volatile from 1857-1862. On the other hand, if one were to splice the Macaulay returns to the Smith and Cole returns in 1857, the increase in volatility would be masked by the different portfolio weights and the use of time-averaged data. Thus, I use the Smith and Cole returns for this period.

The Macaulay [1938, Table 10] portfolio of railroad stocks is the only choice available for 1863-1870. When using the Macaulay or Cowles returns, I use the filtered estimates from (8) to correct for the time-averaging problem. All the returns from 1802-1870 omit dividend yields. I use the forecasts from (10) to estimate monthly dividend yields for 1802-1870. Thus, the total return series in the Appendix is the sum of the capital gain returns from the price indexes, plus the estimated dividend yields.

$$R_{i} = -\frac{(P_{i} - P_{i,1})}{P_{i,1}} + -\frac{d_{i}}{P_{i,1}}.$$
 (11)

For 1871-1885, either the Macaulay or the Cowles [1939, Tables P-1 or C-1] returns can be used. Since the Macaulay portfolio is a subset of the Cowles portfolio, and the Cowles series C-1 includes dividends, the Cowles series is preferred.

For 1885-1925, the Macaulay [1938, Table 10], Cowles [1939, Table P-1 or C-1] or the Dow Jones [1972] portfolio can be used. As before, the Cowles returns dominate the Macaulay returns. The Dow Jones portfolio is smaller than the Cowles portfolio, and it is price-weighted rather than value-weighted. Nevertheless, since it uses end-of-month prices it is probably preferable to the Cowles portfolio that use time-averaged prices. Thus, for March 1885 through the end of 1925, I use the percent price change for the Dow Jones portfolio plus the dividend yield from the Cowles portfolio. From 1926-1987, I use the CRSP value-weighted portfolio of NYSE stocks, including dividends. Table 12 lists the dates and adjustments used to create the combined monthly series.

Table 13 contains sample moments and autocorrelations for the combined monthly returns from 1802-1987, and for 20 year subperiods. The main differences between the estimates in table 13 and the related estimates in tables 1 and 2 are due to the addition of dividend yields, which increases the mean returns, and the correction for time-averaging, which increases the standard

deviation and reduces the first-order autocorrelation coefficient. Figure 5 contains a plot of the 12 month rolling estimate of the monthly standard deviation of returns. As noted earlier, the volatility of the early bank stock returns is noticeably lower than for the rest of the data. When railroad stocks enter the portfolio in 1834, there is a large jump in the estimated standard deviation. As discussed by Schwert [1989a], there are many financial crises in the 19th century when stock volatility increased. Of course, the Great Depression stands out as the episode when stock returns were exceptionally volatile.

6.5 Splicing Daily Data

From February 16, 1885 through January 3, 1928, the Dow Jones returns are the only widely available series. An adjustment for daily dividend yields is made by adding the Cowles yield for the month, divided by the number of trading days, δ_t/N_t , to each daily return in the month from 1885-1925. The yield on the CRSP value-weighted portfolio is used in 1926-1927.

From January 4, 1928 through July 2, 1962, the S&P composite portfolio is the best available measure of daily stock returns, since it is value-weighted and it covers a broader range of stocks than the Dow Jones portfolio. The dividend yield on the CRSP value-weighted portfolio divided by the number of trading days is used to estimate the daily dividend yield. From July 3, 1962 through December 31, 1987, the CRSP value-weighted portfolio of NYSE and AMEX stocks is the best available series, since it includes many more stocks than the S&P portfolio and it includes dividends. Table 12 lists the dates and adjustments used to create the combined daily series.

Thus, from February 16, 1885 through December 31, 1987 the combined market return series covers 28,884 days. Table 14 contains sample moments and autocorrelations for the combined daily returns from 1885-1987 and for the decades in that period. The mean returns are higher due to the addition of dividend yields to the Dow Jones and S&P capital gain returns. Otherwise, the estimates in table 14 are similar to those in tables 4 and 6.

Figure 6 plots the estimates of the monthly standard deviation of returns based on daily returns in the month. Because each estimate is based on a nonoverlapping sample of data, this plot is less smooth than figure 5, where the rolling 12-month sample induces artificial smoothness to the plot. There are brief periods in the late 19th century when stock volatility rose and fell back to

in table 2 (.0731) shows that stock returns were much more volatile from 1857-1862. On the other hand, if one were to splice the Macaulay returns to the Smith and Cole returns in 1857, the increase in volatility would be masked by the different portfolio weights and the use of time-averaged data. Thus, I use the Smith and Cole returns for this period.

The Macaulay [1938, Table 10] portfolio of railroad stocks is the only choice available for 1863-1870. When using the Macaulay or Cowles returns, I use the filtered estimates from (8) to correct for the time-averaging problem. All the returns from 1802-1870 omit dividend yields. I use the forecasts from (10) to estimate monthly dividend yields for 1802-1870. Thus, the total return series in the Appendix is the sum of the capital gain returns from the price indexes, plus the estimated dividend yields,

$$R_{t} = -\frac{(P_{t} - P_{t:1})}{P_{t:1}} + -\frac{d_{t}}{P_{t:1}}.$$
 (11)

For 1871-1885, either the Macaulay or the Cowles [1939, Tables P-1 or C-1] returns can be used. Since the Macaulay portfolio is a subset of the Cowles portfolio, and the Cowles series C-1 includes dividends, the Cowles series is preferred.

For 1885-1925, the Macaulay [1938, Table 10], Cowles [1939, Table P-1 or C-1] or the Dow Jones [1972] portfolio can be used. As before, the Cowles returns dominate the Macaulay returns. The Dow Jones portfolio is smaller than the Cowles portfolio, and it is price-weighted rather than value-weighted. Nevertheless, since it uses end-of-month prices it is probably preferable to the Cowles portfolio that use time-averaged prices. Thus, for March 1885 through the end of 1925, I use the percent price change for the Dow Jones portfolio plus the dividend yield from the Cowles portfolio. From 1926-1987, I use the CRSP value-weighted portfolio of NYSE stocks, including dividends. Table 12 lists the dates and adjustments used to create the combined monthly series.

Table 13 contains sample moments and autocorrelations for the combined monthly returns from 1802-1987, and for 20 year subperiods. The main differences between the estimates in table 13 and the related estimates in tables 1 and 2 are due to the addition of dividend yields, which increases the mean returns, and the correction for time-averaging, which increases the standard

deviation and reduces the first-order autocorrelation coefficient. Figure 5 contains a plot of the 12 month rolling estimate of the monthly standard deviation of returns. As noted earlier, the volatility of the early bank stock returns is noticeably lower than for the rest of the data. When railroad stocks enter the portfolio in 1834, there is a large jump in the estimated standard deviation. As discussed by Schwert [1989a], there are many financial crises in the 19th century when stock volatility increased. Of course, the Great Depression stands out as the episode when stock returns were exceptionally volatile.

6.5 Splicing Daily Data

From February 16, 1885 through January 3, 1928, the Dow Jones returns are the only widely available series. An adjustment for daily dividend yields is made by adding the Cowles yield for the month, divided by the number of trading days, δ_t/N_t , to each daily return in the month from 1885-1925. The yield on the CRSP value-weighted portfolio is used in 1926-1927.

From January 4, 1928 through July 2, 1962, the S&P composite portfolio is the best available measure of daily stock returns, since it is value-weighted and it covers a broader range of stocks than the Dow Jones portfolio. The dividend yield on the CRSP value-weighted portfolio divided by the number of trading days is used to estimate the daily dividend yield. From July 3, 1962 through December 31, 1987, the CRSP value-weighted portfolio of NYSE and AMEX stocks is the best available series, since it includes many more stocks than the S&P portfolio and it includes dividends. Table 12 lists the dates and adjustments used to create the combined daily series.

Thus, from February 16, 1885 through December 31, 1987 the combined market return series covers 28,884 days. Table 14 contains sample moments and autocorrelations for the combined daily returns from 1885-1987 and for the decades in that period. The mean returns are higher due to the addition of dividend yields to the Dow Jones and S&P capital gain returns. Otherwise, the estimates in table 14 are similar to those in tables 4 and 6.

Figure 6 plots the estimates of the monthly standard deviation of returns based on daily returns in the month. Because each estimate is based on a nonoverlapping sample of data, this plot is less smooth than figure 5, where the rolling 12-month sample induces artificial smoothness to the plot. There are brief periods in the late 19th century when stock volatility rose and fell back to

earlier levels. Consistent with the analysis of Schwert [1989a], many of these periods follow some of the major banking panics in this period. It is clear from this plot that the Depression was a period when stock returns were volatile every month. In recent years, the 1973-1974 period and the October 1987 crash show up as periods of high volatility.

7. Conclusions

The combined series of monthly returns from 1802-1987 and daily returns from 1885-1987 provide a long historical record of stock price behavior. The estimates in tables 13 and 14 and the plots of volatility in figures 5 and 6 show remarkable homogeneity for these series through time. This is surprising because of the large changes in the U.S. economy over this period, the growth in the proportion of wealth represented by traded common stocks, and the changes in the market microstructure for stock trading. The monthly portfolio grows from 7 bank stocks in 1802-1814 to over 1500 stocks representing a broad spectrum of industries in 1987.

As stressed by Schwert [1988], the most unusual period for stock returns is the Great Depression from 1929-1939. This is most obvious because of the high volatility of returns in figures 5 and 6.

One of the main contributions of this paper is to identify and correct the deficiencies of some of the early indexes of stock prices. In particular, the use of time-averaged data by Cowles [1939] (and apparently Macaulay [1938]) induces positive autocorrelation of returns and reduces the variability of returns. Also, most of the pre-CRSP indexes do not include dividends in measuring returns. I show that this mainly affects estimates of mean returns. I estimate the dividend yields for 1802-1870.

Because of the recent interest in long-run behavior of stock prices (Fama and French [1988a,b]), and concerns that the CRSP dataset has been analyzed too frequently (Merton [1987]), these new estimates of pre-1926 stock returns are important for both economic historians and financial economists. For example, Romer [1986a,b, 1989] and Shapiro [1988] have studied macroeconomic volatility in the 19th century to see whether stabilization policies adopted after World War II have had an important effect in reducing fluctuations.

References

- Black, Fischer, Michael C. Jensen, and Myron Scholes, "The Capital Asset Pricing Model: Some Empirical Tests," in Studies in the Theory of Capital Markets, ed. Michael C. Jensen, Praeger, New York, 1972.
- Blume, Marshall E., "On the Assessment of Risk," Journal of Finance, 26 (1971) 1-10.
- Box, George E.P. and Gwilym M. Jenkins, Time Series Analysis: Forecasting and Control, Rev. ed., Holden-Day, San Francisco, 1976.
- Box, George E. P. and David Pierce, "Distribution of Residual Autocorrelations in Autoregressive-Integrated-Moving Average Time Series Models," Journal of the American Statistical Association, 65 (1970) 1509-1526.
- Campbell, John Y. and Robert Shiller, "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Review of Financial Studies, 1 (1988) 195-228.
- Cole, Arthur H. and Edwin Frickey, "The Course of Stock Prices, 1825-66," Review of Economic Statistics, 10 (1928) 117-139.
- Cowles, Alfred III and Associates, Common Stock Indexes, 2nd ed., Cowles Commission Monograph no. 3, Bloomington, Indiana: Principia Press, Inc., 1939.
- David, H. A., H. O. Hartley and E. S. Pearson. "The Distribution of the Ratio, in a Single Normal Sample, of Range to Standard Deviation," Biometrika, 41 (1954) 482-493.
- Dow Jones & Co., The Dow Jones Averages, 1885-1970, ed. Maurice L. Farrell, New York: Dow Jones & Co., 1972.
- Fama, Eugene F., Lawrence Fisher, Michael C. Jensen and Richard Roll, "The Adjustment of Stock Prices to New Information," International Economic Review, 10 (1969) 1-21.
- Fama, Eugene F. and Kenneth R. French, "Permanent and Transitory Components of Stock Prices," Journal of Political Economy, 96 (1988a) 246-273.
- Fama, Eugene F. and Kenneth R. French, "Dividend Yields and Expected Stock Returns," Journal of Financial Economics, 22 (1988b) 3-25.
- Fama, Eugene F. and James D. MacBeth, "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, 81 (1973) 607-636.
- Fisher, Lawrence, "Some New Stock-Market Indexes," Journal of Business, 29 (1966) 191-225.
- French, Kenneth R., "Stock Returns and the Weekend Effect," Journal of Financial Economics, 8 (1980) 55-69.
- French, Kenneth R. and Richard Roll, "Stock Return Variances: The Arrival of Information and the Reaction of Traders," Journal of Financial Economics, 17 (1986) 5-26.
- French, Kenneth R., G. William Schwert and Robert F. Stambaugh, "Expected Stock Returns and Volatility," *Journal of Financial Economics*, 19 (1987) 3-29.
- Gibbons, Michael and Patrick Hess, "Day of the Week Effects and Asset Returns," Journal of Business, 54 (1981) 579-596.

- Harvey, A. C. and R. G. Pierse, "Estimating Missing Observations in Economic Time Series,"

 Journal of the American Statistical Association, 79 (1984) 125-131.
- Ibbotson, Roger G. and Rex Sinquefield, "Stocks, Bonds, Bills and Inflation: Year-by-year Historical Returns (1926-1974)," Journal of Business 49 (1976) 11-47.
- Keim, Donald B. and Robert F. Stambaugh, "A Further Investigation of the Weekend Effect in Stock Returns," Journal of Finance, 39 (1984) 819-835.
- Kim, Myung Jig, Charles R. Nelson and Richard Startz, "Mean Reversion in Stock Prices?

 A Reappraisal of the Empirical Evidence," manuscript, University of Washington,
 1988.
- Lo, Andrew W. and A. Craig MacKinlay, "Stock Market Prices Do Not Follow Random Walks: Evidence From a Simple Specification Test," Review of Financial Studies, 1 (1988) 41-66
- Lo, Andrew W. and A. Craig MacKinlay, "An Econometric Analysis of Nonsynchronous Trading," manuscript, M.I.T. and University of Pennsylvania, 1989.
- Macaulay, Frederick R., The Movements of Interest Rates. Bond Yields and Stock Prices in the United States Since 1856, New York: National Bureau of Economic Research, 1938.
- Matthews, Ada, "New York Bank Clearings and Stock Prices, 1866-1914," Review of Economic Statistics, 8 (1926) 193-198.
- Mech, Timothy, "Security Return Lags: Explaining the Time-Series Properties of Stock Returns," manuscript, University of Rochester, 1988.
- Mitchell, Wesley C., "A Critique of Index Numbers of the Prices of Stocks," Journal of Political Economy, 24 (1916) 693.
- Merton, Robert C., "On the Current State of the Stock Market Rationality Hypothesis," in R. Dornbusch, S. Fischer, J. Bossons, eds., Macroeconomics and Finance: Essays in Honor of Franco Modigliani, Cambridge: MIT Press, 1987, 93-124.
- Merton, Robert C., "On the Current State of the Stock Market Rationality Hypothesis," in R. Dornbusch, S. Fischer, J. Bossons, eds., Macroeconomics and Finance: Essays in Honor of Franco Modigliani, Cambridge: MIT Press, 1987, 93-124.
- Officer, Robert R., "The Variability of the Market Factor of New York Stock Exchange," Journal of Business, 46 (1973) 434-453.
- Pagan, Adrian R. and G. William Schwert, "Alternative Models for Conditional Stock Volatility," unpublished manuscript, University of Rochester, 1989.
- Persons, Warren M., Pierson M. Tuttle, and Edwin Frickey, "Business and Financial Conditions Following the Civil War in the United States," Review of Economic Statistics, 2 (1920) 33-37.
- Poterba, James M. and Lawrence H. Summers, "Mean Reversion in Stock Prices," Journal of Financial Economics, 22 (October 1988) 27-59.

- Romer, Christina D., "Spurious Volatility in Historical Unemployment Data," Journal of Political Economy, 94 (1986a) 1-37.
- Romer, Christina D., "Is the Stabilization of the Postwar Economy a Figment of the Data?" American Economic Review, 76 (1986b) 314-334.
- Romer, Christina D., "The Prewar Business Cycle Reconsidered: New Estimates of Gross National Product, 1869-1908," Journal of Political Economy, 97 (1989) 1-37.
- Schwartz, Anna J., "Gross Dividend and Interest Payments by Corporations at Selected Dates in the 19th Century," Trends in the American Economy in the Nineteenth Century, National Bureau of Economic Research Conference on Research in Income and Wealth, Vol. 24, Princeton, N.J.: Princeton University Press, 1960, 407-448.
- Schwert, G. William, "Why Does Stock Market Volatility Change Over Time?" Working Paper No. GPB87-11, University of Rochester, 1988.
- Schwert, G. William, "Business Cycles, Financial Crises and Stock Volatility," Carnegie-Rochester Conference Series on Public Policy, (forthcoming 1989a).
- Schwert, G. William, "Stock Volatility and the Crash of '87," Working Paper No. BC 89-01, University of Rochester, 1989b.
- Schwert, G. William and Paul Seguin, "Heteroskedasticity in Stock Returns," Working Paper No. BC 88-02, University of Rochester, 1989.
- Shapiro, Matthew D., "The Stabilization of the U.S. Economy: Evidence from the Stock Market," American Economic Review, 78 (1988) 1067-1079.
- Smith, Walter B. and Arthur H. Cole, Fluctuations in American Business, 1790-1860, Cambridge: Harvard University Press, 1935.
- Standard & Poor's, Security Price Index Record, 1986 ed., New York: Standard & Poor's Corp., 1986.
- Warner, Jerold B., "Bankruptcy, Absolute Priority, and the Pricing of Risky Debt Claims," Journal of Financial Economics, 4 (1977) 239-276.
- White, Halbert, "A Heteroskedasticity-consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," *Econometrica*, 48 (1980) 817-838.
- Wilson, Jack W. and Charles P. Jones, "A Comparison of Annual Common Stock Returns: 1871-1925 with 1926-85," Journal of Business, 60 (1987) 239-258.
- Wilson, Jack W., Richard Sylla and Charles P. Jones, "Financial Market Volatility and Panics Before 1914," manuscript, North Carolina State University, 1988.
- Working, Holbrook, "A Note on the Correlation of First Differences of Averages in Random Chains," *Econometrica*, 28 (1960) 916-918.

Table 1 -- Sample Mean, Standard Devintion, Skewness, Excess Kurtosis, Studentized Range and 12 Autocorrelations of Monthly Dorffolio Returns (1803, 1987)

	0(12)	17.6	28.6 (.004)	18.0	13.5	239.9	126.7	126.7	42.6	(100.)	33.1	62.4	62.9
1	17	<u> </u>	₹:	Ę	8;	8	Ŗ	<u>s</u>	03	8	8	6 .	10.
	=	8	z i	.12	-03	.00	.02	10.	ģ	-03	.03	02	-:03
	2	8:	8	Ę.	10.	.10	86.	8	6 0	€.	8.	.00	.00
	6	86	20	E .	8	=	Ξ.	=	ਲ ਼	8 ;	8	9.	5 .
1 1 08	œ ļ	6	01	ē	-08	.10	S 0.	S C:	9.	Ŗ.	S	8 0:	.03
ation a	7	j.	.03	.07	-03	=	8	8	.00	8	8	8	8.
Autocorrelation at Lag	٥	<u>e</u>	0.0	ξ	₹.	=	€.	€	.03	: 0:-	÷0:-	.05	\$0
Jun	~ :	8.	8	8	ē	80	8	8;	9	85	8.	<u>e</u> .	ō.
	▼]	8	8		10.	Ę	é	-:UJ	.02	.02	20.	۲. ا	جٌ
	e	=	.10	ē,	.12	S L.	5	4.	\$1.5		12	7	- 7
	~	70.	9.	07	9	107	ē	02	10.	10:-	10	ē.	10.
	-	60	.17	.2	11.	é	£.	Ŀ	Q .	Ξ	Ξ.	<u>.</u>	61.
	SR	11.03	11.86	6.37	8.17	18.60	15.95	16.03	1 .	11.68	11.65	12.35	12.34
	Kurt	8.10	9.04	F03	4.12	34.12	19.74	19.75	7.78	7.62	7.62	15.15	15.07
	Skene.	0x -	-,86	94	48	2.06	1.21	1.20	47	.26	.27	1.74	1.73
3) i	6810	.0212	MS08	8180	.0481	.0458	.0457	9614	1720.	1780.	0.785	0.784
	Mean	0008 (74)	1000"	.0026	(1.23)	.0020 (1.31)	.0023 (1.43)	.0064	.0032 (1.33)	.0055	.0093 (4.42)	(3.32)	.0130
Sample	Size, T	51 1802-1820 227	sj 1815-1845 369	st 1834-1845 143	s) 1843-1862 239	1857-1937 956	1871-1938 811	1871-1938 811	1885-1939 655	1926-1987 744	1926-1987 744	1926-1987 744	1926-1987 744
	Type of Stocks	Smith and Cole [1935] Table 61 Hanks	Smith and Cole [1935] Table 62 Banks and Insurance	Smith and Cole [1935] Table 69 Railroads	Smith and Cole [1935] Table 70 Railroads	Macaulay [1938] Table 10 Railmads	Cowles [1939] Table P-1 All NYSE Stocks, Prices Only	Cowles [1939] Table C-1 All NYSE Stocks, with Dividends	Dow-Jones [1972] Industrials & RR's, Prices Only	CRSP VW Prices Only	CRSP VW with Dividends	CRSP EW Prices Only	CRSP FW with Dividends

Note: Sample moments are calculated for monthly stock returns for which data are available. The t-statistic for the sample mean is in parentheses below it. Excess kurtosis should be 0 for a normal point significance of the 12 bags of the autocorrelations, with the psyche in parentheses below it. CESP value (VW) and equal weighted (FW) portfolios of all NYSF stocks are from the Center for distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Hartey and Pearson [1954]. The Box-Pierce [1970] statistic O(12) measures the

Research in Security Prices at the University of Chicago

Table 2 -- Comparison of Smith and Cole [1935], Macaulay [1938], Cowtes [1939], Dow Jones [1972] and CRSP Monthly Portfolio Returns for Common Sample Periods

Sample Means, Standard Deviations, Stewners, Excess Kurnotis, Studentised Range, Autocorelations and Cross-correlations

	Sample						Auto	Autocorrelation at log	١			Cross-correlations at lag k corr(r1(t),r2(t+k))	nions at le],r2(t+k))	18 k		١
First senes, rt Second series, r2	Size, T	Мсап	Sed De	Ska	Kım	NS.	1	7	•		+2	1+	0	 -	?-	, " "
	1815-	0003	0.184	1.39	7.30	6.92	25,	20.	=	į :	i			1	ı	1
SC(62)	92 OZ	0001	0020	41.	9 4.	4.81	Ŧ.	6 2	e :	=	8	%	ऊ	20:	.20	2 0.
	1834-	-,0001	.0278	92	7.19	90'6	F ;	<u>e</u>	-15	;	;	:	;	;	;	:
SC(69)	143	9200	90508	.46	2.	6.37	131	8	6	ē.	6-	≅ .	25	ĸ	8 .	*
	1R57-	9500	1670	75	2.34	5.79	£1.	<u> </u>	8	:	;	ş	;	;	;	;
Macaulay	7 L	.0027	.0502	£P'-	1.92	5.87	24	60:	8	21:	ş	B j.	S,	S E	8	02
Macaulay	1871-	\$100	.0495	2.74	36.66	18.06	.42	8	-19	!	1	;	i	;		;
Cowles (Price)	792.	9200	.0440	1.28	21.53	16.27	.	٦٠.	-,14		70.	₽.	5 .	F,	S,	*
Dow-Jones	1885-	9600	.0592	.55	8.81	11.86	₹.	02	-15	:	į	;	,	;	;	;
Macaulay	619	8100.	.0534	2.37	34.33	16.77	.42	10:-	.20	e :	/n: :	= ;	3 5 :	≘ ;	.	£ :
os. Cowles (Price)		.0033	82	1.32	20.93	15.26	8,	-w	SI.	8	8 ;	.67	Si.	70.	Ę.	8 ;
*	1926-	.0003	0660	F.	12.23	90.04	4 .	02	r.	:	;	,	i	,	;	;
CRSP-VW (Price)	133 (9500	8160	6 9	4.09	7.26	.24	86.	-24	*	£7 :	<u>.</u> :	R, 1	2 e (E ; ;	÷ ;
CRSP-EW (Price)		0510	.1336	1.85	7.46	7.26	¥	8	20	Ģ	17:-	` .	e.	è,	21.	-17
Cowles (Price)	1926-	9200	9806	1.21	4.7	70.6	33	ž,	-77	;	:	8		i	ş	:
CRSP-VW (Price) 156	13.6	36,003	.290	.55	3.59	7.22	œ.	02	.33	-	<u> </u>	s	à :	Bi, i); {	= 1
(TRSP-13W (Price)		.0111	.1330	2 .	6.62	7.29	.27	S .	-112	<u>.</u>	<u> </u>) O	ž .	₹.	B.	Š,
Cowles (w/div)	1926-	,00K4	.0804	1.21	9.76	9.11	Ę	8	-23	2	۶	8	8	8	5	2
CRSP-VW (w/div) 156	15.6 156	52,000	.0922	۶,	3.62	7.21	<u>«</u>	£0'-	.23		Ŋ.	5 , 5	ب ج	R F		71.
CRSP-13W (w/div)		.0140	7261.	2	29'9	7.29	.27	Ē	.17	ž.	<u>×</u>	à.	Ž.	ć	Ē,	917

Note: Sample moments are calculated for monthly stock returns for the period of overlay. The cross-correlation at lag k measures the correlation of the return r1 at time 1 with the return r2 at time 1+k. See mite to rable 1 for further information,

Table 3 -- Comparison of Simulated 'Cowles-type' Monthly Returns to NYSE and AMEX Stocks versus CRSP Equal-weighted Point-sampled Monthly Return to NYSE and AMEX Stocks, 1962-1986

Sample Means, Standard Deviations, Skewness, Excess Kurtosis, Studentized Range,

Autocorrelations and Cross-correlations

						Ante	at lag	<u> </u>			Cross-correlations at lag k corr(r1(t),r2(t+k))	relations -1(t),r2(t	: at lag k +k))		
Size, T	Mean	Std Dec	Skrw	Kint	SR	~	1 2 3	۳	,	7+	+3 +2 +1 0 -1 -2	0	<i>†</i>	3	4
1962-	.0082	.0347	0347 - 30	<u>16</u> .	95.9	.29	.2901	g	;	;	:	;	:	ï	,
vs. 1986 CRSP 292	.0003	.0430	01.	6.	6.62	10.	٠.03	60	.03 50	02	8	<u></u>	§;	, (0,	6 .

Note: Sample moments are calculated for monthly stock returns for the period of overlap. The cross-correlation at lag k measures the correlation of the return r1 at time t with the return r2 at time t+k. See note to table 1 for further information.

Table 4 -- Sample Mean, Standard Deviation, Skewness, Excess Kurtosis, Studentized Range and 6 Autocorrelations of Daily Percentage Dow Jones [1972] Portfolio Returns, 1885-1939

	(9)(0	(.09)	43.4	27.5	9.8 (.13)	17.3	(.00)
	و	-:01	05	.01	00:	04	03
24	۷	£0:	.05	80.	.03	.02	.03
nion at La	4	.02	86,	.05	00	.00	7 0.
Autocorrelation at Lag	8	: 03	.04	00:	.02	00:	10.
	2	02	04	10:-	03	io	-:02
	-	10.	03	10:-	03	.02	10.
	SR	17.31	15.70	18.19	14.10	14.93	24.15
	Kurt	11.02	8.68	10.86	6.51	10.18	17.45
	Skew	21	98"-	.,47	-31	4 .	9;
	Std Dev	6iL8	.8578	.7687	.8034	1.813	1,121
	Меан	.0033	.0339	.0027	.0196	.0021	.0118
Sample	Period, Size, T	1885-1896 3593	1807-1906 2990	1907-1916 2885	1917-1927 3288	1928-1939 3574	1885-1939 16330

sample mean is in parentheses below it. Excess kurroxis should be 0. for a normal distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Hartley Note Sample moments are calculated for daily stock returns for which data are available. All daily returns are expressed as percentage returns (multiplied by 100.) The t-statistic for the and Pearson [1954]. The Box-Pierce [1970] statistic Q(6) measures the joint significance of the 6 lags of the autocorrelations, with the p-value in parentheses below it.

Table 5 -- Sample Means and Standard Deviations by Day-of-the-Week for Daily Percentage Dow Jones [1972] Portfolio Returns, 1885-1939

Period. Size. T	Monday	Tuesday	Wednesday	Thursday	Friday	Saturda
	<u>A. Me</u>	ans of Perce	ntage Returns b	y Day-of-the-l	<u>Veek</u>	
1885-1896 35 93	1158	.0199	.0623	0204	.0600	.0117
1897-1906 2990	0300	.0776	.0594	0169	.1523	0443
1907-1916 28 85	0296	.0203	0415	0050	.0328	.04 i 2
1917-1927 3 28 8	1547	0011	.0336	.0365	.1077	.0916
1928-1939 35 74	3270	.0659	.0915	.0509	.0325	.0931
1885-1939 16330	1388	.0364	.0439	.0101	.0758	.0406
<u> </u>	3. Standard_	<u>Deviations o</u>	f Percentage Re	eturns by Day-o	f-the-Week	
1 88 5-1896 35 93	. 95 19	.8690	.9317	.8344	.9345	.6846
1 8 97-1906 29 90	.9939	.8525	.8502	.8537	.8537	.7046
1907-1916 2885	.8267	.7954	.7220	.8279	.8186	.5879
1917-1927 3288	.8807	.8183	.8589	.8655	.7729	. 5 499
1928-1939 35 74	1.872	1.734	2.101	1.748	1.949	1.33
1 885- 1939 16330	1.197	1.098	1.237	1.108	1.182	.840

Table 6 -- Sample Mean, Standard Deviation, Skewness, Excess Kurtosis, Studentized Range and

Sample								Autocorrelation at Lag	n at Lag			
Period, Size, T	Mean	Sid	Skew	Кин	SR	-	2	~	4	8	હ	(9)()
			1	A. S&P Com	A. S&P Composite Porfolio	l	1	l				
1928-1937 2973	(.03)	1.933	86.	10.07	14.97	.02	9.	02	50.	.02	S0:-	25.0
1938-1947 2954	0187	1.107	-10	10.48	15.44	8	03	50.	60	6 .	10.	23.9
1948-1957 2658	.0388	.7298	85	9.81	15.22	Ξ.	07	01	.02	50:	ē.	\$1.2 (.00)
1958-1967 2518	.0369	56195	46	12.49	18.28	2 1.	8	70.	SO.	10:	10-	70.4
1968-1977 2497	.0029	.8397	££.	5.45	10.35	12.	10'-	.02	1 0:	£0	07	191.6
1978-1987 2528	.0434 (1.43)	1.044	-2 85	65,37	28.24	80:	04	03	Ŗ.	8;	S 0'	37.6
1928-1987 16128	0231	1.158	200-	23.39	31.95	80	Б	0 6:	.03	05	03	(.00)
			B. CRSP Val	B. CRSP Value weighted Portfolio of NYSE and AMEX Stocks	folio of NYSE o	and AMEX	Stocks					
1962-1967 1384	0570.	.5480	<u>41.</u>	7.94	12.26	91.	70.	8.	S,	Ŗ	8	44.8 (.00.)
19 K8-197 7 2497	.0168 (1.01)	.8295	.29	5.56	10.60	90	90.	.03	20:	02	·96	(.00)
1978-1987 2528	.0611	6526	-2.50	54.96	27.56	£1.	02	02	03	70.	8	(.00)
1962-1987 6409	(4.09)	.8419	-1.44	41.34	31.95	07.	Ę.	6 .	0 0;	£0:	8	265.4
	jeog	i	C. CRSP Eq.	C. CRSP Equal-wrighted Portfolio of NYSE and AMEA SIOCKS	tota of NYSE	and AME.A	310cKS		2	=	2	185.2
1384	(5.73)	G15	58	,7.c	10.07	ŝ	, and	31:	à	:		(00)
1968-1977 2497	.0432 (2.50)	.8661	æ	7.54	13.42	46	t 1	21.	S I:	6 6	.02	(00)
1978-1987 2528	.0848	.8631	-2.11	47.36	27.83	77	Ŗ	707	8.	.12	8 .	249.4
1962-1987 (409)	.0727 (7.18)	.R107	£6°-	28.12	29,63	\$5.	8	& ;	01.	0.	S0:	1064.7 (.00)

for the sample mean is in parentheses below it. Excess kurtosis should be 0 for a normal distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Hartlev and Pearson [1984]. The Box-Pierre [1976] statistic (3/6) measures the joint significance of the 6 lags of the autocorrelations, with the p-value in parentheses Note: Sample moments are calculated for daily stock returns for which data are available. All daily returns are expressed as percentage returns (multiplied by 100.) The t-statistic

Table 7 -- Sample Means and Standard Deviations by Day-of-the-Week for Daily Percentage S&P and CRSP Portfolio Returns, 1828-1987

Sample Period.						
Size. T	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	A. Mean	s of Percenta	age Returns by	Day-of-the-We	<u>ek</u>	
Standard & Poor's Compos	ue Portfolio					
1928-1937	3759	.0346	.1163	.0796	.0634	.0844
1938-1947	1416	.0731	.0211	.0113	0508	.2131
1948-1957	1875	0047	.1305	.0797	.1374	.1411
1958-1967	1411	.0405	.0917	.0640	.1251	NA
1968-1977	1484	0088	.0818	.0260	.0606	NA
1978-1987	1278	.0701	.1374	.0451	.0824	NA
1928-1987	1872	.0341	.0966	.0510	.0697	.1465
CRSP Value-weighted Portf	olio of NYSE and a	MEX Stocks				
1962-1967	0997	.0638	.1252	.0666	.1247	NA
1968-1977	1330	0057	.0858	.0464	.0873	NA
1978-1987	1193	.0702	.1547	.0719	.1188	NA
1962-1987	1204	.0390	.1219	.0608	.1077	NA
CRSP Equal-weighted Port	folio of NYSE and	AMEX Stocks				
1962-1967	0644	.0546	.1598	.1377	.2257	NA
1968-1977	1283	0409	.1023	.0754	.2050	NA
1978-1987	1660	.0119	.1801	.1494	.2386	NA
1962-1987	1291	.0001	.1460	.1180	.2227	ÑΑ
<u>B.</u>	Standard De	viations of F	Percentage Retu	rns hy Day-of-	the-Week	
Standard & Poor's Compos	ise Portfolio					
1928-1937	2.043	1.787	2.282	1.920	2.020	1.361
1938-1947	1.118	1.359	1.105	1.045	1.089	.8100
1948-1957	.8407	.7702	.7426	.6499	.6483	.4599
1958-1967	.7135	.6465	.6072	.5654	.5157	NA
1968-1977	.9107	.7991	.8956	.7904	.7819	NA
1978-1987	1.197	1.098	1.237	1.108	1.182	NA
1928-1987	1.259	1.128	1.226	1.078	1.102	1.060
CRSP Value-weighted Port	olio of NYSE and	AMEX Stocks				
1962-1967	.6012	.5937	.5762	.4729	.4512	NA
1968-1977	.9111	.7786	.8850	.7879	.7621	NA
1978-1987	1.311	.9007	.9036	.8679	.8136	NA
1962-1987	1.036	.7963	.8354	.7656	.7288	NA
CRSP Equal-weighted Port	folio of NYSE and a	AMEX Stocks				
1962-1967	.6698	.5948	.5560	.4985	.4872	NA
1968-1977	.9980	.7782	.8802	.8488	.7782	NA
1978-1987	1.112	.7745	.8291	.7440	7574	NA
1962-1987	.9852	.7421	.7990	.7435	.7165	NA

Note: The New York Stock Exchange traded for 1 day on Saturdays from 1928 through May 1952. "NA" indicates Saturday returns are not available.

Table 8 -- Cross-correlations of Daily Returns to the Dow Jones [1972], Standard & Poor's [1986] and CRSP Value and Equal-weighted Portfolios for Common Sample Periods

•	Sample					Cro	ss-correl	Cross-correlations at lag k correlations at lag k	lag k +k])					
First senes, r1 Second series, r2	Penod, Size, T	9+	5+	4	+3	+2	<u> </u>	0	7	7-	£-	4-	ئ.	9
Dow Jones vs. S&P	1928- 1939 3574	05	10	.05	01	03	10:	16	.04	02	10	.05	.03	03
S&P vs.	1962- 1967	00.	9.	.05	90:	707	.16	8	<u>4</u> .	.01	50.	.02	.03	01
CRSP VW vs. CRSP EW	88 4	9 6.	8.	.08	.10	.04	.26	9 8:	.12	10.	.02	10.	.02	03
S&P vs.	1968- 1977	90:-	02	.02	.03	8;	39	8,	12.	01	.02	.00	03	90:-
CRSP VW vs. CRSP EW	7697	02	.05	11.	.10	700	.42	.85	.20	02	.01	.01	03	05
S&P vs.	1978- 1987	.04	.07	04	02	03	.14	8;	.07	03	-03	03	86	.03
CRSP VW vs. CRSP EW	8757	.07	.10	01	.03	90:	34	.84	1 0:	03	05	.01	.05	.02
S&P vs.	1962- 1987	00	.03	.01	.01	01	.20	8;	31.	-02	01	01	.02	01
CRSP VW vs. CRSP EW	04PJ	.03	.08	.05	90:	.03	3%	, 2 2'	01.	02	02	.01	.01	·.01

Note: The cross-correlation at lag k measures the correlation of the return rf at tone t with the ceturn r2 at time 14k

Table 9 -- Comparison of Filtered Time-averaged Returns R, with Returns to Point-sampled Indexes R,

$$R_{i} = \hat{\mu} + \hat{\varepsilon}_{i} - \hat{\theta} \hat{\varepsilon}_{i,1} \tag{7}$$

$$\hat{R}_1 = \hat{\mu} + 1.2 \left(1 + \hat{\theta}^2\right)^{1/2} \hat{\epsilon}_1 \tag{8}$$

Sample Means, Standard Deviations, Skewness, Excess Kurtosis, Studentized Range, Autocorrelations and Cross-correlations

	Sample						Auto	ocorrelati at lag	on
Series	Period. Size. T	Mean	Sid Dev	Skew	Kurt	SR	1	2	3
Macaulay	1857- 1937 956	.0020	.0554	2.08	31.74	18.39	.15	01	15
Cowles (Price)	1871- 1938 815	.0023	.0545	1.24	20.49	15.67	.03	.02	15
Cowles (w/div)	1871- 1938 815	.0064	.0543	1.23	20.50	15.71	.04	.02	15
			Cı		elations a (1),r2(1+.				
First series. rl Second series	s. r2	+3	+2	+1	0	-1	-2	-3	
Dow Jones vs. Macaulay	1885- 1937 624	09	06	.45	.71	.14	10	14	
Dow Jones vs. Cowles P-1	1885- 1938 647	04	08	.52	.64	.06	08	09	
Macaulay vs. CRSP VW	1926- 1937 133	18	20	.26	.71	.55	07	15	
vs. CRSP EW	155	25	- 16	.24	.78	.51	02	13	
Cowles P-1 vs. CRSP VW	1926- 1938 156	12	17	.13	.58	.67	13	08	
vs. CRSP EW	130	17	14	.12	.64	.60	08	07	
Cowles C-1 vs. CRSP VW	1926- 1938 156	13	17	.13	.58	.67	13	09	
vs. CRSP EW		17	14	.12	.64	.60	08	08	

Note: The filtered series \hat{R}_i is the intercept $\hat{\mu}$ plus the residual from the first order moving average process in (7) $\hat{\epsilon}_i$, scaled so that it has a standard deviation 20 percent larger than the time-averaged returns R_i . The cross-correlation at lag k measures the correlation of the return r1 at time t with the return r2 at time t+k. See note to table 1 for further information.

Table 10 -- Comparison of Monthly Dividend Yields to the Cowles [1939] and CRSP Value and Equal-weighted Portfolios

Sample Means, Standard Deviations, Skewness, Excess Kurtosis, Studentized Range, Autocorrelations and Cross-correlations

A. Sample Moments for Fidl Sample Periods

	Samule										лиосоневаноя аста	панон а	X Y					
Srries Cowles	Period, Size, T 1871- 1938	Mean .0042	Std Dev	1.08	Kurt 2.06	SR 6.76	<u>- = .</u>	2 50,	~ 2 2	+ -0	2 I I	اگا م	V 15	8 - 20	0 4	01 97	# 1 6	21 8
CRSP VW	-9261 -7861	8000	.0023	1.08	1.62	06'9	<u>. 15</u>	20	.82	20	<u>e</u> ,	.83	20	20	85.	.24	17	8.
CRSP 15W	1926- 1987 1987	.0034	.0018	1.67	4.56	7.41	91.	푠	69:	.n2	\$0:	£.	.00	10.	59:	03	21.	78.

B. Cross-correlations Between Dividend Yield Series for Overlapping Samples

	۳	.35	38	19:
	-2	43	26	06"-
*	1-	.62	21.	.26
(Yoss-correlations at lag k corr(v!(t),v2(t+k))	0	.54	.80	18.
Cross-col	1+	-,45	26	Þ2 -
	+2	8.	8 0	£F:
	£ +	32	30	19:
	Period, Size, T			1926- 1987 744
	First series, yl Second series, y2	Cowles vs.	CRSP VW vs. CRSP FW	CRSP VW vs. CRSP FW

Note: Sample moments are calculated for monthly dividend yields for which data are available. Excess kurtosis should be 0 for a normal distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Hartley and Pearson [1954]. The cross-currelation at lag k measures the correlation of the yield yl at time 1 with the yield y2 at time 1 *k.

Table 9 -- Comparison of Filtered Time-averaged Returns R, with Returns to Point-sampled Indexes R,

$$R_{i} = \hat{\mu} + \hat{\varepsilon}_{i} - \hat{\theta} \, \hat{\varepsilon}_{i,i} \tag{7}$$

$$\hat{R}_1 = \hat{\mu} + 1.2 (1 + \hat{\theta}^2)^{x_1} \hat{\epsilon}_1$$
 (8)

Sample Means. Standard Deviations, Skewness, Excess Kurtosis, Studentized Range, Autocorrelations and Cross-correlations

	Sample						Auto	ocorrelat at lag	ion
Series	Period. Size, T	Mean	Std Dev	Skew	Kurt	SR	1	2	3
Macaulay	1857- 1937 956	.0020	.0554	2.08	31.74	18.39	.15	01	15
Cowles (Price)	1871- 1938 815	.0023	.0545	1.24	20.49	15.67	.03	.02	15
Cowles (w/div)	1871- 1938 815	.0064	.0543	1.23	20.50	15.71	.04	.02	15
			Ci		elations a				
First series, r1 Second series	r. r2	+3	+2	+1	0	-1	-2	- 3	
Dow Jones vs. Macaulay	1885- 1937 624	09	06	.45	.71	.14	10	14	
Dow Jones vs. Cowles P-1	1885- 1938 647	04	08	.52	.64	.06	08	09	
Macaulay vs. CRSP VW	1926- 1937 133	18	20	.26	.71	.55	07	15	
vs. CRSP EW	133	25	16	.24	.78	.51	02	13	
Cowles P-1 vs. CRSP VW	1926- 1938 156	12	17	.13	.58	.67	13	08	
vs. CRSP EW	150	17	14	.12	.64	.60	08	07	
Cowles C-1 vs. CRSP VW	1926- 1938 156	13	17	.13	.58	.67	13	09	
vs. CRSP EW		17	14	.12	.64	.60	08	08	

Note: The filtered series \hat{R}_i is the intercept $\hat{\mu}$ plus the residual from the first order moving average process in (7) $\hat{\epsilon}_i$, scaled so that it has a standard deviation 20 percent larger than the time-averaged returns R_i . The cross-correlation at lag k measures the correlation of the return r1 at time t with the return r2 at time t+k. See note to table 1 for further information.

Table 10 -- Comparison of Monthly Dividend Yields to the Cowles [1939] and CRSP Value and Equal-weighted Portfolios

Sample Means, Standard Deviations, Skewness, Exeess Kurtosis, Studentized Range, Autocorrelations and Cross-correlations

A. Sample Mornents for Full Sample Periods

Sample										Литосотебанов ат Гад	панон а	lak					1
Size, T 1871- 1938 815	Mean OM2	Std Dev 0021	Skew 1.08	Kurt 2.06	SR 6.76	~ 1 2	- 98	~ 1 %	+ + 10-	\$ 10.	v S₁ ·	7 T #	≈ 10:-	9 44	10	11 E	# 1 %
25- 48.7	.0038	.0023	1.08	1.62	06'9	15	20	28.	20	61	.83	20	20	£ .	24	21	68.
- 58 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	90034	8100.	1.67	4.56	7.41	91.	폰.	69:	.02	50.	£7.	.02	10:	89.	03	.12	.87

B. Cross-correlations Between Dividend Yield Scries for Overlapping Samples

	£	35	%	19 .
	?	-,43	26	.30
*	<i>-</i>	29:	12	.26
Cross-correlations at lag k	0	.54	08:	≅.
Cross-co	7	-,45	26	-24
	Z+	8 5;	8	£.
	£+	.32	.50	19:
Sample	Period, Size, T			1926- 1987 744
	First series, y! Second series, y2	Cowles	CRSP VW vs. CRSP EW	CRSP VW vs. CRSP EW

Note: Sample moments are calculated for monthly dividend yields for which data are available. Excess kurtosis should be 0 for a normal distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Hartley and Pearson [1954]. The cross-correlation at lag k measures the correlation of the yield yl at time t with the yield y2 at time t +k.

Table 13 -- Sample Mean, Standard Deviation, Skewness, Excess Kurtosis, Studentized Range and 12 Autocorrelations of Combined Monthly Portfolio Returns, 1802-1987

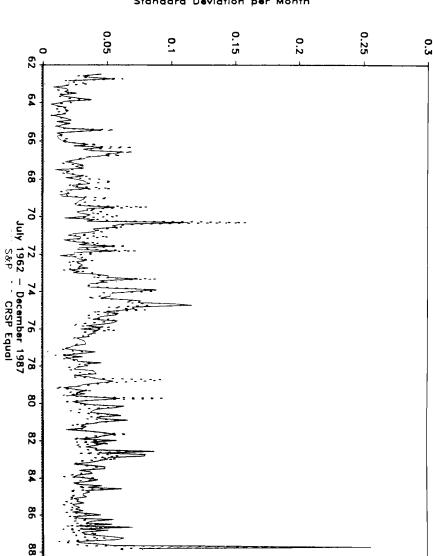
	0(12)	43.9	17.3	25.8 (.01)	23.5	12.9	11.6	13.5 (.33)	24.3 (.02)	9.7 (£4)	15.5	8.9 (T.)
	12	&	21.	8	z.	02	ş	8 6.	02	10.	8 5	 20:-
	=	8	13	13	01	Ξ	.00	.00	\$	6 .	01	\$
	10	8	S0:	€.	.02	<u>=</u>	.02	.02	8 6.	Ę	05	8
	٥	ξ.	.0.	8	10.	.02	02	90-	.13	ģ	%	<u>+</u>
	œ	£0.	03	86.	86.	8	.07	6 0:	8 ;	.03	07	12
at Lag	7	ē.	6	<u>s</u>	60	0.	98	50.	6	.07	7	03
Autocorrelation at Lag	ی	-0.	.03	Ö.	8	20.	13	90,	8	03	Ę	5 .
Antoco	v.	\ 8	-03	ž,	60:-	8.	€	01.	.07	8	&	.20
	4	ē	07	9.	03	\$	05	8	8	.07	86	8,
		\$0,-	0.	Ξ,	<u>=</u>	8	8 0:	01	21	.02	50.	\$0°-
	7	-0	Ħ,	12	-10	10:	\$0	.15	01	Z,	-98	.03
	-	8	E ,	.17	.14	8.	₹,	£0:-	ä	8	\$	8.
	SR	14.68	8.48	8.17	8.76	8.69	6.92	8.99	2 .8	5.41	95"9	6.89
	Кин	8.09	4.91	5.01	4.22	4.01	1.00	69'0	6.3	F	66.0	4.44
	Skew	<u> </u>	-1.15	\$?	-,46	25	.10	46	43	-37	\$	82
i	De C	.0455	.0152	.0276	04 NO.	- 0M	.0458	.0414	764.0	.0364	.0433	00500
	Меан	(7.36)	.0034 (3.37)	.0044	.0044	.0102 (3.82)	.0059 (1.99)	(1.94)	.0088	.0119 (5.05)	.0079	.0117 (2.14)
Sample	Size, T	1802-1987	1802-1820 227	1821-1840 240	1841-186 0 240	1861-1880 240	1881-1900 240	1901-1920 236	1921-1940 240	1941-1960 240	1961-1980 240	1981-1987 84

Note: Sample moments are calculated for the combined monthly stock returns, including dividends. The t-statistic for the sample mean is in parentheses below it. Excess kurtosis should he O for a normal distribution. The studentized range (SR) is the sample range divided by the sample standard deviation, see David, Dartley and Pearson [1954]. The Box-Pierce [1970] statistic Q(12) measures the joint significance of the 12 lags of the autocorrelations, with the p-value in parentheses below it.

Sample							Ante	Autocorrelation at Lag	m at Lag			
Period, Size, T	Mean	Std Dev	Skew	Кип	SR	-	7	ю	4	8	9	(9)(0
1885-1987 28884	.0395	1.019	90.	21.38	34.04	0.	.03	5	.04	.03	02	182.6
1885-1896 3593	.0175	.8738	21	11.02	17.33	01	02	.03	.00	.03	01	11.0
1897-1906 2990	.0474	8278	-36	8.60	15.70	03	-,04	.00	80:	.05	05	43.5
1907-1916 2885	.0202	.7688	47	10.85	18.19	01	-:01	00;	.05	80.	10:-	27.5
1917-1927 3288	.0403	.8034	-31	6.53	14.11	.03	03	.03	6 .	.03	90.	9.8 (.14)
1928-1937 2973	.0170	1.933	38	10.09	14.99	0.	04	02	.05	.02	05	25.0
1938-1947 2954	.0365	1.107	10	10.47	15.44	90:	03	.05	.03	10.	.01	23.8
1948-1957 2658	.0593	.7296	8	9.79	15.22	Ξ.	07	01	20:	.05	01	51.1
1958-1967 2518	.0586	8609	55	13.02	18.57	71.	03	50:	.05	10.	01	81.3
1968-1977 2497	.0313	8295	.29	95"5	10.59	30	0 0.	.03	.02	02	90:-	243.8
1978-1987	0800	8926	-2.51	54.97	27.55	51.	02	03	03	.07	Q .	65.6

The istatistic for the supple means are a principles in Feres kitters should be it for a normal distribution. The studentized range (SR) is the sample range disdicted by the sample can be a principle mean of the first for the supple range of the subsecretations, with the positive in candid decision, see Paul, Bartley and Pearson [1934]. The Bay-Peare [1930] statistic (Als) invasures the point significance of the 6 lags of the authoriteations, with the positive in

the contribution of the best of


Standard Deviation per Month 0.05 0.15 0.2 Estimates of the Monthly Standard Deviation of Returns for the CRSP Value-weighted, Cowles C-1, Dow Jones 28 29 30 31 32 CRSP-V - Cowles(div) · 33 Dow Jones Macaulay 36 38

0.25

and Macaulay Portfolios Based on the Last 12 Monthly Returns, 1927-1938

Standard Deviation per Month Figure 2 --0.15 0.2 0.1 28 Estimates of the Monthly Standard Deviation of Returns for the Dow Jones and Standard & Poor's Portfolios Based on the Daily Returns Within the Month, 1928-1939 29 30 Dow Jones 35 S&P 36 37 38 39

Standard Deviation per Month

Annual Dividend Yield Figure 4 -- Estimates of Annual Dividend Yields for the Cowles and CRSP Value-weighted Portfolios Based on the Last 12 0.05 0.06 0.07 0.08 0.09 0.02 0.03 0.04 0.01 0.1 1872 1882 Monthly Yields, 1871-1987 1892 1902 1912 192: — Cowles 1922 1932 1942 -- CRSP-VW 1952 1962 1972 1982

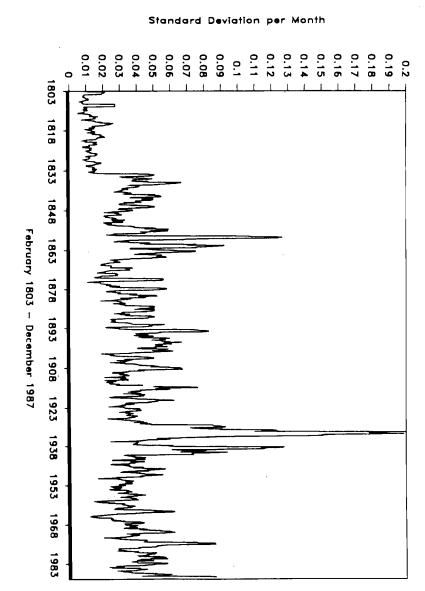
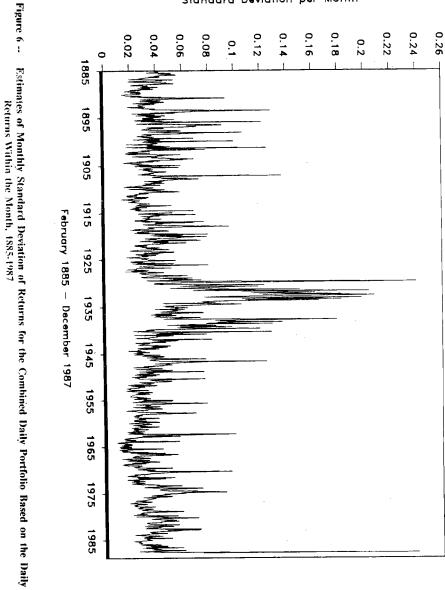



Figure 5 --Estimates of Monthly Standard Deviation of Returns for the Combined Monthly Portfolio Based on the Last 12 Monthly Returns, 1803-1987

Standard Deviation per Month

Appendix

Monthly Index of Common Stock Returns, 1802-1987

Dec 0.01121 0.01121 0.011083 0.011083 0.011083 0.011083 0.011308 0.011308 0.011308 0.011308 0.011308 0.011308 0.011309
0.01116 0.01013 0.01032 0.01082 0.01082 0.01083 0.01340 0.01340 0.01455 0.011340 0.01514 0.01511
0.01091 0.01091 0.01067 0.01067 0.01069 0.01181 0.01270 0.01336 0.01336 0.01435 0.01435 0.01435 0.01435 0.01435 0.01435 0.01631 0.01631 0.01631 0.01631 0.01631 0.01631 0.01631 0.01631 0.01631 0.01631 0.03365
Sept. 0.01075 0.01043 0.01062 0.01062 0.01062 0.01066 0.01264 0.01329 0.01589 0.01588 0.01588 0.01588 0.01588 0.01588 0.01589 0.01589 0.01589 0.01589 0.01589 0.01589 0.01589 0.01589 0.01589 0.01589 0.02044 0.02349 0.02349 0.02349 0.02349 0.02341 0.04117 0.04111 0.04910 0.05347 0.05364 0.05366 0.05366
Aug. 0.01060 0.01049 0.01049 0.011423 0.014100 0.014100 0.014100 0.014124 0.014100 0.014100 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014124 0.014121 0.014121 0.014121 0.014121
July 0.01046 0.01046 0.01048 0.011048 0.011048 0.011048 0.011049 0.011049 0.01645 0.01649 0.01649 0.02309 0.02309 0.03923 0.04087 0.04087 0.06534 0.06534 0.06534 0.06534
June 0.01041 0.01041 0.01040 0.01040 0.01040 0.01040 0.010426 0.01285 0.01285 0.01285 0.01285 0.01285 0.01285 0.01385 0.01385 0.01385 0.01385 0.02886 0.02886 0.02886 0.02888 0.02888 0.02888 0.02888 0.02889 0.02888
May 0.01036 0.01024 0.01055 0.01055 0.01017 0.01017 0.0117 0.01389 0.01461 0.01481 0.01481 0.01638 0.01648
April 0.01022 0.01086 0.01085 0.01083 0.01185 0.01185 0.01187 0.01516 0.01516 0.01516 0.01516 0.01516 0.01516 0.01516 0.01516 0.01529 0.01709
March 0.01018 0.01028 0.01058 0.01109 0.01109 0.011378 0.011378 0.011434 0.011434 0.011438 0.01438 0.01438 0.01438 0.01438 0.01438 0.01438 0.01438 0.01438 0.01438
6.001014 0.01098 0.01054 0.01054 0.01053 0.01053 0.01188 0.01222 0.01373 0.01538 0.01628 0.01628 0.01647 0.01647 0.01647 0.01647 0.01566 0.01579 0.02341 0.02341 0.02343 0.02341 0.02543 0.02445 0.02543 0.02543 0.02543 0.02543 0.02544 0.02544 0.02543 0.02544 0.02544 0.02543 0.02544 0.02544 0.02544 0.02544 0.02544 0.02544 0.02544 0.02544 0.02544 0.02544 0.02541
Jan 0.01000 0.01116 0.011070 0.01076 0.011076 0.011078 0.01078 0.0
Year 1802 1803 1804 1805 1806 1806 1807 1808 1810 1811 1811 1812 1813 1823 1823 1824 1834 1834 1834 1834 1834 1834 1836 1837 1838 1841 1842 1843 1843 1843 1843 1843 1843 1843 1843 1843 1844 1845

Appendix (continued)

Monthly Index of Common Stock Returns, 1802-1987

Dec		0.12090	0.15172	0.13948	0.10291	0.10983	0.12071	0.08817	0.10586	0.0060	0.03300	0.11898	0.12323	0.20010	0.27994	0.30892	0.29884	0.32531	0.35034	0.40749	0.42955	0.47598	0.54241	0.61056	0.57975	0.62068	0.63604	0.56422	0.54332	0.60382	0.89218	1.11457	1.17863	1.22340	1.17208	1.03249	1.36485	1.47904	1.41.514	1.2451	1.70508	175751	1 92062	1 44605	1 \$0350	1,0030	1.00017	2.11568	2,65606	2.90596
Nov		0.11900	0.14548	0.12870	0.11292	0.10606	0.11501	0.07521	0.10529	0.00319	0.05317	0.13000	0.12094	0.20597	0.28074	0.318/1	0.30344	0.32857	0.34185	0.39074	0.43409	0.48014	0.52880	0.59079	0.51393	0.62153	0.63893	0.56093	0.54008	0.60833	0.89824	1.07319	1.21964	1.19254	1.20939	1.02318	1.36324	151187	4004.1	700051	1.0/301	1.25343	1.000.1	1 50767	1 50037	1 75001	1.75761	000000	2 51603	3.18059
Oct		0.11602	0.14098	0.13686	0.11709	0.12003	0.11465	0.06965	0.10126	0.00489	0.0530	0.13304	0.11330	0.19171	75250	0.29330	0.30074	0.33814	0.34178	0.40556	0.43909	0.47876	0.50973	0.59205	0.52388	0.61164	0.62398	0.57297	0.55064	0.60351	0.86962	1.01458	1.19776	1.24000	1.16716	1.03907	1.32353	1.49900	1.33/4/	1,50204	1.69304	1.0001	1 89950	1 56246	1 50214	1 78033	1,76753	2.050.5	2 37582	16891.
Sept		0.11412	0.13894	0.13758	0.11198	0.12422	0.11410	0.09209	0.10260	0.09637	0.1442	0 11097	0.1100/	0.10006	0.27047	0.30301	0.2944/	0.32351	0.34106	0.39801	0.42960	0.47598	0.54161	0.58140	0.56355	0.60950	0.62464	0.56383	0.54077	0.61578	0.77098	0.97121	1.22025	1.27719	1.21072	1.05218	1.1/248	1.4001	1.40902	1 71885	1 73130	1 80077	1.84408	1 46055	1 \$6414	1 86937	1 57042	2.11315	02758	3.00586
Aug	01110	0.11235	0.13/05	0.13990	0.11895	0.12536	0.11862	0.10747	0.10400	0.09403	0.13752	0.11030	0.15416	01360	0.27300	0.33300	0.27014	0.32404	0.33990	0.39004	0.46842	0.46719	0.53552	0.58927	0.62173	0.59746	0.63218	0.59653	0.50847	0.59273	0.73817	0.98083	1.19930	1.26331	1.17142	1.11894	1.16/51	1.3/269	1 \$1070	1 68410	1 79953	1 77870	1.87296	1,38942	1,63639	1 00428	142250	2.19768	2.47150	3.19835
July	011070	0.11770	0.13393	0.14652	0.12/4/	0.12650	0.11823	0.10195	0.09819	0.09177	0.12488	0.10787	0.15820	0.2021.0	0.2220	0.36406	0.26493	0.51055	0.34051	0.39429	0.45875	0.4 /092	0.52546	0.59379	0.61823	0.59365	0.62784	0.62521	0.47715	0.60325	0.73173	0.94751	1.21613	1.24258	1.22470	1.04499	1.14194	1.39250	1 48122	1 60046	1.80956	1.56857	1.92318	1.25368	1.49789	1 84826	1,43548	1.96367	2,31815	3.11575
June	011300	0.1210	26161.0	0.14715	0.13603	0.12114	0.11597	0.10997	0.10309	0.09124	0.12431	0.10721	0.15074	0.24185	032250	020.00	0.2020	67505.0	0.32/09	0.37200	0.45723	0.48652	0.53004	0.59399	0.61289	0.58877	0.61687	0.62855	0.43880	0.59114	0.71302	0.89759	1.26337	1.15293	1.25609	0.98913	1.03913	1 48356	1.37175	1 62900	1.82583	1.60191	1.88030	1.52539	1.50817	1.74402	1.58175	1.82823	2,26927	3,050,70
May	701710	0.12130	0.1315	0.14700	0.1377	0.11502	0.118/2	0.11798	0.10630	0.09654	0.11974	0.10669	0 14743	0.000	0.31903	1927.0	20806	0.27003	0.31409	0.30047	0.45045	0.46376	0.53834	0.59875	0.62245	0.58705	0.62199	0.62418	0.48252	0.57096	0.71060	0.86781	1.26217	1.14949	1.22205	1.03/96	777cr 1	1 54754	1.36947	1.64096	1.85569	1.65165	1.87964	1.57671	1.52969	1.73619	1.68953	1.67872	2.28839	2.85614
April	0.12191	0.12828	0.14316	0.14.00	0.1412	0.11509	0.11%	0.11763	0.10060	0.09813	0.11135	0.13385	0.13853	0.23308	013430	0 26657	0 29196	0.302.0	0.37067	0.3450	0.4550	0.40304	0.52543	0.60004	0.61327	0.59642	0.65188	0.64242	0.46963	0.57230	0.67748	0.94812	1.19138	1.16316	1.5572	1.13932	1 26724	1.52137	1.44358	1.57078	1.79925	1.72663	1.91052	1.72038	1.59559	1.63513	1.73141	1.62881	2,009.49	3.16586
March	0.11884	0 12505	0.14395	0.14363	0.14410	0.11020	0.11703	777710	0.11099	0.10339	0.10082	0.13119	0.13795	0.22739	0.33524	0 26087	0.28545	0.31301	0 37046	0.47778	0.45150	0.505.0	0.50019	0.38175	0.61870	0.60666	0.63861	0.66839	0.50479	0.55436	0.64516	0.9/418	1.19/08	1.15954	1.22180	1.10401	1.30055	1.50462	1.31406	1.51708	1.70319	1.62255	1.89115	1.770%	1.61799	1.56450	1.67457	1.64128	2.01624	3.14888
Feb	0.11963	0.11795	0 14465	0.13783	0.11460	0.11400	0.1100	0.121.0	0.09439	0.102%	0.09643	0.13062	0.13078	0.23121	0.31063	0.29227	0.28163	0 31453	0.37328	0.42441	0.45.783	0.40162	7014370	0.33699	0.62690	0.62084	0.62738	0.6 70%	0.52442	0.53705	0.06126	0.9548/	1.10030	1.149/0	1 2026	1 05773	1.33223	1.47114	1.39773	1.56342	1.68906	1.62573	1.9444	1.76342	1.54168	1.45276	1.69821	1.73929	2.07390	2.95772
Jan	0.11800	0.11758	0.14560	0.13734	0.10344	0.11045	012134	£17170	0.06677	0.10042	0.09612	0.12167	0.12603	0.23156	0.29691	0.29559	0.28508	0.31275	0,36601	0.47348	0.44185	0.48180	0.40167	0.53042	0.01/18	0.00310	0.62590	0.00323	0.5034	0.54739	0.04193	0.944/8	1.19390	1.1/304	1 14000	1 00719	1,31299	1.42885	1.42283	1.56097	1.73779	1.59106	1.87736	1.87819	1.536.57	1.49146	1.66906	1.75136	2.21521	2.88379
Year	1851	1852	1853	1854	1855	1856	1857	1960	1950	1839	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	167.1	701	10/2	10/4	18/2	0/ <u>0</u>	1070	16/8	18/9	1000	1901	1992	188	28	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	86.5	(A.X.)

Appendix (continued)

Monthly Index of Common Stock Returns, 1802-1987

Dec	3.54937	4.39551	3.73415	4.85345	6.05135	4 20162	6.27074	7.28318	6.54395	7.00065	7.52446	7.09633	0.53505	10.1306	8.49473	9.91982	11.5171	9.92627	11.1204	14.0182	14.2003	16.0626	26.57.57.57.57.57.57.57.57.57.57.57.57.57.	35.4549	49.2443	42.1716	30.3268	16.895 /	15.5707	25.3535	36.5825	48.4052	31.6/91	40.3669	38,3204	34 6821	40.2702	51.5580	62.6030	86.6122	81.4098	84.1520	86.0981	
Nov	3.31864	4.29892	3.50289	4.92344	5.84528	0.32004	6.15881	7.01893	6.50799	6.96846	7.74601	6.94338	orld War I	10.75.01	8.11373	9.91978	11.2584	10.2199	10.9185	13.4816	13.8664	17.6149	25.0304	34.6188	49.0179	41.4517	32.7924	19.4957	14.7037	25.2067	34.9889	48.3396	33.0321	39.005	38 0544	36.3672	38,3777	48.4984	60.0737	85.6388	77.4904	81.7121	83.4236	
Oct	2.94945	3.98110 4.46678	3.47560	4.57661	5.75146	0.12102	5.76241	7.20973	6.69559	6.70748	7.70669	7.04731	Closed for World War I	0.570.6	8 38432	10.2088	12.4541	11.1130	10.3295	13.9073	13.3357	16.3617	25.2936	32.3718	43.7658	47.1280	33.6918	21.4279	15.5367	23.2724	33.2750	46.7343	36.0193	39.7277	41.6860 38 6053	37.0845	38.3082	51.4963	59.1626	81.2060	77.2973	83.2192	91.7253	
Sept	2.75736	3.930/2	3.37587	4.32278	5.68372	6.28404	4.75050	7 29303	6.45551	6.54600	7.92412	7.21106	New York Stock Exchange	8.94451	9 19407	9 94903	11.9567	10.8386	10.2297	13.8948	13.1783	16.2816	21.8065	13.6974	42.8692	58.5851	36.7197	19.8356	17.8362	23.7184	31.1044	43.7093	39.7893	36.8814	41.8618	30 084	35.8746	52.1394	58.9992	78.1455	78.4007	81.2163	86,5533	
Aug	2.84490	4.11385	3.73412	4.15234	5.57954	6.22980	4.80595	5.74149	6 32668	6.66181	7.74665	7.22493	New York	8.28239	9.78303	9.83755	11.5116	10.7425	9.74683	14.3468	13.6725	16.3658	21.4466	25.7/10	41 5689	61.6042	41.8812	27.8567	18.4018	20.2888	30,3830	43.0921	45.9739	36.5627	36.1021	30.7307	39.37.22	50.9122	58.9802	74.5699	87.1971	81,5817	89.1774	
July	2.79171	3.96483	3.63649	3.95657	5.47061	5.98694	5.17658	5.55113	6.11829	7.23601	7.60236	7.04213	6.40257	7.88019	9.53/61	9.67142	11 9494	10.4446	9.93290	13.7731	12.8685	16.0363	20.4603	25.0743	38 0352	56.8433	41.7344	27.8375	13.5117	23.4259	29.5715	42.6265	48.1392	37.5700	38.6545	35.8914	39.33%	35.7C 02	58.0058	70.3076	93.1742	83.0390	88.8369	
June	2.71555	4.31072	3.95840	3.78659	5.25115	5.66039	5.17497	5.10953	6.817.52	7.17809	7.54972	6.79783	7.25128	7.63287	9.59974	10.0462	11 8907	10 5036	9,66662	13.0741	12.8497	15.1072	20.0817	24.3830	29.2000	\$605.75	40.1029	29.7225	10.1835	25.8971	27.5705	40.1033	44.4033	35.0604	35.1049	34.7679	37.1815	23.1011	58 9738	71.9076	95,6466	70.7368	93,5524	
May	2.89181	4.12815	3.96749	3.66321	5.07880	5.93907	4.95843	5.06230	6.72623	7.03596	7.37925	7.02075	7.27256	7.30491	9.68226	10.1044	9.18023	10,6690	9 99888	13.2453	13.9685	14.1886	20.0168	23.1028	1618.62	40.3%3	47.5505	26.1305	10.3247	22.8419	24.3393	39.0885	46.2738	28.3912	37.0684	32.6038	35.1370	32.3401	51.8181	27.00.00	66,5349	27.6775	8155.10	
April	2.92369	4.23052	4.38852	3 71053	5.05467	5.71569	5.35902	4.90126	6.54774	6.62415	716917	7.03051	7.09586	7.85882	9.32254	9.84127	8.8//16	10.6301	10.071	12.9252	14.1427	14.1063	18.7742	22.7713	28.1949	39.6320	48 1704	30.1276	12.9392	18.8626	26.3979	37.275	46.6731	29.5403	34.6879	41.8110	3 (50	30.4 /46	49.0288	70.3317	05 55 70	76.4526	870721	
March	3.05217	3.83246	4.23823	3.71502	5.31803	6.09623	5.12640	4.66037	6.40383	6.81 /13	7.37807	7 24293	7.33303	7.11439	9.43425	10.0767	8.85733	10.4414	0.08050	12 22 28	14,5978	14.2523	18.2232	21.9600	28.0056	31.9975	51.4007 49.1657	33.3967	15.7554	13.7002	26.9443	40.544	50.4410	25.8311	34.7861	41.7570	36.5755	31.8450	48.7025	53.9803	03.2342	1070.14 108c ()8	83,9077	
Feb	2.92117	3.58084	4.12240	4.35007	5.18653	5.92772	5.73449	4.29716	6.09280	6.88727	6.81577	715167	7.32453	6.59753	9.26247	9.67278	9.03812	10.1598	10.0503	11 9274	14.7811	14 4703	19.1356	23.4747	27.8179	34.8786	51.8382	35 6643	17.6962	13.4741	26.7502	24.07.39	50 6611	33.7507	39.4658	40.9784	36.2181	34.0875	45.8852	52.71.37	67.3026	80.6714 81.6671	Stus 12	:
Jan	2 93291	3.55930	4.12745	4.42617	5.73130	6.22062	5.86050	4.52817	6.14321	6.85729	6.85207	7 39408	7.50328	6.81847	9.13032	10.0837	8.95524	9.73197	11.3246	10.2800	13 9959	14 7060	19 0898	24.2515	26.6132	35.3580	51.8683	32 1978	16.7103	15.5214	27.3933	24.5509	36.9930 40.9940	31 9156	38.1490	40.4197	36.7740	34.8817	43.2915	52.4947	63.7443	91.966	82.03%	
Year	1 65	1901	1902	1903	20 <u>8</u> 1	1906	1907	1908	6061	1910	1911	2161	1913	1915	1916	1917	1918	1919	1920	1921	7761	1923	1925	1926	1927	1928	1929	939	1931	1933	1934	1935	1936	1038	1939	1940	1941	1942	1943	1944	1945	946	1948	-

Appendix (continued)

Monthly Index of Common Stock Returns, 1802-1987

Dec	103.412	134.310	162.340	184.550	277.329	347.498	376.659	336.928	487.897	551.734	556.468	709.149	638.653	775.451	902.483	1029.37	938.275	1189.95	1341.69	1209.94	1225.39	1419.70	1670.18	1387.37	1015.47	1398.01	1764.98	1679.56	1802.97	2197.52	2914.30	2793.08	3380.72	4150.53	4390.93	5770.26	6769.03	6963.66
Nov	98.2444	127.045	178.394	184.427	262.800	341.848	365.545	350.236	463.233	536.175	530.923	708.676	630.418	758.214	899.033	1016.84	934.129	1154.19	1393.19	1231.69	1154.15	1301.82	1651.92	1366.57	1039.91	1412.39	1668.13	1670.32	1773.67	2148.53	3015.90	2872.98	3326.97	4184.89	4283.13	5518.95	6955.22	6517.17
Oct	96.3895	123.459	168.464	179.358	239.791	319.014	362.871	341.931	449.572	526.580	506.641	677.450	567.015	762.084	896.819	1015.17	918.821	1145.38	1317.58	1271.77	1096.47	1301.58	1574.00	1546.08	1083.43	1369.55	1659.58	1602.48	1719.16	2025.79	2722.68	2747.04	3177.24	4080.31	4323.67	5163.50	6828.43	7049.17
Sept	93.4407	123.632	169.355	171.301	243.721	327.432	360.294	356.719	437.756	518.725	208.967	659.551	564.656	740.340	888.355	986.769	878.558	1178.39	1303.92	1205.43	1114.03	1355.28	1557.83	1548.23	927.592	1290.98	1695.67	1668.27	1914.89	2176.51	2670.21	2598.18	2847.79	4156.10	4309.41	4942.96	6478.44	8996.24
Aug	90.5374	117.879	172.673	170.779	228.994	328.170	379.228	378.590	417.195	543.028	540.365	672.193	594.419	749.814	862.042	955.962	884.462	1140.44	1251.67	1232.93	1068.53	1363.03	1568.10	1470.88	1042.57	1339.27	1653.14	1667.60	1927.61	2177.31	2594.81	2751.44	2812.25	4084.66	4300.59	5131.10	7038.50	9187.79
July	88.1993	112.228	173.887	178.638	234.270	326.750	390.542	398.358	409.529	549.402	524.606	654.417	581.129	711.344	871.984	928.034	955.771	1147.37	1231.31	1174.03	1017.84	1307.74	1510.83	1516.78	1139.88	1367.37	1652.27	1691.48	1857.84	2048.28	2543.87	2914.60	2499.32	4034.69	3869.38	5154.96	6558.94	8861.03
June	83.6743	110.466	171.841	174.248	223.028	320.330	371.582	394.567	391.881	531.198	535.730	634.922	545.110	712.662	855.092	912.426	967.457	1094.56	1258.56	1252.98	947.174	1363.13	1513.69	1441.67	1229.33	1460.22	1664.53	1718.08	1757.94	2017.38	2380.84	2912.42	2553.25	4161.15	3930.92	5173.10	6939.20	8464.75
May	83.3877	117.086	165.331	177.134	220.521	300.538	358.202	396.880	380.662	530.557	523.619	653.534	594.220	725.731	841.426	960.805	978.336	1069.36	1243.87	1336.29	997.646	1357.32	1547.50	1454.07	1253.09	1388.70	1589.07	1634.41	1781.51	1931.12	2303.77	2935.59	2605.04	4007.66	3841.59	5085.68	6836.01	8077.25
April	85.7322	112.254	148.233	175.950	213.814	297.000	376.924	383.140	371.513	520.132	506.754	637.038	649.083	711.239	827.443	964.995	1031.02	1115.58	1215.47	1332.25	1063.13	1408.91	1521.28	1481.87	1298.57	1316.31	1603.61	1654.90	1748.36	1960.28	2176.67	2911.90	2683.16	3992.75	4049.27	4803.61	6501.42	8025.57
March	87.3083	107.921	168.318	180.904	205.073	287.715	375.037	366.647	360.542	500.526	514.721	633.327	692.523	678.735	823.887	933.200	1007.14	1070.66	1115.41	1304.50	1180.96	1362.64	1511.79	1553.89	1357.35	1257.40	1621.44	1648.57	1613.66	1947.04	2075.39	2960.52	2575.29	3724.08	4028.09	4816.95	6588.51	8146.43
Feb	13.8750	06.625	61.006	83.355	8097.608	288.057	51.113	58.167	48.859	98.086	21.034	14.310	96.449	56.285	09.582	43.288	1029.07	026.52	107.87	265.07	184.14	305.20	497.98	562.23	391.00	221.96	574.65	95'999	563.90	833.39	325.59	838.55	596.92	603.59	961.97	818.73	241.48	950.11
Jan			165.105																																			
Year			1952																																			